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The Visual Word Booster: A Spatial Layout of
Words Descriptor Exploiting Contour Cues

Xinghui Dong, and Junyu Dong

Abstract—Although researchers have made efforts to use the
spatial information of visual words to obtain bette image
representations, none of the studies take contourues into
account. Meanwhile, it has been shown that contoucues are
important to the perception of imagery in the literature. Inspired
by these studies, we propose to use the Spatial laay of Words
(SLoW) to boost visual word based image descriptorshy
exploiting contour cues. Essentially, the SLoW desptor utilises
contours and incorporates different types of commoy used
visual words, including hand-crafted basic contourelements
(referred to as “contons”), textons and Scale-Invaant Feature
Transform (SIFT) words, deep convolutional words ad a special
type of words: LBP (Local Binary Pattern) codes. Moeover,
SLoW features are combined with Spatial Pyramid Mathing
(SPM) or Vector of Locally Aggregated Descriptors YLAD)
features. The SLoW descriptor and its combined versns are
tested in different tasks. Our results show that tey are superior
to, or at least comparable to, their counterparts xamined in this
study. In particular, the joint use of the SLoW desriptor boosts
the performance of the SPM and VLAD descriptors. Wettribute
these results to the fact that contour cues are ingtant to human
visual perception and, the SLoW descriptor capturesnot only
local image characteristics but also the global spial layout of
these characteristics in a more perceptually congent way than
its counterparts.

Index Terms—Visual words, contours, image descriptors,
image features, spatial layout

|I. INTRODUCTION

BAG-of-Words (BoW) [39], [64], [67] has been one oéth
most known image descriptors since firstly introglthén
1999 [39]. However, BoW descriptors are “orderlelsstause
they discard the spatial layout of words [38]. deotfto humans,
an image is a meaningful arrangement of local regiand
objects rather than only a random mixture of pixa@lsegions
[39]. In a user study, Dong and Chantler [17] shdvileat
human observers tend not to recognise textures wihen
spatial layouts are scrambled. In addition, Shasaal. [62]
found that human observers cannot effectively raise
material categories from locally-ordered but glbparderless
images. These studies reveal the importance of kimagle
global image layout to the perception of images.
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It is known that aperiodic image structure dateetained in
global higher order statistics (HOS), e.g. the phsgectrum,
rather than the power spectrum [48-49]. Deng@l. [17], [19]
surveyed 51 texture descriptors and concludedtttegt only
compute HOS on small spatial exten1 9x19 pixels), if at all
(some only utilise the power spectrum). Unfortuhatglobal
phase information is difficult to use due to theaph
unwrapping issue [75]. It should be noted that Fouphase
congruency [35] within local image regions does paivide
this kind of global phase information [55]. The eding of the
phase data cannot be a local process if it is toskd to capture
globally coherent structure. Instead, the relatigmdbetween
the local characteristics in one image region aonde in nearby
or even faraway regions needs to be exploited
Accordingly, encoding local spatial data into wo[8&6], [44],
[59] and modelling global spatial layout of wordg,[[34],
[38], [58], [73] have been exploited in order tdewlate the
“orderlessness” issue that BoW [64] descriptorsoenter.
Nevertheless, none of these methods take contes irio
account. In essence, this type of data mainly canmsithe
global layout of local characteristics across ddfe spatial
locations and is useful for image discriminatiorsdxh on the
global spatial structure [55].

In this situation, the exploitation of the contocues in
images provides a possible solution to encodingallspatial
layouts [26-27], [55]. It has been highlighted hetliterature
[15], [18], [23], [51], [68] that contour cues aimportant to
human visual perception of imagery. Dong and Chajitg]
examined the importance of contour cues to texgareeption.
On the basis of contours, they proposed a descripsmnely,
Perceptually Motivated Image Features (PMIF). Haoavev
three problems are still remained: (1) PMIF canmpiresent
small contours well; (2) PMIF cannot encode an ienagpich
does not contain the obvious structure; and (3)ahger-range
spatial relationship across contours should beoébeul.

Motivated by the studies mentioned above, we intceda
new global image descriptor (see Fig. 1 for pipslirwhich
exploits the spatial layout of words (referred ®0“8LoW”).
Compared with BoW descriptors [39], [64], [67], ghi
descriptor captures the global spatial layout bgoeing the
spatial relationship between words both within th&me
contour and without regard to contours. To our kieolge, this
mechanism has not been addressed in the studj¢34F][36],
[38], [44], [58-59], [73] of incorporating the spaltdata into
BoW descriptors. The SLoW descriptor exploits HO&ro
longer ranges compared to the methods [36], [£&H] [hat

[55].
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Fig. 1. The two pipelines (shown in red dash anet Isolid entities) of the computations of the cortased and word-based SLoW descriptors respectivel

Contons are learnt from the image patches sampdedthe contour map wh
original image, e.g. raw image patches [67], S#Z] end deep convolutional

ile other types of visualdgoare learnt frorthe local features extracted from
features [10]. Note thateans clustering and vector quantisatieareplaced t

the LBP [47] computation and the dictionary is aggld by an LBP codebook when LBP codes [47] ard. Rlease refer to Figs. 5 and 6 @atails of th
computation of IWSCM (Intra-word Shape Context Mzgs) and IWODCM (Intra-word Orientation and DistarCo-occurrence Matrices).

encode the local spatial data into words, andsaslimore
perceptually consistent information than that tippraaches
[34], [58], [73] modelling other types of spatiaybuts of
words use via encoding the shape of contours.

We first test the SLoW descriptor together with thesic
contour elements: contons learnt from contour m&pen, we
examine this descriptor along with different typésommonly
used visual words, including textons [67], SIFT d®{42],
deep convolutional words [10] and a special typewnofds:
LBP codes [47]. In addition, the SLoW descriptoc@nbined
with the SPM (Spatial Pyramid Matching) [38] or VDA
(Vector of Locally Aggregated Descriptors) [32] degtors in
order to exploit the merits of both SLoW and SPM/@AD.

The contributions of this paper are: (1) the défini and
utilisation of “contons”; (2) the proposal of theL&W
descriptor by exploiting contour cues; and (3)itidication of
the importance of the spatial layout of words eitjgig contour
cues to visual word based image descriptors. Timaireder of
this paper is organised as follows. The next seétivestigates
the related work. We then describe the SLoW desuorgnd its
combined versions in Section Ill. In Sections Ndah we test
SLoW in different tasks using contons and the otiipes of
words, respectively. Conclusions are drawn in $actll.

A. Bag-of-Words (BoW) Image Descriptors

Leung and Malik [39] originally applied the bagwbrds
(“textons”) descriptor to texture recognition. Naihy, Bow
descriptors are computed in three stages. Firssl lfeatures
[6], [10], [14], [42], [50], [67], [70], [72] are xracted from
images. Second, a word dictionary is learnt frosubset of
these features. Third, either vector quantisatg®),[[64], [67]
or soft assignment [56], [71], [74] is used to mthp local
features to a “bag” of word labels. A histogramfiisally
accumulated from the occurrence frequencies oétlasels. In
addition, the local binary pattern (LBP) methodg][4an be
considered as a type of BoW descriptors. Howevbe,
descriptors mentioned above discard the spatiauliagf local

RELATED WORK

features (encoded by words) and are “orderlesd’ [38

B. Merging the Spatial Information into Bow

Merging the spatial information into BoW approaclines
been used to boost their performance. These studiesbe
divided into two categories (or the hybrid of thg@8]):
encoding local spatial information into words [3844], [59]
and modelling global spatial layout of words [738], [58],
[73]. The methods of the former category normalbe the
descriptors which encode local spatial informatisach as
spatial mean and variance of local image regio6§48d pairs
of spatially close SIFT (Scale-Invariant Featurengform)
features [44]. However, these methods do not eiitieiglobal
spatial relationship between words and their histogbased
feature vectors are still “orderless”.

