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Abstract—Although researchers have made efforts to use the 

spatial information of visual words to obtain better image 
representations, none of the studies take contour cues into 
account. Meanwhile, it has been shown that contour cues are 
important to the perception of imagery in the literature. Inspired 
by these studies, we propose to use the Spatial Layout of Words 
(SLoW) to boost visual word based image descriptors by 
exploiting contour cues. Essentially, the SLoW descriptor utilises 
contours and incorporates different types of commonly used 
visual words, including hand-crafted basic contour elements 
(referred to as “contons”), textons and Scale-Invariant Feature 
Transform (SIFT) words, deep convolutional words and a special 
type of words: LBP (Local Binary Pattern) codes. Moreover, 
SLoW features are combined with Spatial Pyramid Matching 
(SPM) or Vector of Locally Aggregated Descriptors (VLAD) 
features. The SLoW descriptor and its combined versions are 
tested in different tasks. Our results show that they are superior 
to, or at least comparable to, their counterparts examined in this 
study. In particular, the joint use of the SLoW descriptor boosts 
the performance of the SPM and VLAD descriptors. We attribute 
these results to the fact that contour cues are important to human 
visual perception and, the SLoW descriptor captures not only 
local image characteristics but also the global spatial layout of 
these characteristics in a more perceptually consistent way than 
its counterparts. 

 
Index Terms—Visual words, contours, image descriptors, 

image features, spatial layout 

I. INTRODUCTION 

AG-of-Words (BoW) [39], [64], [67] has been one of the 
most known image descriptors since firstly introduced in 

1999 [39]. However, BoW descriptors are “orderless” because 
they discard the spatial layout of words [38]. In fact to humans, 
an image is a meaningful arrangement of local regions and 
objects rather than only a random mixture of pixels or regions 
[39]. In a user study, Dong and Chantler [17] showed that 
human observers tend not to recognise textures when their 
spatial layouts are scrambled. In addition, Sharan et al. [62] 
found that human observers cannot effectively recognise 
material categories from locally-ordered but globally-orderless 
images. These studies reveal the importance of modelling 
global image layout to the perception of images. 
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It is known that aperiodic image structure data is retained in 
global higher order statistics (HOS), e.g. the phase spectrum, 
rather than the power spectrum [48-49]. Dong et al. [17], [19] 
surveyed 51 texture descriptors and concluded that they only 
compute HOS on small spatial extent (≤19×19 pixels), if at all 
(some only utilise the power spectrum). Unfortunately, global 
phase information is difficult to use due to the phase 
unwrapping issue [75]. It should be noted that Fourier phase 
congruency [35] within local image regions does not provide 
this kind of global phase information [55]. The encoding of the 
phase data cannot be a local process if it is to be used to capture 
globally coherent structure. Instead, the relationship between 
the local characteristics in one image region and those in nearby 
or even faraway regions needs to be exploited [55]. 
Accordingly, encoding local spatial data into words [36], [44], 
[59] and modelling global spatial layout of words [7], [34], 
[38], [58], [73] have been exploited in order to alleviate the 
“orderlessness” issue that BoW [64] descriptors encounter. 
Nevertheless, none of these methods take contour cues into 
account. In essence, this type of data mainly considers the 
global layout of local characteristics across different spatial 
locations and is useful for image discrimination based on the 
global spatial structure [55]. 

In this situation, the exploitation of the contour cues in 
images provides a possible solution to encoding global spatial 
layouts [26-27], [55]. It has been highlighted in the literature 
[15], [18], [23], [51], [68] that contour cues are important to 
human visual perception of imagery. Dong and Chanter [18] 
examined the importance of contour cues to texture perception. 
On the basis of contours, they proposed a descriptor, namely, 
Perceptually Motivated Image Features (PMIF). However, 
three problems are still remained: (1) PMIF cannot represent 
small contours well; (2) PMIF cannot encode an image which 
does not contain the obvious structure; and (3) the longer-range 
spatial relationship across contours should be exploited. 

Motivated by the studies mentioned above, we introduce a 
new global image descriptor (see Fig. 1 for pipeline), which 
exploits the spatial layout of words (referred to as “SLoW”). 
Compared with BoW descriptors [39], [64], [67], this 
descriptor captures the global spatial layout by encoding the 
spatial relationship between words both within the same 
contour and without regard to contours. To our knowledge, this 
mechanism has not been addressed in the studies [7], [34], [36], 
[38], [44], [58-59], [73] of incorporating the spatial data into 
BoW descriptors. The SLoW descriptor exploits HOS over 
longer ranges compared to the methods [36], [44], [59] that 
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encode the local spatial data into words, and utilises more 
perceptually consistent information than that the approaches 
[34], [58], [73] modelling other types of spatial layouts of 
words use via encoding the shape of contours. 

We first test the SLoW descriptor together with the basic 
contour elements: contons learnt from contour maps. Then, we 
examine this descriptor along with different types of commonly 
used visual words, including textons [67], SIFT words [42], 
deep convolutional words [10] and a special type of words: 
LBP codes [47]. In addition, the SLoW descriptor is combined 
with the SPM (Spatial Pyramid Matching) [38] or VLAD 
(Vector of Locally Aggregated Descriptors) [32] descriptors in 
order to exploit the merits of both SLoW and SPM or VLAD.  

The contributions of this paper are: (1) the definition and 
utilisation of “contons”; (2) the proposal of the SLoW 
descriptor by exploiting contour cues; and (3) the indication of 
the importance of the spatial layout of words exploiting contour 
cues to visual word based image descriptors. The remainder of 
this paper is organised as follows. The next section investigates 
the related work. We then describe the SLoW descriptor and its 
combined versions in Section III. In Sections IV and V, we test 
SLoW in different tasks using contons and the other types of 
words, respectively. Conclusions are drawn in Section VI.  

II. RELATED WORK 

A. Bag-of-Words (BoW) Image Descriptors 

Leung and Malik [39] originally applied the bag-of-words 
(“textons”) descriptor to texture recognition. Normally, BoW 
descriptors are computed in three stages. First, local features 
[6], [10], [14], [42], [50], [67], [70], [72] are extracted from 
images. Second, a word dictionary is learnt from a subset of 
these features. Third, either vector quantisation [39], [64], [67] 
or soft assignment [56], [71], [74] is used to map the local 
features to a “bag” of word labels. A histogram is finally 
accumulated from the occurrence frequencies of these labels. In 
addition, the local binary pattern (LBP) methods [47] can be 
considered as a type of BoW descriptors. However, the 
descriptors mentioned above discard the spatial layout of local 

features (encoded by words) and are “orderless” [38]. 

B. Merging the Spatial Information into BoW 

Merging the spatial information into BoW approaches has 
been used to boost their performance. These studies can be 
divided into two categories (or the hybrid of these [28]): 
encoding local spatial information into words [36], [44], [59] 
and modelling global spatial layout of words [7], [38], [58], 
[73]. The methods of the former category normally use the 
descriptors which encode local spatial information, such as 
spatial mean and variance of local image regions [36] and pairs 
of spatially close SIFT (Scale-Invariant Feature Transform) 
features [44]. However, these methods do not exploit the global 
spatial relationship between words and their histogram based 
feature vectors are still “orderless”. 

In terms of the approaches in the second category, they 
encode the global spatial layout of words using the spatial 
partitioning [7], [38] of images or the spatial relationship 
between words [58], [73]. However, the latter has been given 
less attention. This may be due to the high computational cost. 
Hence, some methods put their emphasis on reducing the size 
of word dictionaries [60] or accelerating computational speed 
[41]. Nevertheless, these methods only capture the relatively 
local spatial relationship between words. In this context, the 
global spatial layout cannot be modelled. Khan et al. [34] used 
the orientation of word pairs to encode intra-word spatial layout 
in longer range but they ignored the distances between words. 

To summarise, none of the image descriptors reviewed above 
take contour cues into account. It is also the case for spatial 
verification techniques [53], [64] which were used to check the 
geometrical consistency between two images. Nevertheless, 
contours are normally comprised of the global structure of 
images. Thus, the spatial layout of words exploiting contours is 
important to global image structure discrimination [55]. 

