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Abstract— This paper proposes a deep learning model to 

efficiently detect salient regions in videos. It addresses two 
important issues: 1) deep video  saliency  model  training  with 
the absence of sufficiently large and pixel-wise annotated video 
data and 2) fast video saliency training and detection. The 
proposed deep video saliency network consists of two modules, 
for capturing the spatial and temporal saliency information, 
respectively. The dynamic saliency model, explicitly incorporating 
saliency estimates from the static saliency model, directly pro- 
duces spatiotemporal saliency inference without time-consuming 
optical flow computation. We further propose a novel data 
augmentation technique that simulates video training data from 
existing annotated image data sets,  which enables our  network 
to learn diverse saliency information and prevents overfitting 
with the limited number of training videos. Leveraging our 
synthetic video data (150K video sequences) and real videos, our 
deep video saliency model successfully learns both spatial and 
temporal saliency cues, thus producing accurate spatiotemporal 
saliency estimate. We advance the state-of-the-art on the densely 
annotated video segmentation data set (MAE of .06) and the 
Freiburg-Berkeley Motion Segmentation data set (MAE of .07), 
and do so with much improved speed (2 fps with all steps). 

Index Terms— Video saliency, deep learning, synthetic video 
data, salient object detection, fully convolutional network. 

 

I. INTRODUCTION 

ALIENCY detection has recently attracted a great amount 

of research interest. The reason behind this growing popu- 

larity lies in the effective use of these models in various vision 

tasks, such as image segmentation, object detection, video 

summarization and compression, to name a few. Saliency 

models can be broadly classified into two categories: human 

eye fixation prediction or salient object detection. According 

to the type of input, they can be further categorized into static 

and dynamic saliency models. While static models take still 

images as input, dynamic models work on video sequences. In  

this  paper,  we  focus  on  detecting  distinctive  regions in 
 
This work was supported in part by the National Basic Research Program of 
China 973 Pro- gram under Grant 2013CB328805, in part by the National 
Natural Science Foundation of China under Grant 61272359, in part by the 
Fok Ying-Tong Education Foundation for Young Teachers, and in part by the 
Joint Building Program of Beijing Municipal Education Commission. The 
associate editor coordinating the review of this manuscript and approving it for 
publication was Dr. Kalpana Seshadrinathan. (Corresponding author: 
Jianbing Shen.) 

W. Wang and J. Shen are with the Beijing Laboratory of Intelligent 
Information Technology, School of Computer Science, Beijing Institute of 
Technology, Beijing 100081, China (e-mail: shenjianbing@bit.edu.cn). 

L.  Shao  is  with  the  School  of  Computing  Sciences,  University  of  
East Anglia, Norwich NR4 7TJ, U.K. (e-mail: ling.shao@ieee.org). 

 
TABLE I 
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dynamic scenes. Convolutional neural networks (CNNs) have 

been successfully utilized in many fundamental areas of 

computer vision, including object detection [1], [4], semantic 

segmentation [5], and still saliency detection [7], [8]. Inspired 

by this, we investigate CNNs to another computer vision task, 

namely video saliency detection. 

The first problem of applying CNNs to video saliency  is 

the lack of sufficiently large, densely labelled video training 

data. As far as we know, the successes of CNNs in computer 

vision are largely attributed to the availability of large-scale 

annotated images (e.g., ImageNet [9]). However, existing 

video datasets are too small to provide adequate training data 

for CNNs. In Table 1, we list the statistics of the ImageNet 

dataset and widely adopted video object segmentation datasets, 

including FBMS [10], SegTrackV2 [11], VSB100 [12] and 

DAVIS [13]. It can be observed that, the existing video 

datasets rarely match existing image datasets like ImageNet, 

in either quality or quantity. Besides, considering the high 

correlation between the frames from same video clip, existing 

video datasets are far unable to meet the needs of training 

CNNs for pixel-level video applications, like video salient 

object detection. On the other hand, for the moment, creating 

such a large-scale video dataset is usually infeasible, because 

annotating videos is complex and time-consuming. To this end, 

we propose a video data augmentation approach to syntheti- 

cally generating labeled video training data, which explicitly 

leverages existing large-scale image segmentation datasets. 

The simulated video data are easily accessible and rapidly 

generated, close to realistic videos and present various motion 

patterns, deformations, companied with automatically gener- 

ated annotations and optical flow. The experimental results via 

these automatically generated videos clearly demonstrate the 

practicability of our strategy. 

Our video data synthesis approach clears the underlying 

challenge for learning CNNs for many applications in video 

processing, where dynamic saliency detection is of no excep- 

tion. Another challenge for detecting saliency in dynamic 

scenarios derives from the natural demand of this task. 
 



 

As suggested by human visual perception research [14], [15], 

when computing dynamic saliency maps, video saliency mod- 

els need to consider both the spatial and the temporal charac- 

teristics of the scene. We propose a deep video saliency model 

for producing spatiotemporal saliency via fully exploring both 

the static and dynamic saliency information. The proposed 

model adopts fully convolutional networks (FCNs) [5] for 

pixel-wise saliency prediction. Associated with existing rich 

image saliency data, the static saliency is deeply exploited and 

explicitly encoded in the deep learning process via transferring 

and fine-tuning recent success in image classification [16].  

