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Abstract—Traditional saliency models usually adopt 

hand-crafted image features and human-designed mechanisms to 

calculate local or global contrast. In this paper, we propose a 

novel computational saliency model, i.e., deep spatial contextual 

long-term recurrent convolutional network (DSCLRCN) to predict 

where people looks in natural scenes. DSCLRCN first 

automatically learns saliency related local features on each image 

location in parallel. Then, in contrast with most other deep 

network based saliency models which infer saliency in local 

contexts, DSCLRCN can mimic the cortical lateral inhibition 

mechanisms in human visual system to incorporate global 

contexts to assess the saliency of each image location by leveraging 

the deep spatial long short-term memory (DSLSTM) model. 

Moreover, we also integrate scene context modulation in 

DSLSTM for saliency inference, leading to a novel deep spatial 

contextual LSTM (DSCLSTM) model. The whole network can be 

trained end-to-end and works efficiently when testing. 

Experimental results on two benchmark datasets show that 

DSCLRCN can achieve state-of-the-art performance on saliency 

detection. Furthermore, the proposed DSCLSTM model can 

significantly boost the saliency detection performance by 

incorporating both global spatial interconnections and scene 

context modulation, which may uncover novel inspirations for 

studies on them in computational saliency models. 

 
Index Terms—Saliency detection, eye fixation prediction, 

convolutional neural networks, long short-term memory, global 

context, scene context. 

 

I. INTRODUCTION 

HEN facing visual scenes, human visual system is 

capable of quickly focusing our eyes on some distinctive 

visual regions and ignoring plain ones. This neural mechanism 

is known as visual attention and benefits human beings a lot by 

helping us quickly and efficiently observing, thinking, and then 

making decision. There are two forms of visual attention [1]. 

One is bottom-up saliency-driven attention, which is up to the 

distinctiveness of visual elements and helps humans to rapidly 

concentrate on key points of visual scenes. The other one is the 

top-down task-driven attention, which is driven by endogenous 

factors, such as one’s prior knowledge and how people process 

their tasks, and helps people to complete the tasks efficiently. In 

this paper, we focus on the former to predict where people look 
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when free-viewing natural scenes. 

In computer science community, researchers have developed 

lots of computational models to detect visual saliency, most of 

which follow the biological evidence that salient regions 

usually stand out from their surroundings and adopt the contrast 

mechanism to evaluate saliency. Contrast measures the 

distinctiveness of each image location with respect to a local 

context or global context, which involves two steps as 

described below. First, image representations, on which 

contrast inference is operated, need to be constructed. 

Traditional methods usually utilize various hand-designed 

features to represent images, including low-level features, e.g., 

intensity, color, and orientation [2], middle-level features, e.g., 

bag of words based shape features and color name features [3], 

high-level semantic features, e.g., person detection, face 

detection, car detection [4, 5], and motion features [6]. While 

effective, these features are manually designed in terms of 

researcher’s domain knowledge on human visual attention, 

which may be insufficient to simulate the reaction of 

sophisticated human visual system when facing various natural 

scenes. Thus, novel and more abundant feature representations 

are needed as basis for contrast inference. 

Second, contrast inference is executed based on the extracted 

image representations to evaluate saliency. Most traditional 

methods adopt local contrast, i.e., assessing the difference 

between each image location and its local surroundings, to 

predict saliency. For instance, Itti et al. [2] computed the local 

center-surround differences between “center” fine scales and 

“surround” coarser scales on three feature channels. However, 

cortical lateral inhibition mechanisms in human visual system 
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Fig. 1. The influences of global context and scene context to visual 

saliency. We show 4 pairs of images here. In each pair, the left one is the 

image stimulus, and the right one is the corresponding ground truth 
saliency map. Pairs (a) and (b) show the influence of the global context, 

and pairs (c) and (d) show the influence of the scene context. 
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suggest that neighboring similar features can inhibit each other 

via specific, anatomically defined interconnections, thus 

perceived contrast of a centrally viewed test stimulus will be 

mediated by peripherally viewed flanking stimuli [7]. [8, 9] 

also presented that visual cortex neurons would compete with 

each other with the presence of multiple stimuli in the visual 

scene. All these biological evidences indicate that different 

spatial locations in visual scenes should be considered 

holistically in visual attention, instead of only considering local 

regions in local contrast inference. Thus, global context should 

also be considered in contrast inference. As shown in Figure 1, 

the most salient regions in pair (a) are the regions with the stuff 

on the table. However, when a man appears in the image in pair 

(b), the most salient region shifts to the man’s face. If only local 

contrast is considered and the inner competition in the visual 

scene is ignored, the saliency map in pair (b) will probably 

highlight the region above the table, leading to false positive 

results. Some methods have already taking global contrast into 

account by calculating the discrepancy between each image 

location and the whole image. For instance, Harel et al. [10] 

constructed a fully connected graph over all locations of the 

image and computed the equilibrium distribution as saliency 

values. Nevertheless, most previous works resort 

hand-designed operations or formulations to infer contrast, 

which may suffer from human’s unthorough understanding of 

the visual attention mechanisms. 

To deal with the previously discussed intrinsic problems 

existed in the saliency detection task, in this paper we propose a 

novel end-to-end model to detect saliency based on deep neural 

networks (DNN) as shown in Figure 2. Specifically, we first 

adopt a deep convolutional neural network (CNN) [11] to 

extract local image feature representations at each spatial 

location in parallel. By finetuning deep CNN models [12, 13] 

pretrained with Imagenet [14] large scale dataset on the 

saliency detection data, CNNs can automatically learn various 

saliency-related features hierarchically from raw image data, 

e.g., color, shape, objects, faces, local contrast, etc. In addition, 

benefitting from successive convolution and pooling operations, 

effective local feature maps can be extracted efficiently. Then 

we utilize long short-term memory (LSTM) [15] to model the 

global context. LSTM is usually used to memorize sufficient 

context information in time series data via its memory cell. 