In terms of the approaches in the second catedbgy
encode the global spatial layout of words using spatial
partitioning [7], [38] of images or the spatial agbnship
between words [58], [73]. However, the latter hasrbgiven
less attention. This may be due to the high contjmutal cost.
Hence, some methods put their emphasis on redticengize
of word dictionaries [60] or accelerating compuiatl speed
[41]. Nevertheless, these methods only capturerglaively
local spatial relationship between words. In thimitext, the
global spatial layout cannot be modelled. Kleaal.[34] used
the orientation of word pairs to encode intra-wspdtial layout
in longer range but they ignored the distances éetvwords.

To summarise, none of the image descriptors re\deabeve
take contour cues into account. It is also the dasespatial
verification techniques [53], [64] which were ugedccheck the
geometrical consistency between two images. Neeledhb,
contours are normally comprised of the global dtmec of
images. Thus, the spatial layout of words explgittontours is
important to global image structure discriminatj6a].

C. Contour-Based Image Descriptors

Contour-based shape descriptors [76] normally eacody
ta single contour without considering the spatidhtienship
between contours. Although the bag-of-contour fragts



(BCF) [5], [69] and bag-of-boundaries (BoB) destip [3]

were successfully used for shape recognition araibgtrieval,
the histogram features are “orderless”. The ab@saeriptors
are thus not suitable for capturing the compliceggdcture
information encoded in the contour map of naturahges.
Ferrariet al. [22] and Limet al. [40] learnt different basic
contour element sets. However, these elements cfiatain

more than one segment and thereby cannot be useprasent

the shape of a single contour. Compared with thelFPM

descriptor [18] based on contours, this paper adaits open
issues by representing local contour segments imoae
powerful way via conton learning, and modelling tgjebal
spatial layout of words in longer ranges.

Contour features were also applied to image registr. Ni
et al. [46] introduced a two-stage registration schemeoarse
registration was first conducted based on the eomwatching
method, and in the second stage, a fine registratas
performed using SIFT [42] and a local matching sohe
Differing from the direct use of contours in [4@]e introduce
an image descriptor by incorporating contour caés various
visual word based descriptors, encoding the wardmt from
image patches [67], SIFT features [42], deep cartiaial
features [10], LBP codes [47], etc.

Inspired by the importance of contour cues to huwisnal
perception of imagery [15], [18], [23], [51], [68}e introduce
a global image descriptor (see Fig. 1 for pipeling)ich
exploits the spatial layout of words (SLoW) basacd:contours.
First, a contour map is derived from the imagerateoto model
the spatial layout of words. Second, we learn ao$etisual
words, including contons, textons [67], SIFT wofdg] and
deep convolutional words [10], from their corresgioig local
features. In addition, LBP codes [47] are regaraead special
set of words. Third, the spatial layout of thoserdgois
modelled via encoding their spatial relationshithbwithin the
same contour and without regard to contours. We@snbine
the SLoW descriptor with other descriptors in ortietoost
their performance.

THE SPATIAL LAYOUT OF WORDS(SLOW) DESCRIPTOR

A. Obtaining Contour Maps

Since we intend to show the importance of contaasdo
representation of the spatial layout of words nathiean
comparing different contour detectors, we only theeCanny
edge detector [8] to obtain edge maps. For purpafsgsleting
redundant pixels but keeping continuous edges, i@ros
operations [24] are applied to the edge map. Thivekd
contour skeleton maps (see Fig. 2) are used insitadige
maps. For simplicity, the term “contour map” is dise refer to
the skeleton map. Considering the fact that conbtwanches
make contour representation more complicated, watéoall
branch points and break each involved contour ateet of
contours through removing these points. By perfagni
connected component labeling and applying
Moore-Neighbour tracing algorithm [24], each comtds
traversed from end to end, to derive the exteriouridary
sequence of the contour. The traversing sequenaecohtour

Fig. 2. A land use image [73] and its contour (stat) map.

Fig. 3. Sampling of local contour image patchesiroedrly.
is finally derived from the boundary sequence [18].

B. Deriving a Bag of Words

Visual words are normally learnt from hand-craftedal
features [6], [14], [42], [67]. However, the advage of visual
words learnt from deep convolutional features dvaditional
ones has been addressed [10], [72]. We hence useuco
image patches, original image patches [67], SIRfui@s [42]
and deep convolutional features [10] to learn spoading
visual words, i.e. contons, textons, SIFT words éeeb words.
1) Extracting Local Features

Using Contour Image PatchesWe learn a set of basic
contour elements from contour image patches tessmt their
local shape characteristics. These basic cont@mezits are
referred to as “contons”, in a similar fashion textons” [39],
[67]. Contons can be regarded as the words leamt €ontour
maps. In human vision science, it is known that &om
observers can perceive a contour which comprisestaof
disjointed collinear line segments with a blankkgaound [15]
or a set of collinear Gabor elements from a rangigotd.ced
Gabor elements field [23]. The strong represemntapiower of
image patches has also been shown in computemvi6id]
since they encode richer local characteristics tharfeatures
extracted from these patches.

Inspired by these findings, we represent a consegment
using its surrounding image patch whose centretéscat the
middle point of the segment (see Fig. 3), i.e. at@oar image
patch. The contour image patch retains the oridowl shape
information. It is noteworthy that only a singlentour is
considered at a time. In other words, we sepakath eontour
from all other contours when it is processed. Arsult, we
eliminate the influence of other contours on theresentation
of the current contour. We collinearly sample imagéches
(see Fig. 3) as this reduces the number of samysled for
learning contons but introduces fewer variationsirofge
patches, compared with sampling in the raster-soder. Also,
the central point of a patch sampled using outegsacan be
used to approximate the position of the segmentagoed in

is patch. This approximation is useful for desicry the
shape of the contour from which image patchesargked.

The widthN of contour image patches was set as 5, 7, or 9

pixels in this study. The reasons for using smattpes are that



(1) we intend to encode basic local shape charstitsrrather
than global shape information using contons;

used along with small image patches to learn cantand (3)
the size of the reasonable conton dictionary leasitig small
patches is smaller than that learnt using largehgast because
the variation of the shapes in the former is fethian that in the
latter. This reduces the dimensionality of finadtiee vectors.

Using Original Image Patches and SIFT Feature#t has
been shown that textons learnt from original imagéches
outperformed those learnt from filter responseth@scenario
of texture classification [67]. In addition, SIFAZ] features
have been widely used to learn visual words foriousr
computer vision applications. Therefore, we examhiteth
types of words together with the SLoW descriptathis study.
The local image patches [67] and SIFT features [d&]
densely extracted from original images in ordde#rn textons
and SIFT words respectively. However, only a randauset
of the features extracted from a dataset is used.

Using Deep Convolutional FeaturesDeep convolutional
features are extracted using a pre-trained CNN hjéHd31],
[63], [66], [77]. We use the approach that Cimpoial. [10]
proposed. An image is first resized into six diéferimages at

2k th
computational speed &fmeans clustering is faster when it is
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Fig. 4. The contons learnt from different datasédy: the 5x5 (top), 7x7
(middle) and 9x9 (bottom) contons learnt from ti&FSdataset [20]; (b) the
5x5 contons learnt from tHertex[12] dataset; and (c) the 5x5 contons learnt
from theJAFFE dataset [61]. In each group, 50 contons are shown.

aGx) = argming ccllxi — g |, @

whereq (x;) is the quantisation function of the feature veator

the scales2’ (s € {-2, -1.5, -1, -0.5, 0, 0.5}). Then, eachandc; is a word in the dictionar§. After VQ is complete, each

resized image is subtracted by the average cofdahedraining

feature vector is assigned a word label and itgtipasis

dataset and sent to CNN. In totflfeature maps are obtained atdescribed by the location of the central point lné image

the last convolutional layer. Given a location e tfeature
maps, & -D feature vector is derived. Next, the locatiorthaf
features computed at different scales is mappdidetoriginal
image. Finally, 64-D feature vectors are generbtedpplying
the L, normalisation, PCA, whitening and a secohd
normalisation to th¢-D feature vectors in turn.