For learning dynamic saliency cues, the proposed deep video 

saliency model learns from a large number of labelled videos, 

including both human-generated and natural video data, in a 

supervised learning mode. The static saliency is integrated into 

dynamic saliency detection process, thus for directly producing 

final spatiotemporal saliency estimation. 

Another important contribution of this work is that  our 

deep video saliency model is much more computationally 

efficient compared with existing video saliency models. Salient 

object detection is a key step in many image analysis tasks    

as it not  only  identifies  relevant  parts  of  a  visual  scene 

but may also reduce computational complexity by  filtering 

out irrelevant segments of the scene. In recent years, some 

notable video saliency models have been proposed in many 

computer vision applications, such as video segmentation [17] 

and video re-timing [19]. However, time efficiency becomes 

the common major bottleneck for the applicability of existing 

video saliency algorithms; most computation time has been 

spent for optical flow computation. Additionally, from the 

perspective of learning deep networks in dynamic scenes, 

many schemes [20]–[22] take optical flow as input, causing 

high computational expenses. 

In this work, we propose a both effective and  efficient 

video saliency model, which frees itself from the com- 

putationally expensive optical flow estimation. One  of  the 

key insights of this paper is that, unlike high-level video 

applications such as action detection, video saliency can 

derive from short-term analysis of video frames. Thus we 

directly capture temporal saliency via learning deep networks 

from frame pairs, instead of using long-term video infor- 

mation, such as optical flows from multiple adjacent video 

frames. 

We comprehensively evaluate our method on the FBMS 

dataset [10], where the proposed video saliency model pro- 

duces more accurate saliency maps than state-of-the-arts. 

Meanwhile, it achieves a frame rate of 2fps (including all 

steps) on a GPU. Thus it is a practical video saliency detec- 

tion model in terms of both speed and accuracy. We also 

report results on the newly released DAVIS dataset [13] and 

observe performance improvements over current competitors. 

Our source code will be available online.1 

To summarize, the main contributions are threefold: 

• We investigate convolutional neural networks for end- to-
end training and pixel-wise saliency prediction in 

dynamic scenes. As far as we know, this is the first 

 
1http://github.com/shenjianbing/deepvideosaliency 

work for applying deep learning to video salient object 

detection. 

• We propose a novel training scheme based on synthet- 

ically generated video data, which explicitly leverages 

existing rich image datasets; both static and dynamic 

saliency information are encoded into a unified deep 

learning model. 

• Our methods are computationally efficient, much faster 

than traditional video saliency models and other deep 

networks in dynamic scenes. 
 

II. RELATED WORK 

In this section, we  give a  brief overview of recent  works 

in two lines: saliency detection, and deep learning models in 

dynamic scenes. 

 

A. Saliency Detection 

Saliency detection has been extensively studied in computer 

vision, and saliency models in general can  be  categorized 

into visual attention prediction or salient  object  detection. 

The former methods [14], [23]–[25] try to predict scene 

locations where a human observer may fixate. Salient object 

detection [26]–[28] aims at uniformly highlighting the salient 

regions, which has been shown benefit to a wide range of 

computer vision applications. More detailed reviews of the 

saliency models can be found in [29] and [30]. Saliency 

models can be further divided into static and dynamic ones 

according to their input. In this work, we aim at detecting 

saliency object regions in videos. 

Image saliency detection has been extensively studied for 

decades and most of the methods are driven by the well- 

known bottom-up strategy. Early bottom-up models [26], [27] 

are mainly based on detecting contrast, assuming salient 

regions in the visual field would first pop out from their 

surroundings and computing feature-based contrast followed 

by various mathematical principles. Meanwhile, some other 

mechanisms [28], [31], [32] have been proposed to adopt 

some prior knowledge, such as background prior, or global 

information, to detect salient objects in still images. More 

recently, deep learning techniques have been introduced to 

image saliency detection. These methods [7], [33] typically 

use CNNs to examine a large number of region proposals, 

from which the salient objects are selected. Currently, more 

and more methods [34], [36]–[38] tend to learn in an end-to- 

end manner and directly generate pixel-wise saliency maps via 

fully convolutional networks (FCNs) [5]. 

Compared with saliency detection in still images, detect- 

ing saliency in videos is a much more challenging problem 

due to the complication in the detection and utilization of 

temporal and motion information. So far, only a limited 

number of algorithms have been proposed for spatiotemporal 

saliency detection. Early  models  [52]–[54]  can  be  viewed 

as simple extensions of exiting static saliency models with 

extra temporal dimension. Some more recent and notable 

approaches [2], [3], [6], [17], [19], [46] to this task have been 

proposed, showing inspired performance and good  potent- 

ials in many computer vision applications [18], [47], [59], 

[68], [69]. However, the applicability of these approaches is 

http://github.com/shenjianbing/deepvideosaliency


 

severely limited by their high-computational costs. The main 

computational bottleneck comes from optical flow estimation, 

which contributes much to the promising results. 

In recent years, the  border  of  saliency  detection  has  

been extend to capturing common saliency among related 

images/videos [41]–[43], [45], [48], inferring the  salient  

event  with  video  sequences  [40]  or   scene   understand- 

ing [44], [50], [51]. However, there are significant differences 

between above methods and traditional saliency detection, 

especially considering their goals and core difficulties. 

