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Robust Visual Tracking Revisited: From Correlation
Filter to Template Matching

Fanghui Liu, Chen Gong, Xiaolin Huang, Tao Zhou, Jie Yang, and Dacheng Tao

Abstract—In this paper, we propose a novel matching based
tracker by investigating the relationship between template match-
ing and the recent popular correlation filter based trackers
(CFTs). Compared to the correlation operation in CFTs, a so-
phisticated similarity metric termed “mutual buddies similarity”
(MBS) is proposed to exploit the relationship of multiple recip-
rocal nearest neighbors for target matching. By doing so, our
tracker obtains powerful discriminative ability on distinguish-
ing target and background as demonstrated by both empirical
and theoretical analyses. Besides, instead of utilizing single tem-
plate with the improper updating scheme in CFTs, we design a
novel online template updating strategy named “memory filter-
ing” (MF), which aims to select a certain amount of representative
and reliable tracking results in history to construct the current
stable and expressive template set. This scheme is beneficial for
the proposed tracker to comprehensively “understand” the target
appearance variations, “recall” some stable results. Both quali-
tative and quantitative evaluations on two benchmarks suggest
that the proposed tracking method performs favorably against
some recently developed CFTs and other competitive trackers.

Index Terms—visual tracking, template matching, mutual bud-
dies similarity, memory filtering

I. INTRODUCTION

V ISUAL tracking is the problem of continuously localizing
a pre-specified object in a video sequence. Although

much effort [1], [2], [3], [4] has been made, it still remains a
challenging task to find a lasting solution for object tracking due
to the intrinsic factors (e.g., shape deformation and rotation
in-plane or out-of-plane) and extrinsic factors (e.g., partial
occlusions and background clutter).
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Fig. 1. Illustration of the relationship between our template matching based
tracker (top panel) and CFTs (down panel). Our method considers a reciprocal
k-NN scheme for similarity computation, and thus performs robustly to drastic
appearance variations when compared to representative correlation filter based
trackers including MOSSE [5], KCF [6], and Staple [7].

Recently, correlation filter based trackers (CFTs) have made
significant achievements with high computational efficiency.
The earliest work was done by Bolme et al. [5], in which
the filter h is learned by minimizing the total squared error
between the actual output and the desired correlation output
Y =

{
yi
}n
i=1

on a set of sample patches X =
{
xi
}n
i=1

. The
target location can then be predicted by finding the maximum
of the actual correlation response map y′, that is computed as:

y′ = F−1(x̂′ � ĥ∗) ,

where F−1 is the inverse Fourier transform operation, and x̂′,
ĥ are the Fourier transform of a new patch x′ and the filter h,
respectively. The symbol ∗ means the complex conjugate, and
� denotes element-wise multiplication. In signal processing
notation, the learned filter h is also called a template, and
accordingly, the correlation operation can be regarded as a
similarity measure. As a result, such CFTs share the similar
framework with the conventional template matching based
methods, as both of them aim to find the most similar region
to the template via a computational similarity metric (i.e., the
correlation operation in CFTs or the reciprocal k-NN scheme
in this paper) as shown in Fig. 1.

Although much progress has been made in CFTs, they of-
ten do not achieve satisfactory performance in some complex
situations such as nonrigid object deformations and partial
occlusions. There are three reasons as follows. First, by the
correlation operation, all pixels within the candidate region x′

and the template h are considered to measure their similarity.
In fact, a region may contain a considerable amount of redun-
dant pixels that are irrelevant to its semantic meaning, and
these pixels should not be taken into account for the similarity
computation. Second, the learned filter, as a single and global
patch, often poorly approximates the object that undergoes non-
linear deformation and significant occlusions. Consequently, it
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easily leads to model corruption and eventual failure. Third,
most CFTs usually update their models at each frame without
considering whether the tracking result is accurate or not.

To sum up, the tracking performance of CFTs is limited
due to the direct correlation operation, and the single template
with improper updating scheme. Accordingly, we propose a
novel template matching based tracker termed TM3 (Template
Matching via Mutual buddies similarity and Memory filtering)
tracker. In TM3, the similarity based reciprocal k nearest neigh-
bor is exploited to conduct target matching, and the scheme
of memory filtering can select “representative” and “reliable”
results to learn different types of templates. By doing so, our
tracker performs robustly to undesirable appearance variations.

A. Related Work

Visual tracking has been intensively studied and numerous
trackers have been reviewed in the surveys such as [8], [9].
Existing tracking algorithms can be roughly grouped into two
categories: generative methods and discriminative methods.
Generative models aim to find the most similar region among
the sampled candidate regions to the given target. Such genera-
tive trackers are usually built on sparse representation [10], [11]
or subspace learning [12]. The rationale of sparse representation
based trackers is that the target can be represented by the atoms
in an over-complete dictionary with a sparse coefficient vector.
Subspace analysis utilizes PCA subspace [12], Riemannian
manifold on a tangent space [13], and other linear/nonlinear
subspaces to model the relationship of object appearances.

In contrast, discriminative methods formulate object tracking
as a classification problem, in which a classifier is trained to
distinguish the foreground (i.e., the target) from the background.
Structured SVM [14] and the correlation filter [6], [7] are repre-
sentative tools for designing a discriminative tracker. Structured
SVM treats object tracking as a structured output prediction
problem that admits a consistent target representation for both
learning and detection. CFTs train a filter, which encodes the
target appearance, to yield strong response to a region that is
similar to the target while suppressing responses to distractors.
Since our TM3 method is based on the template matching
mechanism, we briefly review several representative matching
based trackers as follows.

Matching based trackers can be cast into two categories: tem-
plate matching based methods and keypoint matching based
approaches. A template matching based tracker directly com-
pares the image patches sampled from the current frame with
the known template. The primitive tracking method [15] em-
ploys normalized cross-correlation (NCC) [16]. The advantage
of NCC lies in its simplicity for implementation and thus
it is used in some recent trackers such as the TLD tracker
[17]. Another representative template matching based tracker is
proposed by Shaul et al. [18], which extends the Lucas-Kanade
Tracking algorithm, and combines template matching with pixel
based object/background segregation to build a unified Bayesian
framework. Apart from template matching, keypoint matching
trackers have also gained much popularity and achieved a great
success. For example, Nebehay et al. [19] exploit keypoint
matching and optical flow to enhance the tracking performance.
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Fig. 2. Illustration of the nearest neighbors relationship of the given image
patch q. In our method, a template Q, and two candidate regions P1 and
P2 are split into a set of small image patches. Specifically, we pick up a
small patch q in Q and then investigate its nearest neighbors (i.e., small
image patches) in P1 and P2, respectively. We see that two small patches
selected as the 1st nearest neighbors of q in P1 and P2 are the same; while
its corresponding 2nd, 3rd and 4th nearest neighbors in these two regions are
very dissimilar.

Hong et al. [20] incorporate a RANSAC-based geometric
matching for long-term tracking. In [21], by establishing corre-
spondences on several deformable parts (served as key points)
in an object, a dissimilarity measure is proposed to evaluate
their geometric compatibility for the clustering of correspon-
dences, so the inlier correspondences can be separated from
outliers.

B. Our Approach and Contributions

Based on the above discussion, we develop a similarity
metric called “Mutual Buddies Similarity” (MBS) to evaluate
the similarity between two image regions1, based on the Best
Buddies Similarity (BBS) [22] that is originally designed for
general image matching problem. Herein, every image region
is split into a set of non-overlapped small image patches. As
shown in Fig. 1, we only consider the patches within the
reciprocal nearest neighbor relationship, that is, one patch p in
a candidate region P is the nearest neighbor of the other one
q in the template Q, and vice versa. Thereby, the similarity
computation relies on a subset of these “reliable” pairs, and
thus is robust to significant outliers and appearance variations.
Further, to improve the discriminative ability of this metric
for visual tracking, the scheme of multiple reciprocal nearest
neighbors is incorporated into the proposed MBS. As shown
in Fig. 2, for a certain patch q in the target template Q, only
considering the 1-reciprocal nearest neighbor of q is definitely
inadequate for a tracker to distinguish two similar candidate
regions P1 and P2. By exploiting these different 2nd, 3rd
and 4th nearest neighbors, MBS can distinguish these candi-
date regions when they are extremely similar. Moreover, such
discriminative ability inherited by MBS is also theoretically
demonstrated in our paper.