C. Contour-Based Image Descriptors 

Contour-based shape descriptors [76] normally encode only 
a single contour without considering the spatial relationship 
between contours. Although the bag-of-contour fragments 

 
Fig. 1. The two pipelines (shown in red dash and blue solid entities) of the computations of the conton-based and word-based SLoW descriptors respectively. 
Contons are learnt from the image patches sampled from the contour map while other types of visual words are learnt from the local features extracted from the 
original image, e.g. raw image patches [67], SIFT [42] and deep convolutional features [10]. Note that  k-means clustering and vector quantisation are replaced by
the LBP [47] computation and the dictionary is replaced by an LBP codebook when LBP codes [47] are used. Please refer to Figs. 5 and 6 for details of the 
computation of IWSCM (Intra-word Shape Context Matrices) and IWODCM (Intra-word Orientation and Distance Co-occurrence Matrices). 
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(BCF) [5], [69] and bag-of-boundaries (BoB) descriptors [3] 
were successfully used for shape recognition or object retrieval, 
the histogram features are “orderless”. The above descriptors 
are thus not suitable for capturing the complicated structure 
information encoded in the contour map of natural images. 
Ferrari et al. [22] and Lim et al. [40] learnt different basic 
contour element sets. However, these elements often contain 
more than one segment and thereby cannot be used to represent 
the shape of a single contour. Compared with the PMIF 
descriptor [18] based on contours, this paper addresses its open 
issues by representing local contour segments in a more 
powerful way via conton learning, and modelling the global 
spatial layout of words in longer ranges. 

Contour features were also applied to image registration. Ni 
et al. [46] introduced a two-stage registration scheme: a coarse 
registration was first conducted based on the contour matching 
method, and in the second stage, a fine registration was 
performed using SIFT [42] and a local matching scheme. 
Differing from the direct use of contours in [46], we introduce 
an image descriptor by incorporating contour cues into various 
visual word based descriptors, encoding the words learnt from 
image patches [67], SIFT features [42], deep convolutional 
features [10], LBP codes [47], etc. 

III.  THE SPATIAL LAYOUT OF WORDS (SLOW) DESCRIPTOR 

Inspired by the importance of contour cues to human visual 
perception of imagery [15], [18], [23], [51], [68], we introduce 
a global image descriptor (see Fig. 1 for pipeline) which 
exploits the spatial layout of words (SLoW) based on contours. 
First, a contour map is derived from the image in order to model 
the spatial layout of words. Second, we learn a set of visual 
words, including contons, textons [67], SIFT words [42] and 
deep convolutional words [10], from their corresponding local 
features. In addition, LBP codes [47] are regarded as a special 
set of words. Third, the spatial layout of those words is 
modelled via encoding their spatial relationship both within the 
same contour and without regard to contours. We also combine 
the SLoW descriptor with other descriptors in order to boost 
their performance. 

A. Obtaining Contour Maps 

Since we intend to show the importance of contour cues to 
representation of the spatial layout of words rather than 
comparing different contour detectors, we only use the Canny 
edge detector [8] to obtain edge maps. For purposes of deleting 
redundant pixels but keeping continuous edges, erosion 
operations [24] are applied to the edge map. The derived 
contour skeleton maps (see Fig. 2) are used instead of edge 
maps. For simplicity, the term “contour map” is used to refer to 
the skeleton map. Considering the fact that contour branches 
make contour representation more complicated, we locate all 
branch points and break each involved contour into a set of 
contours through removing these points. By performing 
connected component labelling and applying the 
Moore-Neighbour tracing algorithm [24], each contour is 
traversed from end to end, to derive the exterior boundary 
sequence of the contour. The traversing sequence of a contour 

is finally derived from the boundary sequence [18]. 

B. Deriving a Bag of Words 

Visual words are normally learnt from hand-crafted local 
features [6], [14], [42], [67]. However, the advantage of visual 
words learnt from deep convolutional features over traditional 
ones has been addressed [10], [72]. We hence use contour 
image patches, original image patches [67], SIFT features [42] 
and deep convolutional features [10] to learn corresponding 
visual words, i.e. contons, textons, SIFT words and deep words. 
1) Extracting Local Features 

Using Contour Image Patches We learn a set of basic 
contour elements from contour image patches to represent their 
local shape characteristics. These basic contour elements are 
referred to as “contons”, in a similar fashion to “textons” [39], 
[67]. Contons can be regarded as the words learnt from contour 
maps. In human vision science, it is known that human 
observers can perceive a contour which comprises a set of 
disjointed collinear line segments with a blank background [15] 
or a set of collinear Gabor elements from a randomly placed 
Gabor elements field [23]. The strong representation power of 
image patches has also been shown in computer vision [67] 
since they encode richer local characteristics than the features 
extracted from these patches. 

Inspired by these findings, we represent a contour segment 
using its surrounding image patch whose centre locates at the 
middle point of the segment (see Fig. 3), i.e. a contour image 
patch. The contour image patch retains the original local shape 
information. It is noteworthy that only a single contour is 
considered at a time. In other words, we separate each contour 
from all other contours when it is processed. As a result, we 
eliminate the influence of other contours on the representation 
of the current contour. We collinearly sample image patches 
(see Fig. 3) as this reduces the number of samples used for 
learning contons but introduces fewer variations of image 
patches, compared with sampling in the raster-scan order. Also, 
the central point of a patch sampled using our strategy can be 
used to approximate the position of the segment contained in 
this patch. This approximation is useful for describing the 
shape of the contour from which image patches are sampled. 

The width � of contour image patches was set as 5, 7, or 9 
pixels in this study. The reasons for using small patches are that 

Fig. 2. A land use image [73] and its contour (skeleton) map. 
 

Fig. 3. Sampling of local contour image patches collinearly. 
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(1) we intend to encode basic local shape characteristics rather 
than global shape information using contons; (2) the 
computational speed of k-means clustering is faster when it is 
used along with small image patches to learn contons; and (3) 
the size of the reasonable conton dictionary learnt using small 
patches is smaller than that learnt using large patches because 
the variation of the shapes in the former is fewer than that in the 
latter. This reduces the dimensionality of final feature vectors. 

Using Original Image Patches and SIFT Features It has 
been shown that textons learnt from original image patches 
outperformed those learnt from filter responses in the scenario 
of texture classification [67]. In addition, SIFT [42] features 
have been widely used to learn visual words for various 
computer vision applications. Therefore, we examined both 
types of words together with the SLoW descriptor in this study. 
The local image patches [67] and SIFT features [42] are 
densely extracted from original images in order to learn textons 
and SIFT words respectively. However, only a random subset 
of the features extracted from a dataset is used. 

Using Deep Convolutional Features Deep convolutional 
features are extracted using a pre-trained CNN model [9], [31], 
[63], [66], [77]. We use the approach that Cimpoi et al. [10] 
proposed. An image is first resized into six different images at 
the scales: 2�  (� ∈  {-2, -1.5, -1, -0.5, 0, 0.5}). Then, each 
resized image is subtracted by the average colour of the training 
dataset and sent to CNN. In total, � feature maps are obtained at 
the last convolutional layer. Given a location in the feature 
maps, a �-D feature vector is derived. Next, the location of the 
features computed at different scales is mapped to the original 
image. Finally, 64-D feature vectors are generated by applying 
the ��  normalisation, PCA, whitening and a second �� 
normalisation to the �-D feature vectors in turn. 
2) Learning a Word Dictionary 

Given that � feature vectors are extracted and represented as 
	
 (� = 1,2…�), k-means is used to convert 	
 from the feature 
space � to the dictionary space � (see Equation (1)), in which 
each feature vector is labelled by a word �� (� = 1,2…�). 

� = �	�, 	�, … 	��
��������     ! � = ���, ��, … �"�. (1) 

The words learnt using local contour image patches, original 
image patches, SIFT features and deep convolutional features 
are termed as contons (see Fig. 4), textons, SIFT words and 
deep convolutional words respectively. Compared to textons, 
SIFT words and deep convolutional words, contons are more 
suitable for sketch-based image retrieval [20] where query 
images only contain sketches. 
3) Quantising the Local Features 

Different strategies [64], [71], [74] can be used to map local 
features into the word space. Since we are more interested in 
examining the importance of contour cues to the encoding of 
the spatial layout of words than investigating different mapping 
strategies, only vector quantisation (VQ) [64] is applied. Given 
a dictionary � which comprises � words, each feature vector 
	
 is compared with every word in � and is assigned the label � 
(� ∈ �1,2, …��) of the word which lies closest to the feature 
vector in the space �. This process is described as: 

#$	
% = &'()�*+,∈-.	
 − ��.�, (2) 

where #$	
% is the quantisation function of the feature vector 	
 
and �� is a word in the dictionary �. After VQ is complete, each 
feature vector is assigned a word label and its position is 
described by the location of the central point of the image 
region from which this feature vector is extracted. 