 

B. Deep Learning Models in Dynamic Scenes 

In this section, we mainly focus on famous, deep learning 

models for computer vision applications in dynamic scenes, 

including action recognition [20], [55],  object  segmenta-  

tion [22], [56], object tracking [57], [58], [60]–[62], attention 

prediction [21] and semantic segmentation [63], and explore 

their architectures and training schemes. This will help to 

clarify how our approach differs from previous efforts and 

will help to highlight the important benefits in terms of 

effectiveness and efficiency. 

Many approaches [57], [58], [63] directly feed  single  

video frames into neural networks trained  on  image  data  

and adopt various techniques for post-processing the results 

with temporal or motion information. Unfortunately, these 

neural networks give up learning the temporal information 

which is often very important in video processing applica- 

tions. A famous architecture for training CNNs for action 

recognition in videos is proposed in [20], which incorporates 

two-stream convolutional networks for learning comple- 

mentary information on appearance  and  motion.  Other 

works [21], [56] adopt this architecture for dynamic attention 

prediction and video object segmentation. However, these 

methods train their models on multi-frame dense optical flow, 

which causes heavy computational burden. 

In the areas of human pose estimation and video object 

processing, online learning strategy is introduced for improv- 

ing performance [22], [55], [60]–[62]. Before processing an 

input video, these approaches generate various training sam- 

ples for fine-tuning the neural networks learned from image 

data, thus enabling the models to be optimized towards the 

object of interest in the test video sequence. Obviously, these 

models are quite time-consuming and the fine-tuned models 

are only specialized for specific classes of objects. 

In this work, we show the possibilities of learning to detect 

generic salient objects in dynamic scenes by training on videos 

and images via an entirely offline manner. We proposed a 

novel technique for synthesizing video data via leveraging 

large amounts of image training data. The CNNs model can be 

efficiently and entirely trained on rich videos and images, thus 

successfully learning both static and dynamic saliency fea- 

tures. Meanwhile, it directly learns inner relationship between 

frames, getting rid of time-consuming motion computation. 

Thus, our algorithm is significantly faster than traditional 

video saliency methods and the deep learning architectures 

that demand optical flow as input. In summary, our CNNs 

model learns to detect video saliency in a fast manner. 

 

 

Fig. 1. A schematic representation of our proposed deep video saliency 
model. Our saliency model composes of two modules, which are designed for 
capturing the spatial and temporal saliency information simultaneously. The 
static saliency network (Sec. III-B) takes single frame as input and outputs 
static saliency estimates. The dynamic saliency network (Sec. III-C) learns 
dynamic saliency from frame pairs and takes static saliency generated by the 
first module as prior, thus producing the final spatiotemporal saliency maps. 

III. DEEP NETWORKS FOR VIDEO SALIENCY DETECTION 

In this work, we describe a procedure for constructing and 

learning deep video saliency networks using a novel synthetic 

video data generation approach. Our approach generates a 

large amount of video data (150K paired frames) from existing 

image datasets, and associates these annotated video sequences 

with existing video data to learn deep video saliency networks. 

We first introduce the proposed CNNs based video saliency 

model in this section and then we describe our video synthesis 

approach in Sec. IV. 

A. Architecture Overview 

We start with an overview of our deep video saliency model 

before going into details below. At a high level, we feed frames 

of a video into a neural network, and the network successively 

outputs saliency maps where brighter pixels indicate higher 

saliency values. The network is trained with video sequences 

and images and learns spatiotemporal saliency in general 

dynamic scenes. Fig. 1 shows the architecture of proposed 

deep video saliency model. Inspired by classical human visual 

perception research [14], [15], which suggests both static and 

dynamic saliency cues contribute to video saliency, we design 

our model with two modules, simultaneously considering both 

the spatial and temporal characteristics of the scene. 

The first module is for capturing static saliency, taking 

single frame image as input. It adopts fully convolutional net- 

works (FCNs) for generating pixel-wise saliency estimate and 

utilizes previous excellent pre-trained models on large-scale 

image datasets. Boosted from rich image saliency benchmarks, 

this module is efficiently trained for capturing diverse static 

saliency information of interesting objects. This module is 

described in detail in Sec. III-B. The second module takes 

frame pairs and static saliency from the first module as input, 

and generates final dynamic saliency results. This network is 

trained from both synthetic and real labelled video data (see 

details in Sec. III-C). 

B. Deep Networks for Static Saliency 

A static saliency network takes a single frame image as 

input and produce a saliency map with the same size of 
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Fig. 2.  Illustration  of our network for static saliency  detection.  The network takes single frame image (for example, 224   224) as input, adopting  multi-   
layer convolution networks that transforms the input image to multidimensional feature representation, then applying a stack of deconvolution networks for 
upsampling the feature extracted from the convolution networks. Finally,  a fully convolution network with 1   1 kernel and sigmoid  activity function is used    
to output of a probability map in the same size as input, in which larger values mean higher saliency values. 

the input. We model this process with a fully convolutional 

network (FCN). The bottom of this network is a stack of 

convolutional layers. Convolutional layer is defined on shared 

parameters (weight vector and bias) architecture and has 

translation invariance characteristics. The input and output of 

each convolutional layer are a set of arrays, called feature 

maps, with size h  w  c, where h, w  and c are height, width 

and the feature or channel dimensionality, respectively. For the 

first convolutional layer, the input is the color image, with pixel 

size h and w, and three channels. At the output, each feature 

map indicates a particular feature representation extracted at 

all locations on the input, which is obtained via convolving  

the input feature map with a trainable linear filter (or kernel) 

and adding a trainable bias parameter. If we denote the input 

feature map as X , whose convolution filters are determined by 

the kernel weights W and bias b, then the output feature map  

is obtained via: 

fs(X ; W, b) = W ∗s X + b, (1) 

where s is the convolution operation  with  stride  s.  After 

each convolutional layer, point-wise nonlinearity (e.g., ReLU) 

is applied for improving feature representation capability. 