Here we propose to adopt a deep spatial LSTM (DSLSTM) 

model on the obtained convolutional feature map, thus 

mimicking the human visual system to introduce lateral 

interconnections among different spatial locations. Supervised 

by the ground truth eye fixation data, DSLSTM can learn to 

memorize the long-term spatial interactions, i.e., global context, 

to evaluate saliency of each image pixel, instead of being 

restricted in a local context as most traditional works did. 

Moreover, scene context can also supply informative hints to 

visual saliency detection, which has not been deeply studied by 

most previous works. As one of the few works which studied 

the role of scene modulation on visual attention, Torralba et al. 

[16] analyzed the gaze distribution over a large annotated 

image database, i.e., the LableMe dataset [17], and found that 

eye movements are highly related with scene context. For 

example, pedestrians are the most salient object in only 10% of 

the outdoor scene images, being less salient than many other 

objects. Tables and chairs are among the most salient objects in 

indoor scenes. Based on these observations, they proposed a 

Bayesian framework to incorporate scene context in natural 

search tasks. We also show some intuitive examples in Figure 1. 

As we can see, being aware of the scene context can help 

human to quickly focus our eyes on some scene specific 

important objects (e.g., traffic signs in street views as shown in 

(c)) or some exceptional objects (e.g., a bed in a forest as shown 

in (d)). Thus scene context can be seen as an extra top-down 

high-level semantic factor, as a supplementary to other widely 

studied top-down object level semantics. Different from [16], 

in this paper, we try to learn the modulation effect of scene 

context on attention of free viewing. To be specific, as shown in 

Figure 2, we first use a state-of-the-art CNN model for scene 

classification [18] to extract scene features of images, then we 

embed them as contextual information [19] into the DSLSTM, 

obtaining a novel deep spatial contextual LSTM (DSCLSTM) 

model, which can simultaneously incorporate global context 

and scene context information to assess the saliency of each 

image pixel. 

The whole model can be trained end-to-end, including the 

local image feature extractor CNN, the scene feature extractor 

CNN, and the DSCLSTM. Then we yield a novel holistic 

model, i.e., a deep spatial contextual long-term recurrent 

convolutional network (DSCLRCN), to detect visual saliency. 

When testing, DSCLRCN takes each image as input and 

directly outputs its saliency map, which is quite straightforward 

but effective. 

In summary, our novelties and contributions are threefold: 

1) We propose a novel end-to-end saliency detection model, 

i.e., the DSCLRCN. Trained with saliency data, it can learn 

powerful saliency-related local feature representations first, 

then it learns to simultaneously incorporate global context and 

scene context to infer saliency. 

2) We propose a novel deep spatial contextual LSTM 

(DSCLSTM) model to effectively learn long-term spatial 

interactions and scene contextual modulation to infer image 

saliency. Experiments show that the proposed DSCLSTM can 

significantly improve saliency detection performance. This 

may uncover novel insights for future computational saliency 

models to focus on global and scene contexts. 

3) The proposed DSCLRCN model achieves state-of-the-art 

performance on two benchmark datasets and outperforms other 

14 contemporary saliency methods. Furthermore, it also works 

very efficiently. 

The rest of this paper is organized as follows. Section II 

reviews some works related to our paper. Section III articulates 

the proposed DSCLRCN model in details. Section IV reports 

the experimental results on two eye fixation benchmark 

datasets and the ablation analysis of our model. Finally, we 

draw conclusion in Section V. 

II. RELATED WORK 

Traditional methods usually assess the saliency of each 

image location with respect to either local contexts or the global 
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context. The former school of methods infer contrast, rarity, or 

distinctiveness of each image location in local contexts. As one 

of the earliest pioneer works, Itti et al. [2] proposed the 

“Difference of Gaussians” (DoG) operator to compute the 

feature difference across Gaussian pyramids of three feature 

channels, i.e., color, intensity, and orientation, as local contrasts. 

Then the final saliency map are obtained as an average of the 

contrast maps. Bruce and Tsotsos [20] computed bottom-up 

saliency as Shannon’s self-information of image features 

learned by ICA on each local image patch. Gao et al. [21] 

detected salient locations by maximizing the KL divergence 

between the feature distributions of center and surround regions 

in an image. Seo and Milanfar [22] built 

“self-resemblance“ maps which measure the center-surround 

similarity on features based on local regression kernels to 

assess the likelihood of saliency. Han et al. [23] utilized sparse 

coding model and encoded center locations with dictionaries 

trained on surrounding locations, then the local contrast can be 

calculated by combining coding sparseness and residual. Judd 

et al. [4] and Borji [5] extracted low-level and top-down 

features at each image location and trained classifiers to decide 

each location to be salient or non-salient. Liang and Hu [3] 

explored more middle-level features and combined them with 

object detector features to assess the saliency of each image 

location. 

On the contrary, some other methods resort to the global 

context, i.e., the saliency of each image pixel is evaluated by 

considering the whole image. Hou and Zhang [24] transformed 

the whole image into frequency domain first, then they 

extracted the spectral residual and transformed it back to spatial 

domain to obtain saliency map. Zhang et al. [25] utilized a 

Bayesian framework to combine bottom-up saliency with 

top-down information, then overall saliency emerged as the 

pointwise mutual information between local image features and 

the search target’s features when performing target searching 

task. Hou et al. [26] proposed the “image signature”, which was 

the sign of the Discrete Cosine Transform (DCT) of an image, 

as a binary and holistic image descriptor to detect salient image 

locations. Garcia-Diaz et al. [27] proposed to extract local 

multioriented multiresolution features in Lab color space first, 

then they performed global whitening normalization on each 

feature map, and subsequently fused them to obtain the final 

saliency map. 