C. Deriving a Bag of LBP Codes 

The LBP descriptor [47] uses a predefined codebook to 
quantise local binary patterns (LBP) into a set of codes. The 
LBP with a circular neighbourhood is defined as: 

�012,3 =	∑ 67'� −	'892�2���:; , (3) 

where '8  is the grey level value of the central pixel in a 
neighbourhood, '�$< = 0, 1, … 1 − 1% stands for the grey level 
values of 1 evenly spaced pixels on a circle of the radius R (R > 

0), and 6$>% = ?1, > ≥ 0
0, > < 0. Furthermore, the idea of “uniform” 

was suggested and the grey-scale and rotation invariant 
description �012,3B
C� was proposed as 

�012,3B
C� = D∑ 67'� −	'89	2���:; , ��	E7�012,39 	≤ 2
1 + 1, H6ℎ<'���< , (4) 

where E7�012,39 = J67'��� − '89 − 67'; −	'89J + ∑2���:�  

J67'� − '89	− 	67'��� − '89J. We use �012,3B
C� to compute LBP 
codes. These codes are considered as a special form of words. 

D. Encoding the Spatial Layout of Words 

In the case that LBP is used for word generation, each pixel 
location is assigned an LBP code. In other cases, the pixel 
location from which a local feature vector is extracted is 
labelled using a word based on VQ. Due to the importance of 
contours to perception of imagery [15], [18], [23], [51], [68], 
we encode the spatial layout of words (including LBP codes) by 
considering their spatial relationship within the same contour. 
We also compute the spatial relationship between words 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. The contons learnt from different datasets: (a) the 5×5 (top), 7×7 
(middle) and 9×9 (bottom) contons learnt from the SBIR dataset [20]; (b) the 
5×5 contons learnt from the Pertex [12] dataset; and (c) the 5×5 contons learnt 
from the JAFFE dataset [61]. In each group, 50 contons are shown. 
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without regard to contours to explore the spatial layout of 
words across contours. 
1) Modelling the Spatial Layout of Words within the Same 
Contour 

The orientation and position of point pairs on a contour are 
important for describing its shape [6]. We represent the shape 
characteristics of a contour by encoding the co-occurrence of 
the orientation and position of word pairs on this contour. The 
shape context descriptor [6] was designed to capture this type 
of information. This descriptor computes an K × M  shape 
context matrix (K angle bins and M log distance bins) at each 
reference point of a contour, encoding the spatial relationship 
with other reference points. The matching of two contours thus 
becomes the matching of two series of shape context matrices 
computed from two reference point sets respectively. When 
long contours are processed, however, the number of reference 
points required increases. As a result, the computational cost of 
matching becomes heavy. 

Given a word dictionary learnt from an image dataset, all 
contour points in a contour map are labelled using words while 
the non-contour points are ignored. For a contour and a word, 
we only compute shape contexts from the points labelled by 
this word. To be specific, we compute a shape context matrix 
(SCM) of the points in terms of each word and obtain � 
(number of words) individual K × M shape context matrices for 
a contour in total. It should be noted that the distance bins are 
quantised across all the points (which may be labelled by 
different words) rather than only the points labelled by the 
current word on the contour. Fig. 5 shows the computation of 
the shape context matrices. The � shape context matrices are 
concatenated into an K × M × �  intra-word shape context 
matrix. The merits of this method include that (1) it reduces the 
computational cost compared with the computation between 
any pairs of reference points; and (2) it avoids the matching of 
different reference points as we use a unified word dictionary 
for all contour points throughout the dataset. In order to further 
accelerate the computational speed, contour points can be 
sampled in an interval of several points. 

Furthermore, we use � bins of the corresponding BoW [64] 
histogram to weight the intra-word shape context matrix in 
order to retain the occurrence frequency information of words. 
Given an K × M × �  intra-word shape context matrix 
computed from a contour, each K × M sub-matrix is denoted as 
N�O�  ( � ∈ �1,2, …�� ). Meantime, each bin of the BoW 
histogram computed from the same contour is labelled as 
0PQR�. Each weight S� is computed using the formula below: 

S� = 0PQR�/∑ ∑ N�O�UV , � ∈ �1,2, …��. (5) 

Then S� is multiplied by N�O� to fulfill the weighting. 
A weighted intra-word shape context matrix is calculated for 

each individual contour. All matrices are �� normalised to [0,1] 
separately as different contours may have different lengths. 
Intuitively, this descriptor encodes the intra-word orientation 
and position co-occurrences on a contour. It can also be 
regarded as �  co-occurrence matrices of the same word at 
K × M different displacements. However, the neighbourhoods 
used here are contours rather than the square image regions that 
Haralick et al. [29] used. Finally, the mean of all normalised 
weighted intra-word shape context matrices is computed, 
which is referred to as “IWSCM”, to obtain an average shape 
representation of all the contours extracted from an image. 

It should be noted that Bai et al. [5] and Wang et al. [69] used 
shape context [6] to model local contour segments. However, 
they ignored the spatial relationship between segments. In 
contrast, we use shape context [6] to describe the global spatial 
layout of visual words. Therefore, the descriptors that Bai et al. 
[5] and Wang et al. [69] proposed are “orderless” local 
descriptors while the IWSCM descriptor is a global one. 
2) Capturing the Spatial Layout of Words without regard to 
Contours 

The spatial relationship between the words across different 
contours is also important. In addition, the spatial relationship 
between contours and background (non-contour) regions is 
useful for many tasks, for example, scene recognition and 
classification, when original images are used. However, it is 
challenging to model these types of spatial relationship due to 
the irregular shape of contours. Hence, we consider the spatial 
relationship between words without considering contours. 
Contour points are only used when contons are applied while 
both contour and non-contour points are used when the other 
types of words are utilised. We calculated the co-occurrence of 
the orientation and position of word pairs instead of describing 
the shape of contours. We only encode the spatial relationship 
between word pairs labelled by the same word to reduce the 
computational cost. The other computation, quantisation and 
weighting operations involved are the same as those used in the 
previous subsection. An K × M × �  weighted intra-word 
orientation and distance co-occurrence matrix (referred to as 
“IWODCM”) is finally obtained (see Fig. 6 for more details). 

It is noteworthy that distance bins are computed across the 
positions of all words rather than those of the current word to 
obtain a global representation. To reduce the computational 
cost, only a subset of the positions is used. Different sampling 

 
Fig. 5. Computation of shape context matrices (SCMs) for the words: �� and 
�� on the same contour. Noted that circles are drawn to show the points used 
for computing shape contexts rather than indicating the regions involved. 

 

 
Fig. 6. Computation of the orientation and distance co-occurrence matrices
(ODCMs) for the words: �� and ��. Note that circles are drawn to show the 
points used for computing ODCMs rather than indicating the regions required. 
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strategies may be considered, such as using a fixed number or 
ratio of positions for all words. When the words except contons 
and deep visual words are utilised, we use a fixed ratio (20%) of 
points for all words. In contrast, when contons are used, the 
rough shape of each contour needs to be retained as only 
contour points are considered while the background is blank. In 
this case, the sampling strategies above may be inaccurate as 
the optimal number of contons is unknown; while the use of a 
fixed ratio of contours is not suitable either because contours 
cannot be detected accurately. We sample contour image 
patches in an interval of five points collinearly. This reduces the 
number of sampled contour image patches to approximately 
20% but the rough shape of contours is retained. In contrast, 
smaller intervals will enhance the number of sampled image 
patches which increases the computational cost of dictionary 
learning while larger intervals cannot retain the shape of 
contours. 
3) Generating SLoW Feature Vectors 

Considering the advantages of Spatial Pyramid Matching 
(SPM) [38], different levels (�) of spatial pyramids can be 
applied to the IWSCM and IWODCM descriptors. On each 
level of the pyramids, the IWSCM and IWODCM features are 
separately extracted and weighted in the same way as that 
Lazebnik et al. [38] proposed. The IWSCM or IWODCM 
features extracted at all pyramid levels are concatenated into a 
feature vector. The IWSCM and IWODCM feature vectors are 
first ��  normalised to [0,1] and then concatenated into an 
individual feature vector. This feature vector is referred to as 
the “SLoW” (Spatial Layout of Words) descriptor, which 
encodes both the average spatial layout of words computed 
within the same contour and the spatial layout of words 
calculated without regard to contours. Therefore, the SLoW 
descriptor exploits short-range, medium-range and long-range 
image characteristics in terms of the exploitations of local 
image regions, contours and images, respectively. 