Additionally, convolutional layers are often followed by some 

form of non-linear down-sampling (e.g., max pooling). This 

results in robust feature representation which tolerates small 

variations in the location of input feature map. 

Due to the stride of convolutional and feature pooling layers, 

the output feature maps are coarse and reduced-resolution. 

However, for saliency detection, we are more interested in 

pixel-wise saliency prediction. For upsampling the coarse 

feature map, multi-layer deconvolution (or backwards convolu- 

tion) networks are put on the top of the convolution networks: 

Y = DS(FS(I ; ©F ); ©D), (2) 

where I is the input image; FS( ) denotes the output feature 

map generated by the convolutional layers with  total  stride  

of S; DS( ) denotes the deconvolution layers  that  upsample 

the input by a factor  of  S  to  ensure  the  same  spatial  size 

of  the  output Y  and  the input image  I .  The   deconvolution 

operation is achieved via reversing the forward and backward 

passes of corresponding convolution layer. All the parameters 

©s of convolution and deconvolution layers are learnable. 

Finally, on the top of the network, a convolutional layer with 

a 1 1 kernel is adopted for mapping the feature maps Y into a 

precise saliency prediction map P through a sigmoid activation 

unit. We use the sigmoid layer for pred so that each entry in 

the output has a real value in the range of 0 and 1. Due to the 

utilization of FCN, the network is allowed to operate on input 

images of arbitrary sizes, and preserves spatial information. 

Fig. 2 illustrates the detailed configuration of our deep network 

for static saliency. 

For training, all the parameters ©s are learned via minimiz- 

ing a loss function, which is computed as the errors between 

the probability map and the  ground truth.  As  demonstrated 

in [64], the use of an asymmetric weighted loss helps greatly 

in the case of unbalanced data. Considering the numbers of 

salient and non-salient pixels are usually imbalanced, we com- 

pute a weighted cross-entropy loss. Given  a  training  sam- 

ple (I, G)  consisting of an  image  I  with  size  h     w   3, and 

groundtruth  saliency map G 0, 1  h×w,  the  network pro- 

duces saliency  probability map P 0, 1 h×w. For any  given 

training sample, the training loss on network prediction P is 

thus given by 

h×w 

L(P, G) =− (1 − α)gi log pi + α(1− gi) log(1− pi) , 
i=1 

(3) 

where gi G and pi P; α refers to ratio of salient pixels 

in ground truth G. 

We train the proposed architecture in an end-to-end manner. 

It is commonplace to initialize systems for many of vision 

tasks with a prefix of a network trained for image classifica- 

tion. This has shown to substantially reduce training time and 

improve accuracy. During training, our convolutional layers 

are initialized with the weights in the first five convolutional 

blocks of  VGGNet  [16], which  was  originally trained   over 

1.3 million images of the ImageNet dataset [9]. The parameters 

of remaining layers are randomly initialized. Then we train 
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Fig. 3. Illustration of our network for dynamic saliency detection. Successive frame pairs (It , It 1) from real video data or synthesized from existing image 
datasets (described in Sec. IV), and static saliency information inferred from our static saliency network, are concatenated and fed into the dynamic network, 
which has a similar FCN architecture with the static network. The dynamic network captures dynamic saliency, and considers static saliency simultaneously, 
thus directly generating spatiotemporal saliency estimation. 

our network with stochastic gradient descent (SGD) using 

backpropagation by minimizing the loss in (3). More details  

of implementation are described in Sec. V-A. 

C. Deep Networks  for Dynamic Saliency 

Now we describe our  spatiotemporal  saliency  network.  

As depicted in Fig. 3, the network has a similar structure as our 

static saliency network, which is based on FCN and includes 

multi-layer convolution and deconvolution nets. The dynamic 

network learns dynamic saliency information jointly with the 

static saliency results, thus directly generating spatiotemporal 

saliency estimates. 

The training set consists of a collection of synthetic and 
real video data, which efficiently utilizes existing large-scale 
well-annotated image data (described in Sec. IV). More specif- 

ically, we feed successive pair of frames (It , It+1) and the 
groundtruth Gt of frame It in the training set into this 

network for capturing dynamic saliency. Meanwhile, since 

saliency in dynamic scenes is boosted by both static and 

dynamic saliency information, the network incorporates the 

saliency estimate Pt generated by static saliency network as 

saliency priors indicative of potential salient regions. Thus our 

dynamic saliency network directly generates final spatiotem- 

poral saliency estimates for frame It , which is achieved via 

exploring dynamic saliency cues and leveraging static saliency 

prior from the static saliency network. 

We concatenate frame pair (It , It 1) and static saliency Pt 

in the channel direction, thus generating a tensor I with size 

of h w 7. Then we feed I into our FCN based dynamic 

saliency network, which has similar architecture of static 

saliency network. Only the first convolution layer is modified 

accordingly: 

f (I; W, b) = WIt ∗ It + WIt+1 ∗ It+1 + WPt ∗ Pt + b, (4) 

where  W s  represent   corresponding   convolution   kernels; 

b   is   bias   parameter.  During  training,  stochastic   gradient 

descent (SGD) is employed to minimize the weighted cross- 

entropy loss described before. After training, given a frame 

image pair and static saliency prior, the deep dynamic saliency 

model is able to output final spatiotemporal saliency estimate. 