For template updating, two types of templates Tmplr and
Tmple are designed in a comprehensive updating scheme. The
template Tmplr is established by carefully selecting both “rep-
resentative” and “reliable” tracking results during a long period.
Herein, “representative” denotes that a template should well
represent the target under various appearances during the previ-
ous video frames. The terminology “reliable” implies that the

1In our paper, an image region can be a template, or a candidate region
such as a target region and a target proposal.
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selected template should be accurate and stable. To this end,
a memory filtering strategy is proposed in our TM3 tracker
to carefully pick up the representative and reliable tracking
results during past frames, so that the accurate template Tmplr
can be properly constructed. By doing so, the memory filtering
strategy is able to “recall” some stable results and “forget”
some results under abnormal situations. Different from Tmplr,
the template Tmple is frequently updated from the latest frames
to timely adapt to the target’s appearance changes within a
short period. Hence, compared to using the single template
in CFTs, the combination of Tmple and Tmplr is beneficial
for our tracker to capture the target appearance variations in
different periods.

Extensive evaluations on the Object Tracking Benchmark
(OTB) [8] (including OTB-50 and OTB-100) and Princeton
Tracking Benchmark (PTB) [23] suggest that in most cases
our method significantly improves the performance of template
matching based trackers and also performs favorably against
the state-of-the-art trackers.

II. THE PROPOSED TM3 TRACKER

Our TM3 tracker contains two main flows, i.e. Flow-r
( r denotes random sampling) and Flow-e (e is short for
EdgeBox). Each flow will undergo four steps, namely candidate
generation, fast candidate selection, similarity computation,
and template updating as shown in Fig. 3.

In Flow-r process, at the tth frame, the Nr target regions
Rt = {I(cir, s

i
r)}

Nr
i=1 are randomly sampled from a Gaussian

distribution, where I(cir, s
i
r)

2 is the ith image region with
the center coordinate cir = [cixr , c

iy
r ] and scale factor sir. To

efficiently reduce the computational complexity, a fast k-NN
selection algorithm [24] is used to form the refined candidate
regions R′t = {I(cir, s

i
r)}

N ′
r

i=1 that are composed of N ′r nearest
neighbors of the tracking result at the (t−1)th frame from Rt.
After that, MBS evaluates the similarities between these target
regions and the template Tmplr, and then outputs I(c∗r , s

∗
r)

with the highest similarity score.
In Flow-e process, at the tth frame, the EdgeBox approach

[25] is utilized to generate a set Et = {I(cje, s
j
e)}

Ne
j=1 with Ne

target proposals, where I(cje, s
j
e) (Ije for simplicity) is the

jth image region with the center coordinate cje = [cjxe , c
jy
e ]

and scale factor sje. Subsequently, most non-target proposals
are filtered out by exploiting the geometry constraint. After
that, only a small amount of N ′e potential proposals E ′t =

{I(cje, s
j
e)}

N ′
e

j=1 are evaluated by MBS to indicate how they
are similar to the template Tmple. This process generates two
tracking cues I∗e and Idiste , which will be further described
in Section III-A. Based on the three tracking cues generated
by above the two flows, the final tracking result I∗ at the
tth frame is obtained by fusing I∗r , I∗e and Idiste with details
introduced in Section III-B.

Note that in the entire tracking process, illustrated in Fig. 3,
similarity computation and template updating are critical for
our tracker to achieve satisfactory performance, so we will
detail them in Sections II-A and II-B, respectively.

2Note that the time index t is omitted and we denote I(cir, sir) as Iir for
simplicity.

A. Mutual Buddies Similarity

In this section, we detail the MBS for computing the simi-
larity between two image regions, which aims to improve the
discriminative ability of our tracker.

1) The definition of MBS: In our TM3 tracker, every image
region is split into a set of non-overlapped 3×3 image patches.
Without loss of generality, we denote a candidate region as
a set P = {pi}Ni=1, where pi is a small patch and N is the
number of such small patches. Likewise, a template (Tmplr or
Tmple) is represented by the set of Q = {qj}Mj=1 of size M .
The objective of MBS is to reasonably evaluate the similarity
between P andQ, so that a faithful and discriminative similarity
score can be assigned to the candidate region P .

To design MBS, we begin with the definition of a similarity
metric MBP between two patches {pi ∈ P,qj ∈ Q}. Assum-
ing that qj is the rth nearest neighbor of pi in the set of Q
(denoted as qj = NNr(pi,Q)), and meanwhile pi is the sth
nearest neighbor of qj in P (denoted as pi = NNs(qj ,P)),
then the similarity MBP of two patches pi and qj is:

MBP(pi,qj) = e−
rs
σ1 , if qj = NNr(pi,Q)∧pi = NNs(qj ,P) ,

(1)
where σ1 is a tuning parameter. In our experiment, we empiri-
cally set it to 0.5. Such similarity metric MBP evaluates the
closeness level between two patches by the scheme of multiple
reciprocal nearest neighbors. Therefore, MBS between P and
Q is defined as3:

MBS(P,Q) =
1

min{M,N}
·
N∑
i=1

M∑
j=1

MBP(pi,qj) , (2)

One can see that MBS is the statistical average of MBP. Specif-
ically, the similarity metric BBP used in BBS [22] is defined
as:

BBP(pi,qj)=

{
1 qj=NN1(pi,Q) ∧ pi=NN1(qj ,P);

0 otherwise.

Herein, the metric BBP can be viewed as a special case of the
proposed similarity MBP in Eq. (1) when r and s are set to 1.

As aforementioned, BBS shows less discriminative ability
than MBS for object tracking, and next we will theoretically
explain the reason. Note that the factor 1

min{M,N} defined in
Eq. (2) does not have influence on the theoretical result, so we
investigate the relationship between BBS and MBS without
any factor to verify the effectiveness of such multiple nearest
neighbor scheme. To this end, we introduce first-order statistic
(mean value) and second-order statistic (variance) of two such
metrics to analyse their respective discriminative (or “scatter”)
ability. We begin with the following statistical definition:

Definition 1. Suppose two image patches pi and qj are
randomly sampled from two given distributions Pr{P} and
Pr{Q}4 corresponding to the sets P and Q, respectively, and
EMBS(P,Q) is the expectation of the similarity score between

3In the experimental setting, the set sizes of P and Q have been set to the
same value.

4Such general definition does not rely on a specific distribution of Pr{P}
and Pr{Q}. The details of EBBS(P,Q) can be found in Eq. (4) in [22].



4

kNN fast 
selection MBS

MBSGeometry
constraint

...
...

Candidate generation Fast candidate selection Similarity computation

...

Template updating

Memory 
filtering

Final result
Target 

dictionary
Tracking 
cues

Flow‐r

Flow‐e

ݐ࣬  

ݐࣟ   ′ݐࣟ  

ݐ࣬
′  

ࣞ 

Target regions

Target proposals

Remaining regions

Remaining proposals
 ∗ܫ݁ ݐݏ݅݀ܫ݁

 ∗ݎܫ

Fig. 3. The diagram of the proposed TM3 tracker contains four main steps, namely candidate generation, fast candidate selection, similarity computation, and
template updating. Numerous potential candidate regions Rt

⋃
Et are produced in candidate generation step, and then processed by the fast candidate selection

step to form the refined R′t
⋃
E ′t. In similarity computation step, MBS is used to evaluate the similarities between these refined potential regions and the

templates Tmplr , Tmple, respectively. Such step results in three tracking cues including I∗r = argmaxMBS(R′t,Tmplr), I∗e = argmaxMBS(E ′t,Tmple)
with green box, and Idiste = argmin dist(E ′t, I∗r ) with yellow box (the definition of distance metric dist can be found in Section III-A). The final tracking
result I∗ is jointly decided by above three cues. Finally, two types of templates Tmplr and Tmple are updated via the memory filtering strategy. Above
process iterates until all the frames of a video sequence have been processed.

a pair of patches {pi,qj} computed by MBP over all possible
pairwise patches in P and Q, then we have:

EMBS(P,Q)=

∫
P

∫
Q

MBP(pi,qj)Pr{P}Pr{Q}dPdQ ,

EBBS(P,Q)=

∫
P

∫
Q

BBP(pi,qj)Pr{P}Pr{Q}dPdQ .