E. Combining SLoW with other Descriptors 

The SLoW descriptor can be combined with other image 
descriptors in order to exploit the merits of these descriptors. In 
this subsection, we introduce three different combinations. 

When the SLoW descriptor is computed at multiple levels of 
spatial pyramids, the dimensionality of the feature vector is 
high (e.g. this value is K × M × � × 2 × 21 when � = 3). This 
limits the practical application of SLoW to a large dataset. In 
this situation, we combine the SLoW feature vector extracted at 
the original resolution (� = 1 ) with the SPM-based BoW 
feature vector (� = 3). This descriptor is named “SLoW+SPM”. 
Using this strategy, the dimensionality of the feature vector is 
reduced while the merit of SPM is retained. 

The VLAD [32] descriptor computed on the basis of the 
difference between words and local features has shown 
advantages over the traditional BoW [64] descriptor. Therefore, 
we also combine the SLoW (� = 1) with VLAD feature vectors 
to exploit this advantage. Correspondingly, this descriptor is 
referred to as “SLoW+VLAD”. 

When contons are used, the SLoW descriptor only utilises 
the contour data. Dong and Chanter [18] have shown that their 

contour-based descriptor can be boosted by incorporating the 
contrast data (if this is applicable). We are therefore inspired to 
combine the conton-based SLoW descriptor with a local 
variance measure XKY2,3 [47]. This measure is expressed as: 

XKY2,3 =	 �2∑ $(� − 	Z%�2���:; , Z = 	 �2∑ (�2���:; , (6) 

where (� denotes the grey values of 1 evenly spaced pixels on 
a circle of the radius Y (Y > 0). We use the multi-scale XKY2,3 
(“MSVAR”) with $1, Y% = $8,1%, $16,2%	&$24,3%. A 128-bin 
histogram is obtained at each scale. In total a 384-bin MSVAR 
histogram is derived. The MSVAR histogram is �� normalised 
and concatenated with conton-based SLoW features (� = 1). 
This descriptor is referred to as “SLoW+VAR”. 

IV.  EXPERIMENTS USING THE SLOW DESCRIPTOR BASED ON 

CONTONS 

In this section, we test the conton-based SLoW descriptor 
and the two combined descriptors: SLoW+SPM and 
SLoW+VLAD in four tasks. The first three tasks are a 
sketch-based image retrieval (SBIR) [20] and two perceptual 
texture similarity estimation applications [17], [19]. The 
reasons for using these tasks include: (1) the conton-based 
SLoW is particularly suitable for SBIR as only contour data is 
available with query images; (2) we intend to compare the 
conton-based SLoW with PMIF [18] in the perceptual texture 
similarity estimation tasks; and (3) the datasets used for the 
three tasks contain humans’ data, which can be used to validate 
the perceptual consistency for the SLoW descriptor and its 
combined versions. Due to the importance of the shape data to 
human face representation, we further apply these descriptors 
to a fourth task: human facial expression recognition [61]. 

We use the BoW [64], CCH (Chain Code Histogram) [31], 
SC (Shape Context) [6], PMIF [18], SPM [38] and VLAD [32] 
descriptors as baselines for each task. There may also be other 
baselines obtained from related publications. The SPM [38] and 
SLoW features are extracted from conton label maps with three 
spatial pyramid levels while the CCH [31], SC [6] and PMIF 
[18] features are computed from contour maps. Since the CCH 
and SC descriptors encode an individual contour, we first 
compute an �� normalised CCH or SC feature vector from each 
contour and then use the average of all the feature vectors 
computed from a contour map as the final feature vector. In 
addition, we learn a conton dictionary from human-drawn 
sketches [4] and examine its generality to different datasets. 

A. Sketch-Based Image Retrieval (SBIR) 

The method that Eitz et al. [20] proposed was used in this 
experiment. In total 31 human-drawn sketch maps were used as 

TABLE I 
KENDALL ’S CORRELATION COEFFICIENTS (_) CALCULATED BETWEEN 

COMPUTATIONAL AND HUMAN PERCEPTUAL RANKINGS 

DESC SHoG T&HOG CCH SC PMIF 

τ 0.277 [20] 0.223 [20] -0.014 -0.048 0.209 

DESC BoW SPM VLAD  SLoW SLoW+SPM SLoW+VLAD 

τ 0.178 0.263 0.203 0.295 0.269 0.228 

Values in bold are the highest τ in the table and our methods are always 
highlighted in grey (this continues in the following tables). 
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query images and 40 images were retrieved in terms of each 
query image. Humans’ rankings were used as the ground-truth 
data and Kendall’s correlation coefficient (` = 0.05) was used 
as the performance metric. Computational rankings were 
derived using each descriptor and histogram intersection [65]. 
We also used the top two best descriptors: SHoG and T&HOG 
that Eitz et al. [20] tested as baselines. The results obtained 
using eight baselines and three SLoW-based descriptors are 
shown in Table I. It can be observed that (1) both the SPM [38] 
and SLoW descriptors outperformed BoW; (2) SLoW+SPM 
and SLoW+VLAD performed better than SPM [38] and VLAD 
[32] respectively; and (3) the SLoW descriptor produced more 
consistent results with humans’ rankings than its counterparts 
(including two shape descriptors: CCH [31] and SC [6]). 

In the rest of this subsection, we further examine the 
SLoW-based descriptors in three different aspects. 
Neighbourhood Size Table II lists the τ values obtained using 
BoW [64], SPM [38], VLAD [32] and SLoW-based descriptors 
when three different neighbourhood sizes were used (K =
9, M = 6,	and � = 50). It can be seen that the SLoW descriptor 
always outperformed all its counterparts in the same conditions. 
In addition, SLoW+SPM and SLoW+VLAD performed better 
than SPM [38] and VLAD [32] respectively. 
Number of Contons Table III shows the τ values derived using 
BoW [64], SPM [38], VLAD [32] and SLoW-based descriptors 
when different numbers of contons were used (K = 9, M = 6 & 
� = 5). As can be seen, the SLoW descriptor outperformed all 
its counterparts in the same conditions while the SPM [38] and 
VLAD [32] descriptors performed worse than SLoW+SPM and 
SLoW+VLAD respectively. Although the performance of 
those descriptors using 100 contons may be slightly better than 

that obtained using 50 contons, we will examine SLoW using 
50 contons due to the lower feature dimensionality.  
Size of Angle and Distance Bins Table IV displays the τ 
values obtained using the SLoW descriptor when different 
numbers of angle and distance bins were used (� = 5 and 
� = 50 ). It can be seen that SLoW obtained its highest 
performance when nine angle and six distance bins were used. 

We therefore mainly examine the SLoW descriptor and its 
combined versions with the parameters: N	=	5, A	=	9, D	=	6 
and �	=	50 in the following experiments. 

B. Perceptual Texture Similarity Estimation 

Perceptual texture similarity estimation is key to different 
tasks, including measuring the perceived difference between 
textures and ranking a set of textures [18]. Dong et al. [17], [19] 
proposed two perceptual texture similarity estimation tasks: 
pair-of-pairs comparison and texture retrieval. In the former 
task, two pairs of textures are sent to the algorithm. The output 
is the decision on which pair is more similar. In the latter task, 
the algorithm needs to sort the other textures in the database 
according to their similarity to the query texture. Humans’ 
pair-of-pairs judgements (the left or right pair is more similar) 
[11] and texture rankings [19] derived from 334 Pertex textures 
[12] were used as ground-truth for the two tasks respectively. 