For testing, we first detect the static saliency map Pt for frame 

It via our static saliency network. Then frame image pair (It, It 

1) and the static saliency map Pt are fed into the dynamic 

saliency network for generating the final spatiotem- poral 

saliency for frame It . After obtaining the video saliency 

estimate for frame It , we keep iterating this process for the 

next frame Ik 1 until reaching the end of the video sequence. 

More implementation details can be found in Sec. V-A. 

Qualitative and quantitative study of the effectiveness of our 

dynamic saliency model is described in Sec. V-C. 

Compared with the popular two-stream  network  struc-  

ture used in [20], [21],  and  [57]  we  merge  the  output  of 

the static network into the dynamic saliency model, which 

directly produces spatiotemporal saliency results. This archi- 

tecture brings two advantages. Firstly, the fusion of dynamic 

and static saliency is explicitly inserted into the dynamic 

saliency network, rather than training two-stream  networks 

for spatial and temporal features and specially designing a 

fusion network for spatial and temporal feature integration. 

Secondly, the proposed model directly infers the temporal 

information from two adjacent frames instead of previous 

methods [20], [56] using optical flow images, thus our model 

gaining higher computation efficiency. 

IV. SYNTHETIC VIDEO DATA GENERATION 

So far, we have described our networks for video saliency 

detection. We discuss our approach for training our networks 

for dynamic saliency below. As discussed in Sec. I, existing 

video datasets [10]–[13] are insufficiently diverse and have 

very limited scales. As deep learning models are data-driven 

and have strong learning ability, directly learning deep net- 

works on such video datasets would easily suffer overfitting. 

Noticing the gap between the requirement of learning neural 

networks for video processing and the lack of large-scale, 

high-quality annotated video data, we propose a technique for 

synthesizing video data from still frames. 
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Directly deriving video sequences from single image  is 

also impossible. However, our video saliency network takes 

frame pairs as input, instead of the whole video sequence. 

That means we can simulates diverse but very short video 

sequences (only 2 frames in length) via fully utilizing well- 

labelled large-scale image datasets.  Concretely, given a train- 

ing sample (I, G)  from  existing  image  saliency  datasets,  

we wish to generate a pair of frames (I, I j), which present 
various motion patterns, diverse deformations and smooth 

transformation, thus being close to real video signal. We start 

at simulating the correspondence between I j and I , which is 

easier than directly inferring adjacent frame  I j. Let x =
j  
(x, y) 

can be represented as an optical flow field v = (u,v) via: 

I j(x) = I (x + v(x)). (5) 

The optical flow field v directly represents the pixel-level 

motion information between two neighboring frames. Next we 

only introduce how to set the vertical displacement u, as the 

method of generating v is similar. 

We model the optical flow  on  superpixel level [39], [49]  

as the motion of similar adjacent pixels should present con- 

sistency. We oversegment I into a group of superpixels . 

According to groundtruth label G, we further divide superpix- 

els R into foreground superpixels F and background ones B, 

Fig. 4. Illustration of our synthetic video data generation. A synthetic optical 
flow filed (c) is first initialized with considering  various  motion  characters 
in real video sequences. Via (6), final optical flow filed (f) is generated,  
which is more smooth and better simulates real motion patterns. According 
to (f), a synthetic  frame image  I j and its saliency  mask Gj are warped from 
(a) and (b), respectively. 

the interactive constraint that neighboring superpixels have 

consistent motion patterns when their representative colors are 

similar. The superpixel neighborhood set contains all the 

spatially adjacent superpixels.3 The parameter λ is a positive 

coefficient measuring how much we want to fit the initial 

motion. Typically, λ imposes the hard constraint that 

each region definitely has the initial motion. We define λ: 
where R = F B. For simulating the diverse motion patterns 
of background, we randomly select 10% background regions S 

 

 

⎧
⎪⎨1 if ri ∈ F 

from and randomly initialize their motion values us (vertical 

displacement) from d, d   , where d h/10. The us of the 

other background regions are initialized as zero. The motion 

λi = 1 if ri ∈ S 
⎩

10−    otherwise 

(7) 

patterns of foreground are usually compactness, as the whole 

foreground regions move more regularly and purposefully 

compared with background. Beside, the motion between dif- 

ferent foreground parts sometimes also present diverse. For 

example, the whole body of a person go  an  exact direction 

but his arms or legs may  have different motions. For this,    

we first randomly set a value m (from d, d ) as the main 

motion patterns of the foreground regions. Then we randomly 

 

For  the seed  regions (selected  background regions and 
all  the  foreground  regions   ),  we  expect  that  they  tend   

to  preserve their  initial  motions; however,  for other  regions 

(   ), we emphasize more influence on the smooth term thus 

we can propagate the initial motions from those seed regions. 

