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Multi-Instance Dynamic Ordinal Random Fields for
Weakly Supervised Facial Behavior Analysis

Adria Ruiz , Ognjen Rudovic, Xavier Binefa, and Maja Pantic

Abstract— We propose a multi-instance-learning (MIL)
approach for weakly supervised learning problems, where a
training set is formed by bags (sets of feature vectors or instances)
and only labels at bag-level are provided. Specifically, we consider
the multi-instance dynamic-ordinal-regression (MI-DOR) setting,
where the instance labels are naturally represented as ordinal
variables and bags are structured as temporal sequences. To this
end, we propose MI dynamic ordinal random fields (MI-DORF).
In this paper, we treat instance-labels as temporally dependent
latent variables in an undirected graphical model. Different
MIL assumptions are modelled via newly introduced high-order
potentials relating bag and instance-labels within the energy
function of the model. We also extend our framework to address
the partially observed MI-DOR problem, where a subset of
instance labels is also available during training. We show on
the tasks of weakly supervised facial action unit and pain
intensity estimation, that the proposed framework outperforms
alternative learning approaches. Furthermore, we show that
MI-DORF can be employed to reduce the data annotation efforts
in this context by large-scale.

Index Terms— Mutiple instance learning, undirected graphical
models, facial behavior analysis, pain intensity, action units.

I. INTRODUCTION

MUTLI-INSTANCE-LEARNING (MIL) is a popular
modelling framework for addressing different weakly-

supervised problems [1]–[3]. In traditional Single-Instance-
Learning (SIL), the fully supervised setting is assumed with
the goal to learn a model from a set of feature vectors
(instances) each being annotated in terms of target label y.
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By contrast, in MIL, the weak supervision is assumed, thus,
the training set is formed by bags (sets of instances), and only
labels at bag-level are provided. In order to learn a model
from this weak-information, MIL assumes that there exists an
underlying relation between the label of a bag (e.g., video) and
the labels of its constituent instances (e.g., image frames). For
instance, in standard Multi-Instance-Classification (MIC) [4],
labels are considered binary variables y ∈ {−1, 1} and negative
bags are assumed to contain only instances with an associated
negative label. In contrast, positive bags must contain at least
one positive instance. Another example of MIL assumption is
related to the Multi-Instance-Regression (MIR) problem [5],
where y ∈ R is a real-valued variable and the maximum
instance-label within the bag is assumed to be equal to y.
Different from previous works, in this paper we focus on
a novel MIL problem that we refer to as Multi-Instance
Dynamic Ordinal Regression (MI-DOR). In this case, bags are
structured as dynamic sequences of instances with temporal
dependencies. Moreover, instance labels are considered ordinal
variables which can take values in a set of L discrete categories
satisfying the increasing monotonicity constraints {0 ≺ . . . ≺
l ≺ L}. Our definition of MI-DOR is enough general to
define different weak-relations between bag and instance-
labels. Specifically, we focus on two instances of this problem:
Maximum and Relative MI-DOR. Similar to MIR, in the
former, we assume that the maximum ordinal value within
a sequence is equal to its bag (sequence) label. On the other
hand, the latter assumes that the weak-label provides informa-
tion about the evolution (increase, decrease or monotone) of
the instance ordinal levels within the sequence. As we discuss
below, these two have important applications in the context of
Facial Behavior Analysis that we address in this paper.

A. Motivation: Weakly-Supervised Facial Behavior Analysis

Facial expressions provide information about human emo-
tions, attitudes and mental states [6]. Their automatic analysis
has become a very active research field in Computer Vision in
the last decade due to the large number of potential applica-
tions in different contexts such as medicine or entertainment.
In this work, we focus on two relevant problems of automatic
facial behavior analysis: Action Unit (AU) [7] and Pain [8]
Intensity estimation. Both can be naturally posed as Dynamical
Ordinal Regression problems, where the goal is to predict
a value on an ordinal scale for each instant of a sequence.
Specifically, in AU intensity estimation, the objective is to
predict the activation level (on a six-point ordinal scale) of
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Fig. 1. Illustration of the Pain and Action Unit intensity problems addressed
in this work. Top: Sequence showing different pain levels (coded in an ordinal
scale from 1 to 6). Bottom: Example of different intensities for Action Unit 12
(Lip-Corner Puller) also represented in an ordinal scale.

facial actions at each frame in a video. Similarly, in the Pain
Intensity estimation task we aim to measure the intensity level
of pain felt by a patient (see Fig. 1).

The majority of proposed approaches to these problems
have followed the supervised learning paradigm [9]–[11], i.e,
models are learned using manually annotated labels for each
frame in a set of training sequences. Despite the efforts in
the field, performance of current approaches following this
strategy can still be considered far from optimal. Perhaps,
the main reason for such low performance is the limited
data used to train supervised models. Annotation in facial
behavior analysis is usually a time-consuming task. For exam-
ple, labeling AU activation levels in one minute of video
can require one hour for a specially trained coder. As a
consequence, current datasets are sub-optimal in terms of
size/variability and, therefore, the use of this limited data for
training supervised models can decrease their performance
in unseen test samples. Previous works such as [12] have
provided empirical evidences supporting this hypothesis.

One potential solution addressing this limitation could be
to annotate larger training sets. However, this strategy is not
feasible given the expense of the annotation process. In con-
trast, the explored solution in this work consists of using the
weakly-supervised paradigm instead of the fully-supervised
one. Weakly-supervised approaches aim to learn models using
annotations which only provide partial information (weak-
labels) about the task that needs to be solved. These weak-
labels are much easier to obtain than those for fully-supervised
learning, thus allowing us to use larger datasets minimizing
the annotation effort. For example, in Pain Intensity esti-
mation, it is much easier to obtain a label for the whole
sequence in terms of the maximum pain intensity felt by the
recorded subject (e.g. using patients self-reports or external
observers). Similarly, annotating Facial Action Unit intensities
requires a huge effort by expert coders. In contrast, segmenting
sequences according to the increasing or decreasing evolution
of AU intensities (i.e, onset and appex segments) is less
time-consuming. These two scenarios motivates our interest
in the Maximum and Relative MI-DOR problems previously
introduced. Models able to learn only from these weak infor-
mation would allow to leverage larger training sets and thus
potentially build more effective models for intensity estimation
of different facial behaviours.

B. Contributions

In this work, we propose the Multi-Instance Dynamic
Ordinal Random Fields (MI-DORF) framework to address
MI-DOR problems. To build our approach, we use the notion
of Hidden Conditional Ordinal Random Fields (HCORF) [13].
Similar to HCORF, MI-DORF is an Undirected Graphical
Model where observation labels are modelled as a linear-chain
of ordinal latent variables. However, the energy function of
MI-DORF is designed to explicitly incorporate the Multiple
Instance relation between latent instance labels and observable
sequence weak-labels. The main contributions of this work can
be summarized as follows:

• To the best of our knowledge, no previous works have
explored Multi-Instance Dynamic Ordinal Regression
problems (Sec. III). The proposed MI-DORF framework
addresses these tasks by explicitly modelling the weak-
relation between instances and sequence labels. Our
framework is the first MIL approach that imposes ordinal
constraints on the instance labels. The proposed method
also incorporates dynamic information that is important
when modeling temporal structure in instances within the
bags (i.e., image sequences). While modeling dynamic
information has been attempted in [14] and [15], there
are virtually no works that account for both ordinal and
temporal data structures within existing MIL frameworks.