2) Learning a Word Dictionary

region from which this feature vector is extracted.

C. Deriving a Bag of LBP Codes

The LBP descriptor [47] uses a predefined codebimok
quantise local binary patterns (LBP) into a setades. The
LBP with a circular neighbourhood is defined as:

LBPpg = YP2dt(r, — 17)2°, ()

Given thats feature vectors are extracted and represented as

x; (i = 1,2...s), k-means is used to convestfrom the feature
spaceX to the dictionary space (see Equation (1)), in which
each feature vector is labelled by a wordj = 1,2 ... w).

k—means
X ={x1, x5, .6} — C ={cy, ¢, ... C }-

1)
The words learnt using local contour image patcbeginal
image patches, SIFT features and deep convolutifeaalires
are termed as contons (see Fig. 4), textons, Slésvand
deep convolutional words respectively. Comparetexbons,
SIFT words and deep convolutional words, contoresraore
suitable for sketch-based image retrieval [20] whquery

images only contain sketches.
3) Quantising the Local Features

Different strategies [64], [71], [74] can be usedrap local
features into the word space. Since we are moegested in
examining the importance of contour cues to theodimg of
the spatial layout of words than investigatingeliéint mapping
strategies, only vector quantisation (VQ) [64]ppked. Given

a dictionaryC which comprisesy words, each feature vector

x; is compared with every word ih and is assigned the laljel

(j € {1,2,...w}) of the word which lies closest to the feature’

vector in the spack. This process is described as:

wherery is the grey level value of the central pixel in a
neighbourhoodr, (e = 0,1, ... P — 1) stands for the grey level
values ofP evenly spaced pixels on a circle of the rad{R >

1, z=20
0), andt(z) = {0’ <0
was suggested and the grey-scale and rotation iamear

descriptionLBP;f}{2 was proposed as

LBPTivz — {2523 t(r,— 17) , if U(LBPpg) <2
PR P + 1, otherwise '
whereU(LBPp ) = |t(ro—y —15) — t(1y — 17)| + ThZ1
|e(r, —=1¢) — t(reey —17)|- We useLBPF¥? to compute LBP
codes. These codes are considered as a speciabfavords.

Furthermore, the idea of “uniform”

4

D. Encoding the Spatial Layout of Words

In the case that LBP is used for word generatiasheixel
location is assigned an LBP code. In other cades,pixel
location from which a local feature vector is egtea is
labelled using a word based on VQ. Due to the itgpame of
contours to perception of imagery [15], [18], [2E1], [68],
e encode the spatial layout of words (includingPLé&des) by
considering their spatial relationship within trere contour.
We also compute the spatial relationship betweendsvo



Fig. 5. Computation of shape context matrices (SChlsthe wordsC; anc
C, on the same contour. Noted that circles are dtavaiow the pointase(
for computing shape contexts rather than indicatiegregions involved.

without regard to contours to explore the spatiglolut of
words across contours.
1) Modelling the Spatial Layout of Words within thentea
Contour

The orientation and position of point pairs on atoar are
important for describing its shape [6]. We représbe shape
characteristics of a contour by encoding the caioence of
the orientation and position of word pairs on ttositour. The
shape context descriptor [6] was designed to caphis type
of information. This descriptor computes dnx D shape

Fig. 6. Computation of the orientation and distapoeoccurrence matrices
(ODCMs) for the words€; andC,. Note that circles are drawn to show
points used for computing ODCMs rather than indicatheregions requirec

Bj = BOWH;/ ¥4 5, SCM;, j € {1,2,..w}. (5)

Theng; is multiplied bySCM; to fulfill the weighting.

A weighted intra-word shape context matrix is ckdted for
each individual contour. All matrices alg normalised to [0,1]
separately as different contours may have diffetengths.
Intuitively, this descriptor encodes the intra-wandentation
and position co-occurrences on a contour. It cao dle
regarded asv co-occurrence matrices of the same word at
A x D different displacements. However, the neighboudsoo

context matrix 4 angle bins an® log distance bins) at each used here are contours rather than the square iregges that

reference point of a contour, encoding the spagiationship
with other reference points. The matching of twatoars thus
becomes the matching of two series of shape contaktices
computed from two reference point sets respectivéien
long contours are processed, however, the numbeferfence
points required increases. As a result, the contiputa cost of
matching becomes heavy.

Given a word dictionary learnt from an image dataa#
contour points in a contour map are labelled ugiogds while
the non-contour points are ignored. For a contouwlr a word,
we only compute shape contexts from the pointslliiedhdoy
this word. To be specific, we compute a shape sombeatrix
(SCM) of the points in terms of each word and obtai

Haralick et al. [29] used. Finally, the mean of all normalised
weighted intra-word shape context matrices is cdethu
which is referred to as “IWSCM”, to obtain an awggashape
representation of all the contours extracted fronmzage.

It should be noted that Bat al.[5] and Wanget al.[69] used
shape context [6] to model local contour segmertsvever,
they ignored the spatial relationship between segsnen
contrast, we use shape context [6] to describgltteal spatial
layout of visual words. Therefore, the descriptbet Baiet al.
[5] and Wanget al. [69] proposed are “orderless” local
descriptors while the IWSCM descriptor is a globiaé.

2) Capturing the Spatial Layout of Words without redjao
Contours
The spatial relationship between the words acrifésrent

(number of words) individuad x D shape context matrices for _ : n (re !
a contour in total. It should be noted that theatise bins are contours is also important. In addition, the spagétionship

quantised across all the points (which may be latieby between contours and background (non-contour) lggie
different words) rather than only the points lagelloy the Uuseful for many tasks, for example, scene recagmiind

current word on the contour. Fig. 5 shows the cdatnn of classification, when original images are used. H@xeit is
the shape context matrices. Theshape context matrices arechallenging to model these types of spatial refestiop due to

concatenated into ad x D x w intra-word shape context the irregular shape of contours. Hence, we consiuespatial
matrix. The merits of this method include thatikpduces the €lationship between words without considering oors.
computational cost compared with the computatiotwben Contour points are only used when contons are eppiiile
any pairs of reference points; and (2) it avoidsriatching of both contour and non-contour points are used wherpther
different reference points as we use a unified wiictionary tYP€S of words are utilised. We calculated the codorence of

for all contour points throughout the dataset. rigeo to further the orientation and position of word pairs insteadescribing
accelerate the computational speed, contour paiats be the shape of contours. We only encode the spatiationship
sampled in an interval of several points. between word pairs labelled by the same word tacedhe

Furthermore, we use bins of the corresponding Bow [64] COMputational cost. The other computation, quaitisaand
histogram to weight the intra-word shape contextrinan weighting operations involved are the same as theed in the

order to retain the occurrence frequency infornmatibwords, Previous subsection. Aml x D x w  weighted intra-word
Given an AxD xw intra-word shape context matrix orientation and distance co-occurrence matrix (refeto as

“IWODCM") is finally obtained (see Fig. 6 for moretails).

