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Frankenstein: Learning Deep Face Representations
using Small Data

Guosheng Hu, Member, IEEE, Xiaojiang Peng, Member, IEEE, Yongxin Yang, Student Member, IEEE, Timothy
Hospedales, Member, IEEE, and Jakob Verbeek

Abstract—Deep convolutional neural networks have recently
proven extremely effective for difficult face recognition problems
in uncontrolled settings. To train such networks, very large
training sets are needed with millions of labeled images. For
some applications, such as near-infrared (NIR) face recognition,
such large training datasets are, however, not publicly available
and very difficult to collect. In this work, we propose a method
to generate very large training datasets of synthetic images by
compositing real face images in a given dataset. We show that this
method enables to learn models from as few as 10,000 training
images, which perform on par with models trained from 500,000
images. Using our approach we also improve the state-of-the-art
results on the CASIA NIR-VIS2.0 heterogeneous face recognition
dataset.

Index Terms—face recognition, deep learning, small training
data

I. INTRODUCTION

In recent years, deep learning methods, and in particular
convolutional neural networks (CNNs), have achieved con-
siderable success in a range of computer vision applications
including object recognition [22], object detection [10], se-
mantic segmentation [34], action recognition [42], and face
recognition [38]. The recent success of CNNs stems from the
following facts: (i) big annotated training datasets are currently
available for a variety of recognition problems to learn rich
models with millions of free parameters; (i) massively parallel
GPU implementations greatly improve the training efficiency
of CNNs; and (iii) new effective CNN architectures are being
proposed, such as the Very Deep VGG Network [43], Google
Inception Network [52] and Deep Residual Networks [13].

Good features are essential for object recognition, including
face recognition. Conventional features include linear func-
tions of the raw pixel values, including Eigenface (Principal
Component Analysis) [55], Fisherface (Linear Discriminant
Analysis) [3], and Laplacianface (Locality Preserving Projec-
tion) [14]. Such linear features were later replaced by hand-
crafted local non-linear features, such as Local Binary Pat-
terns [1], Local Phase Quantisation (LPQ) [2], and Fisher vec-
tors computed over dense SIFT descriptors [41]. Note that the
latter is an example of a feature that also involves unsupervised
learning. These traditional features achieve promising face
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recognition rates in constrained environments, as represented
in the CMU PIE dataset [40]. However, using these features
face recognition performance may degrade dramatically in
uncontrolled environments, as represented in the Labeled
Faces in the Wild (LFW) benchmark [16]. To improve the
performance in such challenging settings, metric learning can
be used, see [5], [11], [57]. Metric learning methods learn a
(linear) transformation of the features that pulls the objects
that have the same label closer together, while pushing the
objects that have different labels apart.

Although hand-crafted features and metric learning achieve
promising performance for uncontrolled face recognition, it
remains cumbersome to improve the design of hand-crafted
local features (such as SIFT [25]) and their aggregation
mechanisms (such as Fisher vectors [37]). This is because
the experimental evaluation results of the features cannot be
automatically fed back to improve the robustness to nuisance
factors such as pose, illumination and expression. The major
advantage of CNNss is that all processing layers, starting from
the raw pixel-level input, have configurable parameters that
can be learned from data. This obviates the need for manual
feature design, and replaces it with supervised data-driven
feature learning. Learning the large number of parameters in
CNN models (millions of parameters are rather a rule than an
exception) requires very large training datasets. For example,
the CNNs, which achieve state-of-the-art performance on the
LFW benchmark, are trained using datasets with millions
of labeled faces: Facebook’s DeepFace [53] and Google’s
FaceNet [38] were trained using 4 million and 200 million
training samples, respectively.

For some recognition problems large supervised training
datasets can be collected relatively easily. For example the
CASIA Webface dataset [60] of 500,000 face images was col-
lected semi-automatically from IMDb. However, in many other
cases collecting large datasets may be costly, and possibly
problematic due to privacy regulation. For example, thermal
infrared imaging is ideal for low-light nighttime and covert
face recognition applications [21], but it is not possible to
collect millions of labeled training images from the internet
for the thermal infrared domain. The lack of large training
datasets is an important bottleneck that prevents the use of
deep learning methods in such cases, as the models will overfit
dramatically when using small training datasets [15].

To address this issue, the use of big synthetic training
datasets has been explored by a number of authors [17], [30],
[35]. There are two important advantages of using synthetic
data (i) one can generate as many training samples as desired,



and (ii) it allows explicit control over the nuisance factors.
For instance, we can synthesize face images of all desired
viewpoints, whereas data collected from the internet might
be mostly limited to near frontal views. Data synthesis has
successfully been applied to diverse recognition problems,
including text recognition [17], scene understanding [30], and
object detection [35]. Two very recent works [64], [9], [27]
proposed 3D-aided face synthesis technique for facial land-
mark detection and face recognition in the wild respectively.

Data augmentation is another technique that is commonly
used to reduce the data scarcity problem, see [32], [43]. This
is similar to data synthesis, but more limited in that existing
training images are transformed without affecting the semantic
class label, e.g. by applying cropping, rotation, scaling, etc.