Recently, benefitting from the great success DNNs achieved 

on various computer vision tasks [12, 28-30], some researchers 

also applied DNNs into saliency detection, including salient 

object detection [31-34] and eye fixation prediction [35-43], 

and have achieved superior results. Here we mainly focus on 

eye fixation models. Shen et al. [35] and Vig et al. [36] used a 

3-layer convolutional sparse coding model and hierarchical 

neuromorphic networks to learn effective image features first, 

respectively. Then they both adopted a linear SVM to classify 

each local image location to be salient or non-salient. Han et al. 

[37] first utilized a stacked denoising autoencoder (SDAE) to 

learn feature representations  on sampled image patches. Then 

another SDAE was used to learn center-surround contrast for 

saliency inference. Kümmerer et al. [38] learned a softmax 

classifier on linearly combined multi-level features of AlexNet 

[28] on each image location to predict eye fixations. Liu et al. 

[39] used a multi-resolution CNN to combine multi-scale 

contexts and do saliency classification on each image location. 

[40-45] all utilized fully convolutional networks (FCNs) [30] 

based on pretrained deep networks (i.e., VGGnet [12]) to infer 

saliency of each image location in parallel. However, all these 

previous works assessed saliency in local contexts due to their 

local features and pixel-wise classifiers [35-39] or limited 

receptive fields in FCN based models [40-45]. Although some 

works [41, 42] tried to capture global context using 

convolutional layers with very large receptive field, this idea 

only held on a few image locations around the image center 

while failed on other positions due to the intrinsic property of 

convolutional layers. 

We propose to adopt DSLSTM to construct interconnections 

among different image locations to incorporate long term 

global context. Recurrent neural networks (RNNs), including 

their improved variant LSTM, have shown their excellent 

capability to memorize long term contexts in time series data, 

e.g., speech recognition [46] and natural language processing 

[47]. Lately, RNNs have also been applied into computer vision 

tasks. Donahue et al. [48] proposed Long-term Recurrent 

Convolutional Networks (LRCN) which stacked LSTM on 

temporal dimension on CNN encoder features to deal with 

video recognition and image description tasks. Visin et al. [49] 

proposed the ReNet model in which four recurrent neural 

networks swept horizontally and vertically in both directions 

across the image to learn context features for image 

classification. Bell et al. [50] and Yan et al. [51] applied the 

ReNet model on top of CNN features to integrate context 

information for object detection and semantic segmentation, 

respectively. Based on the ReNet model, in this paper we adopt 

DSLSTM with concatenation with deep CNNs to incorporate 

global context for saliency detection. 

Moreover, Ghosh et al. [19] proposed the Contextual LSTM 

(CLSTM) model to incorporate topics as contextual 

information into LSTM for NLP tasks. While we propose to 

embed scene features as contextual information into the 

DSLSTM model, obtaining a novel DSCLSTM model, to 

simultaneously incorporate global context and scene 

modulation for saliency detection. 

III. DSCLRCN FOR SALIENCY DETECTION 

In this section, we illuminate the proposed DSCLRCN in 

details for saliency detection. Specifically, as shown in Figure 2, 

we first adopt a pretrained CNN model to extract local 

convolutional image features. At the same time, the preatrained 

Places-CNN [18] model is also used to extract a scene feature 

vector. Then local image features and the scene vector are both 

normalized and fed into the DSCLSTM, which propagates the 

global and scene contextual information to each image location. 

Finally, the saliency map can be obtained by a simple 

convolutional layer, and the NSS loss between the upsampled 

saliency map and the human eye fixation locations is used as 

supervision to train the whole network. Below we describe each 

network component in details. 
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A. Local Image Feature Extraction using CNNs 

We adopt deep CNNs pretrained on Imagenet [14] dataset to 

extract local image features using fully convolutional 

architecture [30]. The network is based on VGG 16-layer 

network [12] or the ResNet-50 network [13]. To preserve a 

relatively large size of the extracted feature map, we utilize the 

dialated convolution [52] strategy, which supports exponential 

expansion of the receptive field without loss of resolution or 

coverage. 

VGG 16-layer network consists of 13 convolutional layers 

with 3�3 convolutional kernels and 3 fully connected layers. 

To maintain the spatial information, we only utilize the 

convolutional layers, which are composed of five convolutional 

blocks and each of them is followed by a max-pooling layer 

with downsampling stride 2. We keep the layers before the 

forth convolutional block (conv4) as the same with the original 

VGG network. After that we discard pool4 and pool5 layers and 

adopt dilation sizes [52] of 2 in conv5 layers to preserve the 

resolution and receptive field sizes. To enlarge the receptive 

filed size of the neurons in the final feature map, we add 

another two convolutional blocks each of which consists of two 

convolutional layers with 512 3�3 convolutional kernels, 

dilation sizes of 4, and ReLU [53] activation function. Since the 

activation values after ReLU activation in the last layer are 

usually very large, which will make the hidden neurons in 

subsequent LSTM layers easily saturate and hard to train, we 

use the 2 -normL  layer [54] to normalize the whole feature map 

to have standard 2 -normL  first and then learn to re-scale it to 

an appropriate magnitude for the subsequent LSTM layers. The 

overall network structure is shown in Table I. 