It is noteworthy that distance bins are computedsthe
positions of all words rather than those of ther@ntrword to
obtain a global representation. To reduce the coatipnal
cost, only a subset of the positions is used. Baffe sampling

computed from a contour, eadhx D sub-matrix is denoted as
SCM; (j €{12,..w}). Meantime, each bin of the BoW
histogram computed from the same contour is lathelis

BOWH;. Each weighp; is computed using the formula below:



strategies may be considered, such as using a fixater or TABLE |

ratio Of pOSitionS for a” WordS. When the WOTdSK‘.‘LIXt contons KENDALL'S CORRELATION COEFFICIENT$‘[) CALCULATED BETWEEN
. e L. COMPUTATIONAL AND HUMAN PERCEPTUAL RANKINGS

and deep visual words are utilised, we use a fizgd (20%) of

ints f I ds. | trast. wh i d th DESC SHoG  T&HG CCH e PMIF
points for all words. In contrast, when contons ased, the . 0277[20] 0223[20] 0,014 0.048 0209
rough shape of each contour needs to be retaineohlgs
; . . . DESC BoW SPM VLAD SLoW SLoW+SPM SLoW+VLAD
contour points are considered while the backgrasitank. In
T 0.178 0.263 0.202 0.295 0.269 0.228

this case, the sampling strategies above may lpelunae as
the optimal number of contons is unknown; while tise of a
fixed ratio of contours is not suitable either hesz contours
cannot be detected accurately. We sample contoagem contour-based descriptor can be boosted by incatipgr the
patches in an interval of five points collinearlis reduces the contrast data (if this is applicable). We are tf@eeinspired to
number of sampled contour image patches to appaigi;n combine the conton-based SLoW descriptor with aalloc
20% but the rough shape of contours is retainedohitrast, variance measufiédR, y [47]. This measure is expressed as:
smaller intervals will enhance the number of samhpteage

Values in bold are the highestin the table and our methods atwvays
highlighted in grey (this continues in the followitables).

patches which increases the computational cosiatibdary VARp g = %Zg;&(ge - whu= % e=0 Je: ©)
learning while larger intervals cannot retain theage of whereg, denotes the grey valuesBfevenly spaced pixels on
contours. a circle of the radiug (R > 0). We use the multi-scaldRp
3) Generating SLoW Feature Vectors (“MSVAR”) with (P,R) = (8,1),(16,2) &(24,3). A 128-bin

Considering the advantages of Spatial Pyramid Magch histogram is obtained at each scale. In total al88MSVAR
(SPM) [38], different levels () of spatial pyramids can be pistogram is derived. The MSVAR histograniisnormalised

applied to the IWSCM and IWODCM descriptors. Onfeacang concatenated with conton-based SLoW features X).
level of the pyramids, the IWSCM and IWODCM featigge  Thjs descriptor is referred to as “SLoW+VAR”.

separately extracted and weighted in the same wathat

Lazebnik et al. [38] proposed. The IWSCM or IWODCM |y ExpeRIMENTSUSING THESLOW DESCRIPTORBASED ON
features extracted at all pyramid levels are camaied into a CONTONS

f_eature vector._The IWSCM and IWODCM feature vest In this section, we test the conton-based SLoW riusc
first L, normalised to [0,1] and then concatenated into an - - .

S . . and the two combined descriptors: SLoW+SPM and
individual feature vector. This feature vector éferred to as

. . - SLoW+VLAD in four tasks. The first three tasks ase
the “SLoW” (Spatial Layout of Words) descriptor, s i . .
encodes both the average spatial layout of woraspated sketch-based image retrieval (SBIR) [20] and tweceptual

within the same contour and the spatial layout afrds texture similarity estimation applications [17],9]1 The

calculated without regard to contours. Therefohe, ELoW reasons for using these tasks include: (1) theocebased

. . . SLoW is particularly suitable for SBIR as only cout data is
descriptor exploits short-range, medium-range amg{ange . . . ) .
. P o available with query images; (2) we intend to corepthe
image characteristics in terms of the exploitatiafslocal

image regions, contours and images, respectively conton-based SLoW with PMIF [18] in the perceptieature
' ' ' similarity estimation tasks; and (3) the datasetedufor the
E. Combining SLoW with other Descriptors three tasks contain humans’ data, which can betosealidate
The SLoW descriptor can be combined with other inaghe perceptual consistency for the SLoW descriptad its
descriptors in order to exploit the merits of theescriptors. In  combined versions. Due to the importance of th@shiata to
this subsection, we introduce three different corations. human face representation, we further apply thesertptors
When the SLoW descriptor is computed at multiplelsof —to a fourth task: human facial expression recognif51].
spatial pyramids, the dimensionality of the featueetor is ~ We use the Bow [64], CCH (Chain Code Histogram})],[31
high (e.g. this value id x D x w x 2 x 21 whenL = 3). This SC (Shape Context) [6], PMIF [18], SPM [38] and VDA32]
limits the practical application of SLOW to a lardataset. In descriptors as baselines for each task. There fsayba other
this situation, we combine the SLoW feature veetdracted at baselines obtained from related publications. Tkl $38] and
the original resolution § = 1) with the SPM-based Bow SLOW featurgs are extract.ed from conton label méthsthree
feature vectorl( = 3). This descriptor is named “SLow-+SpPM”.Spatial pyramid levels while the CCH [31], SC [6idaPMIF

Using this strategy, the dimensionality of the teatvector is [18] features are computed from contour maps. Sinee€CCH
reduced while the merit of SPM is retained. and SC descriptors encode an individual contour, fingt

The VLAD [32] descriptor computed on the basis log t cOmpute arl; normalised CCH or SC feature vector from each

difference between words and local features haswishocontour and then use the average of all the feataogors
advantages over the traditional Bow [64] descripttrerefore, Computed from a contour map as the final featuieore In

we also combine the SLoVl & 1) with VLAD feature vectors ddition, we learn a conton dictionary from humaavth
to exploit this advantage. Correspondingly, thisaiptor is Sketches [4] and examine its generality to diffedatasets.

referred to as “SLoW+VLAD". A. Sketch-Based Image Retrieval (SBIR)

h Wherg condtotns gre usedoi ;[:hhe StLoV\{Sd?]scnptoI;hg::tﬁeg The method that Eitet al. [20] proposed was used in this
€ contour data. bong an anter [18] have s er experiment. In total 31 human-drawn sketch mapewsed as



TABLE I
KENDALL'S CORRELATION COEFFICIENT$‘[) OBTAINED USING SIX
CONTON-BASED DESCRIPTORS AT DIFFERENT NEIGHBOURHOOD SIZES

N 5 7 9 5 7 9 5 7 9

DESC

T

Bow
0.1770.177 0.168

SPM
0.259 0.259 0.263]

VLAD
0.1700.194 0.203

DESC

T

SLoW
0.294 0.289 0.283

SLoW+SPM
0.260 0.262 0.259

SLoW+VLAD
0.198 0.212 0.228

TABLE Il
KENDALL’S CORRELATION COEFFICIENT$7) DERIVED USING CONTONBASED
METHODS WITH DIFFERENT NUMBERS OF CONTON& = 9,D = 6& N = 5)

Image Descriptor
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DESC Bow SPM VLAD Fig. 7. The agreement rates (%) obtained usinglmaselines and four SWé
w 50 100 50 100 50 100 descriptors against a set of humans’ perceptuelgbaiairs judgements [18].
T 0.177 0.178 0.259 0.26C 0.170 0.161 05 e - ‘
DESC SLow SLoW+SPM SLoW+VLAD [ —©— Top 10 —@— Top20 Top 40 - - % - - Top60 |
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TABLE IV o A ! O O TN\
KENDALL'S CORRELATION COEFFICIENT$7) OBTAINED USING SLOW WITH 0.1 ! < f
DIFFERENT ANGLE AND DISTANCE BINJN = 5& w = 50) 0 R
D s 5 Eé I O L =T =5 0 3 a0z C°
)Y Q ® 5 5 a < a < o <
1 3 6 12 18 “cT) '*(? 5 (&) o B ) 5‘ (2 SI a 3
9 0.252 0.251  0.294 0.289 0.288 S B = % § %
[0
A 18 0.246 0.246 0.293 0.285 0.283 2 o ) US) @
36 0.240 0.239 0.282 0.271 0.271 Image Descriptor

Fig. 8. TheG measure values obtained using nine baselinesamdSLoN

query images and 40 images were retrieved in t ch descriptors compared with human perceptual texankings [19].

query image. Humans' rankings were used as thengrtruth

data and Kendall's correlation coefficiedt£ 0.05) was used ihat obtained using 50 contons, we will examine \SLasing

as the performance metric. Computational rankingew 5q contons due to the lower feature dimensionality.