The main contribution of this paper is a solution for training
deep CNNs using very small training data. To achieve this, we
propose a data synthesis technique to expand very limited face
datasets to very large ones that are suitable to train powerful
deep CNNSs. Specifically, we synthesize images of a ‘virtual’
subject ¢ by compositing automatically detected face parts
(eyes, nose, mouth) of two existing subjects a and b in the
dataset in a fixed pattern. Images for the new subject are
generated by composing a nose from an image of subject a
with a mouth of an image of subject b. This is motivated by
the observation that face recognition consists in finding the
differences in the appearance and constellation of face parts
among people. For a dataset with an equal number of faces
per person, this method can increase a dataset of n images to
one with n? images when using only 2 face parts (we use 5
parts in practice). A dataset like LFW can thus be expanded
from a little over 10,000 images to a dataset of 100 million
images.

Unlike the existing face synthesis methods [64], [9], [27]
which use 3D models, our method is a pure 2D method which
is much easier to implement. In addition, our method works on
different tasks from [64], [9], [27]. Specifically, the methods
[64], [9] are used for facial landmark detection, while ours
for face recognition. The approach [27] assumes a relatively
large training data (500,000 images) already exists, while we
assumes the training data (10,000 images) is extremely small.

We experimentally demonstrate that the synthesized large
training datasets indeed significantly improve the generaliza-
tion capacity of CNNs. In our experiments, we generate a
training set of 1.5 million images using an initial labeled
dataset of only 10,000 images. We improve the face verifica-
tion rates from 78.97% to 95.77% on LFW using CNNss trained
on 10K images and 1.5 million synthetic images respectively.
In addition, the proposed face synthesize is also used for
NIR-VIS heterogeneous face recognition [29] and improve the
rank-1 face identification rate from 17.41% to 85.05%. With
the synthetic data, we achieve state-of-the-art performance on
both (1) LFW under the “unrestricted, label-free outside data”
protocol and (2) CASIA NIR-VIS 2.0 database under rank-1
face identification protocol.

II. RELATED WORK

Our work relates to three research areas that we briefly
review below: face recognition using deep learning methods

(Section II-A), face data collection (Section II-B), and data
augmentation and synthesis methods (Section II-C).

A. Face recognition using deep learning

Here we briefly review recent state-of-the-art face recogni-
tion methods based on deep learning.

Since face recognition is a special case of object recognition,
good architectures for general object recognition may carry
over to face recognition. Schroff et al [38] explored networks
that are based on that of Zeiler & Fergus [62] and Inception
networks [52]. DeepID3 [46] uses aspects of both Inception
networks [51] and the very deep VGG network [43]. Parkhi
et al. [31] use the same architecture as the very deep VGG
network [43], while Yi et al. [60] use 3 x 3 filters but fewer
layers.

DeepFace [53] combines 3D face alignment and CNN for
face recognition. Specifically, a 3D model is used for pose
normalization, by which all the faces are rotated to the frontal
pose. In this way, pose variations are removed from the faces.
Then an 8-layer CNN is trained using four million pose-
normalized images.

DeepID [49], DeepID2 [45], DeepID2+ [50] all train an
ensemble of small CNNs. The input of one small CNN is an
image patch cropped around a facial part (face, nose, mouth,
etc.). The same idea is also used in [24]. DeeplID uses only
a classification-based loss to train the CNN, while DeepID2
includes an additional verification-based loss function. To
further improve the performance, DeeplD2+ adds the loss
functions to all the convolutional layers rather than the topmost
layer only.

All the above methods train CNNs using large training
datasets (500,000 faces or more). To the best of our knowl-
edge, only [15] uses small datasets to train CNNs (only
around 10,000 LFW images) and achieves significantly worse
performance on the LFW benchmark: 87% vs 97% or higher
in [38], [50], [53]. Clearly, sufficiently large training datasets
are extremely important for learning deep face representations.

B. Fuace dataset collection

Since big data is important for learning a deep face repre-
sentation, several research groups have collected large datasets
with 90,000 up to 2.6 million labeled face images [5], [28],
[31], [47], [60]. To achieve this, they collect face images
from the internet, by querying for specific websites such as
IMDb or general search engines for celebrity names. This data
collection process is detailed in [31], [60].

There are, however, two main weaknesses of the existing
face data collection methods. First, and most importantly,
internet-based collection of large face datasets is limited to
visible spectrum images, and is not applicable to collect e.g.
infrared face images. Second, the existing collection methods
are expensive and time-consuming. It results from the fact
that automatically collected face images are noisy, and manual
filtering has to be performed to remove incorrectly labeled
images [31].

The difficulty of collecting large datasets in some domains,
e.g. for infrared imaging, motivates the work presented in



this paper. To address this issue we propose a data synthesis
method that we describe in the next section.

C. Data augmentation and synthesis

The availability of large supervised datasets is the key for
machine learning to succeed, and this is true in particular for
very powerful deep CNN models with millions of parameters.
To alleviate data scarcity in visual recognition tasks, data
augmentation has been used to add more examples by applying
simple image transformations that do not affect the semantic-
level image label, see e.g. [7]. Examples of such transforma-
tions are horizontal mirroring, cropping, small rotations, etc.
Since it is not always clear in advance which (combinations
of) transformations are the most effective to generate examples
that improve the learning the most, Paulin et al. [32] proposed
to learn which transformations to exploit.

