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Abstract— In this paper, we present a novel part-based visual 
tracking method from the perspective of probability sampling. 
Specifically, we represent the target by a part space with two 

online learned probabilities to capture the structure of the target. 
The proposal distribution memorizes the historical performance 
of different parts, and it is used for the first round of part selec- 

tion. The acceptance probability validates the specific tracking 
stability of each part in a frame, and it determines whether to 
accept its vote or to reject it. By doing this, we transform the 

complex online part selection problem into a probability learning 
one, which is easier to tackle. The observation model of each   
part is constructed by an improved supervised descent method 

and is learned in an incremental manner. Experimental results  
on two benchmarks demonstrate the competitive performance of 
our tracker against state-of-the-art  methods. 

Index Terms— Visual tracking, part space,  sampling. 

 

I. INTRODUCTION 

IVEN a specified object  in  the  first  frame,  the  task 

of   visual   tracking   is   to   locate   it   in   the   succes- 

sive  video  frames.  As  a  fundamental  topic   in   com-   

puter vision, object tracking plays an important role in 

numerous applications such as visual surveillance, human- 

computer interaction and augmented reality. Despite decades 

of studies [1], [35], [41], [46], visual tracking is still a chal- 

lenging task due to target appearance variations such as object 

deformation, occlusion, illumination changes, motion blur and 

background clutters. 

For object tracking, local appearance models [5], [7], [8] 

are generally more robust than holistic ones [4], [6], since 

many  challenging  factors,  e.g.,  the  object  deformation and 
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partial occlusions, can be viewed as local noise or variations. 

Numerous local appearance models have been proposed in 

recent years and have achieved promising results. Existing 

methods can be roughly categorized into the following classes: 

sparse representation based methods [7]–[9], [22], segmenta- 

tion based methods [5], [26], [29], pooling methods [10], [11] 

and part-based methods [12], [20],  [44]. 

Sparse representation based methods work under the 

assumption of sparse noise (e.g., partial occlusions and local 

background clutter), and represent the target as a sparse com- 

bination of templates and noisy pixels [8], [9]. Despite their 

effectiveness in handling occlusions and background noise, 

they are not suitable for tackling deformable objects, where 

the shifted parts will be mistakenly regarded as noise. Seg- 

mentation based methods [5] separate the target and the back- 

ground into several irregular patches (e.g., superpixels), and 

formulate tracking as an online segmentation or patch classi- 

fication problem. The flexibility of these methods makes them 

handle partial occlusions and object deformation robustly. 

However, it is still difficult for them to obtain accurate bound- 

ing boxes. Besides,  the segmented patches are not uniform    

in size, which makes them difficult to generalize. Pooling 

methods [10], [11], [43] obtain local patches from the target 

by performing sliding windows on it, and represent the target 

with pooled features of  local  descriptors.  These  methods  

can decrease the impact of local noise. Nevertheless, when 

variations of large areas exist, such as object deformation and 

severe occlusions, the noisy blocks will have negative impact 

on target locating. 

When an object deforms or suffers from occlusions, its 

holistic appearance changes a lot, but part of its local 

appearance remains identifiable. Based on this idea, part- 

based models have been introduced in many computer vision 

tasks [12], [14]–[17], [44]. In object detection [45], [47], 

deformable part models (DPM) [14] has been proposed and 

achieved state-of-the-art performance. Subsequently, it attracts 

popularity and numerous improvements to DPM have been 

presented [15]–[17]. In visual object tracking, part-based mod- 

els have also been proposed to deal with target deformation 

and partial occlusions [12], [20], [44], [48]. Yao et al. [12] 

presented a part-based tracking method with online latent 

structured learning. This work can be viewed as an online 

extension of DPM in visual tracking. In [44], a part-based 

tracking method with cascaded regression was proposed, 

which exploits the spatial constraints between parts to learn the 

intrinsic shape of an object. Lu et al. [20] proposed an online 

tracking-learning-parsing framework that utilizes an and-or 

graph to capture the construction of objects. 
 



 

 
 

 
 

Fig. 1. Illustration of the proposed part-based tracking algorithm. A part space of the target is initialized in the  first frame according  to the proposal  
distribution α. Then α is updated in each frame based on the contributions of parts to target locating. We sample parts according to α and track them 
independently. Votes of different parts are accepted/rejected according to an acceptance probability β, then the target location is estimated based on the  
accepted votes. 

 
 

Although above trackers have made attempts to apply the 

part-based strategy in visual tracking, the part-based methods 

for tracking are far less popular  than  for  object  detection. 

One of the main reasons is  the  lack  of  training  samples  

with the tracking data. For object detection, there are enough 

samples for determining the best way of part separation. 

However, for object tracking, the only information provided is 

the target location in the first frame. It is difficult to determine 

how the target is separated with only one sample of an object. 

A better way is  to  learn  the  separations  online.  However, 

an online part separation model is usually complex and time 

consuming. 