We used the agreement rate (%) to measure the consistency 
between the human perceptual and computational pair-of-pairs 
judgements in the pair-of-pairs comparison task [17]. When 
texture retrieval [19] was conducted, we compared the rankings 
of the human derived and computational retrievals using the g 

 
Fig. 7. The agreement rates (%) obtained using nine baselines and four SLoW
descriptors against a set of humans’ perceptual pair-of-pairs judgements [18]. 
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Fig. 8. The g measure values obtained using nine baselines and four SLoW
descriptors compared with human perceptual texture rankings [19]. 
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TABLE III 
KENDALL ’S CORRELATION COEFFICIENTS (_) DERIVED USING CONTON-BASED 

METHODS WITH DIFFERENT NUMBERS OF CONTONS (K = 9,M = 6	&	� = 5) 

DESC BoW SPM VLAD  

h 50 100 50 100 50 100 

τ 0.177 0.178 0.259 0.260 0.170 0.161 

DESC SLoW SLoW+SPM SLoW+VLAD 

h 50 100 50 100 50 100 

τ 0.294 0.295 0.260 0.269 0.198 0.190 

 

TABLE IV 
KENDALL ’ S CORRELATION COEFFICIENTS (_) OBTAINED USING SLOW WITH 

DIFFERENT ANGLE AND DISTANCE BINS (� = 5 &  � = 50) 

 
i 

1 3 6 12 18 

j 

9 0.252 0.251 0.294 0.289 0.288 

18 0.246 0.246 0.293 0.285 0.283 

36 0.240 0.239 0.282 0.271 0.271 

 

TABLE II 
KENDALL ’S CORRELATION COEFFICIENTS (_) OBTAINED USING SIX 

CONTON-BASED DESCRIPTORS AT DIFFERENT NEIGHBOURHOOD SIZES 

k 5 7 9 5 7 9 5 7 9 

DESC BoW SPM VLAD  

τ 0.177 0.177 0.168 0.259 0.259 0.263 0.170 0.194 0.203 

DESC SLoW SLoW+SPM SLoW+VLAD 

τ 0.294 0.289 0.283 0.260 0.262 0.259 0.198 0.212 0.228 
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measure (g ∈ [0, 1] ) [21]. We run this task for the top 
� ∈ �10,20,40,60�  retrieved textures. For the purpose of 
efficiency, all 334 texture images were down-sampled using 
Gaussian pyramid to the resolution of 512×512 pixels and only 
this resolution was used. (Five single pyramid levels and 
multi-pyramid were used in [17], [19]). However, all the other 
conditions that Dong et al. [17], [19] used were kept constant. 

Except the six baselines introduced at the beginning of 
Section IV, the best and the average of the 51 results obtained 
by Dong et al. [17], [19] and the multi-scale XKY2,3 (MSVAR) 
[47] were also used as baselines. In addition, the SLoW+VAR 
descriptor was tested. (This descriptor was not tested in the 
SBIR experiment as only the sketch data is available with query 
images). Fig. 7 shows the performance derived using the nine 
baselines and four SLoW-based descriptors in the pair-of-pairs 
comparison task. It can be seen that (1) the performances of 
SPM [38], VLAD [32] and MSVAR [47] were boosted by 
incorporating the SLoW features into these; (2) both 
SLoW+VAR and SLoW outperformed the other descriptors 
(including the best one tested in [17]); and (3) SLoW+VAR 
produced the best performance. Furthermore, Fig. 8 shows the 
g measure values derived using the same methods as shown in 
Fig. 7 for the texture retrieval task. As can be observed, the 
performances of SPM [38], VLAD [32] and MSVAR [47] were 
improved when combined with SLoW. Nevertheless, the 
SLoW+VLAD descriptor outperformed all its counterparts. 

In [16], Dong discussed the relationship between 
pair-of-pairs comparison and texture retrieval. It was pointed 
out that texture retrieval mainly examines the ability of feature 
descriptors to estimate intra-cluster texture similarity when 
small numbers of textures are retrieved. This should account for 
the difference in the performances of SLoW descriptors 
obtained in the two experiments. By comparing the results 
shown in Figs. 7 and 8, it can be found that global image 
descriptors, e.g. SLoW, are more competent for estimating 
inter-cluster similarity than intra-cluster similarity. In contrast, 
the opposite trend can be observed for local descriptors. 

C. Human Facial Expression Recognition 

In this task, we used the Japanese Female Facial Expression 
(JAFFE) database [61] which comprises 213 images. Each of 
the ten subjects showed three or four examples for one of seven 
expressions. As Shan et al. [61] did, we used JAFFE images for 
a 7-class expression recognition task. However, we used 
original images rather than their cropped normalised versions 
[61]. This makes the task more challenging but more applied. A 

10-fold cross-validation setup was conducted using Support 
Vector Machines (SVM) [1], [13]. The recognition rate (RR, 
%) was used as performance measure. The experiment was 
performed using each descriptor for ten runs (which was not 
conducted by Shan et al. [61]) to obtain different splitting for 
cross-validation. 

We report the results obtained using ten baselines and four 
SLoW-based descriptors in Table V. It can be observed that: (1) 
the performances of SPM [38], VLAD [32] and MSVAR [47] 
were enhanced when combined with SLoW; (2) the VLAD [32] 
descriptor did not perform well, which impairs the performance 
of SLoW+VLAD; (3) the SLoW+VAR and SLoW descriptors 
outperformed all the other descriptors; and (4) the SLoW 
descriptor performed the best among the 14 descriptors. It 
should be noted that both SLoW+VAR and SLoW performed 
better than the best method tested in [61] even though we did 
not use the cropped face images. We attribute this result to the 
importance of shape to representation of human faces [37]. 

D. Does a General Conton Dictionary Exist? 

In this subsection, we intend to investigate whether or not a 
general conton dictionary can be learnt for different image 
datasets. Arbelaez et al. [4] derived a human-drawn image 
contour dataset: BSDS500. This dataset contains 500 contour 
maps. We learnt 50 5×5 contons from this dataset using the 
approach introduced in Section III-B-1. For discrimination 
purposes, we refer to these contons as “General Contons” while 

 
 
Fig. 9.  Fifty 5×5 contons learnt from the human-drawn contours contained in 
the BSDS500 dataset [4]. These contons are referred to as “General Contons”.

TABLE V 
THE AVERAGE RECOGNITION RATES (%) AND CORRESPONDING STANDARD 

DEVIATIONS OBTAINED USING TEN BASELINES AND FOUR SLOW-BASED 

DESCRIPTORS FOR HUMAN FACIAL EXPRESSION RECOGNITION [61] 
DESC SVM (linear) SVM (polynomial) SVM (RBF) 

RR (%) 79.8 [61] 79.8 [61] 81.0 [61] 
DESC CCH SC PMIF  

RR (%) 21.50±1.68 37.98±2.27 63.00±2.12  
DESC SPM VLAD MSVAR BoW 

RR (%) 79.72±2.84 21.97±0.85 37.56±1.52 34.55±2.40 
DESC SLoW+SPM SLoW+VLAD SLoW+VAR SLoW 

RR (%) 79.86±1.84 29.01±2.11 86.01±1.38 86.76±1.75 
 

TABLE VII 
THE AGREEMENT RATES (%) OBTAINED USING SPM [38] AND SLOW FOR 

THE PAIR-OF-PAIRS COMPARISON TASK [17] WHEN ORIGINAL AND GENERAL 

CONTON DICTIONARIES WERE USED  
DESC SPM SPM-G SLoW SLoW-G 

AR (%) 57.7 57.8 61.3 60.9 
 

TABLE VI 
KENDALL ’S CORRELATION COEFFICIENTS (_) OBTAINED USING SPM [38] AND 

SLOW FOR THE SBIR TASK [20] WHEN ORIGINAL AND GENERAL CONTON 

DICTIONARIES WERE USED 
DESC SPM SPM-G SLoW SLoW-G 

n 0.259 0.257 0.294 0.290 
 

TABLE VIII 
THE g MEASURE VALUES (g ∈ [0, 1]) OBTAINED USING SPM [38] AND SLOW 

FOR PERCEPTUAL TEXTURE RETRIEVAL [19] WHEN ORIGINAL AND GENERAL 

CONTON DICTIONARIES WERE USED  
k 10 20 

DESC SPM SPM-G SPM SPM-G 
o 0.135 0.138 0.184 0.187 

DESC SLoW SLoW-G SLoW SLoW-G 
o 0.119 0.118 0.170 0.168 

k 40 60 
DESC SPM SPM-G SPM SPM-G 
o 0.266 0.268 0.266 0.268 

DESC SLoW SLoW-G SLoW SLoW-G 
o 0.260 0.259 0.260 0.259 
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the contons learnt from each dataset are named “Original 
Contons”. Fig. 9 displays the 50 general contons. We repeated 
the four experiments reported in the previous subsections by 
replacing original contons with the 50 general contons. To be 
exact, all conditions were kept constant except that the 50 
general contons were used. The parameters of the SLoW 
descriptor were set as N	=	5, A	=	9, D	=	6 and � = 50. For 
simplicity, we only tested the SPM [36] and SLoW descriptors.   