Data augmentation, however, it limited to relatively simple
image transformations. Out-of-plane rotations, for example,
are hard to accomplish since they would require some de-
gree of 3D scene understanding from a single image. Pose
variations of articulated objects are another example of trans-
formations that are non-trivial to obtain, and generally not used
in data augmentation methods.

Training models from synthetic data can overcome such dif-
ficulties, provided that sufficiently accurate object models are
available. Recent examples where visual recognition systems
have been trained from synthetic data include the following.
Shotton et al. [39] train randomized decision forests for human
pose estimation from synthesized 3D depth data. Jaderberg et
al. [17] use synthetic data to train CNN models for natural
scene text recognition. Su et al. [44] use synthetic images
of objects to learn a CNN for viewpoint estimation. Papon
and Schoeler [30] train a multi-output CNN that predicts
class, pose, and location of objects from realistic cluttered
room scenes that are synthesized on the fly. Weinmann et
al. [58] synthesize material images under different viewing
and lighting conditions based on detailed surface geometry
measurements, and use these to train a recognition system
using a SIFT-VLAD representation [18]. Ronzantsev et al. [36]
use rough 3D models to synthesize new views of real object
category instances. They show that this outperforms more
basic data augmentation using crops, flips, rotations, etc.

Data synthesis techniques are also used for face analysis.
To improve the accuracy of facial landmark detection in the
presence of large pose variations [9], [64], a 3D morphable
face models is used to synthesize face images in arbitrary
poses. Similar data synthesis techniques are also used for pose-
robust face recognition [27]. Unlike 3D solutions, we propose
a 2D data synthesis method to solve the problem of training
deep CNNs using very limited training data.

III. SYNTHETIC DATA ENGINE

Human faces are well structured in the sense that they
are composed of parts (eyes, nose, mouth, etc.) which are
organized in a relatively rigid constellation. Face recognition is
conducted implicitly by finding the differences of one or more
facial parts and possibly their constellation among people.

selection code
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Fig. 1: Schematic illustration of the face synthesis process
using five parts: left-eye, right-eye, nose, mouth and the rest.
Parent images PO and P1 (top) are mixed by using the eyes
of P1 and the other parts of PO (middle) to form the synthetic
image (bottom).

Motivated by this, our synthetic face images are generated
by swapping one or more facial parts among existing “parent”
images. In our work we use five face parts: right eye (RE),
left eye (LE), nose (N), mouth (M) and the rest (R). See
Figure 1 for an illustration. For simplicity, we only consider
the synthesis using only two parent images in this work. Our
synthesis method can easily be extended, however, to the
scenario of more than two parent images.

Suppose that we have an original dataset and let S denote
the set subjects in the dataset, and let n; denote the number
of images of subject ¢ € S. To synthesize an image, we select
a tuple (7,7,¢,s,t) where i € S,j € S correspond to two
subjects that will be mixed, and s € {1,...,n;} and t €
{1,...,n;} are indices of images of ¢ and j that will be used.
The bitcode ¢ € {0, 1}° defines which parts will be taken from
each subject. A zero at a certain position in b means that the
corresponding part will be taken from ¢, otherwise it will be
taken from j. There are only 2° — 2 = 30 valid options for
b, since the codes 00000 and 11111 would correspond to the
original images of s and t respectively, instead of synthetic
ones.

To synthesize a new image, we distinguish the two parent
images as the “base” image from which we use the R (the
rest) part, and the “injection” image from which one or more
parts will be pasted on this base image. Since the size of the
facial parts of the two parent images are in general different,
we re-size the facial parts of the injection image to that of the
base image. The main challenge to implement the proposed
synthesis method is to accurately locate the positions of the
facial parts. Recently, many efficient and accurate landmark
detectors have been proposed. We use four landmarks detected
by the method of Zhang et al. [63] to define the rectangular



region that corresponds to each face part.

We refer to each choice of (i, j,¢) with ¢ # j as a “virtual
subject” which consists of a mix of two existing subjects in
the dataset. In total we can generate 30|S|(|S|—1)/2 different
virtual subjects, and for each of these we can generate n; x n;
samples. Note that if we set ¢ = j we can in the same manner
synthesize 30n;(n; —1)/2 new images for an existing subject.

Artefacts The synthetic faces present some artefacts which
we discuss here. The artefacts can be categorised into two
types: (I) ‘hard’ boundary, and (II) inconsistent/unnatural intra-
personal variations (lighting, pose, etc) between facial patches.
These are illustrated in Fig. 2. Note that the type I artefacts
are generated by not only our method but also 3D synthesis
methods such as [27], [54], [12]. As shown in the top-right
side of Fig. 2, the artefacts created by 3D methods are due to
inaccurate 3D model to 2D image fitting. The inaccurate fitting
makes the synthetic faces extract the pixels from background
rather than facial areas, leading to bad facial boundaries.