We propose a new part-based method to solve the above 

issues from the perspective of probability sampling. The 

overview of our method is illustrated in Fig. 1. We represent 

each target by a part space, which contains sufficient regions 

to cover most structures of objects, and two online learned 

probabilities on it - the proposal distribution α and the 

acceptance ratio β. The α represents the historical information 

of different parts and is applied on the first round of part 

selection, while the β validates the frame specific tracking 

stability of each part and determines whether to accept a part’s 

vote to the target location or not. Thus, the complex online part 

selection problem is transformed into a probability learning 

one, which is much easier to solve. The observation model of 

each part is constructed by an improved supervised descent 

method (SDM) [18], where we incorporate the basic SDM 

model with a confidence evaluation scheme for indicating the 

reliability of each predicted  descent  direction.  We  propose 

an  incremental  cascaded  support vector  regression (ICSVR) 

 

algorithm for model updating. To recover the unselected parts, 

we further present a part relocating scheme. Our source code 

will be available online.1 

Compared to the existing approaches, the proposed visual 

tracking method provides the following contributions: 

• We propose a novel part-based method, which represents 

each target by a part space and two learned probabilities, 

to transform the complex online part selection problem 

into a probability learning  one. 

• An improved supervised descent method (SDM) is pro- 

posed to construct the observation model of each part, 

which incorporates the basic SDM model with a confi- 

dence evaluation scheme for indicating the reliability of 

each predicted descent direction. 

• To achieve robust visual tracking, we further propose an 

incremental cascaded support vector regression (ICSVR) 

algorithm for model updating and an unselected relocat- 

ing scheme for parts  updating. 

 
II. RELATED WORKS 

In this section, we briefly review three closely related topics: 

part-based models, sampling based tracking methods and the 

supervised descent methods. 

 
A. Part-Based Models 

Partial occlusions, background noise and object deformation 

are  some  of  the  most  common  phenomena  in  real   world 
 

1http://github.com/shenjianbing/partspacetrack 

http://github.com/shenjianbing/partspacetrack


 

2 

{ i } 

k=1 

i 

{  k} 

 

videos, and they also cast  a  challenge for  vision tasks  such 

as object detection, recognition and visual tracking. When 

occlusions or deformation  occur,  the  global  appearance  of 

an object may vary largely, but the local appearance usually 

remains identifiable. Based on this observation, several notable 

part-based methods have been proposed. 

One notable work is the deformable part models (DPM) [14] 

proposed in the area of object detection. In this method, 

objects are represented as discriminatively trained deformable 

part models, and the non-convex training problem is solved  

by a latent SVM algorithm. Attracted  by  the  performance 

and the extensibility of DPM, several extensions and variants 

have  been  proposed in  [15]–[17] and  [19]. In  visual  object 

proposal/acceptance steps are adopted to obtain the optimal 

solution. As compared with their methods by sampling track- 

ers or frame organizations, our method regards each tracking 

object as a configuration in its part space and searches for an 

optimal part configuration by sampling to improve  tracking. 

 
C. Supervised Descent Methods 

The Supervised Descent Method (SDM) [18], [27] is origi- 

nally applied to facial landmark detection. Due to its extensi- 

bility, it has been widely applied to many other areas, including 

3D pose estimation [25] and visual tracking [44]. Many basic 

vision  problems  can  be  formulated  as  a  Nonlinear    Least 
Squares  (NLS)  problem:  minx  f (x) = ×h(x) − φ  × ,  where 

tracking, part-based models have also been introduced to deal 
∗ 2 

with local variations. Yao et al. proposed an online  exten- 

sion of DPM for tracking non-rigid objects. It represent an 

object as a feature vector composed of part feature vectors 

and part offsets, and cast tracking as an online latent SVM 

learning problem. It shows better performance  compared to 

its counterpart [4]. Lu et al. presented a tree-structured model 

to represent the part configurations and introduced a tracking- 

learning-parsing framework to perform online object tracking. 

In [49], a multiple part tracking framework was proposed 

based on the KCF [6] tracker to achieve real-time performance. 

A closely related work to ours is the TRIC algorithm [44]. 

Both TRIC and our work  are  part-based  tracking  models 

and construct the observation model based on the supervised 

descent method (SDM) [18]. However, the differences between 

them are obvious. First, our method aims at learning the best 

way of part selection, while TRIC is conducted to build a shape 

model for a target and it performs no part selection. Second, 

our method tracks each part independently and combine their 

results in postprocessing steps. Instead, TRIC locates each part 

based on its three adjacent parts. Third, we have improved the 

SDM by introducing an confidence evaluation  scheme. 

 

B. Sampling Based Tracking  Methods 

Sampling based methods are widely used when the cost 

function is non-convex and when the searching space  is  

large. Several tracking by sampling methods have been pro- 

posed [38], [39]  to  efficiently  optimize  for  better  models. 