We compare the performances derived using original and 
general contons in this subsection. Tables VI, VII, VIII and IX 
report the comparison results for the four tasks, respectively, 
when original and general contons are used. As can be seen, the 
SPM [38] and SLoW descriptors performed comparably when 
the two conton dictionaries were used in the SBIR [20] and two 
perceptual texture similarity estimation tasks [17], [19]. 
However, this is not the case when the human facial expression 
recognition task [61] was conducted. In this case, both SPM [38] 
and SLoW performed better when original contons were used 
than that they performed when the general contons were used. It 
is noteworthy that the contours extracted from human face 
images [61] are more different from human-drawn contours [4] 
than those extracted from the SBIR [20] or Pertex [12] datasets. 
This finding should account for the difference between the two 
sets of results obtained using SPM [38] or SLoW when original 
and general human face contons were used respectively. 

E. Summary 

In this section, we first tested the SLoW descriptor and its 
combined versions in four tasks. This descriptor performed 
better than, or at least comparably to, the baselines. It is also 
complementary to the SPM [38], VLAD [32] and MSVAR [47] 
descriptors. We further investigated the universalisability of 
contons. It was found that the contons learnt from 
human-drawn contours [4] can be generalised to the SBIR [20] 
and Pertex [12] datasets. However, it was not the case for the 
JAFFE dataset [61]. This result is attributed to the difference 
between the SBIR [20], Pertex [12] and human-drawn [4] 
contours and the human face contours extracted from the 
JAFFE dataset [61]. It is noteworthy that the conton-based 
SLoW only uses the contour data. However, the joint use of 
local contrast data boosted its performance in most cases where 

these data are applicable. This finding indicates the importance 
of local non-contour image characteristics. In the next section, 
we therefore apply the SLoW descriptor along with other types 
of words which encode richer local information than the 
contour image patches used by contons. 

V. EXPERIMENTS USING SLOW DESCRIPTORS BASED ON 

OTHER TYPES OF WORDS 

In this section, we examine the SLoW descriptor derived 
using other types of words, including textons [67], SIFT words 
[42], deep convolutional words [10] and LBP codes [47]. The 
SLoW features were extracted using three spatial pyramid 
levels for textons, SIFT words and LBP codes. Since local 
convolutional features had to be sparsely extracted [10], the 
features sampled on contour points were few, especially, when 
high spatial pyramid levels were used. In this case, the SLoW 
features are sparse which impairs their discriminatory power. 
Therefore, only the original image resolution was used for deep 
convolutional words. These descriptors are applied to different 
tasks. For image classificaton tasks, we used the histogram 
intersection kernel SVM [38] for histogram-based descriptors, 
including BoW, SPM, SLoW and SLoW+SPM, along with the 
�� normalisation. Without specific statements, the linear kernel 
SVM (�=10) was used for the other descriptors with the �� 
normalisation, following existing studies [9], [10], [63]. 

A. Texton-Based SLoW 

The Pertex dataset [12] was used. Textons [67] were learnt 
using the approach introduced in Section III-B-1. Each Pertex 
image was devided into 16 equal-sized patches. The number of 
test patches was set as 1 and 6. The BoW [64], SPM [38] and 
VLAD [32] descriptors were used as baselines. The results are 
displayed in Table X. As can be seen, SPM [38] performed 
worse than the BoW descriptor. Also, the SLoW and 
SLoW+SPM descriptors performed worse than BoW and SPM 
respectively. However, SLoW+VLAD performed better than 
all its counterparts. It is noteworthy that the VLAD descriptor 
does not encode the spatial data. This may account for the 
complementary performances of SLoW and VLAD. 

B. SIFT Word Based SLoW 

The densely sampled SIFT features [42] were used to learn 
words (see Section III-B-1). The BoW [64], SPM [38] and 
VLAD [32] descriptors were used as baselines. The UC Merced 
Land Use dataset [73] was used for image classification. Each 
of 21 classes comprises 100 images. The 2100 images contain 

TABLE IX 
THE AVERAGE RECOGNITION RATES (%) AND CORRESPONDING STANDARD 

DEVIATIONS OBTAINED USING SPM [38] AND SLOW FOR HUMAN FACIAL 

EXPRESSION RECOGNITION [61] WHEN ORIGINAL AND GENERAL CONTON 

DICTIONARIES WERE USED 
DESC SPM SPM-G SLoW SLoW-G 

RR (%) 79.72±2.84 45.87±1.80 86.76±1.75 70.14±2.16 
 

TABLE X 
THE AVERAGE CLASSIFICATION RATES (%) AND CORRESPONDING STANDARD 

DEVIATIONS OBTAINED USING THE BOW [64], SPM [38], VLAD  [32] AND 

SLOW-BASED DESCRIPTORS FOR PERTEX [12] TEXTURE CLASSIFICATION 
 DESC BoW SPM VLAD  
1 CR 

(%) 
98.71±0.40 97.84±0.77 99.31±0.53 

6 98.39±0.27 97.21±0.21 99.08±0.13 
 DESC SLoW SLoW+SPM SLoW+VLAD 
1 CR 

(%) 
97.84±0.58 97.07±0.89 99.70±0.24 

6 97.71±0.26 96.19±0.36 99.43±0.07 
The number of test images was set as 1 and 6. 

 

TABLE XI 
THE AVERAGE CLASSIFICATION RATES (%) AND STANDARD DEVIATIONS 

DERIVED USING THREE BASELINES AND THREE SLOW BASED DESCRIPTORS FOR 

LAND USE IMAGE CLASSIFICATION [73] 
DESC BoW SPM VLAD  
w = 50 66.22±0.49 73.15±0.46 82.25±0.35 
w = 100 72.55±0.59 77.61±0.39 83.40±0.50 
w = 200 76.91±0.48 79.56±0.39 84.78±0.32 
DESC SLoW SLoW+SPM SLoW+VLAD 
w = 50 76.19±0.33 77.38±0.38 85.71±0.40 
w = 100 78.60±0.42 79.46±0.39 86.90±0.28 
w = 200 80.37±0.37 81.38±0.49 87.32±0.54 
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various objects and spatial patterns. Five-fold cross-validation 
was conducted using the SVM classifier [13] and the average 
classification rate (CR, %) was used as performance measure 
following the pipeline that Yang and Newsam [73] used. The 
experiment was conducted using each descriptor for ten runs in 
order to obtain different splitting for cross-validation.  

The classification rates are reported in Table XI. It can be 
observed that: (1) the SLoW descriptor outperformed BoW [64] 
and SPM [38] when different numbers of words were used; (2) 
the performances of SPM [38] and VLAD [32] were improved 
when combined with SLoW; and (3) the best performance was 
produced by SLoW+VLAD. 

C. Deep Convolutional Word Based SLoW 

The method described in Section III-B-1 was used to learn 
deep convolutional words. In addition to BoW [64], SPM [38] 
and VLAD [32], the features extracted from the penultimate 
fully-connected layer of a CNN model, i.e. FC, was used as the 
fourth baseline. The SLoW descriptor was also combined with 
FC to test whether or not they are complementary. The SLoW 
descriptor and the three combined versions were compared 
with the baselines in image classification and retrieval. 
1) Image Classification 

Image classification was performed using the UIUC [2], UC 
Merced Land Use [73] and Caltech256 [25] datasets. The 
pre-trained CNN models: VGG-M [9], Place-CNN [77] and 
VGG-VD16 [63] were used for the three datasets respectively.  