The ResNet-50 network consists of 49 convolutional layers 

and 1 fully connected layer. Once again, we only use the 

convolutional layers to extract local image features, which 

consist of 5 blocks of convolutional layers. The first block is 

just one convolutional layer with stride 2, followed by a 

max-pooling layer with stride 2, either. As for other 4 blocks, 

each of them is composed of several residual learning blocks 

[13] and all the last 3 blocks have strides 2. Similarly, we keep 

the layers before the conv3 block and revise the conv4 and 

conv5 blocks to have strides 1 and dilation sizes of 2 and 4, 

respectively. Because the feature map in the last layer has 

relatively large channel numbers (2048), we utilize a 

convolutional layer with ReLU activation function to reduce 

the dimension to a relatively small one (we set it to 512 in this 

work) for easy learning of subsequent LSTM layers. Unlike the 

ResNet layers, we do not use batch normalization [55] in this 

layer. Finally, we again use the 
2 -normL  layer to normalize the 

feature map and rescale it. The overall network structure is 

shown in Table II. 

We also consider multilayer features for the ResNet50 model 

to incorporate multiscale contexts. Specifically, we use both of 

the conv4 feature and conv5 feature. First, we use two 

convolutional layers with 512 1�1 convolutional kernels and 

ReLU activation function on top of conv4 and conv5 feature 

maps to reduce their feature channels. Subsequently, two 

2 -normL  layers with same scale parameters are used to make 

the two feature maps compatible. At last, they are concatenated 

and another channel-reduction convolutional layer is adopted to 

obtain the final feature map with 512 channels. 

Both of the two networks have strides of 8. Thus when we 

feed an image with size P Q×  into the feature extractor CNNs, 

we can yield a convolutional feature map of size 512
8 8

P Q× × , 

which will be inferred as the local feature map below. 

As for the scene feature extractor CNN, we first simply 

resize each image to size 227 227×  and adopt the 

 
Fig. 2. The network architecture of the proposed DSCLRCN. First, local feature map and scene feature are extracted using pretrained CNNs. Then, a 

DSCLSTM model is adopted to simultaneously incorporate global context and scene context. Finally, saliency map is generated and upsampled. 
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convolutional layers of Places-CNN [18] model to extract 

convolutional features. Then we add one fully connected layer 

with 128 neurons and ReLU activation function on top of the 

pool5 feature. Finally we use another 
2 -normL  layer to 

normalize the feature of the fully connected layer and rescale it. 

Thus we obtain the scene feature, which will be inputted into 

the subsequent DSCLSTM model with the local feature map. 

B. DSCLSTM for Context Incorporation 

In this section we introduce the proposed DSCLSTM model 

which can simultaneously incorporate global context 

information and scene context modulation. We first briefly 

review the LSTM model, then we elaborate the DSLSTM 

model and how to embed scene context into it. 

1) Reviewing LSTM 

LSTM is a variant of RNNs and was proposed by Hochreiter 

and Schmidhuber [15] to solve the vanishing gradient problem 

by introducing a memory cell to keep states over long-term time 

series data. At each time step t, a LSTM unit has a memory cell 
N

t R∈c  and the hidden state N

t R∈h , where N is the number 

of hidden units. Given the input M

t
R∈x  with input dimension 

M, the previous memory cell 
-1tc , and the previous hidden state 

-1th , LSTM unit updates its memory cell and hidden state via 

four gates, namely, input gate N

t R∈i , forget gate N

t R∈f , 

output gate N

t
R∈o , and input modulation gate N

t
R∈g . The 

transition equations are given by: 

 
1( ),t xi t hi t iσ −= + +W Wi x h b   (1) 

 
1

( ),
t xf t hf t f

σ −= + +W Wf x h b   (2) 

 
1( ),t xo t ho t oσ −= + +W Wo x h b   (3) 

 
1( ),t xc t hc t cφ −= + +W Wg x h b   (4) 

 
1 ,t t t t t−= +⊙ ⊙c f c i g   (5) 

 ( ),t t tφ= ⊙h ο c   (6) 

where σ  and φ  are element-wise sigmoid and hyperbolic 

tangent function, respectively. ⊙  represents element-wise 

multiplication. 
*W  and 

*
b  are learnable weights and biases, 

which can be trained by backpropagation through time (BPTT) 

algorithm [56]. Finally, we can represent the whole process as: 

 
1 1( , ) ( , , ).t t t t tLSTM − −=h c x h c   (7) 

As we can see, the forget gate 
tf  determines the amount of 

the previous memory cell 
1t −c  to be kept by 

tc . 
tg  can be seen 

as a preactivation of 
tc  which is contributed by current input 

signal, while the input gate 
ti  controls how much information 

of tg  are permitted to input into tc  and update it. While being 

modulated by both 
tf  and 

ti , the memory cell 
tc  learns to 

selectively forget or memorize previous memory and current 

signal and propagate them to the next time step, thus being 

capable of incorporating long-term and complex contextual 

dependencies. Finally, the output gate to  controls the 

information flow from current memory 
tc  to the hidden state 

th . 

One of the most important variants of LSTM is the 

Bidirectional LSTM (BLSTM) [57]. BLSTM consists of two 

parallel LSTMs to separately scan the input data sequentially 

and reversely. Then the hidden states of the two LSTMs are 

concatenated or added as the one of the BLSTM, which 

captures both past and future information. 

2) DSLSTM for Global Context Incorporation 

Now we introduce the spatial LSTM (SLSTM) based on the 

ReNet model [49] for incorporating global context into saliency 

detection. SLSTM takes the local feature map extracted 

previously as the input, then it runs four LSTMs operating in 

TABLE I 
ARCHITECTURE OF THE VGG BASED LOCAL FEATURE EXTRACTOR. CONVOLUTIONAL SETTINGS ARE GIVEN BY [CHANNEL,KERNEL_STRIDE_DILATION]� 

LAYERS. THE POOLING SETTINGS ARE GIVEN BY [KERNEL_STRIDE]. 