(3)

By this definition, the variance VMBS(P,Q) and VBBS(P,Q)
can be easily computed. Formally, we have the following three
lemmas. We begin with the simplification of EMBS(P,Q) in
Lemma 1, and next compute EMBS2(P,Q) and E2

MBS(P,Q)
to obtain VMBS(P,Q) in Lemma 2. Lastly, we seek for the
relationship between EMBS2(P,Q) and EMBS(P,Q) in Lemma
3. The proofs of these three lemmas are put into Appendix A,
B and C, respectively.

Lemma 1. Let FP (x), FQ(x) be the cumulative distribution
functions (CDFs) of Pr{P} and Pr{Q}, respectively, and
assuming that each patch is independent of the others, then the
multivariate integral in Eq. (3) can be represented by Eq. (5),
where p+ = p + d(p, q), p− = p− d(p, q), q+ = q + d(p, q),
and q− = q − d(p, q).

Lemma 2. Given EMBS(P,Q) obtained in Lemma 1, the vari-
ance VMBS(P,Q) can be computed by Eq. (6).

Lemma 3. The relationship between EMBS2(P,Q) and
EMBS(P,Q) satisfies:

EMBS2(P,Q) > EMBS(P,Q) . (4)

By introducing above three auxiliary Lemmas, we formally
present Theorem 1 as follows.

Theorem 1. The relationship between VMBS(P,Q) and
VBBS(P,Q) satisfies:

VMBS(P,Q) > VBBS(P,Q), if EMBS(P,Q) =EBBS(P,Q).
(7)

Proof. We firstly obtain VBBS(P,Q) and then prove that under
the condition of EMBS(P,Q) = EBBS(P,Q), the variance of
MBS(P,Q) is larger than that of BBS(P,Q).

Since
[
BBP(pi,qj)

]2
= BBP(pi,qj) is derived from

Eq. (II-A1), we have EBBS2(P,Q) = EBBS(P,Q)5 by Def-
inition 1. Based on this, under the condition of EMBS(P,Q) =
EBBS(P,Q), we have:

VMBS−VBBS = EMBS2 − [EMBS]2 − EBBS2 + [EBBS]2

= EMBS2 − EBBS2 (Using EMBS = EBBS)

= EMBS2 − EBBS (Using EBBS2 = EBBS)

= EMBS2 − EMBS > 0 .

(8)

Finally, we obtain VMBS(P,Q) > VBBS(P,Q) as claimed,
thereby completing the proof.

Theorem 1 theoretically demonstrates that under the
condition of EMBS(P,Q) = EBBS(P,Q), the variance of
MBS(P,Q) is larger than that of BBS(P,Q), which indicates
that MBS is able to produce more disperse similarity scores
over P and Q than BBS when they have the same mean value
of similarity scores. Therefore, MBS equipped with the scheme
of multiple reciprocal nearest neighbors is more discriminative
than BBS for distinguishing numerous candidate regions
when they are extremely similar, which can be illustrated in
Fig. 4. It can be observed that the similarity score curve of
BBS (see blue curve) within No.1∼No.57, No.58∼No.89,
and No.90∼No.100 candidate regions is almost flat, which
means that BBS cannot tell a difference on these ranges.
In contrast, the similarity scores decided by MBS (see red
curve) on all candidate regions are totally different and thus
are discriminative. By such scheme, more image patches are
involved in computing the similarity scores and they yield
different responses to candidate regions. Accordingly, MBS

5Note that we denote EBBS(P,Q) as EBBS by dropping “(P,Q)” for
simplicity in the following description.



5

EMBS(P,Q) = 1− 1
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[
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][
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]
fP (p)fQ(q)dpdq

+
1

2σ2
1

M2N2

∞∫∫
−∞

[
FP (q+)− FP (q−)

]2[
FQ(p+)− FQ(p−)

]2
fP (p)fQ(q)dpdq .

(5)

VMBS(P,Q) =
1

σ2
1

M2N2

∞∫∫
−∞

[
FP (q+)− FP (q−)

]2[
FQ(p+)− FQ(p−)

]2
fP (p)fQ(q)dpdq

− 1

σ2
1

M2N2

{ ∞∫∫
−∞

[
FP (q+)− FP (q−)

][
FQ(p+)− FQ(p−)

]
fP (p)fQ(q)dpdq

}2

.

(6)
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Fig. 4. Illustration of the superiority of MBS to BBS. We aim to decide which
of the 100 candidate regions ( from P1 to P100) in (a) mostly matches the
target template Q. The overlap rate between the decided target and groundtruth
region is particularly observed. We see that the candidate region P1 with the
highest similarity score is selected by MBS; while the inferior result P2 is
picked up by BBS. Consequently, P1 computed by the MBS achieves higher
overlap rate (71%) than P2 (52%) that is obtained by the BBS. Specifically, in
(c), after ranking these candidates according to their similarity scores measured
by MBS, we plot their rankings on the horizontal axis and the corresponding
similarity scores computed by MBS (red curve) and BBS (blue curve) on the
vertical axis.

can distinguish numerous candidate regions when they are
extremely similar, and thus the discriminative ability of our
tracker can be effectively improved.

B. Memory Filtering for Template Updating

Here we investigate the template updating scheme in our
TM3 tracker by designing two types of templates Tmplr and
Tmple. For Tmple, the tracking result in the current frame is
directly taken as the template Tmple if its similarity score is
larger than a pre-defined threshold 0.5. Note that low thresh-
old would incur in some unreliable results and thus degrade
the tracking accuracy; a large one makes the template Tmple
difficult to be frequently updated. In other words, Tmple is
frequently updated to capture the target appearance change
in a short period without error accumulation. In contrast, the
template Tmplr focuses on the tracking results in history, and
it is updated via the memory filtering strategy to “recall” some
stable results and “forget” some results under abnormal situa-
tions.

1) Formulation of memory filtering: Suppose the tracked
target in every frame is characterized by a d-dimensional fea-
ture vector, then the tracking results in the latest Ns frames
can be arranged as a data matrix X ∈ RNs×d where each
row represents a tracking result. Similar to sparse dictionary
selection [26], memory filtering aims to find a compact subset

from Ns tracking results so that they can well represent the
entire Ns results. To this end, we define a selection matrix
S ∈ RNs×Ns of which sij reflects the expressive power of the
ith tracking result xi on the jth result xj , so the norm of the
S’s ith row suggests the qualification of xi is to represent the
whole Ns results. The selection process is fulfilled by solving:

min
S

1

2
‖X−XS‖2F + δTr(S>LS)︸ ︷︷ ︸

,f(S)

+β

Ns∑
i=1

1

hi + ε
‖S‖1,2︸ ︷︷ ︸

,g(S)

,

(9)
where ε is a small positive constant to avoid being divided by
zero, and ‖S‖1,2 =

∑Ns
i=1 ‖Si,.‖2 denotes the sum of `2 norm

of all Ns rows. The second term in Eq. (9) is the smoothness
graph regularization with the weighting parameter δ. Within this
term, the similar tracking results will have a similar probability
to be selected. Herein, the Laplacian matrix is defined by L =
D−W, where D is a diagonal matrix with Dii =

∑
jWij

and W is the weight matrix defined by the reciprocal nearest
neighbors scheme, namely:

Wij= e−
rs
σ2 if xi=Nr(xj ,X) ∧ xj=Ns(xi,X) ,

where σ2 = 2 is the kernel width. The regularization parameter
β in Eq. (9) governs the trade-off between the reconstruction
error f(S) and the group sparsity g(S) with respect to the
selection matrix. Specifically, by introducing the similarity
score hi = MBS(xi,Tmplr) to Eq. (9), the selection matrix S
is weighted by the similarity scores to faithfully represent the
“reliable” degrees of the corresponding tracking results.