derived using each descriptor and histogram inticse[65].  gjze of Angle and Distance BinsTable IV displays ther
We also used the top two best descriptors: SHOGT&MOG  ya1yes obtained using the SLoW descriptor whenefit
that Eitzet al. [20] tested as baselines. The results obtaingd,mpers of angle and distance bins were ugéd=6 and
using eight baselines and three SLow-based deswigre |, — 50) |t can be seen that SLoW obtained its highest
shownin Table I. It can be observed that (1) tbehSPM [38]  herformance when nine angle and six distance bars wsed.
and SLoW descriptors outperformed BoW; (2) SLOW+SPM \ye therefore mainly examine the SLow descriptor isid
and SLOW+_VLAD performed better than SPM [38] andAD -y mbined versions with the paramete¥s= 5, A= 9, D=6

[32] respectively; and (3) the SLoW descriptor preed more .. 4. — 50 in the following experiments.

consistent results with humans’ rankings than asnterparts
(including two shape descriptors: CCH [31] and 80.[

In the rest of this subsection, we further examthe Perceptual texture similarity estimation is keydifferent

SLoW-based descriptors in three different aspects. tasks, including measuring the perceived differebesveen
Neighbourhood SizeTable 11 lists ther values obtained using textures and ranking a set of textures [18]. Detngl.[17], [19]
BoW [64], SPM [38], VLAD [32] and SLoW-based degtars proposed two perceptual texture similarity estiorattasks:
when three different neighbourhood sizes were usée pair-of-pairs comparison and texture retrieval.thie former
9,D = 6, andw = 50). It can be seen that the SLoW descriptotask, two pairs of textures are sent to the allgoritThe output
always outperformed all its counterparts in thesaonditions. is the decision on which pair is more similar. e fatter task,
In addition, SLoW+SPM and SLoW+VLAD performed bette the algorithm needs to sort the other textureherdatabase
than SPM [38] and VLAD [32] respectively. according to their similarity to the query textutdumans’
Number of ContonsTable 1l shows the values derived using pair-of-pairs judgements (the left or right paimi®re similar)
BoW [64], SPM [38], VLAD [32] and SLoW-based destdrs [11] and texture rankings [19] derived from 3drtextextures
when different numbers of contons were uske=(9,D = 6 & [12] were used as ground-truth for the two taskpeetively.
N = 5). As can be seen, the SLoW descriptor outperforaied We used the agreement rate (%) to measure thestemsy
its counterparts in the same conditions while tR&1$38] and between the human perceptual and computationabpgiairs
VLAD [32] descriptors performed worse than SLow+SBiMl  judgements in the pair-of-pairs comparison tasK.[When
SLoW+VLAD respectively. Although the performance oftexture retrieval [19] was conducted, we compahedankings
those descriptors using 100 contons may be slidggetier than of the human derived and computational retrievalagitheG

B. Perceptual Texture Similarity Estimation



TABLEV
THE AVERAGE RECOGNITION RATE$%) AND CORRESPONDING STANDARD
DEVIATIONS OBTAINED USING TEN BASELINES AND FOURSLOW-BASED
DESCRIPTORS FOR HUMAN FACIAL EXPRESSION RECOGNITIJ81]

I T e T | O O T T )

T R R T L O |

Fig. 9. Fifty 5x5 contons learnt from the hun@nawn contours contained

DESC _ SVM (linear)  SVM (polynomial) SVM (RBF) theBSDS50@ataset [4]. These contons are referred to aséégontons”.
RR (%) 79.8 [61] 79.8 [61] 81.0 [61]

DESC CCH SC PMIF TABLE VI
RR (%) 21.50+1.68 37.98+2.27 63.00+2.12 KENDALL'S CORRELATION COEFFICIENT$T) OBTAINED USINGSPM[38] AND

DESC SPM VLAD MSVAR Bow SLOW FOR THESBIR TASK [20] WHEN ORIGINAL AND GENERAL CONTON
RR (%) 79.72+2.84 21.97+0.85 37.56+1.52 34.55+2.40 DICTIONARIES WERE USED

DESC SLoW+SPM SLoW+VLAD SLoW+VAR SLoW DESC SPM SPM-G SLoW SLoW-G
RR (%) 79.86+1.84 29.01+2.11 86.01+1.38 86.76+1.75 T 0.259 0.257 0.294 0.290

TABLE VII

measure ¢ € [0,1]) [21]. We run this task for the top

THE AGREEMENT RATEY%) OBTAINED USING SPM[38] AND SLOW FOR

N € {10,20,40,60} retrieved textures. For the purpose Of THE PAIR-OF-PAIRS COMPARISON TASK17] WHEN ORIGINAL AND GENERAL

efficiency, all 334 texture images were down-samplsing
Gaussian pyramid to the resolution of 512x512 gixeid only
this resolution was used. (Five single pyramid Ievand
multi-pyramid were used in [17], [19]). Howeverl #ile other
conditions that Dongt al.[17], [19] used were kept constant.
Except the six baselines introduced at the beggqrah
Section 1V, the best and the average of the 51lteeshtained
by Donget al.[17], [19] and the multi-scaléARp , (MSVAR)
[47] were also used as baselines. In addition Stha&W+VAR
descriptor was tested. (This descriptor was ndede@ the
SBIR experiment as only the sketch data is availalith query
images). Fig. 7 shows the performance derived utiagiine
baselines and four SLoW-based descriptors in tireobgairs
comparison task. It can be seen that (1) the pegoces of
SPM [38], VLAD [32] and MSVAR [47] were boosted by
incorporating the SLoW features into these; (2) hbot

CONTON DICTIONARIES WERE USED

DESC SPM SPM-G SLow SLow-G
AR (%) 57.7 57.8 61.3 60.9
TABLE VIII

THE G MEASURE VALUES(G € [0, 1]) OBTAINED USINGSPM[38] AND SLOW
FOR PERCEPTUAL TEXTURE RETRIEVA[19] WHEN ORIGINAL AND GENERAL
CONTON DICTIONARIES WERE USED

N 10 20

DESC SPM SPM-G SPM SPM-G
G 0.135 0.138 0.184 0.187

DESC SLoW SLoW-G SLoW SLoW-G
G 0.119 0.118 0.170 0.168
N 40 60

DESC SPM SPM-G SPM SPM-G
G 0.266 0.268 0.266 0.268

DESC SLoW SLoW-G SLoW SLoW-G
G 0.260 0.259 0.260 0.259

SLoW+VAR and SLoW outperformed the other descritorgfold cross-validation setup was conducted ussugport

(including the best one tested in [17]); and (3pBI+VAR
produced the best performance. Furthermore, Fgiavs the
G measure values derived using the same methodas $n
Fig. 7 for the texture retrieval task. As can beebed, the
performances of SPM [38], VLAD [32] and MSVAR [4&Ere

Vector Machines (SVM) [1], [13]. The recognitiontea(RR,

%) was used as performance measure. The experiweasnt
performed using each descriptor for ten runs (whigts not
conducted by Shaet al. [61]) to obtain different splitting for
cross-validation.

improved when combined with SLoW. Nevertheless, the e report the results obtained using ten basetmesfour

SLoW+VLAD descriptor outperformed all its counterysa

In [16], Dong discussed the relationship betwee
pair-of-pairs comparison and texture retrievalwéts pointed
out that texture retrieval mainly examines theighbif feature
descriptors to estimate intra-cluster texture snty when
small numbers of textures are retrieved. This shaatount for
the difference in the performances of SLoW desoript
obtained in the two experiments. By comparing tesults
shown in Figs. 7 and 8, it can be found that globzge
descriptors, e.g. SLoW, are more competent fommeding
inter-cluster similarity than intra-cluster similgr In contrast,
the opposite trend can be observed for local detses.

C. Human Facial Expression Recognition

SLoW-based descriptors in Table V. It can be olexbthiat: (1)
the performances of SPM [38], VLAD [32] and MSVART7]
were enhanced when combined with SLoW; (2) the VLIA)
descriptor did not perform well, which impairs erformance
of SLoW+VLAD; (3) the SLoW+VAR and SLoW descriptors
outperformed all the other descriptors; and (4) BleoW
descriptor performed the best among the 14 descsipit
should be noted that both SLoW+VAR and SLoW perfeatm
better than the best method tested in [61] evenghave did
not use the cropped face images. We attributeréisislt to the
importance of shape to representation of humarsfg4.