Despite the existence of these artefacts, this synthetic data
is still useful for training strong face recognition models. This
can be understood from a few perspectives: (1) Type I artefacts
are common to all the synthetic faces in the training set,
therefore the CNN does not learn to rely on artefacts as dis-
criminative features coding for identity, i.e., it learns artefact
invariance. This means its performance is not compromised
when subsequently presented with artefact-free images at
testing-time. Other studies have also shown that synthetic data
still improves recognition performance, despite the presence
of type I artefacts [27]. (2) The artefacts can be regarded as
noise, which has been shown to improve model generalisation
in a variety of settings by increasing robustness and reduc-
ing overfitting. For example in the case of CNNs, training
with data augmentation in the form of specifically designed
deformation noise is important to obtain good recognition
performance [61]; and in the case of de-noising auto encoders,
training on images with noise, corruption and artefacts has
been shown to improve face classification performance [56].
(3) As a concrete example to understand how type II artefacts
can improve performance, consider two synthetic images with
the same identity label, but one a type II artefact on the mouth
caused by illumination, e.g., in Fig. 2 (bottom left). Training
to predict these images as having the same identity means that
the CNN learns an illumination-invariant feature for the mouth.
And similarly for other intra-personal variations (such as pose,
expression). Thus while some artefact images look strange,
they are actually a powerful form of data augmentation that
helps the CNN to learn robustness to all these nuisance factors.

Discrimination How do synthetic faces improve the perfor-
mance of CNNs? Although some works [27], [54] empirically
verified the effectiveness of synthetic data, they did not give
much insight into how. In our work, the synthetic data captures
a dataset of richer intra-personal variations by generating a
large number of images of the same identities, leading to a
‘deeper’ training set. Also, our engine can synthesise a large
number of faces of new identities, generating a ‘wider’ training
set. Thus the synthetic identities interpolate the whole space
of pixel-identity mappings. Not surprisingly, a better CNN
model can be trained using this deeper and wider training

illumination

Fig. 2: Artefacts. Type I (Row 1) artefacts means hard bound-
aries generated by our method (top-left) and 3D synthesis
method [27], [54], [12] (top right). Type II (Row 2) artefacts
are inconsistent intra-personal variations such as those caused
by inconsistent illumination (bottom left) and pose (bottom
right).

set. The methods of generating our deeper and wider training
set are detailed in Section V-A. In addition, as discussed in
previous paragraph, the texture inconsistence between local
patches caused by illumination and pose is helpful to learn
the invariance to those nuisance factors.

IV. FACE RECOGNITION PIPELINE

In this section we describe the different elements of our
pipeline for face identification and verification in detail.

A. CNN architectures

Face recognition in the wild is a challenging task. As
described in Section II-A, the existing deep learning meth-
ods highly depend on big training data. Very little research
investigates training CNNs using small data. Recently, Hu
[15] evaluated CNNs trained using small datasets. Due to
the limited training samples, they found the performance of
CNNs to be worse than handcrafted features such as high-
dimensional features [6] (0.8763 vs 0.9318). In this work,
we use a limited training set of around 10,000 images to
synthesize a much larger one of around 1.5 million images for
CNN training. The synthesized training data captures various
deformable facial patterns that are important to improve the
generalization capacity of CNNs.

We use two CNN architectures. The first one introduced in
[15] has fewer filters and is referred as CNN-S, and the other
introduced in [60] is much larger and therefore referred as
CNN-L. These two architectures are detailed in Table I. Using
the CNN-L model we achieve state-of-the-art performance on
the LFW dataset [16] under ‘unrestricted, label-free outside
data’ protocol.

B. NIR-VIS heterogeneous face recognition

NIR-VIS (near-infrared to visual) face recognition is im-
portant in applications where probe images are captured by
NIR cameras that use active lighting which is invisible to the
human eye [29]. Gallery images are, however, generally only



TABLE I: Our two CNN architectures

CNN-L [

convl

32x3x3, st.1; 64 x 3 x 3, st.1
x2 maxpool, st.2

CNN-S

16x3x3, st.1; 16 x 3 x 3, st.1
x2 maxpool, st.2

conv2
64x3x%x3, st.1; 128 x 3 x 3, st.1
x2 maxpool, st.2

32x3x%3, st.1
x2 maxpool, st.2

conv3
96x3x3, st.1 ; 192 x 3 x 3, st.1
X2 maxpool, st.2

48%x3x3, st.1
X2 maxpool, st.2

conv4
128%x3x%3, st.1 ; 256 x 3 x 3, st.1
x2 maxpool, st.2

convS
160x3x3, st.1 ; 320 x 3 x 3, st.1
x7 avgpool, st.1

fully connected

FC-160

Softmax-5000 Softmax-5000

available in the visible spectrum. The existing methods for
NIR-VIS face recognition include three steps: (i) illumination
pre-processing, (ii) feature extraction, and (iii) metric learning.
First, the NIR-VIS illumination differences cause the main
difficulty of NIR-VIS face recognition. Therefore, illumination
normalization methods are usually used to reduce these differ-
ences. Second, to reduce the heterogeneities of NIR and VIS
images, illumination-robust features such as LBP are usually
extracted. Third, metric learning is widely utilized, aiming at
removing the differences of modalities and meanwhile keeping
the discriminative information of the extracted features.