2) Optimization for memory filtering: The objective function
in Eq. (9) can be decomposed into a differentiable convex
function f(S) with a Lipschitz continuous gradient and a non-
smooth but convex function g(S), so the accelerated proximal
gradient (APG) [27] algorithm can be used for efficiently
solving this problem with the convergence rate of O( 1

T 2 ) (T
is the number of iterations). Therefore, we need to solve the
following optimization problem:

Z(t+1) = argmin
S

1

2
‖S− Z(t)‖2F +

1

pL
g(S) , (10)



6

Algorithm 1: Algorithm for memory filtering strategy
Input: data matrix X ∈ RNs×d with their corresponding

similarity scores {hi}Nsi=1, two related regularization
parameters: β, δ.

Output: the selected representative result xi with the largest
value in ‖Si,·‖2.

1 Set: stopping error ε.
2 Obtain the Lipschitz constant pL by Eq. (11).
3 Initialize t = 0 and l(0) = 1, S(0) = 0 and two auxiliary

matrices U
(0)
1 = U

(0)
2 = 0.

4 Repeat
5 Z(t+1) := U

(t)
1 − 1

pL
∇f(U(t)

1 ) by Eq. (12);
6 U

(t+1)
2 := S(t) and S

(t+1)
i is obtained by Eq. (13) for

i = 1, 2, · · · , Ns;
7 τ := l(t) − 1, and l(t+1) :=

1+
√

1+(l(t))2

2
;

8 U
(t+1)
1 := S(t+1) +

τ(S(t+1)−U
(t+1)
2 )

t
;

9 t := t+ 1;

10 Until ‖S
(t+1)−S(t)‖1,2
‖Si‖1,2

≤ ε;
11 Output xi with the largest value in ‖Si,·‖2.

where the auxiliary variable Z = S− 1
pL
∇f(S), and pL is the

smallest feasible Lipschitz constant, which equals to:

pL = φ(X>X + δ(L + L>)) , (11)

where φ(·) is the spectral radius of the corresponding matrix.
The gradient ∇f(S) is obtained by:

∇f(S) = −XX> + X>XS + δ(L + L>)S . (12)

Notice that the objective function in Eq. (10) is separable
regarding the rows of S, thus we decompose Eq. (9) into an
Ns of group lasso sub-problems that can be effectively solved
by a soft-thresholding operator, which is:

Si,·=Zi,·max

{
1−

β
pL(hi+C)

‖Zi,·‖2
, 0

}
, i = 1, 2, · · ·,Ns. (13)

Finally, the algorithm for the memory filtering strategy is
summarized in Algorithm 1.

3) Illustration of memory filtering for Tmplr: In our tracker,
the tracking results of the latest ten frames (Ns = 10) are pre-
served to construct the matrix X, and the ith (i = 1, 2, · · · , Ns)
tracking result Ti with the largest value ‖Si,·‖2 is added into
the target dictionary. Furthermore, to save storage space and
reduce computational cost, the “First-in and First-out” proce-
dure is employed to maintain the number of atoms ND in the
target dictionary D ∈ Rd×ND . That is, the latest representative
tracking result is added, and meanwhile the oldest tracking
result is thrown away.

Here, similar to [3], we detail how the template Tmplr
is represented by such a carefully constructed dictionary. As
shown in Fig. 5, in our method, we construct a codebook
U = D ∪ I, where I represents a set of trivial templates6.
Subsequently, we select k (k = 5 in our experiment) nearest
neighbors of the tracking result I∗ from the codebook U, to
form the dictionary B. Finally, the template Tmplr is recon-
structed by a linear combination of atoms in the dictionary
B. By doing so, the appearance model can effectively avoid
being contaminated when the tracking result I∗ is slightly

6Each trivial template is formulated as a vector with only one nonzero
element.

...

The tracking 
result 

...Target 
dictionary

 

... Trivial 
templates

The 
codebook

Fig. 5. Illustration of how the template Tmplr is represented by the target
dictionary D. The tracking results are represented by its k nearest neighbors
from the target dictionary D and a certain amount of trivial templates. Such
selected target templates render the construction of the template Tmplr .

#5 #25#14 #31#37 #69 #110#124

#162 #163#192 #270 #285#315 #322#320

Fig. 6. Examples of some selected (red boxes) and discarded (blue boxes)
historical tracking results by our memory filtering strategy. We see that the
selected results represent the general appearance of the target, so they are
reliable and should be “recalled”. The results under abnormal situations (e.g.
occlusion, incompleteness, and undesirable observed angle) are filtered out
and “forgotten” by the memory filtering strategy.

occluded. Fig. 5 demonstrates that the template Tmplr is much
more accurate than I∗ because the leaf in front of the target
is removed in the template Tmplr.

To show the effectiveness of our memory filtering strategy,
a qualitative result is shown in Fig. 6. One can see that the
memory filtering strategy selects some representative and re-
liable results (in red), which depict the target appearance in
normal conditions, so they can precisely represent the target in
general cases. Comparably, some tracking results under drastic
appearance changes, severe occlusions and dramatic illumina-
tion variations are not incorporated to the template Tmplr. This
is because these results just temporarily present the abnormal
situations of the target, i.e., far away from the target’s general
appearances. Note that these dramatic appearance variations in a
short period can be captured by the template Tmple. Therefore,
the combination of two such types of templates effectively
decreases the risk of tracking drifts, so that the appearance of
interesting target can be comprehensively understood by our
TM3 tracker.

Finally, our TM3 tracker is summarized in Algorithm 2.

III. IMPLEMENTATION DETAILS

In this section, more implementation details of our method
will be discussed.

A. Geometry Constraint

The fast candidate selection step aims at designing a fast
algorithm to throw away some definitive non-target regions to
balance between running speed and accuracy. The obtained
region I∗r at the tth frame in Flow-r process helps to remove
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numerous definitive non-target regions in Flow-e process. To
this end, we introduce a distance measure dist [28] between
the jth target proposal I(cje, s

j
e) (Ije for simplicity) at the tth

frame and I(c∗r , s
∗
r), that is:

dist([cje, s
j
e], [c

∗
r , s
∗
r ]) =

‖ c
∗x
r − cjxe

w(s∗r + sje)
,
c∗yr − cjye
h(s∗r + sje)

, τ
s∗r − sje
s∗r + sje

‖2,
(14)

where τ = 5 is a parameter determining the influence of scale
to the value of dist, and w, h are the width and height of the
final tracking result at the (t−1)th frame, respectively. A small
dist value indicates that the corresponding image region Ije
is very similar to the tracking cue I∗r with a high probability.
Following the definition of such distance, in our method the top
N ′e target proposals with the smallest dist value are retained,
so that they can be used in the following step in Flow-e
process. Therein, two tracking cues including Idiste with the
smallest dist, and the I∗e with the highest similarity score are
picked up for the fusion step.

B. Fusion of Multiple Tracking Cues

Three tracking cues I∗r , I∗e and Idiste are obtained by two
main flows as shown in Fig. 3. Here we fuse the above results
to the final tracking result based on a confidence level F . For
example, the confidence level of I∗r is defined as:
F (I∗r )=MBS(I∗r ,Tmplr) +MBS(I∗r ,Tmple)

+ VOR([c∗r , s
∗
r ], [c

dist
e , sdiste ]) + VOR([c∗r , s

∗
r ], [c

∗
e, s
∗
e]),

(15)
where the Pascal VOC Overlap Ratio (VOR) [29] measures the
overlap rate between the two bounding boxes A and B, namely
VOR(A,B) = area(A∩B)

area(A∪B) . The first two terms in Eq. (15)
reflect the appearance similarity degree and the last two terms
consider the spatial relationship of the two cues. The confidence
levels for F (I∗e ) and F (Idiste ) can be calculated in the similar
way. Finally, the tracking cue with the highest confidence level
is chosen as the final tracking result I∗.

C. Feature Descriptors

We experimented with two appearance descriptors consisting
of color feature and deep feature to represent the target regions
and the templates.
Color features: For a colored video sequence, all target regions
and the templates are normalized into 36× 36× 3 in CIE Lab
color space. In the Flow-e process, the EdgeBox approach
is executed on RGB color space to generate various target
proposals Et. In the two processes, each image region is split
into 3× 3 non-overlapped small patches, where each patch is
represented by a 27-dimensional (3× 3× 3) feature vector.
Deep features: We adopt the Fast R-CNN [30] with a pre-
trained VGG16 model on ImageNet [31] and PASCAL07 [29]
for our region-based feature extraction. In our method, the Fast
R-CNN network takes the entire image I and the potential
candidate proposals R′t ∪ E ′t as input. For each candidate pro-
posal, the region of interest (ROI) pooling layer in the network
architecture is adopted to exact a 4096-dimensional feature
vector from the feature map to represent each image region.