The weighting function wi,ij in (6) defines a similarity measure 

for adjacent superpixels (ri , rij ∈ ℵ): 
⎧
⎪⎨ex p−"C (ri)−C(rij )"

2    
if ri , ri j ∈ F 

 

set vs of foreground regions from m d/10, m d/10 for 

representing the difference between foreground regions. This 

initialization process is visualized in Fig. 4-a. 

w
i,i

j = exp−"C (ri)−C(rij )"
2 
if ri, r j ∈ B 

⎩
0 otherwise 

(8) 

A similar process is adopted for generating the initial 

horizontal motion displacement (v) and we  are  able  to  get 

an initial optical flow v for I . Next, we propose an energy 

function for smoothing and propagating the initial optical flow 

globally, yet preserving the difference between foreground 

and background in motion patterns. Let the initial motion 

vector of each superpixel ri be denoted as  vi , the  final  

motion vector vi is obtained via optimizing the energy function 

as follows2: 

E(v̄ , v) = 
Σ 

λi(v̄ i − vi )2 + 
Σ  

wi i
j (v̄i − v̄ i j )2 . (6) 

 
  

where C(r) indicates the mean color vector of pixels in super- 
pixel r . We set the weight wi,ij as zero, when two adjacent 

superpixels are from foreground     and background    , respec- 

tively. We consider motion consistency inside the foreground 

and background, while preserve motion difference between 

foreground and background. (6) can be efficiently solved by 

convex optimization and we can obtain a smooth optical flow 

field  v.  As  shown  in  Fig.  4,  base  on  v,  we  can  generate 

a simulated frame I j and its corresponding annotation Gj 

from (I, G). 
 

 
Unary T erm Smoot h T erm 

The first term is the unary constraint that each superpixel 

tends to have its initial motion, while the smooth term gives 

2Here we slightly reuse v for representing the optical flow vector of 
superpixel without ambiguity. 

The proposed method is very fast and outputs synthesized 

[ − + ] 

B 

i 

   



 

video frame pair, optical flow, and pixel-wise annotations 

simultaneously. The number of samples in existing image 

segmentation/saliency datasets is ten or hundred order of 

3For further encouraging the motion consistency of background  regions,  
we consider all the selected background regions S are adjacent in 

neighboring system ℵ. 



 

 

  
 

Fig. 5. (a) Real images and corresponding saliency groundtruth masks from 
existing image datasets. (b) Synthetic image examples and saliency masks 
generated via our method. 

 
magnitude larger than in the video segmentation datasets, 

allowing us to generate enough scenes. For each image  

sample I of an image dataset, we generate ten simulated 

frames. Some simulated results  can  be  observed in  Fig.  5. 

In our experiments, we use two large image saliency datasets 

MSRA10K [65] and DUT-OMRON [66], generating more than 

150K simulated videos associated with pixel-level annotations 

and optical flow within 3 hours (processing speed of 14 fps  

on one CPU). Those synthesized video data, combined with 

real video samples from existing video segmentation datasets, 

are fed into our model for learning general dynamic saliency 

information without over-fitting. 

 

V. EXPERIMENTAL RESULTS 

In this section, we describe our evaluation protocol and 

implementation details (Sec. V-A), provide exhaustive com- 

parison results over two large datasets (80 videos in  total, 

Sec. V-B), study the quantitative importance of the different 

components of our system (Sec. V-C), and assess its compu- 

tational load (Sec. V-D). 

 
A. Experimental Setup 

1) Datasets:  We  report  our  performance  on  two   pub- 

lic benchmark datasets: Freiburg-Berkeley Motion Segmen- 

tation (FBMS) dataset [10], and Densely Annotated VIdeo 

Segmentation (DAVIS) dataset [13]. The FBMS dataset con- 

tains 59 natural video sequences, covering various challenges 

such as large foreground and background appearance variation, 

significant shape deformation, and large camera motion. This 

dataset is originally used for motion segmentation, where 

unsalient but moving objects are also labeled as foreground. 

We offer more precise annotations for this dataset via only 

labeling the main salient objects. The FBMS dataset comes 

with a split into a training set and a test set, where the training 

set includes 29 video sequences and the test set has 30 video 

sequences. We also report our performance on the newly 

developed DAVIS dataset, which is one of the most challeng- 

ing video segmentation benchmarks. It consists of 50 video 

sequences in total, and fully-annotated pixel-level segmenta- 

tion ground-truth for each frame is available. We report the 

performance of our method and other alternatives on the test 

set of FBMS dataset and the whole DAVIS dataset. 

For training, we use two large image saliency datasets: 

MSRA10K [65] and DUT-OMRON [66]. The MSRA10K 

dataset comprising of 10K images, is widely used for saliency 

detection and covers a large variety of image contents – natural 

scenes, animals, indoor, outdoor, etc. Most of the images have 

a single salient object. The DUT-OMRON dataset is one of  

the most challenging image saliency datasets and contains 

5172 images with multiple objects with complex structures 

and high background clutter. All the above datasets contain 

manually annotated groundtruth saliency. The video sequences 

of the whole SegTrackV2 dataset  [11] and  the  training  set 

of the FBMS dataset are also used for training the dynamic 

saliency network, which include about 3K frame pairs.4 

2) Implementation: The proposed deep video saliency 

network has been implemented with the popular  Caffe  

library [70], an open source framework for CNNs  training 

and testing. For our static video saliency network, the weights 

of the first five convolutional blocks are initialized by the 

VGGNet model [16] trained on ImageNet [9], the other 

convolutional layers are initialized from zero mean Gaussian 

with a standard deviation of 0.01 and the biases are set to 0. 