Name conv1 pool1 conv2 pool2 conv3 pool3 conv4 conv5 conv6 conv7 norm 
            

Setting 
[64,3_1_1] 

�2 
[2_2] 

[128,3_1_1] 
�2 

[2_2] 
[256,3_1_1] 

�3 
[2_2] 

[512,3_1_1] 
�3 

[512,3_1_2] 
�3 

[512,3_1_4] 
�2 

[512,3_1_4] 
�2 

2 -normL  

scale:400 

 
TABLE II 

ARCHITECTURE OF THE RESNET50 BASED LOCAL FEATURE EXTRACTOR. CONVOLUTIONAL SETTINGS ARE GIVEN BY 

[CHANNEL,KERNEL_STRIDE_DILATION]� LAYERS. THE POOLING SETTINGS ARE GIVEN BY [KERNEL_STRIDE]. BATCH NORMALIZATION [54] IS USED IN 

RESNET LAYERS (CONV1 TO CONV5). 

Name conv1 pool1 conv2 conv3 conv4 conv5 conv6 norm 
         

Setting [ ]64,7 _ 2 _1 1×  [3_2] 

64,1_1_1

64,3 _1_1 3

256,1_1_1

 
 × 
  

  

128,1_ 2 _1

128,3 _1_1

512,1_1_1

128,1_1_1

128,3 _1_1 3

512,1_1_1

 
 
 
  

+

 
 × 
  

 

256,1_1_1

256,3_1_ 2 6

1024,1_1_1

 
 × 
  

 

512,1_1_1

512,3 _1_ 2 3

2048,1_1_1

 
 × 
  

 [ ]512,1_1_1 1×  2 -normL  

scale:400 
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different directions over the feature map, i.e., two BLSTMs 

scanning horizontally and vertically, to blend the context 

information. Specifically, as shown in the orange box in Figure 

2, it first treats each pixel in each row of the feature map as a 

time step and runs two LSTMs in parallel to scan it left-to-right 

and right-to-left, thus obtaining two feature maps which consist 

of the hidden states of the LSTMs at each spatial location. Let 

us represent the input local feature map as X , thus at each 

location ( )p,q we have ,

M

p q R∈x , where 512M = , 

1, ,
8

P
p = ⋯ , and 1, ,

8

Q
q = ⋯  as mentioned in Section A. Then 

the updating of the cell memory 
,p q

c  and the hidden state 
,p q

h  

at location ( )p,q  can be represented by: 

 
, , , , 1 , 1

, , , , 1 , 1

( , ) ( , , ),

( , ) ( , , ),

p q p q p q p q p q

p q p q p q p q p q

LSTM

LSTM

→ → → → →
− −

← ← ← ← ←
+ +

=

=

h c x h c

h c x h c
  (8) 

where the signs →  and ←  represents the left-to-right and 

right-to-left scanning, respectively. 

Next the SLSTM concatenates the two feature maps →
H  

and ←
H  along the channel dimension, obtaining the fused 

feature map ↔
H , which incorporates the context information 

from both left and right at each location. 

Then, the SLSTM uses another two LSTMs to scan ↔H  

from top to bottom and bottom to top, which can be represented 

by: 

 
, , , 1, 1,

, , , 1, 1,

( , ) ( , , ),

( , ) ( , , ).

p q p q p q p q p q

p q p q p q p q p q

LSTM

LSTM

↓ ↓ ↓ ↔ ↓ ↓
− −

↑ ↑ ↑ ↔ ↑ ↑
+ +

=

=

h c h h c

h c h h c
  (9) 

The signs ↓  and ↑  represent the top-to-bottom and 

bottom-to-top scanning, respectively. 

At last, SLSTM concatenates 
↓

H  and 
↑

H , obtaining H
վ

. 

By progressively scanning the local feature map horizontally 

and vertically in four directions, the information at each 

location can be propagated to any other locations and each 

location in H
վ

 contains contextual interactions from all other 

locations, thus long-term global contextual dependencies are 

incorporated in a very efficient way. 

We stack two SLSTMs successively, leading to DSLSTM. 

The increased depth is supposed to increase the capability to 

learn longer-range and more complex contextual dependencies 

between different locations. Experiments also show that deep 

SLSTMs are more effective to blend contextual information in 

the whole image in section IV. 

3) Scene Context Modulation: DSCLSTM 

Inspired by the CLSTM model in [19] and the fact that the 

scene modulation effects in visual attention, we propose to 

embed the scene feature into the DSLSTM to integrate scene 

contexts in our saliency model. Specifically, [19] inputted a 

topic vector  into the traditional LSTM unit at each time step as 

a static input, i.e., added linear projections of the topic vector to 

the formulations of the four gates (Equations (1) to (4)). While 

we find that adding a static input into each time step can easily 

lead to poor local minimum when training the network, thus we 

just add the scene feature s  in the first time step, where we 

have: 

 
1 1 0( ),xi hi si iσ= + + +W W Wi x h s b   (10) 

 
1 1 0( ),xf hf sf fσ= + + +W W Wf x h s b   (11) 

 
1 1 0( ),xo ho so oσ= + + +W W Wo x h s b   (12) 

 1 1 0( ).xc hc sc cσ= + + +W W Wg x h s b   (13) 

We adjust the four types of LSTM in the DSLSTM, i.e., 

LSTM →
, LSTM ←

, LSTM ↓ , and LSTM ↑ accordingly to 

incorporate the scene contexts from their first time steps. 

However, benefitting from the memory cells, the scene 

contextual information can still be propagated to other time 

steps, i.e., the whole feature map, leading to the novel 

DSCLSTM model. 

The output feature map of DSCLSTM has 2N channels and 

the same spatial size as the local feature map. However, the 

feature at each location has simultaneously integrated the 

global context and scene modulation. Now, the features are 

ready for saliency assessment. 