Algorithm 2: The proposed TM3 tracking algorithm
Input: Initial target bounding box o1 = (x1, y1, s1).
Output: Estimated object state o∗t = (x̂t, ŷt, ŝt).

1 Repeat
2 Generate candidate target regions Rt

⋃
Et ;

// Flow-r process
3 Obtain potential candidate regions R′t;
4 MBS: Find the optimal region I∗r from R′t;

// Flow-e process
5 Obtain potential candidate regions E ′t by Eq. (14);
6 MBS: Obtain I∗e and Idiste from E ′t;
7 Output o∗t and I∗ by the fusion step in Eq. (15);

// Update Tmple
8 if MBS(I∗, Tmple) > 0.5 then Tmple ← I

∗;
9 ;

// Select the representative result
10 if t mod 10 = 0 then Obtain Ti by Algorithm 1;
11 ;

// Update D and Tmplr
12 if Num(D) = ND then Obtain Tmplr by D ;
13 ;
14 else if Num(D) < ND then
15 D = D ∪Ti, Num(D) := Num(D) + 1;
16 end
17 else “First-in and First-out” procedure for D;
18 ;
19 Until End of video sequence;

D. Computational Complexity of MBS

The computation of MBS can be divided into two steps: first
to calculate the similarity matrix, and second to pick up r (or
s) reciprocal nearest neighbors of each image patch based on
the similarity matrix as demonstrated in Eq. (1).

Thanks to the reciprocal k-NN scheme, the generated simi-
larity matrix is sparse and the nonzero elements in the matrix
almost spread along its diagonal direction. As a result, the aver-
age computational complexity of the similarity matrix reduces
from O(M2d) to O(Md), where d is the feature dimension.
After that, we pick up r (or s) reciprocal nearest neighbors of
each image patch in P based on the similarity matrix. Due to
the exponential decay operator in Eq. (1), there is no sense to
consider a large r and s. Hence, we just consider the c ≤ 4
nearest neighbors of an image patch to accelerate the compu-
tation in our experiment. As described in [22], such operation
can be further reduced to O(Mc) on the average. Finally, the
overall MBS complexity is O(M2cd).

IV. EXPERIMENTS

In this section, we compare the proposed TM3 tracker with
other recent algorithms on two benchmarks including OTB
[8] and PTB [23]. Moreover, the results of ablation study and
parametric sensitivity are also provided.

A. Experimental Setup

In our experiment, the proposed TM3 tracker is tested on
both color feature (denoted as “TM3-color”) and deep feature
(denoted as TM3-deep). Our TM3-color tracker is implemented
in MATLAB on a PC with Intel i5-6500 CPU (3.20 GHz) and
8 GB memory, and runs about 5 fps (frames per second). The
proposed TM3-deep tracker is based on MatConvNet toolbox
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[32] with Intel Xeon E5-2620 CPU @2.10GHz and a NVIDIA
GTX1080 GPU, and runs almost 4 fps.
Parameter settings In our TM3-color tracker, every image
region is normalized to 36×36 pixels, and then split into a set
of non-overlapped 3×3 image patches. In this case, M = N =
362

32 = 144. In the TM3-deep tracker, each image region is
represented by a 4096-dimensional feature vector, namely M =
N = 4096. In Flow-r process, to generate target regions in
the tth frame, we draw Nr = 700 samples in translation
and scale dimension, xti = (cir, s

i
r), i = 1, 2, · · · , Nr, from a

Gaussian distribution whose mean is the previous target state
xt−1∗ and covariance is a diagonal matrix Σ = diag(σx, σy, σs)
of which diagonal elements are standard deviations of the
sampling parameter vector [σx, σy, σs] for representing the
target state. In our experiments, the sampling parameter vector
is set to [σx, σy, 0.15] where σx = min{w/4, 15} and σy =
min{h/4, 15} are fixed for all test sequences, and w, h have
been defined in Eq. (14). The number of potential proposals
R′t and E ′t are set to N ′r = N ′e = 50. In Flow-e process, we
use the same parameters in EdgeBox as described in [25]. The
trade-off parameters δ and β in Eq. (9) are fixed to 5 and 10
accordingly; The number of atoms in the target dictionary D
is decided as ND = 12.

B. Results on OTB

1) Dataset description and evaluation protocols: OTB in-
cludes two versions, i.e. OTB-2013 and OTB-2015. OTB-2013
contains 51 sequences with precise bounding-box annotations,
and 36 of them are colored sequences. In OTB-2015, there
are 77 colored video sequences among all the 100 sequences.
Specifically, considering that the proposed TM3-color tracker
is executed on CIE Lab and RGB color spaces, the TM3-
color tracker is only compared with other baseline trackers on
the colored sequences to achieve fair comparison. Differently,
our TM3-deep tracker can handle both colored and gray-level
sequences, so it is evaluated on all the sequences in the above
two benchmarks.

The quantitative analysis on OTB is demonstrated on two
evaluation plots in the one-pass evaluation (OPE) protocol: the
success plot and the precision plot. In the success plot, the
target in a frame is declared to be successfully tracked if its
current overlap rate exceeds a certain threshold. The success
plot shows the percentage of successful frames at the overlap
threshold varies from 0 to 1. In the precision plot, the tracking
result in a frame is considered successful if the center location
error (CLE) falls below a pre-defined threshold. The precision
plot shows the ratio of successful frames at the CLE threshold
ranging from 0 to 50. Based on the above two evaluation plots,
two ranking metrics are used to evaluate all compared trackers:
one is the Area Under the Curve (AUC) metric for the success
plot, and the other is the precision score at threshold of 20
pixels for the precision plot. For details about the OTB protocol,
refer to [8].

Apart from the totally 29 and 37 trackers included in OTB-
2013 and OTB-2015, respectively, we also compare our tracker
with several state-of-the-art methods, including ACFN [1], RaF
[2], TrSSI-TDT [33], DLSSVM [14], Staple [7], DST [34],

DSST [35], MEEM [36], TGPR [37], KCF [6], IMT [38],
LNLT [39], DAT [40], and CNT [41]7. Specifically, two state-
of-the-art template matching based trackers including ELK [18]
and BBT [42] are also incorporated for comparison.

2) Overall performance: Fig. 7 shows the performance of all
compared trackers on OTB-2013 and OTB-2015 datasets. On
OTB-2013, our TM3 tracker with color feature achieves 57.1%
on average overlap rate, which is higher than the 56.7% pro-
duced by a very competitive correlation filter based algorithm
Staple. On OTB-2015, it can be observed that the performance
of all trackers decreases. The proposed TM3-color tracker
and Staple still provide the best results with the AUC scores
equivalent to 54.5% and 55.4%, respectively. Specifically, on
these two benchmarks, we see that the competitive template
matching based tracker BBT obtains 50.0% and 45.2% on
average overlap rate, respectively. Comparatively, our TM3

tracker significantly improves the performance of BBT with
a noticeable margin of 7.1% and 9.3% on OTB-2013 and
OTB-2015, accordingly.

We also test our tracker with deep feature and the corre-
sponding performance of these trackers are shown in Fig. 8.
Not surprisingly, TM3-deep tracker boosts the performance of
TM3-color with color feature. It achieves 61.2% and 58.0%
success rates on the above two benchmarks, both of which
rank first among all compared trackers. On the precision plots,
the proposed TM3-deep tracker yields the precision rates of
82.3% and 79.0% on the two benchmarks, respectively.

The overall plots on the two benchmarks demonstrate that
our TM3 (with colored and deep features) tracker comes in
first or second place among the trackers with a comparable
performance evaluated by the success rate. It is able to outper-
form the trackers such as CNN based trackers, correlation filter
based algorithms, template matching based approaches, and
other representative methods. The favorable performance of
our TM3 tracker benefits from the fact that the discriminative
similarity metric, the memory filtering strategy, and the rich
feature help our TM3 tracker to accurately separate the target
from its cluttered background, and effectively capture the target
appearance variations.