• We also introduce high-order potentials in the MI-DORF
energy function in order to model weakly-supervised
MIL assumptions. Following this strategy, we present
two variants of this framework: MaxMI-DORF (Sec. IV)
and RelMI-DORF (Sec. V). A preliminary version of
the particular MaxMI-DORF method was presented in
our previous work [16]. These two models are specially
designed to address the Maximum and Relative MI-DOR
problems, respectively. Given that the newly introduced
MIL potentials of our models render the standard infer-
ence procedures for existing latent variable models
(e.g., HCORF) infeasible, we derive a novel inference
procedure. This procedure scales well with the data
number and its computational complexity is similar to that
of forward-backward algorithm [17], typically employed
in linear-chains models.

• We also propose the Partially-Observed extension of our
MI-DORF model (Sec VI). This approach allows us to
leverage available instance labels in order to increase
the level of supervision in our model. To this end,
we generalize the learning and inference procedures of
the MI-DORF models mentioned above, making them
applicable to the partially-observed and still weakly-
supervised learning tasks. We show that with a small
portion of labeled instances, we can reach the perfor-
mance of the fully supervised models for target tasks,
thus, reducing the expensive (manual) data annotation
efforts by large-scale.

We demonstrate the performance of the proposed methods
on weakly-supervised Pain (Sec. VII-E) and Action Unit
Intensity estimation using the benchmark datasets for target
tasks (Sec. VII-D). We show under various settings the



RUIZ et al.: MI-DORF FOR WEAKLY SUPERVISED FACIAL BEHAVIOR ANALYSIS 3971

advantages of our method compared to alternative
approaches.

II. RELATED WORK

A. Multiple-Instance Learning

Existing MIL approaches usually follow the bag-
based or instance-based paradigms [18]. In the bag-based
methods, a feature vector representation for each bag is
first extracted. Then, these representations are used to
train standard Single-Instance methods, used to estimate
the bag labels. This representation is usually computed by
using different types of similarity metrics between training
instances. Examples following this paradigm include Multi-
Instance Kernel [19], MILES [20] or MI-Graph [21]. The
main limitation of these approaches is that the learned models
can only make predictions at the bag-level (e.g., a video)
and are not able to estimate instance-labels (e.g., frame-level
intensities). In contrast, instance-based methods directly learn
a model which operates at the instance level. For this, MIL
assumptions are incorporated by considering instance-labels
as latent variables. Using this strategy, traditional supervised
models are adapted to incorporate MIL assumptions.
Examples of methods following this approach include
Multi-Instance Support Vector Machines [22] (MI-SVM),
MILBoost [23], MI Gaussian Processes [24] or MI Logistic
Regression [25]. In this work, we follow the instance-based
paradigm by treating instance-labels as ordinal latent states in
a Latent-Dynamic Model. In particular, we follow a similar
idea to that in the Multi-Instance Discriminative Markov
Networks [26], where the energy function of a Markov
Network is designed to explicitly model weak-relations
between bag and instance labels. However, in contrast to the
works described above, the presented MI-DORF framework
accounts for the ordinal structure in instance labels, while
also accounting for their dynamics.

B. Latent-Dynamic Models

Popular methods for sequence classification are
Latent-Dynamic Models such as Hidden Conditional
Random Fields (HCRFs) [27] or Hidden-Markov-Models
(HMMs) [28]. These methods are variants of Dynamic
Bayesian Networks (DBNs) where a set of latent states are
used to model the conditional distribution of observations
given the sequence label. In these approaches, dynamic
information is modelled by incorporating probabilistic
dependence between time-consecutive latent states. MI-DORF
builds upon the HCORF framework [13] which considers
latent states as ordinal variables. However, HCORF follows
the supervised paradigm, where the main goal is to predict
sequence labels and latent variables are only used to increase
the expressive power of the model. In contrast, the energy
function of MI-DORF is defined to explicitly encode Multi-
Instance relationships between bag and latent instance labels.
Note also that more recent works (e.g., [14], [15]) extended
HMMs/HCRFs, respectively, for Multi Instance Classification.
The reported results in these works suggested that modeling
dynamics in MIL can be beneficial when bag-instances

exhibit temporal structure. However, these methods limit their
consideration to the case where instance labels are binary
and, therefore, are unable to solve MI-DOR problems.

As has been introduced in Sec. I-B, we also extend
MI-DORF to the partially-observed setting, where labels for
a small subset of instances are available during training. This
scenario has been previously explored using Latent-dynamical
models such as Conditional Random Fields [29] and their
extensions (HCRF [30]). Although the instance labels are
incorporated in these approaches, they can be considered
suboptimal for MI-DOR, where sequence weak-labels need to
be also taken into account according to the MIL assumptions.

C. Non-Supervised Facial Behavior Analysis

Research on automatic facial behavior analysis has
mainly focused on the fully-supervised setting. In the spe-
cific problems of Action Unit and Pain Intensity Esti-
mation, recent works have developed models based on
HCORF [9], Metric Learning [31], Convolutional Neural
Networks [11] or Gaussian Processes [32] among others.
However, as discussed in Sec I, supervised models are limited
in this context because they involve a laborious data labelling.

In order to reduce the annotation efforts, in this work
we address these problems using weakly-supervised learning,
which lies on the spectrum in between the unsupervised and
fully supervised paradigms. In this context, previous works
have explored non-supervised approaches for Facial Behav-
ior Analysis. For AU detection, Zhou et al. [33] proposed
Aligned Cluster Analysis for the unsupervised segmentation
and clustering of facial events in videos. Their experiments
showed that the obtained clusters were coherent with AU
manual annotations. We find another example in [34], where
Multiple Instance Classification was used to find key frames
representing Action Unit activations in sequences. Different
from these cited approaches which focus on binary detec-
tion, we address weakly-supervised Action Unit intensity
estimation. To this end, the proposed MI-DORF model is
able to learn from segments which are labelled according to
the increasing or decreasing evolution of AU intensities (see
Sec. I-A). A similar problem has been recently addressed by
Zhao et al. [35]. Specifically, Ordinal Support Vector Ordinal
Regression (OSVR) was used to estimate facial expression
intensities using only onset and appex segments during train-
ing. However, OSVR presents some limitations in this context.
Firstly, it models the instance (frame) labels as continuous
variables which is a sub-optimal modelling of ordinal vari-
ables. Secondly, OSVR poses MI-DOR as a ranking problem
causing the scale of predicted values to not necessarily match
with the ground-truth. In contrast, MI-DORF models instance
labels as ordinal variables, thus allowing to better estimate
labels scale by determining a priory the number of ordinal
levels. Finally, OSVR is an static approach and temporal
correlations are not modelled as in MI-DORF.

In the context of weakly-supervised Pain Intensity esti-
mation, MIL approaches have been previously applied by
considering that a weak-label is provided for a sequence
(in terms of the maximum pain intensity felt by the patient).
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Then, a video is considered as a bag and image frames as
instances. Sikka et al. [36] proposed to extract a Bag-of-
Words representation from video segments and treat them
as bag-instances. Then, MILBoosting [23] was applied to
predict sequence-labels under the MIC assumption. Follow-
ing the bag-based paradigm, [3] developed the Regularized
Multi-Concept MIL method capable of discovering differ-
ent discriminative pain expressions within a sequence. More
recently, [14] proposed MI Hidden Markov Models, an adap-
tation of standard HMM to the MIL problem. The limitation
of these approaches is that they focus on the binary detection
problem (i.e, pain intensity levels are binarized) and thus, are
unable to consider different intensity levels of pain. This is
successfully attained by the proposed MI-DORF.