In this work, we also follow these three steps that are
detailed in Section V-B3. Unlike the existing work that extracts
handcrafted features, we learn face representations using two
CNN architectures introduced in Section IV-A. To our knowl-
edge, we are the first to use deep CNNs for NIR-VIS face
recognition. The main difficulty of training CNNSs results from
the lack of NIR training images which are not available from
the Internet. To solve this, we synthesize a big NIR dataset
for CNN training.

C. Network Fusion

Fusion of multiple networks is a widely used strategy to
improve the performance of deep CNN models. For example,
in [43], an ensemble of seven networks is used to improve
the object recognition performance due to complementarity of
the models trained at different scales. Network fusion is also
successfully applied to learn face representations. DeepID and
its variants [45], [49], [50] train multiple CNNs using image
patches extracted from different facial parts.

The heterogeneity of NIR and VIS images is intrinsically
caused by the different spectral bands from which they are ac-
quired. The images in both modalities, however, are reflective
in nature and affected by illumination variations. Illumination
normalization can be used to reduce such variability, at the
risk of loosing identity-specific characteristics. In this work,
we fuse two networks that are trained using the original
and illumination-normalized images respectively. This network
fusion significantly boosts the recognition rate.

D. Metric Learning

The goal of metric learning is to make different classes
more separated, and instances in the same class closer. Most
approaches learn a Mahalanobis metric

&% (w5, 25) = (2 — 25)" Az — ;) (1)

which maximizes inter-class discrepancy, while minimizing
intra-class discrepancy. Some methods, instead, learn a gener-
alized dot-product of the form

(2, x;) = x] Bx; 2

Metric learning methods are widely used for face identifi-
cation and verification. Because identification and verification
are two different tasks, different loss functions should be
optimized to learn the metric. Joint Bayesian metric learning
(JB) [5] and Fisher linear discriminant analysis (LDA) are
probably the two most widely used metric learning methods
for face verification and identification respectively. In partic-
ular, LDA can be seen as a method to learn a metric of the
form of Eq. (1), while JB learns a verification function that
can be written as a weighted sum of Eq. (1) and (2). In our
work we use JB and LDA to improve the performance of face
verification and identification respectively.

V. EXPERIMENTS
A. Data synthesis methods

Given some face images and their IDs, we define three
synthetic strategies: Inter-Synthesis, Intra-Synthesis, and Self-
Synthesis. Inter-Synthesis synthesizes a new image using two
parents from different IDs as shown in Fig. 1. The facial
components of an Intra-Synthesized face are from different
images with the same ID. Self-synthesis is a special cause
of Intra-Synthesis. Specifically, one given image synthesizes
new images by swapping facial components of itself and its
mirrored images. By virtue of Self-Synthesis, one input image
can become maximum 32 images which have complementary
information. The fusion of features extracted from these 32
images has stronger face representation capacity which is
validated in Section V-B2. In the view of NIR-VIS cross-
modality, we also define ‘cross-modality synthesis’ which uses
images from different modalities to synthesize a new one.
Some synthetic images from the CASIA NIR-VIS 2.0 dataset
with LSSF [59] illumination normalization are shown in Fig.
3. The reasons of using LSSF illumination normalization is
detailed in Section V-B3. As shown in Fig. 3, the results of
Intra-Synthesis method are usually more natural than Inter-
Synthesis method since the Intra-Synthesis method uses the
same ID. However, as shown in the right of Fig. 3, some
samples from Intra-Synthesis can also be very strange due to
large pose variations.

B. Face recognition

1) Implementation details: Our implementation is based
on the Caffe open source deep learning toolbox. Before face
synthesis, all the raw images are aligned and cropped to
size 100 x 100 as in [60] on both datasets. We train our



Fig. 3: Left: Inter-Synthesis. Middle: cross-modality Intra-Synthesis. Right: Intra-Synthesis.

models using images only from LFW and CASIA NIR-VIS2.0
databases. For the CNN-S model on both datasets, we set the
learning rate as 0.001, and decrease it by 10 times every 4000
iterations, and stop training after 10K iterations. We practically
find dropout is not helpful for the small network, therefore,
we train the CNN-S model without dropout. For the CNN-L
model on the NIR-VIS dataset, we set the learning rate as
0.01, and decrease it by 10 times every 8000 iterations, and
stop training after 20K iterations. For the CNN-L model on
the LFW dataset, we set the learning rate as 0.01, and decrease
it by 10 times every 120K iterations, and stop training after
200K iterations. We set dropout rate as 0.4 for the pool5 layer
of the CNN-L model. For both CNN-S and CNN-L models,
the batch size is 128, momentum is 0.9, and decay is 0.0005.
Softmax loss function is used to guide CNN training. The
features used in our experiments of CNN-S and CNN-L are
FC-160 (160D) and Pool5 (320D), respectively.
2) Face recognition in the wild:

a) Database and protocol: Labeled Faces in the Wild
(LFW) [16] is a public available dataset for unconstrained
face recognition study. It contains 5,749 unique identities and
13,233 face photographs. The training and test sets are pre-
defined in [16]. For evaluation, the full dataset is divided into
ten splits, and each time nine of them are used for training
and the left one for testing. Our work falls in the protocol
of ‘Unrestricted, Label-Free Outside Data’ as we use the
identity information to train the neural network (softmax loss).
Meanwhile, all face images are aligned using a model trained
on unlabeled outside data. As a benchmark for comparison,
we report the mean and standard deviation of classification
accuracy.