3) Attribute based performance analysis: To analyze the
strength and weakness of the proposed algorithm, we provide
the attribute based performance analysis to illustrate the supe-
riority of our tracker on four key attributes in Fig. 9. All video
sequences in OTB have been manually annotated with several
challenging attributes, including Occlusion (OCC), Illumination
Variation (IV), Scale Variation (SV), Deformation (DEF), Mo-
tion Blur (MB), Fast Motion (FM), In-Plane Rotation, Out-of-
Plane Rotation (OPR), Out-of-View (OV), Background Clutter
(BC), and Low Resolution (LR). As illustrated in Fig. 9, our
TM3-deep tracker performs the best on OPR, DEF, IPR, and FM
attributes when compared to some representative trackers. The
favorable performance of our tracker on appearance variations
(e.g. OPR, IPR, and DEF) demonstrates the effectiveness of
the discriminative similarity metric and the memory filtering
strategy.

7The implementation of several algorithms i.e., TrSSI-TDT and LNLT is
not public, and hence we just report their results on OTB provided by the
authors for fair comparisons.
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(a) OTB-2013(36) (b) OTB-2015(77)

Fig. 7. Success and precision plots of our color-based tracker TM3-color and various compared trackers. (a) shows the results on OTB-2013 with 36 colored
sequences, and (b) presents the results on OTB-2015 with 77 colored sequences. For clarity, we only show the curves of top 10 trackers in (a) and (b).

(a) OTB-2013(51) (b) OTB-2015(100)

Fig. 8. Success and precision plots of our deep feature based tracker TM3-deep and various compared trackers. (a) shows the results on OTB-2013 with 51
sequences, and (b) presents the results on OTB-2015 containing 100 sequences. For clarity, we only show the curves of top 10 trackers.

Fig. 9. Attribute-based analysis of our TM3-deep tracker with four main attribute on OTB-2015(100), respectively. For clarity, we only show the top 10
trackers in the legends. The title of each plot indicates the number of videos labelled with the respective attribute.

C. Results on PTB

The PTB benchmark database contains 100 video sequences
with both RGB and depth data under highly diverse circum-
stances. These sequences are grouped into the following aspects:
target type (human, animal and rigid), target size (large and
small), movement (slow and fast), presence of occlusion, and
motion type (passive and active). Generally, the human and
animal targets including dogs and rabbits often suffer from
out-of-plane rotation and severe deformation.

In PTB evaluation system, the ground truth of only 5 video
sequences is shared for parameter tuning. Meanwhile, the author
make the ground truth of the remaining 95 video sequences
inaccessible to public for fair comparison. Hence, the compared
algorithms, conducted on these 95 sequences, are allowed to
submit their tracking results for performance comparison by
an online evaluation server. Hence, the benchmark is fair and

valuable in evaluating the effectiveness of different tracking
algorithms. Apart from 9 algorithms using RGB data included
in PTB, we also compare the proposed tracker with 12 re-
cent algorithms appeared in Section IV-B1. Tab. I shows the
average overlap ratio and ranking results of these compared
trackers on 95 sequences. The top five trackers are TM3-deep,
TM3-color, Staple, ACFN, and RaF. The results show that the
proposed TM3-deep tracker again achieves the state-of-the-art
performance over other trackers. Specifically, it is worthwhile
to mention that our method performs better than CFTs on
large appearance variations (e.g., human and animal) and fast
movement.

D. Ablation Study and Parameter Sensitivity Analysis

In this section, we firstly test the effects of several key
components to see how they contribute to improving the final
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TABLE I
RESULTS ON THE PRINCETON TRACKING BENCHMARK WITH 95 VIDEO SEQUENCES: SUCCESS RATES AND RANKINGS (IN PARENTHESES) UNDER

DIFFERENT SEQUENCE CATEGORIZATIONS. THE BEST THREE RESULTS ARE HIGHLIGHTED BY RED, BLUE, AND GREEN, RESPECTIVELY.

Method Avg. target type target size movement occlusion motion type
Rank human animal rigid large small slow fast yes no passive active

TM3-deep 2.364(1) 0.612(1) 0.672(1) 0.691(1) 0.586(1) 0.502(11) 0.724(1) 0.625(1) 0.526(2) 0.692(4) 0.701(1) 0.551(2)
TM3-color 3.818(2) 0.551(4) 0.657(2) 0.547(10) 0.535(4) 0.513(9) 0.683(2) 0.597(2) 0.511(3) 0.695(2) 0.646(3) 0.559(1)
Staple [7] 4.909(3) 0.529(5) 0.619(3) 0.553(8) 0.555(3) 0.556(4) 0.652(4) 0.514(4) 0.455(9) 0.690(5) 0.631(5) 0.524(4)
ACFN [1] 5.182(4) 0.574(2) 0.538(8) 0.599(3) 0.505(8) 0.557(3) 0.653(3) 0.504(5) 0.482(7) 0.655(7) 0.603(8) 0.535(3)
RaF [2] 5.818(5) 0.572(3) 0.542(7) 0.557(5) 0.515(7) 0.527(7) 0.582(10) 0.498(6) 0.492(5) 0.706(1) 0.604(7) 0.483(6)
DLSSVM [14] 6.455(6) 0.522(6) 0.584(4) 0.523(16) 0.563(2) 0.559(2) 0.597(6) 0.455(10) 0.458(8) 0.694(3) 0.658(2) 0.433(12)
MEEM [36] 7.455(7) 0.477(10) 0.510(10) 0.556(6) 0.523(5) 0.587(1) 0.610(5) 0.436(12) 0.433(12) 0.644(9) 0.638(4) 0.458(8)
KCF [6] 7.636(8) 0.464(11) 0.519(9) 0.594(4) 0.491(9) 0.547(5) 0.594(7) 0.494(7) 0.417(13) 0.668(6) 0.627(6) 0.480(7)
BBT [42] 9.091(9) 0.422(14) 0.553(5) 0.610(2) 0.452(13) 0.511(10) 0.583(9) 0.521(3) 0.448(10) 0.572(15) 0.575(9) 0.451(10)
DSST [35] 9.909(10) 0.512(7) 0.551(6) 0.472(19) 0.480(10) 0.516(8) 0.591(8) 0.471(8) 0.408(15) 0.651(8) 0.561(11) 0.458(9)
TGPR [37] 11.182(11) 0.484(8) 0.466(16) 0.498(18) 0.519(6) 0.530(6) 0.535(14) 0.459(9) 0.445(11) 0.611(13) 0.521(17) 0.504(5)
DST [34] 11.909(12) 0.436(12) 0.495(11) 0.554(7) 0.416(16) 0.467(12) 0.522(17) 0.413(14) 0.546(1) 0.630(12) 0.546(14) 0.415(15)
DAT [40] 12.364(13) 0.483(9) 0.484(13) 0.545(12) 0.473(12) 0.440(17) 0.543(13) 0.425(13) 0.495(4) 0.577(14) 0.521(18) 0.437(11)
CNT [41] 13.909(14) 0.424(13) 0.455(18) 0.551(9) 0.475(11) 0.459(15) 0.533(15) 0.377(17) 0.484(6) 0.563(16) 0.495(20) 0.421(13)
Struck [43] 14.909(15) 0.354(16) 0.470(14) 0.534(15) 0.450(14) 0.439(18) 0.580(11) 0.390(16) 0.304(19) 0.635(10) 0.544(15) 0.406(16)
IMT [38] 15.000(16) 0.324(17) 0.457(17) 0.545(13) 0.425(15) 0.444(16) 0.530(16) 0.445(11) 0.364(16) 0.536(18) 0.557(12) 0.418(14)
VTD [44] 15.273(17) 0.309(20) 0.488(12) 0.539(14) 0.386(18) 0.462(13) 0.573(12) 0.372(18) 0.283(20) 0.631(11) 0.549(13) 0.385(17)
RGBdet [23] 17.636(18) 0.267(22) 0.409(20) 0.547(11) 0.319(22) 0.460(14) 0.505(20) 0.357(19) 0.348(17) 0.468(20) 0.562(10) 0.342(19)
ELK [18] 17.727(19) 0.386(15) 0.434(19) 0.502(17) 0.352(20) 0.368(20) 0.514(19) 0.395(15) 0.416(14) 0.347(22) 0.528(16) 0.369(18)
CT [45] 19.727(20) 0.311(19) 0.467(15) 0.369(22) 0.390(17) 0.344(22) 0.486(21) 0.315(20) 0.233(23) 0.543(17) 0.421(21) 0.342(20)
TLD [17] 20.273(21) 0.290(21) 0.351(22) 0.444(20) 0.325(21) 0.385(19) 0.516(18) 0.297(22) 0.338(18) 0.387(21) 0.502(19) 0.305(22)
MIL [46] 20.636(22) 0.322(18) 0.372(21) 0.383(21) 0.366(19) 0.346(21) 0.455(22) 0.315(21) 0.256(21) 0.490(19) 0.404(23) 0.336(21)
SemiB [47] 22.818(23) 0.225(23) 0.330(23) 0.327(23) 0.240(23) 0.316(23) 0.382(23) 0.244(23) 0.251(22) 0.327(23) 0.419(22) 0.232(23)
OF [23] 24.000(24) 0.179(24) 0.114(24) 0.234(24) 0.201(24) 0.175(24) 0.181(24) 0.188(24) 0.159(24) 0.223(24) 0.234(24) 0.168(24)