UIUC  Seventeen unique classes contained in the UIUC 
dataset [2] were used. This scheme ensures that the classifier is 
trained with less bias as each class contains the same number of 
images. In total, 680 UIUC images were used. These images 
were randomly divided into two equal-sized groups. One group 
was used as training images while the other group was used as 
test images. This operation was repeated for ten runs in order to 
produce different splitting. The average classification rate (%) 
computed across the ten runs was used as performance measure. 

The results derived for texture classification are reported in 
Table XII. As can be seen, the performances derived using 
BoW [64], SPM [38], SLoW and SLoW+SPM are close. This 
finding is similar to that obtained in Section V-A. Nevertheless, 
the SLoW+VLAD descriptor outperformed all its counterparts 
even if VLAD [32] did not perform well. Also, the SLoW and 
FC descriptors are complementary. The joint use of these 
descriptors performed better than that they did individually. 

UC Merced Land Use The experimental setup of the land 
use image classification was introduced in Section V-B. Table 
XIII shows the results obtained for land use image 
classification [73]. Compared with the results shown in Table 
XI, the deep convolutional word based descriptors performed 
much better. As can be seen, the SLoW descriptor performed 
better than BoW [64] and SPM [38] when different numbers of 
words were used and performed better than FC using 200 words. 
However, the most obvious finding is that the performances of 
SPM, VLAD and FC were boosted when combined with SLoW. 
Besides, SLoW+VLAD outperformed all its counterparts. 

Caltech256 The Caltech256 dataset [25] contains 256 object 
classes and one background class. In total, 30,607 images are 
contained in this dataset. Following the setup that Simonyan 
and Zisserman [63] used, we randomly split each class into the 
training and test sets. In terms of each class, 60 images were 
included in the training set while the remaining images were 
put into the test set. Three different splitting were tested. The 
average classification rate (%) calculated across these splitting 
was used as the performance metric. Instead of extracting the 
FC features using multiple scales [63], we only used the 
original image resolution. In Table XIV, we report the results 
generated by the SLoW descriptors and four baselines. It can be 
observed that the SLoW descriptor outpferformed BoW in the 
same condition. With the joint use of SLoW, the performances 
of SPM and FC can be boosted. The best performance was 
derived using SLoW+FC when 200 deep words were used.  

To examine the impact of the kernel functions of SVM, we 
performed two experiments. First, we conducted grid-search [1] 
on the parameters of the linear and RBF kernels using 3-fold 
cross-validation. We randomly selected 60 images from each of 
the first 100 classes of the Caltech256 dataset [25]. The results 
showed that ' did not affect the accuracy while � did matter 
when the RBF kernel was used. The parameters yielding the 
best result were selected. Specifically, � = 4096  and ' =
4096  were selected for the RBF kernel while � = 2  was 
selected for the linear kernel. The classification experiment was 
then conducted using these parameters and the full dataset. The 

TABLE XIII 
THE AVERAGE CLASSIFICATION RATES (%) AND STANDARD DEVIATIONS 

DERIVED USING FOUR BASELINES AND FOUR SLOW BASED DESCRIPTORS FOR 

LAND USE IMAGE CLASSIFICATION [73] 
DESC BoW SPM VLAD FC 
w = 50 84.58±0.54 86.27±0.46 93.17±0.28 

91.35±0.38 w = 100 88.38±0.22 89.20±0.37 92.75±0.32 
w = 200 90.93±0.46 90.61±0.36 93.46±0.33 
DESC SLoW SLoW+SPM SLoW+VLAD SLoW+FC 
w = 50 87.91±0.29 88.05±0.24 95.14±0.21 92.99±0.31 
w = 100 90.04±0.31 90.51±0.27 94.73±0.14 93.40±0.27 
w = 200 91.94±0.13 92.04±0.16 94.94±0.26 93.95±0.34 

 

TABLE XII 
THE AVERAGE CLASSIFICATION RATES (%) AND STANDARD DEVIATIONS 

DERIVED USING FOUR BASELINES AND FOUR SLOW BASED DESCRIPTORS FOR 

UIUC [2] TEXTURE CLASSIFICATION 
DESC BoW SPM VLAD  FC 
w = 50 97.56±0.69 97.47±0.59 98.24±1.18 

97.32±0.96 w = 100 98.79±0.38 98.74±0.48 97.41±1.01 
w = 200 99.35±0.36 99.35±0.27 96.35±1.09 
DESC SLoW SLoW+SPM SLoW+VLAD SLoW+FC 
w = 50 97.53±0.48 97.56±0.52 99.21±0.59 98.35±0.59 
w = 100 98.79±0.29 98.76±0.36 99.56±0.37 98.82±0.31 
w = 200 99.29±0.44 99.29±0.35 99.59±0.28 99.32±0.31 

 

TABLE XIV 
THE AVERAGE CLASSIFICATION RATES (%) AND STANDARD DEVIATIONS 

DERIVED USING FOUR BASELINES AND FOUR SLOW BASED DESCRIPTORS FOR 

CALTECH256 IMAGE CLASSIFICATION [25] 

DESC BoW SPM VLAD FC 

w = 50 50.91±0.41 56.76±0.26 77.45±0.25 
79.22±0.16 w = 100 59.99±0.46 63.30±0.04 78.51±0.04 

w = 200 65.15±0.45 66.93±0.18 79.44±0.14 
DESC SLoW SLoW+SPM SLoW+VLAD SLoW+FC 
w = 50 55.58±0.33 57.53±0.18 75.24±0.30 78.74±0.15 
w = 100 62.09±0.30 63.74±0.19 76.34±0.26 79.33±0.07 
w = 200 65.97±0.21 67.29±0.13 76.67±0.24 79.81±0.04 
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average classification rates obtained using the two kernels were 
79.29±0.18 and 79.29±0.17 respectively. These results suggest 
that the choice of the linear kernel is reasonable. Second, we 
performed image classification using the linear kernel and full 
dataset with the four �  ( � ∈ �0.1,1,10,100� ) values that 
Cimpoi et al. [10] used. The classification rates derived using 
the four �  values were 75.43±0.57, 79.21±0.13, 79.22±0.16 
and 79.23±0.16 respectively. It is shown that there is not a 
significant difference in the performance when the �  value 
exceeds 1. In this context, the default � value: 10 is proper. 
2) Image Retrieval 

We also tested the SLoW descriptor and its combined 
variants in the scenario of image retrieval. Specifically, the 
Oxford 5K [53] and Paris 6K [54] datasets were used. For each 
dataset, a total of 55 queries were performed. For simplicity, 
none of the bounding boxes provided with the datasets were 
used. The mean average precision (mAP) was used to measure 
the performance of image retrieval. Given a query image, the 
ranking between this image and other images was computed 
using the histogram intersection [65] and Euclidian distances 
for histogram and non-histogram based descriptors respectively. 
Instead of using the combination scheme introduced in Section 
III-E, we combined the distances computed using two different 
descriptors when SLoW+SPM, SLoW+VLAD and SLoW+FC 
were considered. To be exact, let the two distances be denoted 
as p� and p�, the combined distance p was calculated as:  

p = qp�� + p��r . (7) 

In the two retrieval experiments, * = 4 was used. 
Tables XV and XVI report the results derived using the 

Oxford 5K [53] and Paris 6K [54] datasets respectively. As can 
be seen, the performance of the SLoW descriptor was superior 
to those of BoW and SPM. The joint use of the SLoW 
descriptor improved the performance of the SPM, VLAD and 
FC descriptors in most cases. However, the FC descriptor did 
not generate stable results over the two datasets. 