Based on this, our network was trained on the MSRA10K [65] 

and the DUT-OMRON [66] datasets with 100K iterations for 

saliency detection in static scenes. Our dynamic video saliency 

network is also initialized from the VGGNet network. For the 

first convolutional layer, we use Gaussian initialization due to 

a different input channel from VGGNet. Benefiting from our 

video data synthesis approach, we can employ images and 

annotations from existing saliency segmentation datasets for 

training our video saliency model. The images and masks from 

MSRA10K and DUT-OMRON datasets are used to generate 

more than 150K video slits. Then we combine our simulated 

video data with real video data (∼3K frame pairs) from 
exiting video segmentation datasets [10], [11] for generating 

an aggregate video saliency training set. Our whole video 

saliency model is trained for 300K iterations. For both two 

networks, we use stochastic gradient descent (SGD) and a 

polynomial learning policy with  initial learning rate  of 10−7. 

The momentum and weight decay are set to 0.9 and 0.0005. 

 

B. Performance Comparison 

To  evaluate  the  quality   of   the   proposed   approach,   

we provide in this section quantitative comparison for per- 

formance of the proposed method against various top- 

performing alternatives: saliency via deep feature (MD) [33], 

saliency via absorbing markov chain (MC) [67], space-time 

saliency for time-mapping (TIMP) [19], gradient-flow filed 

based saliency (GAFL) [3], geodesic distance based video 

saliency (SAGE) [17], and saliency via random walk with 

restart (RWRV) [6], on test set (30 video sequences) of the 

FBMS dataset and the whole DAVIS dataset (50 video clips). 

The former two methods aim at image saliency while the latter 

four are designed for video saliency. 

 
4Due to the number  of  annotations  provided  by  FBMS  is  very  lim-  

ited (only 4∼6 frames are labeled for each video sequence), we provide extra 

∼500 annotations. 
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Fig. 6. Qualitative comparison against the state-of-the-art methods on the FBMS dataset [10] (lion01 and tennis), and DAVIS dataset [13] (parkour and 
soapbox) with pixel-level ground-truth labels. Our saliency method yields continuous saliency maps that are most similar to the ground-truth. 

 

1) Qualitative Results: Qualitative comparisons are pre- 

sented in Fig. 6, where the top line shows example video 

frames and the second line shows the  ground  truth  detec- 

tion results of salient objects. As seen, the image saliency 

method [67] without deep learning, unsurprisingly, faces dif- 

ficulties in dynamic scenes, due to the lack of inter-frame 

information and utilization of hand-crafted features. The video 

saliency methods [3], [17] generate more visually promising 

results, but suffer higher computation load (which will be 

detailed in Sec. V-D) and show relatively weak performance 

We first employ precision-recall (PR) curves for perfor- 

mance evaluation. Precision corresponds to the percentage of 

salient pixels correctly assigned, while recall corresponds to 

the fraction of detected salient pixels in relation to the ground 

truth number of salient pixels. For each saliency map, we vary 

the cutoff threshold from 0 to 255 to generate 256 precision 

and recall pairs, which are used to plot a PR curve. 

The F-measure is the overall performance measurement 

computed by the weighted harmonic of precision and recall: 

(1 + β2) × precision × recall 
 

 

with complex background. As for [33], it’s an image saliency 

model but exhibits competitive performance with above 
F-measure = 

β2 × precision + recall 
, (9)

 

bottom-up video saliency approaches, which demonstrates the 

power of deep learning model in saliency detection. However, 

we can observe the proposed algorithm captures foreground 

salient objects more faithfully in most test cases. In particular, 

the proposed algorithm yields good performance on some 

challenging scenarios, even for blurred backgrounds (lion01), 

various object motion patterns (parkour) or large shape defor- 

mation (soapbox). This can be attributed to our video data 

synthesis, which offers diverse scene information and rich 

motion patterns. Based on this, our method is able to learn both 

static and dynamic saliency information and detects salient 

moving objects accurately despite similar appearance to the background. 

where we set β2 0.3 to weigh precision more than recall as 

suggested in [71]. For each saliency map, we derive a sequence 

of F-measure values along the PR-curve with the threshold 

varying from 0 to 255. 

As neither precision nor recall considers the true negative 

saliency assignments, the mean absolute error (MAE) is also 

introduced as a complementary measure. MAE is defined as 

the average per-pixel difference between an estimated saliency 

probability map P and its corresponding ground truth  G. 

Here, P and G are normalized to the interval [0, 1]. MAE is 

computed as Σh×w | P(xi) − G(xi )| 
 

 

2) Quantitative Results: We report quantitative evalua- 
MAE = i=1 

h × w 
, (10) 

tion results on three widely used performance measures: 

precision-recall (PR) curves, F-measure and MAE. 

where  h  and  w  refer  to  the  height  and  width  of  the  

input frame image. MAE is meaningful in evaluating the 
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Fig.  7.    Comparison   with  8  alternative   saliency   detection   methods   using  the  DAVIS  dataset   [13]  (top),  and  the   test  set  of  the  FBMS  data-    
set [10] (bottom) with pixel-level ground-truth: (a) average precision recall curve by segmenting saliency maps using fixed thresholds, (b) F-score, (c) average 
MAE. Notice that, our algorithm consistently outperforms other methods across different metrics. 

applicability of a saliency model in a task such as object 

segmentation. 