b) Synthetic data generation: Under LFW protocol, the
training set in each fold is different. Therefore, the size of
synthetic data and the original raw LFW data in Table II
is averaged over 10 folds. We generate 1.5 million training
images including 1 million ‘Inter-Syn’ ones and 0.5 million
‘Intra-Syn’ ones. ‘Inter-Syn’ and ‘Intra-Syn’ are defined in
Section V-A.

c) Analysis of CNN model and synthetic data: We here
analyse the trained model by visualising the synthetic images
in feature space. We choose the images of two subjects

TABLE II: Training data synthesized from LFW

IDs | Images | Images/ID
Intra-Syn | 5K 500K 100
Synthetic | Inter-Syn | 5K M 200
Total 10K 1.5M 150
Raw SK 10K 2

Original

Intra-Syn

Inter-Syn

Fig. 4: Samples of Inter-Synthesis and Intra-Synthesis

(George W. Bush and Colin Powell), which have the largest
number of images in LFW, and the synthetic images derived
from the two subjects for analysis. To analyse the effects of
each single facial component, we only replace Bush’s one
particular patch with the one from himself (Intra-Synthesis)
or Powell (Inter-Synthesis) as shown in Fig. 4. For each case,
100 images are synthesised. Therefore, there are 8 groups
of images: 2 groups of original images (Bush and Powell),
3 Intra-Synthesis (one of three components is replaced by
images of Bush) and 3 Inter-Synthesis (by images of Powell).
These images are fed into one CNN-L to extract features,
which are then projected to a PCA space. The first 2 PCA
components of each feature are shown in Fig. 5.

Fig. 5(a)-(c) show the face distributions if one particu-
lar facial component is replaced. In Fig. 5(a), 3 identities,
‘GeorgeWBush+intra-Eyes’, ‘ColinPowell’ and ‘inter-Eyes’
are well separated. It means that the identity information is
kept if Bush’s eyes are replaced by those from himself. In
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‘intra-X’ and

‘inter-X’ denote the synthetic images with component X replaced by another example from Bush himself and from Powell

respectively,

as in Fig. 4. Features of (a)-(d) are extracted using a CNN trained using original and synthetic data, while (e)

using original data only. One colour represents one (real or synthetic) subject.

contrast, a new identity space is generated by the synthetic
images that replace Bush’s eyes with Powell’s. The same
conclusion can be drawn from nose in Fig. 5(b). In Fig. 5(c),
however, ‘intra-Mouth’ and ‘inter-Mouth’ are not well sepa-
rated. It means that the mouth component only is not very
discriminative between people. Fig. 5(d) and (e) contrast the
results when training with original and synthetic (Fig. 5(d))
versus original data only (Fig. 5(e)). Fig. 5(d) is relatively
more discriminative for identity, particularly the synthetic
identities. Thus we can see that training with synthetic data is
important to interpolate the identity space, and thus achieve
good results for unseen identities — as required to obtain good
performance at testing time.

d) Impact of synthetic data: Table III analyzes the im-
portance of using the synthetic data. First, CNN-S trained
using synthetic data (‘Intra-Syn’ and ‘Inter-Syn’) outperforms

greatly that trained using raw LFW images, showing the im-
portance of data synthesis. Second, ‘Inter-Syn” works slightly
better than ‘Intra-Syn’ because ‘Inter-Syn’ can capture richer
facial variations. Third, combining ‘Inter-Syn’ and ‘Intra-Syn’
works better than either of them because both inter- and intra-
personal variations can be captured. Fourth, averaging the
features of 32 ‘Self-Syn’ (‘32-Avg’ in Table III and defined
in Section V-A ) images works consistently better than that
of one single test image (‘single’ in Table III ). Fifth, CNN-L
works consistently better than CNN-S using either raw LFW
or synthetic images because deeper architecture has stronger
generalization capacity. Last but not least, the metric learning
(JB) can further enhance the face recognition performance.
e) Impact of Image Blending: In Section III, we claim
the existence of artifacts (‘hard boundaries’) can improve
the robustness of the model. However, it is interesting to



TABLE III:

Comparison of synthetic data methods on LFW

Metric

Architecture learning Training data single (%) 32-Avg (%)
Raw 78.97 +0.78 -
CNN-S ) Intra-Syn+Raw 83.03 £0.56 | 83.93 £ 0.49
Inter-Syn+Raw 83.18 £0.74 | 84.35 £0.65
Intra-Syn+Inter-Syn+Raw 85.61 £0.71 | 86.98 & 0.57
- Raw 85.03 £ 0.98 -
JB [3] Raw 87.03 £ 0.69 -
CONNL - Intra-Syn+Inter-Syn+Raw 94.88 £0.66 | 95.13 +0.53
JB 3] Intra-Syn+Inter-Syn+Raw 9532038 | 95.77 £ 0.38
- Intra-Syn+Inter-Syn+Raw (blending) 94.27 +£0.65 | 94.46 £0.51
JB [3] Intra-Syn+Inter-Syn+Raw (blending) | 94.61 £0.35 | 95.05 £ 0.34

know whether it is useful to remove or smooth those ‘hard
boundaries’ by image blending technique. In this work, we
implemented poisson image editing [33] to smooth these
boundaries. In Fig. 6, we show some results of poisson image
editing. From Fig. 6, as expected, Poisson blending does make
the boundaries much smoother compared with our synthesis
method. In Table III, we compare the results with and
without poisson image editing. We can see that the accuracy
of our synthesis with ‘hard’ boundaries is higher than that
with Poisson blending. It results from the fact that the ‘hard’
boundaries working as noises make the network training more
robust as analysed in Section III.