In  [38],  different  tracking  algorithms  are  decomposed  into 
four  ingredients:  appearance  and  motion  models,  state rep- 

φ∗ is a template, x is a state (location, angle, etc.) variable 

and  h(·) is  a  feature  extractor.  Since  most  feature  extractors 

h(·) are  not  twice  differentiable, the  idea  of  SDM  [18]  is  to 
learn the mapping from features to descent directions by linear 

cascaded regressions, instead of calculating the Jacobian and 

Hessian matrices in Newton’s  method. 

Despite the effectiveness of SDM, one of its main draw- 

backs is that it only estimates descent directions, and does not 

output values on how reliable the estimations are. This paper 

addresses the issue of confidence evaluation in  SDM. 

 
III. BASIC TRACKER 

In the proposed part-based method, each part is tracked  

with an independently learned observation model. This section 

presents details on the basic tracking approach for each   part. 

 
A. Cascaded Regression 

In our approach, the observation model for each part is con- 

structed based on the supervised descent method (SDM) [18], 

which learns the nonlinear projection from features to descent 

directions  in  a  cascaded  linear  manner.  Specifically,  for  a 

part located at v = (x , y) ∈ R2, where (x , y) denotes the 
central  coordinate,  we  draw  samples    v   n      around  v  to 

i=1 

obtain training data {(6vi , φi )}, where φi  ∈ Rp denotes   the 

extracted feature of sample i  and  6vi  = v − vi  is  its  offset 
to  the  groundtruth. The  SDM  learns  the projection matrices 

{Rk  ∈ R2× p}C in a cascaded way by iteratively optimizing 
the following C  problems [18]: 

n 
min 
. 

×6vk k   2  2
 

resentation types and observation types. These ingredients are 

sampled  iteratively by  using  the  Gibbs sampling  strategy to 

Rk 

i=1 

i − Rk φi ×2 + λ×Rk ×2, (1) 

vk+1 k k 

generate several trackers. Then, the accepted state having the 

highest  posterior  likelihood  is  chosen  as  the  final tracking 

i = vi + Rk φi , (2) 
where k = 1, · · ·  , C denotes the cascade index, v1 = vi , φ

k is 
i i 

result. Hong and Han [39] present an offline tracking method 

by reorganizing the sequential video frames in a tree-structured 

graph. It finds the optimal tree that minimizes the tracking 

costs along the paths from root to leaf nodes by using the 

Markov Chain Monte Carlo (MCMC) based sampling method. 

Then, a probabilistic test is performed on the tree to determine 

whether to accept it or not, and the optimal solution can be 

obtained from the accepted  trees. 

Both the above two approaches and our method treat 

tracking    as    a    probability    sampling    process,    and the 

the feature extracted at vk and λ is a regularization parameter 

for controlling the model complexity. 

In our method, we use the Support Vector Regression (SVR) 

algorithm instead of  (1) for learning the projections   R    C 
k=1 

for two reasons. First, the support vectors in SVR preserve his- 
torical information and can facilitate model updating. As well, 

they can also largely avoid the model being deteriorated by 

tracking failures. Second, the SVR is less vulnerable to noise, 

which largely exists when linear models are used to model 

nonlinear relationships. Let r(kj ), j = 1, 2, denotes the j th row 
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of Rk , 6v
(kj ) 

denotes the j th entry of 6vk, and the cascaded In our method, the dominant set algorithm [28] is    adopted 
i 

SVR is then formulated  as: 

1 2 

i 

 
n . 

(kj ) 

 

 
∗(kj ) 

to seek for the voting center. The dominant set algorithm 

computes the weight wi  for each sample by  optimizing: 
min 

r(k j ),ξ (k j ),ξ ∗(k j ) 
×r(kj )×2 + η1  

i=1 

(ξi + ξi ), max 
w 

wTAw, 

s.t. (r(kj ) · φk ) − 6v
(kj ) 

≤ ε1 + ξ 
(kj )

, s.t. w ∈ α, (7) 
i i 

6v
(kj ) 

i ∗(kj ) where  α  = {w  ∈ Rm  : w  ≥ 0  and  eTw  = 1},  e  ∈    Rm
 

i 
− (r(kj ) · φk

 i
 

 
ξ (kj ) 

 
∗(kj ) i ) ≤ ε1 + ξ , 

is a  vector of all 1s, A  ∈   R m×m 
2 

 
is  an affinity matrix  with 

i    , ξi ≥ 0, 
i = 1, · · ·  , n, k = 1, · · ·  , C, (3) 

each entry  A ij = exp (− 
×v̂ i −v̂ j ×2 ) representing the  similarity 

A 

where  η1  is  a  regularization  factor,  ξ 
(kj )

,  ξ 
∗(kj )

 are slack between  v̂ i  and  v̂ j ,  σA  is  a  scaling  factor.  As  noted  in  [28], 
i i σA is set to be the median value of all entries in A. Finally, 

variables and ε1  is  a  pre-set  margin. We  set  ε1  = 5, which 
means  the  allowed  prediction  bias  without  punishment   is 

5 pixels. 

the part is located  by:  

v̂ = 

 

m 
. 
 
i=1 

 

wi v̂ i . (8) 

B. Confidence Evaluation 

Despite the effectiveness of SDM, its  main  drawback  is 

the lack of a mechanism for  indicating  how  reliable  an  

offset prediction is. In this section, we present a confidence 

evaluation scheme for SDM. 