C. Saliency Assessment 

We simply adopt a convolutional layer with 1 1�1 kernel 

and the Softmax activation function to generate the saliency 

map. The Softmax activation function is used to normalize the 

whole map, thus introducing lateral competition for saliency 

assessment. Because the saliency map is generated by a stride 

of 8, subsequently we use a deconvolutional layer with bilinear 

interpolation kernels [30] to upsample the saliency map with a 

stride of 8. Thus, we can obtain a saliency map with the same 

size as the input image. 

When training, we use the negative Normalized Scanpath 

Saliency (NSS) [58] of the saliency map with reference to the 

corresponding ground truth human eye fixations as the 

objective function to train the network. NSS is chosen for the 

recommendation of [59] and will be elaborated later. The whole 

DSCLRCN model can be trained end-to-end using back 

propagation algorithm [60]. 

When testing, we just feed each testing image into 

DSCLRCN and can directly yield the saliency map, being 

straightforward but effective. 

IV. EXPERIMENTS 

In this section, we report experimental results to evaluate the 

effectiveness of DSCLRCN in the saliency detection task. We 

first introduce the eye fixation benchmark datasets and 

evaluation metrics we used in this work. Then we do model 

ablation analysis to evaluate the contribution of each model 

component. Finally we compare DSCLRCN with other 

state-of-the-art methods both quantitatively and qualitatively to 

show the effectiveness of our proposed model. 

A. Datasets 

We evaluated DSCLRCN on two benchmark datasets. The 

first one is SALICON [61], i.e., Saliency in Context dataset, 

which contains 10,000 training images, 5,000 validation 

images, and 5,000 testing images. The images are all of size 



 7

480 640×  and selected from the MS COCO [62] dataset with 

rich contextual information. The ground truth of eye fixations 

are collected by a proposed mouse-contingent 

multi-resolutional paradigm and have been shown to be highly 

similar with eye tracking data. Benefitting from the novel 

paradigm, this dataset, as the largest eye fixation dataset so far, 

can be created much efficiently and easily. The ground truth of 

eye fixations of the testing set are held-out and researchers are 

supposed to submit their results to the SALICON challenge 

website1 or the LSUN Saliency Challenge website2 to evaluate 

their methods. 

The second dataset for evaluation is MIT300 [63]. It 

contains 300 images with natural outdoor or indoor scenes, and 

has become one of the widely used benchmark datasets in 

recent years. The ground truth of eye fixation data are held-out 

and researchers can submit their models to the MIT Saliency 

Benchmark website 3  to evaluate their models. As the 

organizers suggested, the MIT1003 [4] dataset can be used as 

the training and validation sets for MIT300 since they are 

collected with similar eye-tracking setup. This dataset contains 

779 landscape images and 228 portrait images collected from 

Flickr and LabelMe, and the eye fixation data are collected 

while being viewed by 15 human subjects. 

B. Evaluation Metrics 

There exist various evaluation metrics for eye fixation 

prediction, including Earth Mover’s Distance (EMD), 

Normalized Scanpath Saliency (NSS), Pearson’s Correlation 

Coefficient (CC), Similarity (SIM), Area Under Curve (AUC), 

shuffled-AUC (sAUC), Kullback-Leibler divergence (KL), 

Information Gain (IG), etc. Bylinskii et al. [59] showed that 

among these metrics, KL, IG, and SIM are most sensitive to 

false negatives, AUC metrics ignore low-valued false positives, 

EMD’s penalty depends on spatial distance, while NSS and CC 

are equally affected by false positives and negatives. Thus 

based on their recommendation, we report CC and NSS here. 

Moreover, AUC and shuffled-AUC are also reported for 

comparison with existed models for historical reasons. 

The Area Under the ROC Curve (AUC) metric is widely 

used to evaluate saliency models. For an image with its binary 

ground truth eye fixation map GF, AUC evaluates the 

classification performance of the computed saliency map S, 

where fixation points and non-fixation points in GF are 

considered as the positive set and negative set, respectively. 

Specifically, S is normalized to [0, 1] first. Then it is binarily 

classified into salient regions and non-salient regions by a 

threshold. By varying the threshold from 0 to 1, ROC curves 

can be obtained by plotting true positive rate vs. false positive 

rate. Finally, the area under the ROC curve is calculated as the 

AUC score. To alleviate the influence of center-bias, [25, 64] 

introduced sAUC, which adopts the fixation points of other 

images in the dataset as the negative set. Although widely used, 

AUC metrics are ambivalent to monotonic transformations and 

 
1 https://competitions.codalab.org/competitions/3791 
2 http://lsun.cs.princeton.edu/2016/ 
3 http://saliency.mit.edu/ 

ignore low-valued false positives, which may be unfavorable 

behavior for eye fixation prediction [59]. 

NSS is introduced in [58], which computes the average of the 

normalized saliency values at eye fixation locations. As 

analyzed in [59], it is sensitive to false positives, relative 

differences in saliency across the image, and monotonic 

transformations. Given a saliency map S and the corresponding 

eye fixation map GF, NSS is calculated as: 
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  (14) 

CC considers the saliency map S and the corresponding 

ground truth saliency map GS, which is obtained by Gaussian 

blurring GF , as random variables and computes their Pearson’s 

Correlation Coefficient: 
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C. Implementation Details 

1) Data Processing 

For the SALICON benchmark dataset, we directly used the 

SALICON training and validation datasets to train and validate 

DSCLRCN, respectively. For the MIT300 benchmark dataset, 

we used 903 images from MIT1003 dataset to finetune the 

model trained on SALICON. Another 100 images were used 

for validation. Since MIT1003 contains relatively less images, 

we augmented the training set twice by using horizontal 

flipping. For simplicity, we directly resized all images to size 

480 640× and 227 227×  for the local feature extractor CNN 

and the scene feature extractor CNN, respectively. 