III. MULTI-INSTANCE DYNAMIC ORDINAL REGRESSION

In this section, we formalize the MI-DOR problem
and its particular instances addressed in this work: Max-
imum MI-DOR and Relative MI-DOR. In these tasks
we are provided with a training set T = {(X1, y1),
(X2, y2), . . . , (XN , yN )} formed by pairs of structured-inputs
X ∈ X and labels y. Specifically, X = {x1, x2, . . . , xT }
are temporal sequences of T observations x ∈ Rd in a d-
dimensional space. Given the training-set T , the goal is to
learn a model F : X → H mapping sequences X to an
structured-output h ∈ H. Concretely, h = {h1, h2, . . . , hT }
is a sequence of variables ht ∈ {0 ≺ . . . ≺ l ≺ L}
assigning one ordinal value for each observation xt. In order
to learn the model F from T , it is necessary to incorporate
prior knowledge defining the Multi-Instance relation between
labels y and latent ordinal states h. In Maximum MI-DOR,
we assume that bag-labels y ∈ {0 ≺ . . . ≺ l ≺ L} are also
ordinal variables and that the maximum value in hn must be
equal to yn:

yn = max
h

(hn) ∀ (Xn, yn) ∈ T (1)

On the other hand, in Relative MI-DOR the sequence label
is a categorical variable taking four possible values y ∈ {↑,
↓,∅,	}. Each label indicates the type of evolution within
latent labels h. Concretely, in sequences labelled with y =↑,
there must be an increasing ordinal level transition in, at least,
one instant t . Moreover, no decreasing transitions are allowed
within the sequence. The opposite occurs in sequences labelled
as y =↓. In the case of y =	 the sequence is assumed to
contain decreasing and increasing transitions. Finally, when
y = ∅ all the ordinal values in h should be equal (monotone
sequence). Formally, these constraints can be defined as:

∀ (Xn, yn)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn =↑ iff (∃t ht < ht+1) ∧ (∀t ht ≤ ht+1)

yn =↓ iff (∃t ht > ht+1) ∧ (∀t ht ≥ ht+1)

yn = ∅ iff (∀t ht = ht+1)

yn =	 otherwise

(2)

Note that the definition of these MI-DOR problems differs
from standard supervised sequence classification with latent
variables. In that case, the main goal is to learn a model
F : X → Y mapping X to sequence labels y.

Fig. 2. Illustration of the ordered probit model employed to define the ordinal
node potentials in MI-DORF. Vector β is used to project feature vector x
onto continuous values. Thresholds β define different bins over the projection
determining the likelihood for each ordinal level.

IV. MAX-MULTI-INSTANCE DYNAMIC ORDINAL

RANDOM FIELDS (MAXMI-DORF)

In this section, we present the proposed Max-Multi-Instance
Dynamic Ordinal Random Fields to solve the Maximum
MI-DOR problem described in Sec. III.

A. Model Definition

MaxMI-DORF is an Undirected Graphical Model defining
the conditional probability of labels y given observations X
with a Gibbs distribution:

P(y|X; θ) =
∑

h

P(y, h|X; θ) =
∑

h e−�(X,h,y;θ)

∑
y�

∑
h e−�(X,h,y�;θ)

,

(3)

where θ is the set of the model parameters and the energy
function �(X, h, y; θ) is composed of the sum of three
different types of potentials (see Fig. 3(a)):

T∑

t=1

�N (xt , ht ; θ N )+
T−1∑

t=1

�E (ht , ht+1; θ E )+�M(h, y, θ M ),

(4)

1) MaxMI-DORF: Ordinal Node Potential: This potential
�N (x, h; θ N ) aims to capture the compatibility between a
given observation xt and the latent ordinal value ht . Similar
to HCORF, it is defined using the ordered probit model [37]:

�N (x, h = l) = log

[

�

(
bl − βT x

σ

)

− �

(
b(l−1) − βT x

σ

)]

,

(5)

where �(·) is the normal cumulative distribution func-
tion (CDF), and θ N = {β, b, σ } is the set of potential para-
meters. Specifically, the vector β ∈ Rd projects observations
x onto an ordinal line divided by a set of cut-off points
b0 = −∞ ≤ · · · ≤ bL = ∞. Every pair of contiguous
cut-off points divide the projection values into different bins
corresponding to the different ordinal states l = 1, . . . , L.
The difference between the two CDFs provides the probability
of the latent state l given the observation x, where σ is the
standard deviation of a Gaussian noise contaminating the ideal
model (see Fig. 2 and [13] for more details). In our case,
we fix σ = 1, to avoid model over-parametrization. This type
of potentials has previously been shown to be effective for
Ordinal Regression problems such as AU or Pain Intensity
estimation [9], [10].
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Fig. 3. (a) Factor graph representation of the proposed MI-DORF framework. Node potentials �N model the compatibility between a given observation xt
and a latent ordinal value ht . Edge potentials �E take into account the transition between consecutive latent ordinal states ht and ht+1. Finally, the high-order
potential �M models Multi-Instance assumptions relating all the latent ordinal states ht with the bag-label y. (b) Equivalent model to MI-DORF defined
using the auxiliary variables ζt for each latent ordinal state. The use of these auxiliary variables and the redefinition of node and edge potentials allows to
perform efficient inference by removing the high-order dependency introduced by the potential �M (see Sec. IV-C and V-B).

2) MaxMI-DORF: Edge Potentials: The edge potential
�E (ht , ht+1; θ E ) models temporal information regarding
compatibilities between consecutive latent ordinal states as:

�E (ht = l, ht+1 = l �; θ E ) = f (Wl,l� ), (6)

where θ E = WL×L represents a real-valued transition matrix
as in standard HCR. On the other hand, f is a non-linear func-
tion defined as f (s) = − log(1 + ex p(−s)). The motivation
of using f is to maintain the same range between the values
of node and edge potentials. Specifically, f bounds the value
of �E between [0,−∞] as in the case of the node potentials.

3) MaxMI-DORF: Multi-Instance Potential: In order to
model the Maximum MI-DOR assumption (see Eq. 1),
we define a high-order potential �M (h, y; θ M) involving label
y and all the sequence latent variables h as:

�M (h, y; θ M) =
{

w
∑T

t=1 I(ht == y) iff max (h) = y

−∞ otherwise,

(7)

where I is the indicator function, and θ M = w. Note that when
the maximum value within h is not equal to y, the energy
function is equal to −∞ and, thus, the probability P(y|X; θ)
drops to 0. On the other hand, if the MI assumption is fulfilled,
the summation w

∑T
t=1 I(ht == y) increases the energy

proportionally to w and the number of latent states h ∈ ht

that are equal to y. This is convenient since, in sequences
annotated with a particular label, it is more likely to find many
latent ordinal states with such ordinal level. Eq. 7 shares some
relations with the cardinality potentials [38] also employed in
binary Multi-Instance Classification [26].

B. MaxMI-DORF: Learning

Given a training set T , we learn the model parameters θ by
minimizing the regularized log-likelihood:

min
θ

N∑

i=1

log P(y|X; θ) + R(θ), (8)

where the regularization function R(θ) over the model para-
meters is defined as:

R(θ) = α (||β||22 + ||W||2F ) (9)

and α is set via a validation procedure. We use L2 regular-
ization because, in related Latent Variable models such as
HCRF [27] or HCORF [13], it has been shown to provide
an effective mechanism to reduce overfitting.