Fig. 10. Verification of four key components in our tracker on OTB-2013(36).
“MBS via 1-NN” setting means that only the 1-reciprocal nearest neighbor is
utilized for region matching; “No MF” setting denotes that the templates Tmplr
is also frequently updated as Tmple without the memory filtering strategy;
“Edgebox” setting means that the candidate regions are only generated by
the EdgeBox approach; “Random sampling” denotes that Flow-r process is
retained and Flow-e process is removed.

performance, and then investigate the parametric sensitivity of
four parameters in the proposed tracker.

1) Key component verification: Several key components
includes the scheme of multiple reciprocal nearest neighbors,
memory filtering strategy, and the candidate generation scheme.
The influence of each component on the final tracking perfor-
mance is illustrated in Fig. 10.

Firstly, to demonstrate that our multiple reciprocal nearest
neighbors scheme is better than simply using one nearest neigh-
bor, we compute MBS by only considering the single nearest
neighbor (i.e. “MBS via 1-NN”). We see that “1-NN” setting
leads to the reduction of 4.6% on average overlap rate when
compared with the adopted “MBS” strategy. Therefore, the
utilization of multiple nearest neighbors in our tracker enhances
the discriminative ability of the existing 1-reciprocal nearest
neighbor scheme.

Secondly, to investigate how the memory filtering strategy
contributes to improving the final performance, we remove the
memory filtering manipulation from our TM3 tracker (i.e. “No

MF”) and see the performance. The average success rate of such
“No MF” setting is as low as 50.7%, with a 6.4% reduction
compared with the complete TM3 tracker. As a result, the
memory filtering strategy plays an importance role in obtaining
satisfactory tracking performance.

Lastly, to illustrate the effectiveness of two different candi-
date generation types with the multiple templates scheme, we
design two experimental settings: “Edgebox” and “Random
Sampling”. In “Random Sampling” setting, only Flow-r pro-
cess is retained, which further causes to the invalidation of
Tmple and the fusion scheme. In this case, “Random Sampling”
directly outputs I∗r as the final tracking result without any
fusion scheme, and then produces only one template Tmplr
for updating. As a consequence, the average overlap rate dra-
matically decreases from the original 57.1% to 47.2% if only
Flow-r process is used. Likewise, in the “Edgebox” setting,
Flow-e process is retained and Flow-r process is removed,
so only Tmplr is involved for template updating. Such setting
achieves 49.4% success rate and 64.3% precision rate, which
are much lower than the original result.

2) Parametric sensitivity: Here we investigate the parametric
sensitivity of the number of atoms in D, the kernel width σ1
in Eq. (1), and two regularized parameters δ and β in Eq. (9).
Fig. 11 illustrates that the proposed TM3 tracker is robust to
the variations of these parameters, so they can be easily tuned
for practical use.

V. CONCLUSION

This paper proposes a novel template matching based tracker
named TM3 to address the limitations of existing CFTs. The
proposed MBS notably improves the discriminative ability
of our tracker as revealed by both empirical and theoretical
analyses. Moreover, the memory filtering strategy is incorpo-
rated into the tracking framework to select “representative”
and “reliable” previous tracking results to construct the current
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(a) (b)

(c) (d)

Fig. 11. Tracking performance of success rate and precision versus four
varying parameters on OTB-2013(36).

trustable templates, which greatly enhances the robustness
of our tracker to appearance variations. Experimental results
on two benchmarks indicate that our TM3 tracker equipped
with the multiple reciprocal nearest neighbor scheme and the
memory filtering strategy can achieve better performance than
other state-of-the-art trackers.

APPENDIX A
THE PROOF OF LEMMA 1

This section aims to simplify the formulation of EMBS(P,Q)
defined by Definition 1 as follows8.

Due to the independence among image patches, the integral
in Eq. (3) can be decoupled as:

EMBS(P,Q) =∫
p1

· · ·
∫
pN

∫
q1

· · ·
∫
qM

MBP(pi,qj)

N∏
k=1

fP (pk)

M∏
l=1

fQ(ql)dPdQ,

(16)
where dP = dp1 · dp2 · · · dpN , and dQ = dq1 · dq2 · · · dqM .
By introducing the indictor I, it equals to 1 when qj =
NNr(pi,Q) ∧ pi = NNs(qj ,P). The similarity MBP(pi,qj)
in Eq. (1) can be reformulated as:
MBP(pi,qj) =

exp

{
− 1

σ1

N∑
k=1,k 6=i

I
[
d(pk,qj)≤d(pi,qj)

]
·
M∑

l=1,l 6=i

I
[
d(ql,pi)≤d(pi,qj)

]}
,

(17)

which shares the similar formulation of BBP(pi,qj) in [22]
(see in Eq. (7) on Page 5). And next, by defining:

Cpk =

∞∫
−∞

I[d(pk,qj) ≤ d(pi,qj)]fP (pk)dpk , (18)

and assuming d(p,q) =
√

(p− q)2 = |p−q|, we can rewrite
Eq. (18) as:

Cpk=

∞∫
−∞

I
[
pk<q−j ∨pk>q+

j

]
fP (pk)dpk=FP (q+j )−FP (q−j ) .

(19)

8Our simplification process of EMBS(P,Q) is similar to that of EBBS(P,Q).
Please refer to Section 3.1 in [22].

Similarly, Cql is:

Cql=

∞∫
−∞

I
[
d(ql,pi) ≤ d(pi,qj)

]
fQ(ql)dql=FQ(p+i )−FQ(p−i ) .

(20)
Note that Cpk and Cql only depend on pi, qj , and the under-
lying distributions fP (p) and fQ(q). Therefore, EMBS(P,Q)
can be reformulated as:

EMBS(P,Q) =

∫
pi

∫
qj

dpidqjfP (pi)fQ(qj)MBP(pi,qj) .

Using the Taylor expansion with second-order ap-
proximation exp(− 1

σx) = 1 − 1
σx + 1

2σ2x
2 and

NCpk =
∑N
k=1,k 6=i I

[
d(pk,qj)≤d(pi,qj)

]
by Eq. (19), and

MCql =
∑M
l=1,l 6=i I

[
d(ql,pi)≤d(pi,qj)

]
Eq. (20), we have:

EMBS(P,Q) =

1− 1

σ1

∫
pi

∫
qj

(MCql) · (NCpk)fP (pi)fQ(qj)dpidqj

+
1

2σ2
1

∫
pi

∫
qj

(MCql)
2 · (NCpk)2fP (pi)fQ(qj)dpidqj .

(21)
Finally, after some straightforward algebraic manipulations, the
EMBS in Eq. (5) can be easily obtained.

APPENDIX B
THE PROOF OF LEMMA 2

This section begins with the formulation of EMBS2(P,Q),
and then computes the variance VMBS(P,Q) = EMBS2(P,Q)−
E2

MBS(P,Q) by Lemma 1.