In the training stage, if one regress iteration pulls a sample 

closer to the groundtruth, we say that the sample is more 

credible  and  vice  versa.  Based  on  the  idea,  we propose to 

Taking  the  sample   confidence   ci   into   consideration,  

we slightly modify the affinity matrix A  as: 

Aij = ci · c j · Aij . (9) 

The rest of the voting process is the same as described before. 

 
D. Updating Scheme 

learn an extra set of projection matrices {Qk  ∈ R1× p}C      for 
confidence evaluation. We take the ratio of overlap rates before 
and after  regression θ k  = (ok+1)2/ok  (where ok  denotes the 

To  adapt  the  basic  model  to  part  appearance  variations, 

we propose an Incremental Cascaded Support Vector Regres- 

sion  (ICSVR)  algorithm  for  model updating. To  deduce the 
i i i i 

overlap between vk  and v) as the label to train {Qk }C       : 
i k=1 

n 

updating scheme, we first investigate the relationship between 

Support  Vector   Classification   (SVC)   and  Support  Vector 

min 
1 

×Qk ×2 + η2 
.

(ξ (k) + ξ ∗(k)), Regression  (SVR).  With  training  data {xi , yi }h
 ,  the SVR 

 

Qk ,ξ (k),ξ ∗(k)  2 i i 

i=1 
problem can be formulated  as: 

s.t. Qk · φk − θ k ≤ ε2 + ξ 
(k)

, 1 
h

 
i i 

θ k k 
i 
(k) min 

2 
×w×2 + η (ξi + ξ ∗), 

i − Qk · φi ≤ ε2 + ξ 
∗

 w,ξ ,ξ ∗ 
i=1 

ξ (k) ∗(k) s.t. (w · x ) − y ≤ ε + ξ , 

i   , ξi ≥ 0, 

i = 1, · · ·  , n, k = 1, · · ·  , C. (4) 

We set ε2 = 1, which is comparable with the magnitude of θ k. 
During testing, with the estimated {θ̂k = Qk · φk }C     for each 

i i i 

yi − (w · xi ) ≤ ε + ξ ∗, 

ξi , ξi  ≥ 0, i = 1, · · ·  , h, (10) 

where η is a regularization parameter, ε is a pre-set margin 
i i 

sample, the credibility ci  is then computed  as: 

C 

k=1 
and ξi , ξ ∗ are slack variables. 

The  above  problem  is  equivalent  to  a   Support    Vector 
ci  = 
  

θ̂k ,   k = 1, · · · , C. (5) Classification model formulated on the modified training data i h 2h T T 

k=1 {(zi , 1)}i=1 and {(zi , −1)}i=h+1, where zi = (xi , yi + ε)  for 

 
C. Part Locating 

i = 1, · ··  , h and zi = (xT, yi − ε)T for i = h + 1, · ··  , 2h: 
2h 

The motion model of our method is based on the particle 

filters framework [13]. When locating a part in a new    frame, 
min 
w,ξ 

1  
w  2

 

2 
× ×2 + 

η 
. 

ξi , 

i=1 

we sample around its last estimated position v from  Gaussian 
distribution  N (v, €2),  where  €2  = diag(r2, r2), to obtain 

s.t. (w · zi ) ≥ 1 − ξi , i = 1, · · ·  , h, 
(w · zi ) ≥ 1 − ξi , i = h + 1, ·· ·  , 2h, 

m candidates {vi , φi }m  . With  the learned cascaded model,  
we iteratively pull each sample vi to the estimated part location 

from a start state  v1: 

vk+1 k k 

i = vi + Rk φi , k = 1, · · ·  , C, (6) 

After C iterations, we obtain all the estimated states v̂ i  = vC 

+1
. Intuitively, the most densely voted location is more likely to 

be the part  location. 

− 

ξi ≥ 0, i = 1, ·· ·  , 2h, (11) 

where η is a regularization parameter. 

In this case, the online learning of SVR can be implemented 

by online SVC algorithms with slightly modified training data. 

We use the twin prototypes algorithm [30] in [3] as the SVC 

updater in our approach. In the  twin  prototypes algorithm,  

the SVC model can be compactly summarized as a   prototype 
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set {ψi , ςi , si }B   , where ψi  is a feature vector, ςi  is a binary 

label and si  is  a  counting number that  indicates how    many 
support vectors are represented by this instance. With new data 

{z j ,γ j }J   , where z j  is  a feature vector and γ j  is a   binary 
label, the SVC model is updated by   minimizing: 

B 

min 
1 

×w× + K ( 
.

 si Lh (ςi , ψi ; w) 
w,b  2 B 

i=1  
1 . 

+ 
J
 

j =1 

 

Lh (z j ,γ j ; w))  (12) 

where  Lh  is the hinge loss. 