The precision-recall curves of all methods are reported in 

Fig. 7-a. As shown, our method significantly outperforms the 

state-of-the-art both on the FBMS dataset [10], and the DAVIS 

dataset [13]. Our saliency method achieves the best precision 

rates, which demonstrates our saliency maps are more precise 

and responsive to the actual salient information. The F-scores 

are depicted in Fig. 7-b, in which our model achieves better 

scores than other methods. Similar conclusions can be drawn 

from the MAE. In Fig. 7-c, our method achieves the lowest 

MAE among all compared methods. 

C. Validation of the Proposed Method 

To exhibit more details of our algorithm and objectively 

evaluate the contribution of different phases in the proposed 

saliency model, we report the evaluation of each of the com- 

ponents described in Sec. III and different variants of the 

proposed saliency model. We experiment on the test set of the 

FBMS dataset [10], and the DAVIS dataset [13] and measure 

the performance using precision recall curve and MAE. 

1) Ablation Study: We first study the effect of each module 

of our deep saliency model. In Fig. 8, we present qualitative 

comparison between static saliency from our static network 

(in Sec. III-B) and final spatiotemporal saliency results from 

our whole model (in Sec. III-C). It can be observed, due to the 

lack of dynamic information, the static saliency model faces 

difficulties distinguishing salient objects from clutter back- 

ground in dynamic scenes. Via comprehensively utilizing static 

and dynamic saliency stimuli, our deep video saliency model is 

able to estimate more accurate spatiotemporal saliency maps. 

For quantitatively examining the performance of  our sta- tic 

saliency network, we directly use the static saliency maps 

generated by the static network as final saliency esti- 

mates. From Table II, we can observe decreased perfor- 

mance (7.65 8.19 on FBMS, 6.36 7.17 on DAVIS), due to 

the lack of dynamic saliency information. Similarly, we train 

a dynamic network without considering static saliency as prior 

using the same training data. We attribute this to the difficulty 

of directly capturing dynamic saliency information from two 

successive frames without any saliency prior or extra motion 

information. We can draw two important conclusions. First, 

the fusion of static model and dynamic model improves on 

both. Second, taking static saliency as prior information makes 

training the dynamic model easier and yield more accurate 

prediction. 

2) Training Strategy: We also explore the effect of different 

training strategies. We first study the influence of our synthetic 

video data generation strategy in Sec. IV. We train our deep 

saliency model only using the synthetics from image data. 

Although the real video data occupy a small percentage of the 

training, we can still see a decrease in MAE (7.65 9.27 on 

FBMS, 6.36 7.53 on DAVIS) when we only use synthetic  

data. The small performance decrease verifies the effectiveness 
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TABLE II 

ASSESSMENT OF INDIVIDUAL MODULES AND VARIANTS OF OUR DEEP SALIENCY MODEL ON THE TEST SET OF FBMS DATASET 

[10] AND THE DAVIS DATASET [13] USING MAE. LOWER VALUES ARE BETTER 
 

 

 

 

 
  

    

 
 

 
 

  
 

 

  
 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Fig. 8. Qualitative comparison between our static saliency results and final spatiotemporal saliency results. From top to bottom: input frame images, saliency 
results via our static saliency network, and spatiotemporal saliency results via our whole video saliency model. 

 

for the usability of previous video saliency algorithms, as a 

substantial amount of time is spent computing motion or edge 

information. In contrast, our method computes 480p saliency 

masks in as little as 0.47 seconds, which is much faster than 

traditional video saliency methods. Our method does not rely 

on optical flow, edge maps or other pre-computed information, 

resulting in roughly an order of magnitude faster processing 

speed. 
 

   

 

 
Fig. 9. Computational load of our method and the state-of-the-art video 
saliency methods for processing a 480p video. 

 

of our data augmentation technique; on the other hand, it sug- 

gests the synthetics should not completely replace the real 

video data. We further explore the performance of our model 

only using video data (0.03 105 frame pairs). Unfortunately, 

our model suffers  over-fitting  due  to  the  high  similarities 

of scenes within same video. This also demonstrates the 

importance of our synthetic video data generation. 

D. Runtime Analysis 

Here we consider the speed of our saliency method. Our 

computing platform includes Intel Xeon E7 CPU (12 cores) 

with 64 GB memory and Nvidia Geforce TITAN  X  GPU.  

We  do  not  count  I/O  time,  and  do  not  allow  process-   

ing  multiple  images  in  parallel.  The  time  consumption,   

of our method compared against other video saliency meth- 

ods [3], [6], [17], [19] are presented in Fig. 9. From  Fig.  9  

we can learn that, run time efficiency is the major bottleneck 

VI. CONCLUSION 

In this work, we have presented a deep learning method   

for fast video saliency detection using convolutional neural 

networks. The proposed deep video saliency model has two 

modules, namely static saliency network and dynamic saliency 

network, which are designed for capturing spatial and temporal 

statistics of dynamic scenes. The saliency estimates from the 

static saliency network is incorporated in the dynamic saliency 

network, which enables our method to automatically learn the 

way of fusing static saliency into dynamic saliency detection 

and directly produce final spatiotemporal saliency results with 

less computation load. Furthermore, we proposed a  novel  

data augmentation technique for synthesizing video data from 

still images, which enables our deep saliency model to learn 

generic spatial and temporal saliency and prevents overfitting. 

Experimental results have shown that our methods generate 

high-quality salience maps. Additionally, our model is very 

efficient with a frame rate of 2fps on a GPU. 
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