Fig. 6: Visualisation of Poisson blending. Row 1-2: Input
image pairs, Row 3: Our synthesis with ‘hard boundaries’,
Row 4: Poisson blending

f) Comparison with the state-of-the-art: Table IV com-
pares our method with state-of-the-art methods. All methods
listed in Table IV except ours use hand-crafted features, and
this again indicates the hardness of training deep CNNs with
small data. In fact, the best deep learning solution [48]
recorded in official benchmark achieves 91.75%, and ours is
4% better. In addition, most of state-of-the-art solutions rely
on an extremely high dimensional feature vector because they
fundamentally employ dense sampling on the face image, in
contrast, we just use a 320-dimensional feature vector, which
is much more compact than the others.

g) Non-CNN methods using synthetic data: The previous
results show the effectiveness of synthetic data with deep

TABLE IV: Comparison with state-of-the-art methods on LFW

\ Methods | Accuracy (%) |
Fisher vector faces [41] | 93.03 &+ 1.05
HPEN [65] 95.25 + 0.36
MDML-DCPs [8] 95.58 + 0.34
The proposed 95.77 £ 0.38

learning methods. It is also interesting to investigate the use-
fulness of the synthetic big data in improving methods based
on traditional hand-crafted features. One typical hand-crafted
feature used for unconstrained face recognition problem is
high dimensional LBP (HD-LBP) [6]. To further improve
performance, it is common practice to train metric learners,
such as Joint Bayesian (JB) [5], based on the extracted HD-
LBP features [6]. We extract the HD-LBP feature using the
open source code [4]. From Table V, we see that HD-
LBP with JB trained using original LFW images works much
better that without JB (89.02% vs 84.13%), showing the
expected effectiveness of metric learning. More interestingly,
we see that training JB using both original and synthetic
images outperforms that using original images only, 91.03%
vs 89.02%. This shows that our synthetic data approach is
useful in a conventional hand-crafted feature+metric learning
pipeline, as well as in a deep feature learning context.

TABLE V: Hand-crafted features on LFW

\ Methods | Accuracy (%) |
HD-LBP 84.13+1.76
HD-LBP+JB (raw) 89.02 £ 1.11
HD-LBP+JB (raw + synthetic) | 91.03 4+ 1.06

h) The effectiveness of the synthetic images for bigger
training set: In Table III, we already show the effectiveness
of synthetic data derived from a small training set (LFW,
5K identities and 10K images). Currently, there are some
bigger training set of face images in the wild, such as CASIA
WEBFACE [60] (10K identities and 0.5M images), it is
interesting to know whether our data synthesis strategy is
useful for such bigger training data. Therefore, we conduct
the experiment using original CASIA WEBFACE images and
synthetic data derived from them. Similar to Table II, we keep
the ratio 2:1 of ‘Inter-Syn’ and ‘Intra-Syn’ synthetic images.
Our CNN-L network is used for this evaluation. From Fig 7,
we can see that the recognition rates on LFW increase with
the increase of the size of synthetic data. It means our data



synthesis strategy is still very effective even when the training
data is much bigger.
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Fig. 7: Recognition rate (%) on LFW using CASIA WEB-
FACE training data (0.5M) and synthetic data (0-3M).

3) NIR-VIS face recognition:

a) Database and protocol: The largest face database
across NIR and VIS spectrum so far is the CASIA NIR-
VIS 2.0 face database (CASIA NIR-VIS2.0) [23]. It contains
17,580 images of 725 subjects which exhibit intra-personal
variations such as pose and expression. This database includes
two views: view 1 for parameter tuning and view 2 including
10 folds for performance evaluation. During test, the gallery
and probe images are VIS and NIR images respectively, simu-
lating the scenario of face recognition in the dark environment.
The rank 1 identification rate including the mean accuracy and
standard deviation of 10 folds are reported.

b) Synthetic data generation: We synthesize training
samples using the existing images in CASIA NIR-VIS2.0.
Because the images of CASIA NIR-VIS2.0 are from two
modalities (NIR and VIS), we applied ‘cross-modality syn-
thesis’ to synthesize new images. The size of synthesized data
is detailed in Table VI

TABLE VI: Synthetic data using CASIA NIR-VIS2.0 database

IDs Images | Images/ID
Intra-Syn | 357 90K 250
Synthetic | Inter-Syn 1K 150K 150
Total 14K | 240K 170
Raw 357 8.5K 23

c¢) Illumination normalization and feature extraction:
[lumination Normalization (IN) methods are usually used to
narrow the gab between NIR and VIS images. To investigate
the impact of IN, we preprocessed images using three popu-
lar IN methods: illumination normalization based on large-
and small-scale features (LSSF) [59], DoG filtering-based
normalization (DOG) and single-scale retinex (SSR) [19].
We train CNN-S and CNN-L using illumination normalized
and non-normalized images. For simplicity, only the images
from CASIA NIR-VIS2.0 excluding synthetic ones are used.
Fig. 8 shows the face recognition rates at different training

iterations using different input images. In Fig. 8 and 9, three IN
methods outperform ‘GRAY’ which does not use IN method,
showing the effectiveness of IN. Note that LSSF achieves
the best performance due to its strong capacity of removing
illumination but keep identity information. Same as the LFW
results in Section V-B2, CNN-L works better than CNN-S.