When testing, we also resized testing images to size 

480 640×  and 227 227×  and feedforward them through the 

network to obtain saliency maps. Then we resized them to the 

same sizes with the input images. Finally, we used small 

Gaussian filters to blur the saliency maps. Via validation 

experiments, for each image we set the standard deviation of 

Gaussian filters to be 0.035min( , )P Qσ =  , and set the size of 

the Gaussian filters to be 4σ . 

2) Network Settings 

We used stochastic gradient descent (SGD) with momentum 

to train the whole network. The batchsize was set to 20. For the 

SALICON dataset, the learning rates of the pretrained layers 

and other layers were set to 0.001 and 0.01, respectively. We 

also scaled down the learning rates by a factor of 2.5 every 500 

iteration steps. The overall iteration step was set to 5,000, and 

we validated the trained models every 500 steps to select a best 

model for testing. While using MIT1003 data to finetune the 

model trained on SALICON, we set the learning rates for all 

layers to 0.001 and scaled them down every 100 iteration steps. 

The overall iteration step and the validation step were set to 

1000 and 100, respectively. We also used momentum of 0.9 and 

a weight decay of 0.0005. 
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When using the ResNet50 model, to facilitate training, we 

fixed the scale and bias parameters of the BN layers, i.e., we 

directly used the global statistics of the original ResNet50 

parameters. The initial scales of the 
2 -normL  layers for the 

local feature map and the scene feature were set to 400 and 9, 

respectively. The biases of the LSTM forget gates were 

initialized to 1 to help to keep long-term memories. The 

parameters in each BLSTM, i.e., LSTM →
 and LSTM ←

, 

LSTM ↓  and LSTM ↑ , were shared by considering the 

symmetry of images. 

We implemented DSCLRCN using caffe [65] library. The 

testing code was implemented using Matlab. A GTX Titan X 

GPU was used both in training and testing for acceleration. The 

running time for testing an image is 0.27s. The code will be 

publicly available on the author’s homepage4. 

D. Model Ablation Analysis 

In this section we do ablation analysis on the SALICON 

validation dataset to evaluate the contribution of each model 

component. The results are shown in Table III. 

1) Influence of the Receptive Field size 

The size of Receptive field (RF) determines how large the 

area is which is involved in the activation of a neuron in a CNN 

layer. We show the evaluation results of using conv5, conv6, 

and conv7 features of the VGG based feature extractor (shown 

in Table I) to directly detect saliency in the FCN architecture 

without DSCLSTM, which are represented by FCN5, FCN6, 

and FCN7 in Table III, respectively. The RF sizes of 

corresponding feature maps are also given. We can see that, 

while the RF sizes are enlarged, the saliency detection 

performance can be boosted by incorporating more context 

information. Especially, the performance gains significantly 

from FCN5 to FCN6, which may be attributed to FCN5’s 

relatively too small RF size with respect to the image size 

 
4 https://sites.google.com/site/liunian228/ 

(196�196 vs. 480�640). This indicates that saliency detection 

heavily relies on large contexts. 

2) Effectiveness of Global Context Incorporation 

We directly added SLSTM layers on top of the FCN7 

network to evaluate the effectiveness of incorporating the 

global context. As shown in Table III, adding a SLSTM layer 

can improve the performance much, while 2 SLSTM layers 

(DSLSTM) bring more improvement, demonstrating that 

integrating global context can significantly benefit saliency 

detection performance. While we didn’t observed more 

meaningful improvements by continuing to deepen SLSTM 

layers. 

3) Effectiveness of Scene Modulation 

We added scene modulation to the FCN7_DSLSTM model 

to evaluate its effectiveness. By comparing the performance of 

FCN7_DSLSTM and FCN7_DSCLSTM in Table III, we can 

see that incorporating scene context can also improve the 

saliency detection performance much. This indicates that scene 

context can also supply much informative information to 

saliency detection, which deserves more attention and research 

in the future. 

TABLE III 
MODEL ABLATION ANALYSIS ON THE SALICON VALIDATION DATASET. 

THE BEST SCORE OF EACH METRIC IS SHOWN IN BOLD FACE. 

Settings sAUC AUC NSS CC 
     

influence of the RF sizes 

FCN5 (RF: 196) 0.789 0.869 2.960 0.756 

FCN6 (RF: 340) 0.792 0.877 3.075 0.793 

FCN7 (RF: 468) 0.790 0.878 3.087 0.795 

effectiveness of global context incorporation 

FCN7_SLSTM 0.79 0.882 3.143 0.811 

FCN7_DSLSTM 0.786 0.883 3.160 0.816 

effectiveness of scene modulation 

FCN7_DSCLSTM 0.786 0.884 3.171 0.822 

results with ResNet50 model 

ResNet50_DSCLSTM 0.791 0.886 3.216 0.831 

ResNet50_ML_DSCLSTM 0.788 0.887 3.221 0.835 

 

TABLE IV 

COMPARISON RESULTS ON THE SALICON TEST DATASET. THE BEST 

SCORE OF EACH METRIC IS SHOWN IN BOLD FACE. 

Models sAUC AUC NSS CC 
     

Shallow Convnet [43] 0.658 0.821 1.663 0.562 

Deep Convnet [43] 0.724 0.858 1.859 0.622 

DeepGaze II [38] 0.787 0.867 1.271 0.479 

ML-Net [45] 0.768 0.866 2.789 0.743 

SU [42] 0.760 0.880 2.610 0.780 

DSCLRCN 0.776 0.884 3.157 0.831 

 
TABLE V 

COMPARISON RESULTS ON THE MIT300 DATASET. WE USE THE 

AUC-JUDD IMPLEMENTATION AS THE AUC METRIC. THE BEST SCORE OF 

EACH METRIC IS SHOWN IN BOLD FACE. 