After training, support vectors from the new data are added 

to the prototype set with counting number 1. When the size of 
the prototype set is larger than a predefined budget B̂  , the pair 

of prototype instances of the same label with the mimimal 

distance are merged into (ψ∗,ς ∗, s∗), where 
si1 

ψi1 
+ si2 

ψi2 ∗ ∗ 

ψ∗ = 
si1 + si2 

,   ς   = ςi1 , s = si1 + si2 . (13) 
 

  

Fig. 2.    Illustration  of part space in sequence Woman.  For clarity,  we    only 

In our experiments, we use B̂ = 80 as the budget and K  = 100 
for weighting the loss term, though we found that our tracking 

performance tends to be insensitive to these  settings. 

Finally, we extend the online SVR to the cascaded  version. 
After tracking in  each frame, we  draw samples  {6v1, φ1}I

 

show the parts that are no bigger than half of the object size. Boxes in blue 
and yellow denote parts of different sizes. The red boxes denote the tracking 
results. (a) Part space in frame #16. (b) Part space in frame #70. (c) Part space 
in frame #128. Due to occlusion, the bottom blue and yellow parts drift away 
from the target. (d) The occluded parts are relocated    in frame #168. 

i i   i=1 .L 

around the estimated part location v from Gaussian distribution is served as a proposal   distribution and l=1 αl  = 1. When 

N (v, €1), where €1 = diag(r1, r1), to obtain training data for 
the first cascade. Then each sample is iteratively updated   as: 

v k+1 k k 

i = vi + Rk φi . (14) 

locating the target, we first sample Lα = 5 parts from the part 
space according to α without replacement, and then track each 

one independently with its observation  model. 

After   tracking,  the   confidences  for   different  parts   are 
The samples {6vk, φk }I

 , k = 2, ···  , C are then collected obtained  and  normalized  to  calculate  the  acceptance   ratio 
i i   i=1 L 

for the updating of the kth cascade, where   6vk  = v − vk. β ∈ R where βl ∈ [0, 1]. The β examines the tracking result 
i i 

 

IV. TRACKING BY SAMPLING IN PART SPACE 

As described in Section III, the observation model for each 

part is represented by a set of projection matrices {Rk , Qk }C . 
This section presents details on the online selection and updat- 

ing of these parts, and how to use them    for target locating. 

 
A. Part Space 

In our implementation, the initial parts are automatically 

generated based on the bounding box (x , y, width, height) of 

the tracking target in the first frame. Specifically, we separate 

the bounding box into two parts equally along the long side. 

For each part, we perform the same partition process to obtain 

of each part in the current frame and determines whether to 

accept its vote to the target  location. 

With the accepted parts, the target is located with their votes 

by using the dominant set algorithm. The online learning of 

probabilities α and β and the relocating of unaccepted parts 

are described in the following  sections. 

 
B. Part Selection 

1) Proposal Distribution: The proposal distribution α ∈ RL 

evaluates the  contributions of  different parts over time  and   

is used for the first round of part selection. Denote ŝ  as the 

estimated target location in  a frame and ŝl ,  l  = 1, · · · , L  as 
the votes from parts. We  define the contribution gl  of a part  
to target locating as: 

another  pair.  After   P   iterations,   L   =  
.P    

2c   parts  are sl ×2 

obtained. We  set  P  = 2 in our experiments, which  generates gl = exp (− 
×ˆ −ˆ 

), (15) 

L  = 7 parts (as illustrated in Fig.  2). These parts make up   
the ‘part space’ in our approach. Since the main idea of our 
approach is to transform the complex online part selection 
problem to a probability learning one, the roughly selected 

2(σ1)2 

where σ1 is the scaling factor and is set to 4 pixels, which is 

comparable with the allowed prediction  bias. 
The normalized contribution vector ḡ is calculated as: ḡl = 

regions are enough for it to work well. Though, we believe   

our method can be easily extended with automatic initial parts, 

gl 
 

l=1 gl 

so  that  
.L

 
= ḡl  =  1.  The  initial  α(1)  is  set  as  the 

such as region proposal for the initial bounding boxes. During 

tracking, a probability α ∈ RL on the part space is learned 
online to memorize the contributions of different parts, which 

normalized part areas: 

α(1) = Sl 

l=1 Sl 

 
, (16) 



 

( pi ) β 

i  = v̂  
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Algorithm 1 The Proposed TPS  Tracker 

 
 

 

 

 

 
Fig. 3.  Overall performance of 31 state-of-the-art  trackers  and our tracker  
on OTB-100 and CVPR2013. For clarity, only top 10 trackers are   displayed. 
(a) Results of OPE on OTB-100. (b) Results of OPE on    CVPR2013. 

 

 
By normalizing the voting stability τ , we obtain the accep- 

tance ratio: 

τ 
β = .n 

i=1 

. (19) 

 

 
 

where Sl denotes the area of part l and the superscript (1) 

denotes the frame index. This is consistent with the intuition 

that larger parts are more  recognizable. 