TABLE VII: Evaluation of the impact of synthetic data

e Agi‘mmg Data Accuracy(%)

LFW

NIR-VIS2.0

Baseline Raw 17.41 £3.76
Raw+Syn - 34.13 +2.13
Synthetic - Raw 38.45 + 2.08
Data - Raw+Syn | 66.37 £ 1.45
Raw+Syn Raw+Syn | 68.97 + 1.24

accuracy(%)
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Fig. 8: Illumination normalization methods using CNN-S
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Fig. 9: Illumination normalization methods using CNN-L

The use of illumination-robust features can effectively nar-
row the gap between NIR and VIS images. The most com-
monly used hand-crafted feature is LBP. Since LSSF achieves
the best performance, we extract LBP features from LSSF-
normalized images and achieve 12.48 £ 3.1 in comparison
with 17.41 + 3.76 by CNN-L learned feature. It shows the
superior performance of CNN learned features.

d) Effects of synthetic data: To evaluate the effects
of synthetic data on a common ground, LSSF is used to
preprocess the illumination and CNN-L is applied to learn face



representations for all (raw and/or synthetic) input images. In
the practice, we find two problems with the synthetic data
generated from CASIA NIR-VIS2.0 database: (1) It cannot
capture enough facial variations because it only has 357
subjects as shown in Table VI. (2) There are much fewer
VIS images than NIR ones. To solve these two problems,
we also use the synthetic data generated from LFW images
defined in Table II. Table VII compares the results achieved
by these two sources of synthetic data. First, the accuracy
achieved by using the synthetic data generated from CASIA
NIR-VIS2.0 database is 34.13 £ 2.13, in comparison with
17.41 £+ 3.76 without synthetic data. The significant im-
provement shows the effectiveness of data synthesis. Second,
the model trained using raw and synthetic LSSF-normalized
LFW images greatly outperforms those synthetic CASIA NIR-
VIS2.0 images: 66.37 = 1.45 vs 38.45 £ 2.08, although NIR
images are completely unseen during training. The reasons
are 2-fold: (1) LFW images contains more subjects which can
capture more facial variations as analyzed above. (2) LSSF
can greatly reduce the gap between NIR and VIS, therefore,
LSSF-normalized LFW synthetic images can generalize well
to LSSF-normalized NIR images. To further improve the face
recognition performance, we trained the network using both
raw and synthetic data from both sources (LFW+CASIA NIR-
VIS). The face recognition rate is improved from 66.37+£1.45
to 68.97 4= 1.24, showing the value provided by our of bigger
synthetic dataset.

e) Comparison with the state-of-the-art: The CNN-Ls
in Table VIII are all trained using synthetic LFW data. First,
LSSF-normalized and Original LFW synthetic data achieve
very comparable performance: 68.97% vs 69.11%. However,
the fusion (averaging) of these 2 features can significantly
improve the face recognition rates. It shows the fusion can
keep the discriminative facial information but remove the
illumination effects. Second, not surprisingly, metric learning
can further improve the performance. The metric learning
method used here is LDA, which is the most widely used one
for face identification. Last, Table VIII compares the proposed
method against the state-of-the-art solutions [26], [20]. [26]
uses a designed descriptor that performs better in this dataset
compared with other general hand-crafted features, and LDA
can further improve the accuracy. Our method significantly
outperforms [26] in the case that LDA is not employed, while
it earns 4% advantage with the help of LDA. [20] tries to solve
the domain shift between two data sources (NIR and VIS) by
a cross-modal metric learning: it assumes that a pair of NIR
and VIS images shares the same sparse representation under
two jointly learned dictionaries. Our method beats [20] with a
7% margin without such an extra step of dictionary learning.

VI. CONCLUSIONS AND FUTURE WORK

Recently, convolutional neural networks have attracted a lot
of attention in the field of face recognition. However, deep
learning methods heavily depend on big training data, which
is not always available. To solve this problem in the field
of face recognition, we propose a new face synthesis method
which swaps the facial components of different face images

to generate a new face. With this technique, we achieve state-
of-the-art face recognition performance on LFW and CASIA
NIR-VIS2.0 face databases.

In the future, we will apply this technique to more ap-
plications of face analysis. For example, the proposed data
synthesis method can easily be used in training CNN-based
face detection, facial attribute recognition, etc. More generally,
the method applies to any objects which are well structured.
For example, the human body is well structured and human
images can be synthesised using this method. The synthetic
images can be used to train deep models for pose estimation,
pedestrian detection, and person re-identifiation.
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