The objective function in Eq.8 is differentiable and
standard gradient descent methods can be applied for opti-
mization. To this end, we use the L-BFGS Quasi-Newton
method [39]. The gradient evaluation involves marginal prob-
abilities p(ht |X) and p(ht , ht+1|X) which can be efficiently
computed using the proposed algorithm in Sec. IV-C.

C. MaxMI-DORF: Inference

The evaluation of the conditional probability P(y|X; θ) in
Eq.3 requires computing

∑
h e−�(X,h,y;θ) for each label y.

Given the exponential number of possible latent states h ∈ H,
efficient inference algorithms need to be used. In the case of
Latent-Dynamic Models such as HCRF/HCORF, the forward-
backward algorithm [17] can be applied. This is because the
pair-wise linear-chain connectivity between latent states h.
However, in the case of MaxMI-DORF, the inclusion of the
MIL potential �M (h, y; θ M) introduces a high-order depen-
dence between the label y and all the latent states in h.
Inference methods with cardinality potentials have been pre-
viously proposed in [38] and [40]. However, these algorithms
only consider the case where latent variables are independent
and, therefore, they can not be applied in our case. For
these reasons, we propose an specific inference method. The
idea behind it is to apply the standard forward-backward
algorithm by converting the energy function defined in Eq. 4
into an equivalent one preserving the linear-chain connectivity
between latent states h.

To this end, we introduce a new set of auxiliary variables
ζ = {ζ1, ζ2, . . . , ζT }, where each ζt ∈ {0, 1} takes a binary
value denoting whether the sub-sequence h1:t contains at least
one ordinal state h equal to y. Now we define an alternative
MaxMI-DORF energy function �∗ as:

�∗(X, h, ζ , y; θ) =
T∑

t=1

�N∗ (xt , ht , ζt , y; θ N )

+
T −1∑

t=1

�E∗ (ht , ht+1, ζt , ζt+1, y; θ E),

(10)
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where the new node pontentials �N∗ and edge potentials �E∗
are given by:

�N∗ =
{

�N (xt , ht ; θ N ) + wI(ht = y) iff ht <= y

−∞ otherwise

�E∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Wht ,h(t+1) iff ζt = 0 ∧ ζt+1 = 0 ∧ ht+1 �= y

Wht ,h(t+1) iff ζt = 0 ∧ ζt+1 = 1 ∧ ht+1 = y

Wht ,h(t+1) iff ζt = 1 ∧ ζt+1 = 1

−∞ otherwise

(11)

Note that Eq. 10 does not include the potential �M , thus,
the high-order dependence between the label y and latent
ordinal-states h is removed. The graphical representation of
MI-DORF with the redefined energy function is illustrated
in Fig.3(b). In order to show the equivalence between energies
in Eqs. 4 and 10, we explain how the the original Multi-
Instance potential �M is incorporated into the new edge and
temporal potentials. Firstly, note that �N now also takes into
account the proportion of ordinal variables ht that are equal to
the sequence label. Moreover, it enforces h not to contain any
ht greater than y, thus aligning the bag and (max) instance
labels. However, the original Multi-Instance potential also
constrained h to contain at least one ht with the same ordinal
value than y. This is achieved by using the set of auxiliary
variables ζt and the re-defined edge potential �E . In this case,
transitions between latent ordinal states are modelled but also
between auxiliary variables ζt . Specifically, when the ordinal
state in ht+1 is equal to y, the sub-sequence h1:t+1 fulfills the
Maximum MI-DOR assumption and, thus, ζt+1 is forced to
be 1. By defining the special cases at the beginning and the
end of the sequence (t = 1 and t = T ):

�N∗ (x1, h1, ζ1, y) =

⎧
⎪⎨

⎪⎩

�N∗ iff ζ1 = 0 ∧ l1 < y

�N∗ iff ζ1 = 1 ∧ l1 = y

−∞ otherwise,

(12)

�N∗ (xT , hT , ζT , y) =
{

�N∗ iff ζT = 1 ∧ hT <= y

−∞ otherwise
(13)

we can see that the energy is −∞ when the Maximum
MI-DOR assumption is not fulfilled. Otherwise, it has the same
value than the one defined in Eq.4 since no additional infor-
mation is given. The advantage of using this equivalent energy
function is that the standard forward-backward algorithm can
be applied to efficiently compute the conditional probability:

P(y|X; θ) =
∑

h
∑

ζ e−�∗(X,h,ζ ,y;θ)

∑
y�

∑
h
∑

ζ e−�∗(X,h,ζ ,y�;θ)
, (14)

The proposed procedure has a computational complexity of
O(T ·(2L)2) compared with O(T ·L2) using standard forward-
backward in traditional linear-chain latent dynamical models.
Since typically L << T , this can be considered a similar
theoretical complexity. The presented algorithm can also be
applied to compute the marginal probabilities p(ht |X) and
p(ht , ht+1|X).

V. RELATIVE-MULTI-INSTANCE DORF (RELMI-DORF)

In this section, we present the proposed Relative-Multi-
Instance Dynamic Odinal Random Fields to solve the Relative
MI-DOR problem described in Sec. III.

A. RelMI-DORF: Model Definition

In RelMI-DORF, ordinal and node potentials are specified
as in MaxMi-DORF. However, the Multi-Instance potential
�M (h, y) it is now defined as shown in Eq. 15. In this
case, the potential models the Relaltive MI-DOR assumption,
i.e, the weak-relation between the sequence label y and the
evolution of latent instance labels h (see Eq. 2).

�M =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 iff (∃ tht <ht+1) ∧ (∀t ht ≤ ht+1) ∧ y =↑
0 iff (∃t ht >ht+1) ∧ (∀t ht ≥ ht+1) ∧ y =↓
0 iff (∃t ht >ht+1) ∧ (∃t ht <ht+1) ∧ y =	
0 iff (∀t ht = ht+1) ∧ y = ∅
−∞ otherwise

(15)

Learning in RelMI-DORF can be performed following the
same procedure described in Sec. IV-B. However, inference
requires a special treatment which is described as follows.

B. RelMI-DORF: Inference

Similar to the case of MaxMI-DORF, the high-order poten-
tial �N (h, y) in RelMI-DORF prevents to perform inference
using the standard forward-backward procedure. For this pur-
pose, we follow a similar strategy than the one described in
Sec. IV-C. However, in this case, auxiliary variables ζt are
defined according to the possible sequence labels in Relative
MI-DOR. Concretely, ζt ∈ {↑,↓,∅,	} indicates the label
of the subsequence h1:t according to the definitions given
in Eq. 2. The equivalent energy function incorporating this
auxiliary variables ζ can be obtained by redefining the original
edge potentials as:

�E∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wht ,h(t+1) iff ζt = ∅ ∧ ζt+1 = ∅ ∧ ht = ht+1

Wht ,h(t+1) iff ζt = ∅ ∧ ζt+1 = ↑ ∧ ht < ht+1

Wht ,h(t+1) iff ζt = ∅ ∧ ζt+1 = ↓ ∧ ht > ht+1

Wht ,h(t+1) iff ζt = ↑ ∧ ζt+1 = ↑ ∧ ht ≤ ht+1

Wht ,h(t+1) iff ζt = ↑ ∧ ζt+1 = 	 ∧ ht > ht+1

Wht ,h(t+1) iff ζt = ↓ ∧ ζt+1 = ↓ ∧ ht ≥ ht+1

Wht ,h(t+1) iff ζt = ↓ ∧ ζt+1 = 	 ∧ ht < ht+1

Wht ,h(t+1) iff ζt = 	 ∧ ζt+1 = 	
−∞ otherwise

(16)

Again, defining the special cases for node potentials at the
beginning and ending of the sequence:

�N∗ (x1, h1, ζ1, y) =
{

�N (x1, h1, y) iff ζ1 = ∅
−∞ otherwise,

(17)

�N∗ (xT , hT , ζT , y) =
{

�N (xT , hT , y) iff ζT = y

−∞ otherwise,
(18)
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it can be shown that the energy function becomes −∞
when the sequence level is not coherent with the evolution
of latent instance labels h (according to sequence label y
and the Relative MI-DOR assumption). Otherwise, it takes
the same value than the energy function defined by the
original potentials. In this case, computational complexity is
O(T · (4L)2), which is still linear in terms of instances T .