D. Does a General Conton Dictionary Exist?
In this subsection, we intend to investigate whetrenot a

In this task, we used thiapanese Female Facial Expressiorgeneral conton dictionary can be learnt for diffieremage
(JAFFE) database [61] which comprises 213 images. Each @htasets. Arbelaeet al. [4] derived a human-drawn image

the ten subjects showed three or four examplesrferof seven
expressions. As Shan al.[61] did, we usedAFFEimages for
a 7-class expression recognition task. However, used
original images rather than their cropped norméligersions
[61]. This makes the task more challenging but naggied. A

contour dataseBSDS500 This dataset contains 500 contour
maps. We learnt 50 5x5 contons from this datasietgube
approach introduced in Section 1lI-B-1. For disdriation
purposes, we refer to these contons as “Generdab@shwhile



TABLE IX
THE AVERAGE RECOGNITION RATES%) AND CORRESPONDING STANDARD
DEVIATIONS OBTAINED USING SPM[38] AND SLOW FOR HUMAN FACIAL
EXPRESSION RECOGNITIONG1] WHEN ORIGINAL AND GENERAL CONTON
DICTIONARIES WERE USED
SPM SPM-G SLoW SLoW-G
79.72+2.84 45.87+1.80 86.76+1.75 70.14+2.16

DESC
RR (%)

TABLE X
THE AVERAGE CLASSIFICATION RATES%) AND CORRESPONDING STANDARD
DEVIATIONS OBTAINED USING THEBOW [64], SPM[38], VLAD [32] AND
SLOW-BASED DESCRIPTORS FORERTEX[12] TEXTURE CLASSIFICATION

DESC BowW SFM VLAD
1 CR 98.71+0.40 97.84+0.77 99.31+0.53
6 (%) 98.39+0.27 97.21+0.21 99.08+0.13
DESC SLoW SLoW+SPM  SLoW+VLAD
1 CR 97.84+0.58 97.07+0.89 99.70+0.24
6 (%) 97.71+0.26 96.1¢+0.3¢ 99.43+0.0

The number of test images was set as 1 and 6.

the contons learnt from each dataset are namedgif@ti
Contons”. Fig. 9 displays the 50 general contons.répeated
the four experiments reported in the previous sttitses by
replacing original contons with the 50 general cost To be
exact, all conditions were kept constant except tha 50
general contons were used. The parameters of tr@NVSL
descriptor were set @§=5, A=9, D=6 andw = 50. For
simplicity, we only tested the SPM [36] and SLoWscképtors.
We compare the performances derived using origamal
general contons in this subsection. Tables VI, VII] and IX
report the comparison results for the four taskspectively,
when original and general contons are used. Abeaeen, the
SPM [38] and SLoW descriptors performed comparaliign
the two conton dictionaries were used in the SBI® pnd two
perceptual texture similarity estimation tasks [1719].
However, this is not the case when the human fagiatession
recognition task [61] was conducted. In this cas¢h SPM [38]
and SLoW performed better when original contonsewesed
than that they performed when the general cont@res wsed. It
is noteworthy that the contours extracted from hunfece
images [61] are more different from human-drawntcors [4]
than those extracted from the SBIR [20Partex[12] datasets.
This finding should account for the difference betw the two
sets of results obtained using SPM [38] or SLoW nvbieginal
and general human face contons were used resdgctive

E. Summary

In this section, we first tested the SLoW descrifgtod its
combined versions in four tasks. This descriptorfquened
better than, or at least comparably to, the basslift is also
complementary to the SPM [38], VLAD [32] and MSVART]
descriptors. We further investigated the univessdility of
contons. It was found that the contons
human-drawn contours [4] can be generalised t&BIR [20]

learnt from

TABLE XI
THE AVERAGE CLASSIFICATION RATEY%) AND STANDARD DEVIATIONS
DERIVED USING THREE BASELINES AND THRESLOW BASED DESCRIPTORS FOR
LAND USE IMAGE CLASSIFICATION[73]

DESC Bow SPNV VLAD

w =50 66.22+0.49 73.15%0.46 82.25+0.35
w=100 72.55+0.59 77.61+0.39 83.40+0.50
w =200 76.91+0.48 79.56+0.39 84.78+0.32
DESC SLoW SLoW+SPM SLoW+VLAD
w="5C 76.19+0.3: 77.38+0.8 85.710.40
w =100 78.60+0.42 79.46+0.39 86.90:0.28
w =200 80.37+0.37 81.38+0.49 87.320.54

these data are applicable. This finding indicatesmportance
of local non-contour image characteristics. Inrlegt section,
we therefore apply the SLoW descriptor along witfeo types
of words which encode richer local information thtre

contour image patches used by contons.

V. EXPERIMENTSUSING SLOW DESCRIPTORBASED ON
OTHERTYPES OFPWORDS

In this section, we examine the SLoW descriptoriveer
using other types of words, including textons [T words
[42], deep convolutional words [10] and LBP codésg][ The
SLoW features were extracted using three spatiahmpid
levels for textons, SIFT words and LBP codes. Siloal
convolutional features had to be sparsely extrafi€d, the
features sampled on contour points were few, eafhgcivhen
high spatial pyramid levels were used. In this cése SLoW
features are sparse which impairs their discrinoiyapower.
Therefore, only the original image resolution wasdifor deep
convolutional words. These descriptors are appbedifferent
tasks. For image classificaton tasks, we used tb@dram
intersection kernel SVM [38] for histogram-basedatgtors,
including Bow, SPM, SLoW and SLoW+SPM, along witle t
L; normalisation. Without specific statements, thedir kernel
SVM (€=10) was used for the other descriptors with Ithe
normalisation, following existing studies [9], [10$3].

A. Texton-Based SLoW

The Pertexdataset [12] was used. Textons [67] were learnt
using the approach introduced in Section IlI-B-AcEPertex
image was devided into 16 equal-sized patchesntliheer of
test patches was set as 1 and 6. The BoW [64], BBMand
VLAD [32] descriptors were used as baselines. Hsellts are
displayed in Table X. As can be seen, SPM [38] greréd
worse than the BoW descriptor. Also, the SLoW and
SLoW+SPM descriptors performed worse than BoW &Pl S
respectively. However, SLOW+VLAD performed bettban
all its counterparts. It is noteworthy that the IDAlescriptor
does not encode the spatial data. This may accounthe
complementary performances of SLoW and VLAD.

andPertex[12] datasets. However, it was not the case fer ttB. SIFT Word Based SLoW

JAFFE dataset [61]. This result is attributed to thdedi#nce
between the SBIR [20]Pertex [12] and human-drawn [4]
contours and the human face contours extracted fifoen
JAFFE dataset [61]. It is noteworthy that the contondohs
SLoW only uses the contour data. However, the jos# of
local contrast data boosted its performance in wasts where

The densely sampled SIFT features [42] were uséeatm
words (see Section 1lI-B-1). The BoW [64], SPM [3&hd
VLAD [32] descriptors were used as baselines. UBeMerced
Land Usedataset [73] was used for image classificatiorthEa
of 21 classes comprises 100 images. The 2100 incgeain



TABLE XII
THE AVERAGE CLASSIFICATION RATES%) AND STANDARD DEVIATIONS
DERIVED USING FOUR BASELINES AND FOURSLOW BASED DESCRIPTORS FOR
UIUC [2] TEXTURE CLASSIFICATION

10

TABLE XIV
THE AVERAGE CLASSIFICATION RATES%) AND STANDARD DEVIATIONS
DERIVED USING FOUR BASELINES AND FOURSLOW BASED DESCRIPTORS FOR
CALTECH256IMAGE CLASSIFICATION[25]