First, the similarity metric MBP2(P,Q) is obtained by
Eq. (17), namely:
MBP2(pi,qj) =

exp

{
− 2

σ1

N∑
k=1,k 6=i

I
[
d(pk,qj)≤d(pi,qj)

]
·
M∑

l=1,l 6=i

I
[
d(ql,pi)≤d(pi,qj)

]}
.

(22)

Similar to the above derivation of EMBS(P,Q) in Lemma 1,
EMBS2(P,Q) can be computed as:
EMBS2(P,Q) = 1−

2MN

σ1

∞∫∫
−∞

[
FP (q

+)−FP (q−)
][
FQ(p

+)−FQ(p−)
]
fP (p)fQ(q)dpdq+

2M2N2

σ2
1

∞∫∫
−∞

[
FP (q

+)−FP (q−)
]2[FQ(p+)−FQ(p−)]2fP (p)fQ(q)dpdq.

(23)

Next, E2
MBS(P,Q) can be obtained by Lemma 1 with its
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second-order approximation, namely:
E2

MBS(P,Q) = 1+

M2N2

σ2
1

{ ∞∫∫
−∞

[FP (q
+)−FP (q−)][FQ(p+)−FQ(p−)]fP (p)fQ(q)dpdq

}2

− 2MN

σ1

∞∫∫
−∞

[
FP (q

+)−FP (q−)
][
FQ(p

+)−FQ(p−)
]
fP (p)fQ(q)dpdq

+
M2N2

σ2
1

∞∫∫
−∞

[
FP (q

+)−FP (q−)
]2[
FQ(p

+)−FQ(p−)
]2
fP (p)fQ(q)dpdq.

(24)

As a result, Lemma 2 can be easily proved after some straight-
forward algebraic manipulations on Eq. (23) and Eq. (24).

APPENDIX C
THE PROOF OF LEMMA 3

By Lemma 1 and Eq. (24), EMBS2(P,Q) can be represented
by:
EMBS2(P,Q) = 4EMBS(P,Q)− 3+

3MN

σ1

∞∫∫
−∞

[
FP (q+)−FP (q−)

][
FQ(p+)−FQ(p−)

]
fP (p)fQ(q)dpdq .

Therefore, by Lemma 2 and Eq. (21), we have:
EMBS2(P,Q)− EMBS(P,Q) = 3EMBS(P,Q)− 3

+
3MN

σ1

∞∫∫
−∞

[
FP (q

+)−FP (q−)
][
FQ(p

+)−FQ(p−)
]
fP (p)fQ(q)dpdq

=
3M2N2

2σ2
1

∞∫∫
−∞

[
FP (q

+)−FP (q−)
]2[
FQ(p

+)−FQ(p−)
]2
fP (p)fQ(q)dpdq

> 0 ,
(25)

which completes the proof.

ACKNOWLEDGEMENTS

The authors would like to thank Cheng Peng from Shanghai
Jiao Tong University for his work on algorithm comparisons,
and also sincerely appreciate the anonymous reviewers for their
insightful comments.

REFERENCES

[1] J. Choi, H. Chang, S. Yun, T. Fischer, Y. Demiris, and J. Choi, “Attentional
correlation filter network for adaptive visual tracking,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017.

[2] L. Zhang, J. Varadarajan, P. Suganthan, N. Ahuja, and P. Moulin, “Robust
visual tracking using oblique random forests,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2017.

[3] F. Liu, C. Gong, T. Zhou, K. Fu, X. He, and J. Yang, “Visual tracking via
nonnegative multiple coding,” IEEE Trans. Multimedia, vol. 19, no. 12,
pp. 2680–2691, 2017.

[4] X. Lan, A. Ma, and P. Yuen, “Multi-cue visual tracking using robust
feature-level fusion based on joint sparse representation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014, pp. 1194–1201.

[5] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2010, pp. 2544–2550.

[6] J. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking
with kernelized correlation filters,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 583–596, 2015.

[7] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. Torr, “Staple:
Complementary learners for real-time tracking,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 1401–1409.

[8] Y. Wu, J. Lim, and M. Yang, “Object tracking benchmark,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848, 2015.

[9] A. Li, M. Lin, Y. Wu, M. Yang, and S. Yan, “NUS-PRO: A new visual
tracking challenge,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38,
no. 2, pp. 335–349, 2016.

[10] W. Zhong, H. Lu, and M. Yang, “Robust object tracking via sparse
collaborative appearance model,” IEEE Trans. on Image Process., vol. 23,
no. 5, pp. 2356–2368, 2014.

[11] X. Jia, H. Lu, and M. H. Yang, “Visual tracking via coarse and fine
structural local sparse appearance models.” IEEE Trans. Image Process.,
vol. 25, no. 10, pp. 4555–4564, 2016.

[12] D. Ross, J. Lim, R. Lin, and M. Yang, “Incremental learning for robust
visual tracking,” Int. J. Comput. Vis., vol. 77, pp. 125–141, 2008.

[13] X. Li, W. Hu, Z. Zhang, and X. Zhang, “Robust visual tracking based
on an effective appearance model,” in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2008, pp. 396–408.

[14] J. Ning, J. Yang, S. Jiang, L. Zhang, and M. Yang, “Object tracking via
dual linear structured SVM and explicit feature map,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 4266–4274.

[15] P. Sebastian and Y. Voon, “Tracking using normalized cross correlation
and color space,” in Proc. Int. Conf. Intell. and Adv. Sys., 2007, pp.
770–774.

[16] K. Briechle and U. Hanebeck, “Template matching using fast normalized
cross correlation,” in Proc. SPIE Optical Pattern Recognit. XII, 2001,
pp. 95–102.

[17] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
IEEE Trans. Patt. Anal. Mach. Intell., vol. 34, no. 7, pp. 1409–1422,
2012.

[18] S. Oron, A. B., and S. A., “Extended lucas-kanade tracking,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 142–156.

[19] G. Nebehay and R. Pflugfelder, “Consensus-based matching and tracking
of keypoints for object tracking,” in Proc. IEEE Winter Conf. Appli.
Comput. Vis. (WACV), 2014, pp. 862–869.

[20] Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and D. Tao, “Multi-
store tracker (MUSTer): a cognitive psychology inspired approach to
object tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2015, pp. 749–758.

[21] G. Nebehay and R. Pflugfelder, “Clustering of static-adaptive correspon-
dences for deformable object tracking,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2015, pp. 2784–2791.

[22] T. Dekel, S. Oron, M. Rubinstein, S. Avidan, and W. Freeman, “Best-
buddies similarity for robust template matching,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2015, pp. 2021–2029.

[23] S. Song and J. Xiao, “Tracking revisited using rgbd camera: Unified
benchmark and baselines,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
2013, pp. 233–240.

[24] T. Zhou, H. Bhaskar, F. Liu, and J. Yang, “Graph regularized and locality-
constrained coding for robust visual tracking,” IEEE Trans. Circuits Syst.
Video Technol., vol. PP, no. 99, pp. 1–1, 2016.

[25] P. Zitnick, C.and Dollár, “Edge boxes: Locating object proposals from
edges,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 391–405.

[26] A. Krause and V. Cevher, “Submodular dictionary selection for sparse
representation,” in Proc. Int. Conf. Mach. Learn. (ICML), 2010, pp.
567–574.

[27] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Opt., vol. 1, no. 3, pp. 127–239, 2013.

[28] C. Bailer, A. Pagani, and D. Stricker, “A superior tracking approach:
Building a strong tracker through fusion,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2014, pp. 170–185.

[29] M. Everingham, L. Van, C. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis., vol. 88,
no. 2, pp. 303–338, 2010.

[30] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
2015, pp. 1440–1448.

[31] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet: A
large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2009, pp. 248–255.

[32] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks
for matlab,” in Proc. ACM Int. Conf. Multimedia, 2015, pp. 689–692.

[33] W. Hu, J. Gao, J. Xing, C. Zhang, and S. Maybank, “Semi-supervised
tensor-based graph embedding learning and its application to visual
discriminant tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 1, pp. 172–188, 2017.



13

[34] J. Xiao, L. Qiao, R. Stolkin, and A. Leonardis, “Distractor-supported
single target tracking in extremely cluttered scenes,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2016, pp. 121–136.
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