VI. PARTIALLY-OBSERVED MI-DOR (POMI-DOR)

Although labels at sequence-level are easier to collect,
in some applications is feasible to annotate a small sub-
set of the sequence’s instances. In this case, we are inter-
ested in learning the model by using weak-labels y but
also incorporating the information of these additional anno-
tations. We refer to this problem as Partially-Observed
Multi-Instance Dynamic Ordinal Regression (PoMI-DOR).
In this case, the training set is formed by triples T =
{(X1, y1, ha

1), (X2, y2, ha
2), . . . , (XN , yN , ha

N )}, where ha
n con-

tains ground-truth annotations for a subset of sequence
instances. Formally, the set hn = {ha

n ∪ hu
n}, where hu

n is
the subset of ordinal labels corresponding to non annotated
instances. Under this setting, we extend MI-DORF to learn a
model maximizing the log-likelihood function of the condi-
tional probability:

P(y, ha |X; θ) =
∑

hu e−�(X,hu,ha,y;θ)

∑
y�

∑
hu

∑
ha e−�(X,hu,ha,y�;θ)

, (19)

for all the sequences in the training set. Note that in this
case, the knowledge provided by annotated instances ha

n is
incorporated into the likelihood function. In order to learn
a PoMI-DORF model, the same algorithms presented in
Secs. IV and V can be applied. However, during inference we
need to take into account annotations ha

n for each sequence.
This can be easily achieved by redefining the original node
potentials in RelMI-DORF and MaxMI-DORF as:

�N (x, ht ) =
{

−∞ iff (ht ∈ ha) ∧ (ha
t �= ht )

�N (xt , ht ) otherwise,
(20)

Intuitively, observed instance labels ha are treated as hard
evidences which make the energy function to take a value
of −∞ when h is not consistent with them. This strategy
has been previously followed in order to learn Conditional
Random Fields [29] under the partially-observed setting.

VII. EXPERIMENTS

A. Compared Methods

The presented frameworks are designed to address Multi-
Instance-Learning problems when bags are structured as tem-
poral sequences of instances with ordinal labels. Given that
this has not been attempted before, we evaluate alternative
methods that can be also used in these problems but present
some limitations: either ignore the MIL assumptions (Single-
Instance), do not model dynamic information (Static) or do
not take into account the ordinal nature of instance labels.

1) Single-Instance Ordinal Regression (SIL-OR): Maximum
MI-DOR can be posed as a supervised learning problem with
noisy labels. The main assumption is that the majority of
instances will have the same label than their bag. In order to
test this assumption, we train standard Ordinal Regression [37]
at instance-level by setting all their labels to the same value as
their corresponding bag. This baseline can be considered an
Static-SIL approach to solve the Maximum MI-DOR problem.

2) Static Multi-Instance Ordinal Regression (MI-OR):
Again for Maximum MI-DOR, we have implemented this
Static Multi-Instance approach. This method is inspired by
MI-SVM [22], where instance labels are considered latent
variables and are iteratively optimized during training. To ini-
tialize the parameters of the ordinal regressor, we follow the
same procedure as described above in SIL-OR. Then, ordinal
values for each instance are predicted and modified so that
the Maximum MI-DOR assumption is fulfilled for each bag.
Ordinal Regression is applied again and this procedure is
applied iteratively until convergence.

3) Multi-Instance-Regression (MIR): As discussed in Sec. I,
the Maximum MI-DOR problem is closely related with
Multiple-Instance-Regression. In order to evaluate the perfor-
mance of this strategy, we have implemented a similar method
as used in [25]. Note that this approach does not model
temporal information and treat ordinal labels as continuous
variables.

4) MaxMI-DRF: This approach is similar to the proposed
MaxMI-DORF. However, MaxMI-DRF ignores the ordinal
nature of labels and models them as categorical variables. For
this purpose, we replace the MaxMI-DORF node potentials
by a multinomial logistic regression model [41].1 Inference is
performed by using the same algorithm described in Sec. IV-C.

5) RelMI-DRF: Similar to MaxMI-DRF, this method is
equivalent to RelMI-DORF but modelling instance labels as
categorical variables.

6) Latent-Dynamic Models (HCRF/HCORF): In Maximum
and Relative MI-DOR a label at sequence-level is provided
during training. Therefore, it is possible to apply existing
Latent-Dynamic Models such as HCRF [27] or HCORF [13]
for both problems. Despite these two methods model dynamics
and incorporate the information provided by sequence-labels,
they do not take into account the Multi-Instance assumptions.

7) Ordinal Support Vector Regression (OSVR): This method
presented in [35] can be applied for Relative MI-DOR.
However, it is an Static approach that do not consider dynamic
information. Moreover, it models instance labels as continuous
variables instead of ordinal.

8) Methods for Partially-Observable MI-DOR: In our
experiments, we evaluate Max-MIDORF and Rel-MIDORF
when some instance labels are also available during train-
ing (see Sec. VI). In order to compare their performance under
this setting, we evaluate the partially-observed extensions of
CRF [29] and HCRF [30]. Ordinal versions of these two
approaches has been also implemented for this work.

1The potential with the Multinomial Logistic Regession model is defined

as log (
exp(βT

l x)
∑

l�∈L exp(βT
l� x)

). Where all βl defines a linear projection for each

possible ordinal value l [41]
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9) Methods for Supervised Dynamic Ordinal Regression:
To fully evaluate the performance of methods trained using
only weak-labels, we compare the previous described methods
with two related fully-supervised models for sequence classifi-
cation CRF [42] and CORF [43]. These approaches are learned
with complete information (i.e, labels for all the instances ).

B. Metrics and Evaluation

In order to evaluate the performance of the different meth-
ods, we report results in terms of instance-labels predic-
tions. Note that in the MIL literature, results are usually
reported at bag-level. However, in MI-DOR problems, the only
goal is to predict instance labels (pain or AU intensities)
inside the bag (video). Given the ordinal nature of the
labels, we use Pearson’s Correlation (CORR), Mean-Average-
Error (MAE) and Intra-Class-Correlation (ICC) as evaluation
metrics. In all our experiments, we used a subset of the
training sequences to optimize the different regularization
weights (hyper-parameters) in a cross-validation procedure.
To this end, we used standard grid-search where regularization
parameters has been chosen between different values in the
range [10−4, 10−1].