DESC Bow SPV VLAD FC

w =50 97.56+0.69 97.47+0.59 98.24+1.18
w=100 98.79+0.38 98.74+0.48 97.41+1.01 97.32+0.96
w=200 99.35+0.36 99.35+0.27 96.35+1.09

DESC SLoW SLoW+SPM SLoW+VLAD SLoW+FC
w=50  97.5340.48 97.56+0.52 99.21+0.59  98.35+0.59
w=10C = 9879+0.2¢ 98.76+0.3¢ 99.5610.37 98.8240.31
w=200 99.29+0.44 99.29+0.35 99.59+0.28 99.32+0.31
TABLE XlII

THE AVERAGE CLASSIFICATION RATES%) AND STANDARD DEVIATIONS
DERIVED USING FOUR BASELINES AND FOUSLOW BASED DESCRIPTORS FOR
LAND USE IMAGE CLASSIFICATION[73]

DESC Bow SPM VLAD FC

w =50 84.58+0.54 86.27+0.46 93.17+0.28
w=100 88.38+0.22 89.20+0.37 92.75+0.32 91.35+0.38
w=200 90.93+0.46 90.61+0.36 93.46+0.33

DESC SLoW SLoW+SPM SLoW+VLAD SLoW+FC
w =50 87.91+0.29 88.05+0.24 95.14+0.21 92.99+0.31
w=100 90.04+0.31 90.51+0.27 94.73x0.14 93.40+0.27
w=200 91.9440.13 92.04+0.16 94.94+0.26  93.95+0.34

various objects and spatial patterns. Five-foldssrealidation
was conducted using the SVM classifier [13] anddlierage
classification rate (CR, %) was used as performaneasure
following the pipeline that Yang and Newsam [73g¢disThe
experiment was conducted using each descriptdeforuns in
order to obtain different splitting for cross-vattn.

The classification rates are reported in Table IXtan be
observed that: (1) the SLoW descriptor outperforidewV [64]
and SPM [38] when different numbers of words wesed; (2)
the performances of SPM [38] and VLAD [32] were noyed
when combined with SLoW; and (3) the best perforoeanas
produced by SLoW+VLAD.

C. Deep Convolutional Word Based SLoW

The method described in Section I11-B-1 was useteéon
deep convolutional words. In addition to Bow [68PM [38]
and VLAD [32], the features extracted from the démate
fully-connected layer of a CNN model, i.e. FC, wiagd as the
fourth baseline. The SLoW descriptor was also coedbiwith
FC to test whether or not they are complementang. $LoW
descriptor and the three combined versions werepaosal
with the baselines in image classification andeetd.

1) Image Classification

Image classification was performed using tHe/C [2], UC
Merced Land Usd73] and Caltech256[25] datasets. The
pre-trained CNN models: VGG-M [9], Place-CNN [7Hdca
VGG-VD16 [63] were used for the three datasetseeisyely.

UIUC Seventeen unique classes contained in WhgC
dataset [2] were used. This scheme ensures thatabsfier is
trained with less bias as each class containsatime siumber of

DESC Bow SPM VLAD FC
w=5C 50.91+0.4 56.760.2: 77.4520.2!

w=100 59.99+0.46 63.30+£0.04 78.51+0.04 79.22+0.16
w=200 65.15+0.45 66.93+0.18 79.44+0.14

DESC SLoW SLOW+SPM SLoW+VLAD SLoW+FC
w =50 55.58+0.33 57.53+0.18 75.24+0.30  78.74+0.15
w=100 62.09+0.30 63.74+0.19 76.34+0.26  79.33+0.07
w=200 65.97+0.21 67.2940.13 76.67+0.24  79.81+0.04

The results derived for texture classification agported in
Table Xll. As can be seen, the performances derivgdg
BoW [64], SPM [38], SLoW and SLoW+SPM are closeisTh
finding is similar to that obtained in Section VI4evertheless,
the SLoW+VLAD descriptor outperformed all its coergarts
even if VLAD [32] did not perform well. Also, theL8W and
FC descriptors are complementary. The joint useheke
descriptors performed better than that they didviddally.

UC Merced Land Use The experimental setup of the land
use image classification was introduced in Sectld®. Table
XIll shows the results obtained for land use image
classification [73]. Compared with the results shaw Table
Xl, the deep convolutional word based descript@gqmed
much better. As can be seen, the SLoW descriptdonpeed
better than BoW [64] and SPM [38] when differentmhers of
words were used and performed better than FC @§igvords.
However, the most obvious finding is that the perfances of
SPM, VLAD and FC were boosted when combined witb\&L
Besides, SLoW+VLAD outperformed all its counterpart

Caltech256TheCaltech256dataset [25] contains 256 object
classes and one background class. In total, 30r6ages are
contained in this dataset. Following the setup Siatonyan
and Zisserman [63] used, we randomly split eacbsdlato the
training and test sets. In terms of each classmé@®es were
included in the training set while the remainingages were
put into the test set. Three different splittingrevéested. The
average classification rate (%) calculated acriossd splitting
was used as the performance metric. Instead odatiig the
FC features using multiple scales [63], we onlyduske
original image resolution. In Table XIV, we repthe results
generated by the SLoW descriptors and four basellhean be
observed that the SLoW descriptor outpferformed Bowhe
same condition. With the joint use of SLoW, thefpenances
of SPM and FC can be boosted. The best performasmse
derived using SLoW+FC when 200 deep words were.used

To examine the impact of the kernel functions ofVgWve
performed two experiments. First, we conducted-gedrch [1]
on the parameters of the linear and RBF kernelsgu3ifold
cross-validation. We randomly selected 60 imaga® feach of
the first 100 classes of tl@altech256dataset [25]. The results

images. In total, 68WIUC images were used. These image§howed that did not affect the accuracy whiedid matter

were randomly divided into two equal-sized groupse group
was used as training images while the other groap weed as
test images. This operation was repeated for temiruorder to
produce different splitting. The average classtimarate (%)
computed across the ten runs was used as perfoemasgsure.

when the RBF kernel was used. The parameters wiglttie
best result were selected. Specifically= 4096 andr =

4096 were selected for the RBF kernel whie= 2 was
selected for the linear kernel. The classificaggperiment was
then conducted using these parameters and thagfiaiet. The
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TABLE XVII
THE AGREEMENT RATES%) DERIVED USING TWO BASELINES AND
SLOW-BASED DESCRIPTORS FOR PARF-PAIRS COMPARISON17]

DESC Bow SPM VLAD FC [45] [70] [72] DESC BoW (LBP) SPM SLoWw  SLoW+SPM
w=50 0.356 0.390 0.605 AR (%) 55.3 55.1 57.9 57.9
w=100 0417 0.441 0.620 0.419 0.649 0.466 0.657
w=20C 044 0475 0.65¢ TABLE XVIII
DESC SLoW SLoW+SPM  SLoW+VLAD  SLoW+FC THE AVERAGE CLASSIFICATION RATEY%) AND CORRESPONDING STANDARD
w=50 0.413 0.404 0.602 0.451 DEVIATIONS OBTAINED USING TWO BASELINES ANDSLOW-BASED
w=100 | 0.470 0.461 0.621 0.476 DESCRIPTORS FORERTEX[12] TEXTURE CLASSIFICATION
w=200 0.507 0.495 0.657 0.493 DESC _ BoW (LBP) SFM SLow SLoW+SPN
1 88.68+1.94  84.82+1.76 91.59+1.08 93.65+1.47
TABLE XVI 6 85.88+0.47 81.47+0.72 90.30+0.46 93.09+0.36

THE MEAN AVERAGE PRECISIONMAP) DERIVED USING FOUR BASELINES AND
FOURSLOW BASED DESCRIPTORS FORARIS 6K IMAGE RETRIEVAL [54]

DESC Bow SPM VLAD FC [45]
w=50 0.446 0.459 0.638
w =100 0.517 0.513 0.665 0.641 0.694
w = 20( 0.56( 0.55¢ 0.66¢

DESC SLoW SLoW+SPM SLoW+VLAD SLoW+FC
w=50 0.493 0.482 0.641 0.657

w =100 0.554 0.538 0.669 0.668

w =200 0.603 0.584 0.681 0.680

average classification rates obtained using thekevoels were
79.29+0.18 and 79.29+0.17 respectively. These tesubgest
that the choice of the linear kernel is reasonabB&rond, we
performed image classification using the lineankeand full
dataset with the fout (C € {0.1,1,10,100}) values that

The number of test images was set as 1 and 6.