Afterwards, the α(t ) is updated as: 

α(t ) = μα(t −1) + (1 − μ)ḡ (t ),   t = 2, · · · , T , (17) 

We  denote βl  as the acceptance ratio for part l. The vote   

of part l on the target location is  accepted at  the  probability 

βl . To  avoid the situation that no parts are accepted, we set   a 

minimum number as Lmin = 3. When the number of accepted 
parts Lβ is less than Lmin , we repeat the process until it is 
larger than  Lmin . 

 
C. Locating and Relocating 

With Lβ accepted parts (denote the indexes as p1, ··· , pLβ ) 

where ḡ (t ) is  the contribution vector in  the  t-th  frame and μ and  their  estimated  states  {v̂  
L 

}i=1, their votes  to  the target 
is a forgetting factor fixed at 0.9 in   our experiments. can be obtained with the part  offsets: 

2) Acceptance  Probability:  The  probability  βl   ∈  [0, 1], 
l = 1, ··· , L  emphasizes the frame specific tracking perfor- 

ŝ  p 
( pi ) + 6v 

( pi ) , (20) 

mance of a part, which is served as an acceptance ratio. The 

basic observation is, if a part is being occluded or disturbed  

by background noise, its candidate votes (see Section III-C) 

will  be  scattered,  otherwise   densely   distributed.   Based 

on  this  idea,  we  define  the  voting  stability  τ  for  each  

part as: 

where 6v( pi ) = s − v( pi ) denotes the offset between the 
target state s and the groundtruth location of part  pi , and   
it is calculated in the first frame. Similar to Section    III-C, 

we calculate the weight for each vote wi with  the dominant  

set algorithm [28]. Finally, the target is located  as: 

Lβ 
. n 

vi v× ŝ  = wi ŝ  pi . (21) 
τ = 
. 

ci exp (− 
×ˆ −ˆ  

2 ), (18) i=1 

i=1 
2(σ2)2 

For the unaccepted parts (denote the indexes as q1, ··· , qLq 

where  Lq = L − Lβ ), we need to relocate them according  to 
where v̂ is the voting center, v̂ i  denotes the estimation of the 
i th candidate (see Section III-C), ci is the confidence value as 

described in Section III-B and σ2  is a scaling factor fixed to   
3 pixels, which approximates the radius of candidate votes   in 

dense areas. 

the estimated target location in the current   frame. 

First, we pull these parts to the corresponding anchor points 

on the target: 

v
(qi ) = ŝ  − 6v(qi ), i = 1, ·· ·  , Lq . (22) 

ci 



 

0 

0 
(qi ) 
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×2 

 
 

 
 

Fig. 4.          The success plots of videos with different attributes on OTB-100. The number in the title indicates the number of sequences. 

 

Then, for each part, starting from v
(qi ), we  locate it  with  

its observation model as described in Section III-C to    obtain 

stage, we sample 200 images around the estimated position for 

each part with sample radius r1 = 8. We train C = 3  cascades 
the  estimated  state  ṽ (qi ).  Denote ρi  = ×v

(qi ) − v̂ 2  as  the 

Euclidean  distance  between  v
(qi )  and  ṽ (qi ).  We  set  the  final 

relocated part state as: .
v(qi ) 

of SVR with these samples. The regularization parameters are 

set as η1 = 0.001, η2 = 0.001. ε1 and ε2 are fixed to 5 and 1 
respectively, while σ1 and σ2 are fixed to 4 and 3 respectively. 
In  the  testing  stage, 400  images  are sampled  for  each  part 

v̂ (qi ) = ˜ 
v

(qi ) 
ρi  ≤ ζ, around its last estimated location with sample radius r2 =  20. 

0   ,  ρi > ζ, 

where ζ is a threshold setting to 15 pixels in our experiments. 

Algorithm 1 summarizes our tracking method in part space. 

 
V. EXPERIMENTS 

We abbreviate our method as TPS, which is short for 

Tracking by sampling in Part Space. To demonstrate the 

effectiveness of the proposed  method,  the  TPS  is  eval- 

uated  on  two  popular  benchmarks:  OTB-100  [31]   with 

100 sequences and CVPR2013 [1], which is a subset contain- 

ing 51 challenging sequences, and compared with 31 trackers, 

28 of which are recommended by [1] including Struck [4], 

Sparsity-based Collaborative Model (SCM) [7], Tracking- 

Learning-Detection (TLD) [32], Visual Tracking Decomposi- 

tion (VTD) [33] and Compressive Tracking (CT) [34], while 

Discriminative Correlation Filters (DCF) [36], Kernelized 

Correlation Filters (KCF) [6], Discriminative Scale Space 

Tracker (DSST) [37], Transfer learning tracker with Gaussian 

Processes Regression (TGPR) [40] and Convolutional Network 

Tracking (CNT) [2] are recent state-of-the-art trackers, and 

Tracking by Regression with Incrementally Learned Cas- 

cades (TRIC) [44] is a part-based tracking   method. 