C. Maximum MI-DOR and Relative MI-DOR: Synthetic Data

1) Synthetic Data Generation: Given that no standard
benchmarks are available for MI-DOR problems, we have
generated synthetic data. In order to create sequences for
Maximum MI-DOR, we firstly sample a sequence of ordi-
nal values using a random transition matrix representing
transition probabilities between temporally-consecutive ordi-
nal levels. Secondly, we generate random parameters of an
Ordinal Regressor as defined in Eq. 5. This regressor is
used to compute the probabilities for each ordinal level in
a set of feature-vectors randomly sampled from a Gaussian
distribution. Thirdly, the corresponding sequence observation
for each latent state in the sequence is randomly chosen
between the sampled feature vectors according to the obtained
probability for each ordinal value. Finally, the sequence-label
is set to the maximum ordinal state within the sequence
following the Maximum MI-DOR assumption and Gaussian
noise (σ = 0.25) is added to the feature vectors. Fig. 4(a-c)
illustrates this procedure.

For Relative MI-DOR, we follow a similar strategy to gen-
erate the synthetic sequences. However, the transition matrix is
forced to contain a probability of 0 for decreasing transitions in
case the sequence label is y =↑ and for increasing transitions
if y =↓. For testing, we create unsegmented sequences (with
increasing and decreasing transitions) by concatenating two
segments generated following the previous procedure.

2) Experimental Setup and Results: Following the strategy
described above, we have generated ten different data sets
for Relative and Maximum MI-DOR by varying the ordinal
regressor parameters and transition matrix. Specifically, each
dataset is composed of 100 sequences for training, 150 for
testing and 50 for validation. The sequences have a variable
length between 50 and 75 instances in Maximum MI-DOR and
between 15 and 25 in Relative MI-DOR. The dimensionality

Fig. 4. Description of the procedure used to generate synthetic sequences.
(a) A random matrix modelling transition probabilities between consecutive
latent ordinal values. (b) Ordinal levels assigned to the random feature vectors
according to the ordinal regressor. (c) Example of a sequence of ordinal values
obtained using the generated transition matrix. The feature vector representing
each observation is randomly chosen between the samples in (b) according
to the probability for each ordinal level.

TABLE I

RESULTS ON SYNTHTIC DATA (MAXMI-DOR)

TABLE II

RESULTS ON SYNTHTIC DATA (RELMI-DOR)

of the feature vectors was set to 10 and the number of
ordinal values to 6. For partially-observed MI-DOR, we have
randomly choose one instance per sequence of which its label
is also used during training. Table I and II shows the results
computed as the average performance over the ten datasets
for Maximum and Relative MI-DOR respectively. We also
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report results for fully-supervised CRF and CORF trained
considering all the instance labels.

3) Maximum MI-DOR Discussion: In the Maximum
MI-DOR problem, SIL methods (SIL-OR, HCRF and
HCORF) obtain lower performance than their correspond-
ing MIL versions (MI-OR, MaxMI-DRF and MaxMI-DORF)
in all the evaluated metrics. This is expected since SIL
approaches ignore the Multi-Instance assumption. Moreover,
HCORF and MaxMI-DORF obtain better performance com-
pared to HCRF and MaxMI-DRF. This is because the former
model instance labels as nominal variables, thus, ignoring
their ordinal nature. Finally, note that MaxMI-DORF outper-
forms the static methods MI-OR and MIR. Although these
approaches use the Multi-Instance assumption and incorporate
the labels ordering, they do not take into account temporal
information. In contrast, MaxMI-DORF is able to model the
dynamics of latent ordinal states and use this information to
make better predictions when sequence observations are noisy.

Looking into the results achieved by the different methods
in the PoMI-DOR setting, we can derive the following conclu-
sions. Firstly, HCORF and HCRF improve their performance
by taking into account the additional information provided
by instance labels. However, we can observe that, under this
setting, CRF and CORF obtain lower results than HCORF and
HCRF. This is because the later are able to use the sequence-
label information together with the provided by labelled
instances. Secondly, observe that MaxMI-DRF and MaxMI-
DORF still achieves better performance than methods that do
not consider the MIL assumption (CORF, CRF, HCRF and
HCORF). This shows the importance of explicitly incorporate
the Maximum MI-DOR assumption in the model even though
instance labels can be available during training. Finally, note
that MaxMI-DORF obtain again the best performance, even
close to fully-supervised CRF and CORF. This suggest that the
need of annotated instances is highly-reduced if the sequence
weak-labels are used during learning.

4) Relative MI-DOR Discussion: In the Relative MI-DOR
problem, we observe similar results as in Maximum
MI-DOR. Firstly, note that non-ordinal approaches (HCRF
and RelMI-DRF) obtain the worst performance in most
cases. Secondly, RelMI-DORF obtain better performance
than HCORF by explicitly modelling the Multi-Instance-
Assumption. Finally, OSVR achieves a competitive perfor-
mance in terms of correlation compared with RelMI-DORF.
However, it obtains poor results in terms of MAE and ICC.
As discussed in Sec. II, OSVR considers labels as continuous
variables and do not explicitly model the Relative MI-DOR
assumption. Instead, it only ranks the instance labels within
the sequence. Therefore, it fails to estimate the actual scale of
the predicted values.

When some instance labels are provided (PoRel-MIDOR),
all the methods improve their performance by exploiting this
additional information. However, the improvement in terms of
MAE and ICC is much higher than for correlation. This is
because in Relative MI-DOR, sequence labels only provide
information about the evolution of instance labels within the
sequence. Therefore, models can achieve a good performance
predicting sequence-labels even though the ordinal levels

are not accurate. In contrast, when some instance labels
are incorporated during training, a better estimation of the
ordinal levels can be achieved. Finally, note that RelMI-DORF
under the PoRelMI-DOR setting achieves again competitive
performance compared to fully-supervised CRF and CORF.

5) Computational Cost: In order to show the efficiency
of the proposed inference algorithms for MaxMI-DORF
(Sec. IV-C) and RelMI-DORF (Sec. V-B), we have computed
the average time required to process the testing sequences in
each of the 10 synthetic datasets used in our experiments.2

Comparing it with the time required by the forward-backward
procedure employed in HCRF and HCORF, MaxMI-DORF is
only 1.6 times slower (0.12s vs. 0.08s). Similarly, the forward-
backward algorithm is only 1.5 times faster than RelMI-
DORF (0.10s vs. 0.07s). Note that the efficiency of the
proposed algorithms is better than expected according to our
theoretical analysis. This is because our implementation has
been optimized by exploiting the inherent sparsity of auxiliary
node and edge potentials (−∞ cases in Eq. 11 and 16).

D. Weakly-Supervised Pain Intensity Estimation

In this experiment, we test the performance of MaxMI-
DORF for weakly-supervised pain intensity estimation.
As detailed in Sec. I-A, our main motivation is that pain inten-
sity labelling is very time consuming. However, the maximum
pain felt during a sequence is much easier to annotate.

1) UNBC Dataset: We use the UNBC Shoulder-Pain
Database [8] which contains recordings of different subjects
performing active and passive arm movements during rehabil-
itation sessions. In this dataset, pain intensities at each frame
are given in terms of the PSPI scale [44]. This ordinal scale
ranges from 0 to 15. Given the imbalance between low and
high pain intensity levels, we follow the same strategy than [9].
Specifically, pain labels are grouped into 5 ordinal levels as:
0(0),1(1),2(2),3(3),4-5(4),6-15(5). These frame-by-frame pain
annotations are considered the instance labels in Maximum
MI-DOR. On the other hand, bag (video) labels are extracted
as the maximum pain level within each sequence.