TABLE XIX
THE AVERAGE CLASSIFICATION RATEY %) AND STANDARD DEVIATIONS
DERIVED USING TWO BASELINES ANDSLOW-BASED DESCRIPTORS FOR LAND
USE IMAGE CLASSIFICATION[73]
BoW (LBP) SPM SLoW SLoW+SPM
65.12+0.37  70.25+0.66 70.80+0.52 73.50+0.50

DESC
CR (%)

results (see Tables XV and XVI). When t@aford 5K[53]
dataset was used, our best result was better tlhasqual to,
those reported in [45], [70], [72]. While the besrrformance
that our methods produced on tRaris 6K [54] dataset was
slightly worse than that N@t al [45] reported, they used
different strategies to learn words. First, thesized images to
224x224 pixels before feeding these to CNN whileused the

Cimpoiet al [10] used. The classification rates derived usingriginal image size. Second, they used all conimhat layers
the fourC values were 75.43+0.57, 79.21+0.13, 79.22+0.1%, extract local features. In contrast, we onlydusiee last

and 79.23£0.16 respectively. It is shown that thisreot a
significant difference in the performance when thgalue
exceeds 1. In this context, the defallalue: 10 is proper.
2) Image Retrieval

convolutional layer. However, this study aims t@esne the
importance of contour cues to word-based desceptather
than yielding state-of-the-art results on variouastadets.
Therefore, we ignored the strategies thatellgl.[45] used.

We also tested the SLoW descriptor and its combined

variants in the scenario of image retrieval. Speallfy, the

LBP-Based SLoW

Oxford 5K[53] andParis 6K[54] datasets were used. For each We further test SLoW descriptors using LBP codeg].[4

dataset, a total of 55 queries were performed.skuplicity,

none of the bounding boxes provided with the désasere
used. The mean average precision (mAP) was usegasure
the performance of image retrieval. Given a quergge, the
ranking between this image and other images wasuoted
using the histogram intersection [65] aBdclidian distances

for histogram and non-histogram based descriptssactively.

Instead of using the combination scheme introdilcekction
IlI-E, we combined the distances computed usingdifferent

Since the codebook that LBP uses is obtained iiffareht
manner from the learnt word dictionary, the VLADsdgptor

[32] is not applicable. The BoW (i.e. the LBP hiptam [47])

and SPM [38] descriptors were used as baselines. L'BP
code map was used to compute BoW, SPM, SLoW and
SLoW+SPM descriptors. These descriptors were tegted
pair-of-pairs comparison [17], texture classifioatiand land
use image classification [73]. The experimentalgstwere
introduced in Sections 1V-B, V-A and V-B respective

descriptors when SLoW+SPM, SLow+VLAD and SLow+FC The results obtained in the three tasks are repant&ables
were considered. To be exact, let the two distabeesenoted XVII, XVIII and XIX respectively. It can be seenah(1) the

asd, andd,, the combined distaneéwas calculated as:

d="d"+d,". (1)

In the two retrieval experiments,= 4 was used.
Tables XV and XVI report the results derived usihg

use of spatial pyramid matching did not boost tadgymance
of LBP [47] in pair-of-pairs comparison [17] andxtere
classsfication while it did in land use image difasation [73];
(2) the SLoW descriptor outperformed both BoW armvS
[38]; and (3) the performance of SPM was boostedrwh

Oxford 5K[53] andParis 6K[54] datasets respectively. As cancombined with SLow.

be seen, the performance of the SLoW descriptorsuperior

to those of Bow and SPM. The joint use of the SLoW

descriptor improved the performance of the SPM, YaLand

FC descriptors in most cases. However, the FC igescidid

not generate stable results over the two datasets.
Furthermore, we compared our results with statdrefart

E. Summary

In this section, we examined SLoW-based descripisiisg
different forms of words learnt from image patcf@&s], SIFT
features [42] and deep convolutional features [kDaddition,
LBP codes [47] were considered as a special typeoods and
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were also used with SLoW. It was shown that the \8Lo resolution. Also, the best performance was normddyived

descriptor outperformed both the BoW [64] and SP38][
descriptors in all the experiments except textlassification
conducted in Sections V-A and V-C. In addition, tBeoW
descriptor complemented the SPM [38], VLAD [32] atekp
fully-connected (FC) descriptors [10] and improvéukir
performance. We attribute the promising resulthéofact that
the SLoW descriptor explores the spatial layoutwafrds
encoded in the important visual cues: contours. Ol
knowledge, this global characteristic has not batlised by
other word-based descriptors. (Arandjelovic and&isan [3],
Bai et al. [5] and Wanget al. [69] only used local contour
characteristics). It is noteworthy that SPM [38]rfpemed
worse than BoW [64] in both texture classificatexperiments
either. Since texture is normally regarded as hanogs, the
use of spatial pyramids may yield an “average éffetich
impairs the discriminatory power of the descripfis is also
the case when SLoW is applied to texture classifinebecause
IWSCM features are computed as the average shape da

VI.

Motivated by the importance of contour cues to huwiaual
perception of imagery, we proposed a global imaggedptor
by exploiting the spatial layout of words encodethie form of
contours. We refer to this descriptor as “Spatiaydut of
Words” or “SLoW”. We tested the SLoW descriptor etizer
with different types of words, including contonsxtons, SIFT
words, deep convolutional words and LBP codes. Goetp
with the bag-of-words (BoW) descriptor, the SLoWscléptor
encodes both short-range image characteristicg wsinds and
the medium-range and long-range image structupgrimdtion
by computing the spatial layout of words within teeame
contour and without regard to contours. More imauaity, it
exploits the important visual cues: contours. Ty of global
structure information has not been exploited in #xésting
studies that aim to boost the BoW descriptor byiiporating
the spatial information. Besides, the aforementiostoW
features were combined with Spatial Pyramid Matgl{BPM)

CONCLUSIONS ANDFUTURE WORK

and Vector of Locally Aggregated Descriptors (VLAD)

features in order to incorporate the spatial layafutords into
these features. Correspondingly, the combined ii¢srs were
termed as “SLoW+SPM” and “SLoW+VLAD”.

The SLoW-based descriptors were tested in different

applications along with baselines. Experimentaliteshowed
that the SLoW descriptor outperformed both BowW SRdM in
most cases. This descriptor also improved the pegoce of

SPM and VLAD when combined with each of these
descriptors. Moreover, the performance of the deq@z]
fully-connected (FC) descriptor was boosted wheredus

together with SLoW. We attribute these promisirguits to the
fact that the SLoW descriptor performs in a moneggtually
consistent manner than its counterparts examinéusgrstudy.
It is noteworthy that the dimensionality of the SUdeature
vectors is high when multiple spatial pyramids ased. This
decreases the computational speed and increaseoryne
requirements. In contrast, the use of SLoW+VLADaliggor
is more practical because it only uses the originsge

st

using SLoW+VLAD where it is applicable.

Since the SLoW descriptor is computed based orocositit
may not perform well in the case that contours oarire
extracted. In this situation, the graph-based apaglationship
[43] may be considered instead of the contour-bases In
future work, therefore, we intend to model the Epéayout of
words using the graph-based representation. Hoywtemost
important point is that the current work has shdta spatial
layout of words encoded in the form of contours baast the
performance of traditional visual word based imdggcriptors.
This may lead to a potential direction for imprayiother
word-based descriptors. In addition, the CNN trdirie an
end-to-end manner has shown superiority to thetrpieed
CNN in the literature. Hence, we will explore thaspibility of
end-to-end training a CNN with the SLoW descriptofuture.
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