 
A. Implementation Details 

Sampled image patches for each part are converted to 

grayscale and normalized to 32 × 32, and then the improved 
HOG  feature [14]  is  extracted on  it  with  bin  width  4.  For 

simplicity, we only  estimate  the  target’s  central coordinates 

s = {x , y} and assume the scale and angle of the target stay the 
same throughout the tracking process. In training and updating 

The model updating for each part is performed each time when 

T = 5 frames of training data are collected, while the updating 
of  the  probabilities  α  and  β  is  performed  in  every frame. 

All the above parameters are fixed for fair  comparison. 

B. Quantitative Evaluation 

1) Evaluation Criteria: The precision and success plots [1] 

are applied to evaluate the robustness of trackers. The preci- 

sion plot indicates the percentage of frames whose estimated 

location is within the given threshold distance to the ground 

truth. The success plot demonstrates the ratios of successful 

frames whose overlap rate is larger than the given threshold. 

The precision score is given by the score on a selected 

threshold (e.g., 20 pixels). The success score is evaluated by 

the area under curve (AUC) of each tracker. For clarity, only 

top 10 trackers are illustrated on both  plots. 

2) Overall  Performance:  The  overall performances of the 

31 trackers and our tracker are shown in Fig. 3. For the 

precision plot, the results  at  error  threshold  of  20  pixels  

are used for ranking, and for the success plot we use AUC 

scores to rank the trackers. The performance score of each 

tracker is shown in the legend of Fig. 3. For OTB-100, in the 

precision plot, our tracker outperforms DSST by 1% and 

outperforms KCF by 1.4%. In the success plot, our tracker 

performs 2.7% better than KCF  and  3%  better  than  DCF. 

For CVPR2013 dataset, our tracker outperforms DSST by 

8.4% and outperforms KCF by 8.8% in terms of the precision 

score. In the  success  plot,  our  tracker  achieves  the  AUC  

of 0.567, which performs 4% better than CNT and 10.8% 

better than KCF. Overall, our tracker outperforms the state- of-

the-art trackers in terms of location accuracy and overlap 

precision. 



 

 
 

 
 

Fig. 5.         Precision plots of videos with different attributes on OTB-100. The number in the title indicates the number of sequences. 

 

TABLE I 

PER-VIDEO PRECISION SCORES ON 14 SELECTED SEQUENCES. THE BEST RESULTS ARE REPORTED IN BOLD 

 
 

 
 

 
 

 

 

TABLE II 

PER-VIDEO SUCCESS SCORES ON 14 SELECTED SEQUENCES. THE BEST RESULTS ARE REPORTED IN BOLD 

 
 

 
 

 
 

 

 

TABLE III 

PERFORMANCE IMPROVEMENT OF DIFFERENT SUBSETS IN TERMS OF PRECISION AND  SUCCESS 

SCORES COMPARED WITH THE SECOND-RANKED TRACKERS 

 
 

  
 

 

 

 
 

 

 

 

3) Attribute-Based Performance: Several factors can affect 

the performance of an object tracker. In the OTB-100 dataset, 

the 100 sequences are annotated with different challenging 

attributes that may affect tracking performance, such as occlu- 

sion, background clutters, object deformation. Fig. 4 and Fig. 5 

show the success plots and precision plots of 31 state-of- the-

art trackers and our tracker on 8  different video subsets.  In 

addition, Table I and Table II also illustrate the perfor- mance 

of our tracker and other four state-of-the-art methods on 14 

selected challenging videos. The Box, DragonBaby, KiteSurf, 

Panda, Tiger2, Basketball, Football and Soccer are selected 

from the Occlusion subset, while the Gym, Panda, Human9,  

Skater2,  Girl2  and  Couple  are  selected  from the 

 

Deformation subset. In addition, the sequences Box, Drag- 

onBaby, Gym, Board, Human9, Panda, Skater2, Girl2, Couple 

and Soccer also belong to the Scale Variation subset, and the 

sequences Basketball, Board, Couple, Football and Soccer also 

belong to the Background Clutter  subset. 

Though our tracker only estimates the center location and 

does not predict scales, it achieves comparable or even better 

results than other methods (e.g. DSST) on the Scale Variations 

subset. This is because the large correlation among different 

attributes. As shown in Table I and Table  II, the sequences 

Box, DragonBaby, Human9, Girl2, Panda, Skater2 and Cou- 

ple belong to the Scale Variations  subset,  but  the  objects  

also  suffer  from  occlusions,  background  clutter  and object 



 

 
 

 
 

Fig. 6.        From top to bottom are representative  results of trackers on sequences David3, Jogging-1 and Subway, where objects are heavily occluded. 

 

 

deformation. Though previous trackers can estimate scales 

very well, they fail to track these clips, while our method per- 

forms much better in tracking occluded or deformed objects. 