In order to extract facial-descriptors at each video frame
representing the bag instances, we compute a geometry-
based facial-descriptor as follows. Firstly, we obtain a set
of 49 landmark facial-points with the method described in [45].
Then, the obtained points are aligned with a mean-shape using
Procrustes Analysis. Finally, the facial descriptor are obtained
by concatenating the x and y coordinates of the aligned
points.

2) Experimental Setup and Results: Similar to the exper-
iment with synthetic data (Sec. VII-C.4), we consider two
scenarios for weakly-supervised pain intensity estimation.
The first one is the Maximum MI-DOR setting, where only
bag labels are used. Apart from the baselines described
in Sec. VII-A, in this scenario we also evaluate the perfor-
mance of the approach presented in [36] which considers
pain levels as binary variables. For this purpose, we use the

2Average computed over 50 different runs for each dataset. Experiment
performed using a MATLAB implementation over a Desktop PC (Intel Core
i7-4790K@4.00Ghz processor).
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Fig. 5. (a) ICC obtained on the UNBC data when using different percentages of labelled instances from the training set. Black line shows the performance
of a fully-supervised CORF trained with all the instance labels. (b) Visualization of the pain intensity predictions in different sequences of the UNBC dataset.
From top to bottom: MI-OR and MaxMI-DORF without using instance labels. Partially-observed HCORF and MaxMI-DORF using 10% of annotated frames.

TABLE III

RESULTS ON THE UNBC DATABASE

MILBoosting [23] method employed in the cited work and
considered videos with a pain label greater than 0 as positive.
Given that MI-Classification methods are only able to make
binary predictions, we use the output probability as indicator
of intensity levels, i.e., the output probability is normalized
between 0 and 5.

We also consider the Partially-Observed setting, where
different percentages of annotated frames inside each sequence
are also available during training. This simulates that the
time required to annotate the dataset has been significantly
reduced by only labelling a small subset of the frames.
Concretely, we consider the 5% and 10% of annotated frames
in each sequence. Under these different experimental setups,
we perform Leave-One-Subject-Out Cross Validation where,
in each cycle, we use 15 subjects for training, 1 for testing and
9 for validation. In order to reduce computational complex-
ity and redundant information between temporal consecutive
frames, we have down-sampled the sequences using a time-
step of 0.25 seconds. Table III shows the results obtained
by the evaluated methods following the described procedure.
Results for fully-supervised CRF and CORF are also reported.

3) Discussion: By looking into the results in the Maximum
MI-DOR setting, we can derive the following conclusions.

Firstly, SI approaches ( SI-OR, HCORF and HCRF) obtain
worse performance than MI-OR and MIR. Specially, HCORF
and HCRF obtain poor results. This is because pain events
are typically very sparse in these sequences and most frames
have intensity level 0 (neutral). Therefore, the use of the MIL
assumption has a critical importance in this problem in order
to correctly locate pain frames. Secondly, MIR and MI-OR
obtain better results than MaxMI-DRF. This can be explained
because the latter consider pain levels as nominal variables
and is ignorant of the ordering information of the different
pain intensities. Finally, MILBoost trained with binary labels
also obtains low performance compared to the MI-OR and
MIR. This suggest that current approaches posing weakly-
supervised pain detection as a MI-Classification problem
are unable to predict accurately the target pain intensities.
By contrast, MaxMI-DORF obtains the best performance
across all the evaluated metrics. We attribute this to the
fact it models the MIL assumption with ordinal variables.
Moreover, the improvement of MaxMI-DORF compared to
static approaches, such as MI-OR and MIR, suggests that
modelling dynamic information is beneficial in this task.

In the Partially-observed setting, all the methods improve
their performance by considering the additional informa-
tion provided by labelled instances. However, note that
approaches modelling the ordinal structure of labels (CORF,
HCORF and MaxMI-DORF) still outperforms nominal meth-
ods (CRF, HCRF and MaxMI-DRF) under this setting. More-
over, MaxMI-DORF also achieves the best performance with
5% and 10% of labeled frames. Despite the other approaches
also consider instance labels, MaxMI-DORF better exploits
sequence labels information by explicitly modelling the MIL
assumption. It is worth mentioning that considering only
10% of annotated frames, MaxMI-DORF obtain competitive
performance against fully-supervised approaches. Concretely,
it outperforms CRF in terms of ICC/CORR and CORF in
terms of MAE. This suggest that the effort needed to annotate
pain intensity databases, could be highly-reduced using the
proposed weakly-supervised framework. In order to give more
insights about this issue, Fig. 5(b) shows the performance
in terms of ICC as the percentage of annotated frames
increases. As we can observe, MaxMI-DORF outperforms
other methods with 0%, 5% and 10% of annotated frames.
When this percentage increases to 25%, the performance
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of partially-observed CORF, HCORF and MaxMI-DORF
is comparable to the achieved by fully-supervised CORF.
However, note that labelling 25% of samples does not suppose
a significant reduction of the annotation time in a real scenario.

Finally, in Fig. 5(b) we show qualitative examples com-
paring predictions of the best evaluated methods under the
different settings. When only bag-labels are used for training,
MI-OR predictions are less accurate than the obtained by
MaxMI-DORF. Moreover, MaxMI-DORF estimates better the
actual pain levels in the partially-observed setting, where a
small subset of instance labels are used. These predictions
are more accurate than the obtained with partially-observed
HCORF which does not take into account the MIL assumption.
This is reflected by the ICC depicted in the sequences, showing
that the proposed MaxMI-DORF method outperforms the
competing approaches on target data.

E. Weakly-Supervised AU Intensity Estimation

In this section, we test the performance of RelMI-DORF for
weakly-supervised Action Unit intensity estimation. Similarly
to pain intensity, AU labelling requires a huge effort for
expert coders. However, segmenting videos according to the
increasing or decreasing evolution of AU intensities (i.e. onset
and offset sequences) is less time-consuming.

1) DISFA Dataset: We employ the DISFA Database [7],
which is a popular benchmark for AU intensity estimation.
It contains naturalistic data consisting on 27 annotated
sequences of different subjects watching videos eliciting differ-
ent types of emotions. Specifically frame-by-frame AU inten-
sities are provided for 12 AUs (1,2,4,5,6,9,12,15,17,20,25,26)
in a six-point ordinal scale (neutral<A<B<C<D<E). As far
as we know, this is the largest available dataset in terms of
the number of Action Units annotated. Although the UNBC
dataset also provides AU intensity annotations for 11 AUs,
we found that the number of onset and appex events for
each of them is very limited. Therefore, we discard it for this
experiments. To the best of our knowledge, no previous works
have evaluated DISFA under the weakly-supervised setting.

The described AU intensities represent the instance labels in
our Relative MI-DOR problem. As previously discussed, bags
are considered onset and apex sequences where the intensity
of a given AU is monotone increasing (y =↑) or decreas-
ing (y =↓). These segments has been automatically extracted
with an exhaustive search over the whole video using the
ground-truth intensity labels at frame-level. This procedure
simulates that a given annotator has only labelled onset and
offset segments instead of specific AU intensities for all the
frames. The number of extracted segments for each AU is
indicated in Table V. To compute the facial descriptors at each
frame, we use the same procedure described in Sec. VII-D.1.