Models sAUC AUC-Judd NSS CC 
     

GBVS [10] 0.63 0.81 1.24 0.48 

Judd [4] 0.60 0.81 1.18 0.47 

AWS [27] 0.68 0.74 1.01 0.37 

BMS [66] 0.65 0.83 1.41 0.55 

eDN [36] 0.62 0.82 1.14 0.45 

Mr-CNN [39] 0.69 0.79 1.37 0.48 

SALICON [40] 0.74 0.87 2.12 0.74 

DeepFix [41] 0.71 0.87 2.26 0.78 

Shallow Convnet [43] 0.63 0.80 1.47 0.56 

Deep Convnet [43] 0.69 0.83 1.51 0.58 

DeepGaze II [38] 0.76 0.87 1.29 0.51 

PDP [44] 0.73 0.85 2.05 0.70 

ML-Net [45] 0.70 0.85 2.05 0.67 

DSCLRCN 0.72 0.87 2.35 0.80 
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4) Boosting the Performance using Deeper and Multiscale 

Features 

We show the performance using the ResNet50 based feature 

extractor network. From Table III, we can see that, using the 

more powerful ResNet50 feature can further improve saliency 

detection performance, which is consistent with other 

observations on other computer vision tasks. We also show the 

results of using multilayer features of the ResNet50 network 

(shown as ResNet50_ML_DSCLSTM in Table III). We can see 

that, with similar conclusions in [31, 40, 41, 45], integrating 

multiscale features can also further improve saliency detection 

performance. 

We also tried to use multilayer features in the 

FCN7_DSCLSTM model but obtained worse results. This may 

be attributed to that in the FCN7 based model, the layers FCN6 

and FCN7 were trained from the scratch, thus adding multilayer 

connections may degrade the network training. 

 
Fig. 3. Qualitative comparison results on the MIT1003 validation set. The second column shows ground truth saliency maps (GT). 
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E. Comparison with state-of-the-arts 

In this section, we compared the proposed DSCLRCN model 

on the SALICON test dataset and the MIT300 dataset with 

other 14 state-of-the-art saliency detection models, including 

GBVS [10], Judd [4], AWS [27], BMS [66], eDN [36], 

Mr-CNN [39], SALICON [40], DeepFix [41], Shallow 

Convnet [43], Deep Convnet [43], DeepGaze II [38], PDP [44], 

SU (Saliency Unified) [42], and ML-Net [45]. It is worth noting 

that all the last 10 models are proposed recently and are based 

on DNNs. All these methods (including ours) have submitted 

their results to the SALICON challenge website or the MIT 

Saliency Benchmark challenge website, where all the saliency 

scores are obtained. We used the ResNet50_ML_DSCLSTM 

setting as our final model due to its best performance. 

We show the comparison results on the SALICON test 

dataset in Table IV. This dataset is recently proposed, thus only 

some recent models provided results on this dataset, but all of 

them are DNN based models. We can see that DSCLRCN 

outperforms all of them in terms of three metrics, i.e., AUC, 

NSS, and CC. Especially on NSS and CC, DSCLRCN obtains 

significant superiority, demonstrating its effectiveness. We 

notice that DeepGaze II [38] achieves better sAUC scores than 

our method. However, sAUC primarily rewards true positives 

while being hard to be degraded by false positives [41, 59, 67]. 

This can usually lead to good score to very blurred/hazy 

saliency maps  [68], which is the case of DeepGaze II. 

The comparison results on the MIT300 dataset is shown in 

Table V. We can see that in generally DSCLRCN outperforms 

all other previous models, especially including 9 DNN based 

models. Specifically, DSCLRCN achieves state-of-the-art 

performance in terms of AUC, and outperforms all other 

models on NSS and CC, indicating that DSCLRCN generates 

more accurate highlights and less false positives highlights. We 

can also see that DSCLRCN outperforms DeepFix [41], which 

used large convolutional kernels to integrate contextual 

information. This demonstrates the effectiveness of the 

proposed DSCLSTM model in incorporating global and scene 

contexts. 

We also show qualitative comparison results on the 

MIT1003 validation set in Figure 3. We can see that the 

saliency maps generated by DSCLRCN match the ground truth 

saliency maps best among all the compared models. 

Specifically, DSCLRCN generates more accurate detections 

and much less false positives compared with other models, 

including 4 DNN based models, i.e., ML-Net  [45], Deep 

Convnet [43], Mr-CNN [39], and eDN [36]. It is worth noting 

that DSCLRCN can deal with various very challenging 

scenarios, including cluttered scenes (rows (a), (b), (d), (f), and 

(k)), and scenes with no obvious salient regions (rows (e), (h), 

and (l)). These two scenarios are usually very challenging for 

other models. The former often leads to severe false positive 

highlights and the latter usually leads to inaccurate highlights. 

While benefitting from the integrated global and scene contexts, 

DSCLRCN can accurately detect the most salient regions in an 

image while ignoring other local distractions, thus obtaining 

much better results.  

V. CONCLUSION 

In this paper, we proposed a novel end-to-end saliency model, 

i.e., DSCLRCN, to predict human eye fixation points in natural 

scenes. Specifically, DSCLRCN first learned various saliency 

related local features via finetuning pretrained CNN models. 

Next, it leveraged the DSLSTM model to incorporate global 

contexts via mimicing the cortical lateral inhibition 

mechanisms in human visual system. Furthermore, we also 

proposed to integrate scene modulation in saliency detection, 

leading to the novel DSCLSTM model. Experimental results 

showed that DSCLRCN outperforms all previous saliency 

models on two eye fixation benchmark datasets, including 10 

recently proposed DNN based models. Ablation analysis also 

showed that the proposed DSCLSTM model can significantly 

improve saliency detection performance, which may supply 

new inspirations for future computational saliency models to 

focus on global and scene contextual information analysis. 
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