To better illustrate the pros and cons of our method, we rank 

the improvement of performance in different subsets according 

to the precision scores and list them in Table III. As shown 

in Table III, the main improvement of performance come from 

the Occlusions, Out-of-View, Out-of-plane Rotation, Back- 

ground Clutter, Illumination Variation and Deformation sub- 

sets. Our tracker achieves better performance on the Occlusion 

and Deformation subsets, which  validates the effectiveness 

of the proposed part-based model. It effectively selects and 

combines different parts to obtain stable results. The good 

performance of our method on the Out-of-view, Out-of-plane 

Rotation and Background Clutter subsets could be attributed 

to our voting process. It considers location estimations from 

multiple surrounded candidates and locates  the target with 

the combination of these votes. It  also can  successfully 

locate the target when some of the surrounded candidates are 

invisible (e.g., occluded or out-of-view) or interrupted by   the 

background noise. 

 

C. Qualitative Evaluation 

Now we present a qualitative evaluation of the tracking 

results. 12 representative sequences with different challenges 

are selected from the 100 sequences in OTB-100. The three 

dominant challenges of these sequences are occlusion, object 

deformation, and illumination variation. Fig. 6 - Fig. 8 show 

some screenshots of the tracking results of our tracker and 

some competitive state-of-the art trackers. 

1) Occlusion: Occlusion is one of the most critical chal- 

lenges in visual tracking.  Fig.  6  illustrates  tracking  results 

on three representative sequences (David3, Jogging-1 and 

Subway) where objects are severely or  long-term occluded.   

In the David3 sequence, David is completely occluded several 

 

times by the pole and the tree (e.g., #28, #91). TLD, SCM and 

Struck fail to re-detect the target when David reappears in the 

screen. Our method, KCF, CNT and DSST achieve favorable 

results. In the Jogging-1 sequence, the left girl is  occluded 

fully by the telegraph pole (e.g., #68, #78). Only our method, 

CNT,  TGPR and TLD can track the target successfully   (e.g., 

#89, #152, #176). In sequence Subway, a person is occluded 

by other people in some frames (e.g., #41, #96). Only TPS, 

TGPR, SCM and KCF are able to track the target stably. Note 

that KCF updates with an exponential decay factor. Thus it can 

deal with short-term occlusions while long-term occlusions 

make it drift to the background. The superior performance of 

our method could be attributed to the part-based model. The 

proposal distribution helps selecting stable parts for tracking 

while the acceptance ratio avoids the bounding box drifting to 

the occluded parts. 

2) Object Deformation: In Fig. 7, sequences Panda and 

Singer2 are selected to show the robustness of  trackers  

against non-rigid object deformation. The target in the Singer2 

sequence has significant appearance variations due to illumi- 

nation changes and non-rigid body deformation. Struck, SCM, 

TGPR and TLD fail to track the target (e.g., #22, #78, #135). 

Our method performs well at all frames. The target in the 

Panda sequence walks around the screen all the time, which 

makes it undergo both deformation and occlusion. KCF, TLD 

and SCM  lose  the  target in  the tracking process  (e.g., #315, 

#590, #686). The holistic models, i.e., Struck, TLD, KCF and 

TGPR have difficulty in tracking non-rigid objects while SCM 

uses a weighted  updating strategy, making  it  prone to  drift 

to the background. Our method performs well in the whole 

sequence for two reasons. The part-based models are  skilled 

in tracking non-rigid objects while the proposed online SVR 

provides an elegant way to incorporate previous model with 

new observations. 

3) Illumination Variation: Fig. 8 shows tracking results on 

two challenging clips (Sylvester and Skating1), where  objects 



 

 
 

 
 

Fig. 7.          From top to bottom are representative results on sequences Singer2 and Panda. Object deformation is the main challenge of these sequences. 

 

 

Fig. 8.        From top to bottom are representative results on sequences Sylvester  and Skating1, where objects suffer from illumination variations. 

 

 

undergo significant illumination changes. In the Sylvester 

sequence, a doll moves quickly under the  light.  Despite  

heavy  illumination  variations  in  some  frames  (e.g.,   #528, 

#612, #703), our method is able to track the target well. 

Struck, TLD, CNT and KCF lose the target when sudden 

illumination  changes  and  fast  motion  occur  (e.g.,    #1003, 

#1092, #1333). When the target glides on the ice in sequence 

Skating1, it undergoes severe deformation and dramatic light 

changes (e.g., #68, #182). Only our method, CNT, SCM and 

KCF can track the target from the beginning to the end. The 

promising tracking results of our tracker on the illumination 

subset could be attributed to the improved HOG feature [14] 

used in our method, which is invariant to local illumination 

variations. 

VI. CONCLUSIONS 

We have presented a part-based tracking method from the 

perspective of probability sampling. Our tracking model is 

constructed  by  a  triplet:  a  part  space  and  two probabilities 

– the proposal distribution and the acceptance probability on  

it. The proposal distribution is learned online to capture the 

structure and appearance of the target, while the acceptance 

probability is calculated to determine the credibility of the 

tracking result of each part. For learning and updating the 

appearance model of each  part  online,  we  have  developed 

an incremental cascaded support vector regression algorithm. 

Three components are united for the construction of the obser- 

vation model for robustly tracking against local appearance 

variations. Experimental results on two recent benchmarks 

have demonstrated the superior performance of our  method. 
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