2) Experimental Setup and Results: Using the segments for
each AU, we evaluate the different methods using a subject-
independent 5-fold cross validation. Specifically, 3 folds are
used for training and 1 for testing and validation purposes.
During testing, the trained models are evaluated on the orig-
inal non-segmented videos. The motivation is that, in a real
scenario, onset and apex segmentation is not known for test-
ing sequences. We also consider the partially-observed setting,

TABLE IV

AVERAGE PERFORMANCE ACROSS AUs ON THE DISFA DATASET

where labels for 5% and 10% of frames are available during
training (PoRelMI-DOR). Table IV shows the performance
obtained by the evaluated methods computed as the average
for all the considered AUs. Specific results in terms of ICC
for independent AUs are shown in Table V.

3) Discussion: When instance labels are not used dur-
ing training (Relative MI-DOR setting), we can observe
that HCRF and HCORF obtain poor results compared to
OSVR and RelMI-DORF. This can be explained because the
former methods explicitly model the increasing/decreasing
intensity constraints provided by sequence weak-labels. More-
over, the low results obtained by RelMI-DRF compared to
RelMI-DORF suggest that modelling intensities as nominal
variables is suboptimal in this scenario. Also note that OSVR
obtains worse results in terms of ICC and MAE compared
to RelMI-DORF. Given that performances in terms of CORR
are more similar, it shows the limitation of OSVR to predict
the actual scale of instance ordinal labels. Considering the
results for independent AUs, we observe that RelMI-DORF
achieves the best performance for most cases. Note however,
that results for some particular AUs (9,15,17, 20) is low for all
the methods. We attribute this to the fact that, the activation
of these AUs is typically more subtle and high-intensity levels
are scarce.

By looking into the results in the partially-observed setting,
we can derive the following conclusions. Firstly, all the meth-
ods improve their average performance as the percentage of
instance labels increases. However, this improvement is more
significant for ICC and MAE. This shows that, when instance
labels are not available during training, the tendency of inten-
sity levels can be captured. However, accurate predictions of
particular ordinal labels requires the additional information
provided by frame-by-frame annotations. To illustrate this,
in Fig. 6 we show AU12 predictions attained by RelMI-DORF
using different percentages of annotated frames. Secondly,
note that approaches modelling the ordinal structure of labels
usually achieves better performance than nominal methods
in terms of ICC and CORR. In contrast, CRF and HCRF
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TABLE V

RESULTS (ICC) FOR INDEPENDENT AUs IN THE DISFA DATABASE. IN PARENTHESES, NUMBER OF ONSET AND APEX SEGMENTS EXTRACTED

Fig. 6. Visualization of AU12 (Lip-Corner puller) intensity predictions in a subsequence of the DISFA dataset. From top to bottom: RelMI-DORF without
using instance labels and with 5% and 10% of annotated frames. Supervised CORF using all the frame labels during training. Intensity estimation for
RelMI-DORF tends to be more accurate as more instance labels are considered during training. Using only a 10% of annotated frames, RelMI-DORF achieves
similar accuracy than a fully-supervised CORF.

obtain lower MAE than CORF and HCORF. This can be
explained because the majority of sequence frames has AU
intensity level of 0 (neutral). As a consequence, CRF and
HCRF tends to assign most of the frames to this level, thus
minimizing the absolute error. In contrast, ordinal methods
are more robust to imbalanced intensity levels and capture
better changes in AU intensities. Finally, note that the proposed
RelMI-DORF method obtain the best average performance
considering 5% and 10% of annotated frames. Regarding
specific AUs, RelMI-DORF obtain better results for most
cases and competitive performance against the best method
otherwise. Finally, note that RelMI-DORF performance with
10% of annotated frames is comparable to the achieved by
the fully-supervised approaches CRF and CORF. Specifically,
only supervised CRF outperforms RelMI-DORF in terms

of average MAE. The slightly worse results of supervised
CORF compared with RelMI-DORF suggest that considering
intensity annotations for all the frames may cause overfitting
and decrease performance on unseen test sequences. This can
be seen more clearly by looking at the results of independent
AUs, where RelMI-DORF obtain slightly better performance
than fully-supervised CORF in some cases. In conclusion,
the presented results support our hypothesis that it is possible
to use the proposed RelMI-DORF model in order to reduce
the annotation effort required for AU intensity estimation.

VIII. CONCLUSIONS AND DISCUSSION

In this work, we have presented MI-DORF for the novel
task of Multi-Instance Dynamic-Ordinal Regression. To the
best of our knowledge, this is the first MIL approach that
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imposes an ordinal structure on instance labels, and also attains
dynamic modeling within bag instances. By considering differ-
ent weak-relations between instance and bag labels, we have
developed two variants of this framework: RelMI-DORF and
MaxMI-DORF. Moreover, we have extended the proposed
framework for Partially-Observed MI-DOR problems, where
a subset of instance labels are also available during training.
Although the presented MI-DORF framework has many poten-
tial applications in multiple domains, our results in the context
of weakly-supervised facial behavior analysis are relevant in
several aspects. In the MI-DOR setting, where no instance-
level annotations are available during training, we showed that
the proposed method can learn underlying variables that are
significantly correlated with the ground-truth instance labels.
Even though our results in this setting are lower than fully-
supervised approaches, our method provides a good trade-off
between the annotation effort and the accuracy of intensity
predictions. While we do not claim to replace the AU/Pain
annotation process using only weak-labels at sequence-level,
this setting may be preferable in some applications. For
example, when the focus is on capturing the variation in
target facial behaviour rather than obtaining highly accurate
frame labels (e.g., for monitoring changes in patient’s pain
intensity levels), our approach has clear advantages over the
fully supervised methods which require a time-consuming
annotation process. On the other hand, the competitive results
of Partially-Observed MI-DORF compared to the evaluated
fully-supervised approaches, indicate that annotation effort can
be highly-reduced when combined with weak-information.

It is also worth mentioning recent works on Deep Learning
for Action Unit detection [46] and Intensity Estima-
tion [47], [11]. Although these models have a high mod-
elling power, the reported results have not shown significant
improvements compared to traditional shallow methods using
hand-crafted features. For example, the recently proposed
Copula Convolutional Neural Network (CNN) [11] for AU
Intensity Estimation is highly-related to our approach, because
it combines a CNN with a probabilistic graphical model
similar to the one employed in MI-DORF. Even though
the Copula CNN requires intensity labels for all the frames
during training, the reported results on the DISFA dataset are
comparable to those achieved by our method. Specifically,
MI-DORF trained with only a 10% of annotated frames
obtains better average performance in terms of Mean Average
Error (0.48 vs. 0.61) whereas it is outperformed in terms
of ICC (0.45 vs. 0.38) (Table IV). Although these results
are not directly comparable because of different experimental
settings, they indicate that our method trained with labels at
sequence-level and a small portion of labelled frames can still
show competitive performance. It is known that Supervised
Deep Learning models require a large number of samples
to be effectively trained [48]. Thus, this still limits their
application to Facial Behavior Analysis, where the annotation
process is laborious and labelled data is scarce. Posing the
facial expression intensity estimation as a weakly-supervised
learning problem would provide an opportunity to replace the
limited-size datasets currently used in the field, by large-scale
not-fully labelled databases. Therefore, coupling Deep models

with the proposed framework is a natural step forward and
will be the focus of our future research. This would provide
a principled way to train these powerful models by taking
advantage of data-driven MIL assumptions and a vast amount
of weakly-annotated data.
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