Furthermore, we compared our results with state-of-the-art 

results (see Tables XV and XVI). When the Oxford 5K [53] 
dataset was used, our best result was better than, or equal to, 
those reported in [45], [70], [72]. While the best performance 
that our methods produced on the Paris 6K [54] dataset was 
slightly worse than that Ng et al. [45] reported, they used 
different strategies to learn words. First, they resized images to 
224×224 pixels before feeding these to CNN while we used the 
original image size. Second, they used all convolutional layers 
to extract local features. In contrast, we only used the last 
convolutional layer. However, this study aims to examine the 
importance of contour cues to word-based descriptors rather 
than yielding state-of-the-art results on various datasets. 
Therefore, we ignored the strategies that Ng et al. [45] used. 

D. LBP-Based SLoW 

We further test SLoW descriptors using LBP codes [47]. 
Since the codebook that LBP uses is obtained in a different 
manner from the learnt word dictionary, the VLAD descriptor 
[32] is not applicable. The BoW (i.e. the LBP histogram [47]) 
and SPM [38] descriptors were used as baselines. The LBP 
code map was used to compute BoW, SPM, SLoW and 
SLoW+SPM descriptors. These descriptors were tested in 
pair-of-pairs comparison [17], texture classification and land 
use image classification [73]. The experimental setups were 
introduced in Sections IV-B, V-A and V-B respectively.  

The results obtained in the three tasks are reported in Tables 
XVII, XVIII and XIX respectively. It can be seen that (1) the 
use of spatial pyramid matching did not boost the performance 
of LBP [47] in pair-of-pairs comparison [17] and texture 
classsfication while it did in land use image classification [73]; 
(2) the SLoW descriptor outperformed both BoW and SPM 
[38]; and (3) the performance of SPM was boosted when 
combined with SLoW. 

E. Summary 

In this section, we examined SLoW-based descriptors using 
different forms of words learnt from image patches [67], SIFT 
features [42] and deep convolutional features [10]. In addition, 
LBP codes [47] were considered as a special type of words and 

TABLE XV 
THE MEAN AVERAGE PRECISION (MAP) DERIVED USING FOUR BASELINES AND 

FOUR SLOW BASED DESCRIPTORS FOR OXFORD 5K IMAGE RETRIEVAL [53] 

DESC BoW SPM VLAD FC [45] [70] [72] 
w = 50 0.356 0.390 0.605 

0.419 0.649 0.466 0.657 w = 100 0.417 0.441 0.620 
w = 200 0.454 0.475 0.655 
DESC SLoW SLoW+SPM SLoW+VLAD SLoW+FC 
w = 50 0.413 0.404 0.602 0.451 

w = 100 0.470 0.461 0.621 0.476 
w = 200 0.507 0.495 0.657 0.493 

 

TABLE XVI 
THE MEAN AVERAGE PRECISION (MAP) DERIVED USING FOUR BASELINES AND 

FOUR SLOW BASED DESCRIPTORS FOR PARIS 6K IMAGE RETRIEVAL [54] 

DESC BoW SPM VLAD FC [45] 
w = 50 0.446 0.459 0.638 

0.641 0.694 w = 100 0.517 0.513 0.665 
w = 200 0.560 0.555 0.668 
DESC SLoW SLoW+SPM SLoW+VLAD SLoW+FC 
w = 50 0.493 0.482 0.641 0.657 
w = 100 0.554 0.538 0.669 0.668 
w = 200 0.603 0.584 0.681 0.680 

 

TABLE XVII 
THE AGREEMENT RATES (%) DERIVED USING TWO BASELINES AND 

SLOW-BASED DESCRIPTORS FOR PAIR-OF-PAIRS COMPARISON [17] 
DESC BoW (LBP) SPM  SLoW  SLoW+SPM  

AR (%) 55.3 55.1 57.9 57.9 
 

TABLE XVIII 
THE AVERAGE CLASSIFICATION RATES (%) AND CORRESPONDING STANDARD 

DEVIATIONS OBTAINED USING TWO BASELINES AND SLOW-BASED 

DESCRIPTORS FOR PERTEX [12] TEXTURE CLASSIFICATION 
DESC  BoW (LBP) SPM SLoW SLoW+SPM 

1 88.68±1.94 84.82±1.76 91.59±1.08 93.65±1.47 
6 85.88±0.47 81.47±0.72 90.30±0.46 93.09±0.36 

The number of test images was set as 1 and 6. 

TABLE XIX 
THE AVERAGE CLASSIFICATION RATES (%) AND STANDARD DEVIATIONS 

DERIVED USING TWO BASELINES AND SLOW-BASED DESCRIPTORS FOR LAND 

USE IMAGE CLASSIFICATION [73] 
DESC BoW (LBP) SPM SLoW SLoW+SPM 

CR (%) 65.12±0.37 70.25±0.66 70.80±0.52 73.50±0.50 
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were also used with SLoW. It was shown that the SLoW 
descriptor outperformed both the BoW [64] and SPM [38] 
descriptors in all the experiments except texture classification 
conducted in Sections V-A and V-C. In addition, the SLoW 
descriptor complemented the SPM [38], VLAD [32] and deep 
fully-connected (FC) descriptors [10] and improved their 
performance. We attribute the promising results to the fact that 
the SLoW descriptor explores the spatial layout of words 
encoded in the important visual cues: contours. To our 
knowledge, this global characteristic has not been utilised by 
other word-based descriptors. (Arandjelovic and Zisserman [3], 
Bai et al. [5] and Wang et al. [69] only used local contour 
characteristics). It is noteworthy that SPM [38] performed 
worse than BoW [64] in both texture classification experiments 
either. Since texture is normally regarded as homogenous, the 
use of spatial pyramids may yield an “average effect” which 
impairs the discriminatory power of the descriptor. This is also 
the case when SLoW is applied to texture classification because 
IWSCM features are computed as the average shape data.  

VI. CONCLUSIONS AND FUTURE WORK 

Motivated by the importance of contour cues to human visual 
perception of imagery, we proposed a global image descriptor 
by exploiting the spatial layout of words encoded in the form of 
contours. We refer to this descriptor as “Spatial Layout of 
Words” or “SLoW”. We tested the SLoW descriptor together 
with different types of words, including contons, textons, SIFT 
words, deep convolutional words and LBP codes. Compared 
with the bag-of-words (BoW) descriptor, the SLoW descriptor 
encodes both short-range image characteristics using words and 
the medium-range and long-range image structure information 
by computing the spatial layout of words within the same 
contour and without regard to contours. More importantly, it 
exploits the important visual cues: contours. This type of global 
structure information has not been exploited in the existing 
studies that aim to boost the BoW descriptor by incorporating 
the spatial information. Besides, the aforementioned SLoW 
features were combined with Spatial Pyramid Matching (SPM) 
and Vector of Locally Aggregated Descriptors (VLAD) 
features in order to incorporate the spatial layout of words into 
these features. Correspondingly, the combined descriptors were 
termed as “SLoW+SPM” and “SLoW+VLAD”.  

The SLoW-based descriptors were tested in different 
applications along with baselines. Experimental results showed 
that the SLoW descriptor outperformed both BoW and SPM in 
most cases. This descriptor also improved the performance of 
SPM and VLAD when combined with each of these 
descriptors. Moreover, the performance of the deep 
fully-connected (FC) descriptor was boosted when used 
together with SLoW. We attribute these promising results to the 
fact that the SLoW descriptor performs in a more perceptually 
consistent manner than its counterparts examined in this study. 
It is noteworthy that the dimensionality of the SLoW feature 
vectors is high when multiple spatial pyramids are used. This 
decreases the computational speed and increases memory 
requirements. In contrast, the use of SLoW+VLAD descriptor 
is more practical because it only uses the original image 

resolution. Also, the best performance was normally derived 
using SLoW+VLAD where it is applicable.  

Since the SLoW descriptor is computed based on contours, it 
may not perform well in the case that contours cannot be 
extracted. In this situation, the graph-based spatial relationship 
[43] may be considered instead of the contour-based one. In 
future work, therefore, we intend to model the spatial layout of 
words using the graph-based representation. However, the most 
important point is that the current work has shown the spatial 
layout of words encoded in the form of contours can boost the 
performance of traditional visual word based image descriptors. 
This may lead to a potential direction for improving other 
word-based descriptors. In addition, the CNN trained in an 
end-to-end manner has shown superiority to the pre-trained 
CNN in the literature. Hence, we will explore the possibility of 
end-to-end training a CNN with the SLoW descriptor in future. 
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