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Superpixel Segmentation Using Gaussian Mixture
Model

Zhihua Ban, Jianguo Liu, Member, IEEE, and Li Cao

Abstract—Superpixel segmentation algorithms are to partition
an image into perceptually coherence atomic regions by assigning
every pixel a superpixel label. Those algorithms have been wildly
used as a preprocessing step in computer vision works, as they
can enormously reduce the number of entries of subsequent
algorithms. In this work, we propose an alternative superpixel
segmentation method based on Gaussian mixture model (GMM)
by assuming that each superpixel corresponds to a Gaussian
distribution, and assuming that each pixel is generated by
first randomly choosing one distribution from several Gaussian
distributions which are defined to be related to that pixel, and
then the pixel is drawn from the selected distribution. Based
on this assumption, each pixel is supposed to be drawn from
a mixture of Gaussian distributions with unknown parame-
ters (GMM). An algorithm based on expectation-maximization
method is applied to estimate the unknown parameters. Once
the unknown parameters are obtained, the superpixel label of
a pixel is determined by a posterior probability. The success of
applying GMM to superpixel segmentation depends on the two
major differences between the traditional GMM-based clustering
and the proposed one: data points in our model may be non-
identically distributed, and we present an approach to control
the shape of the estimated Gaussian functions by adjusting
their covariance matrices. Our method is of linear complexity
with respect to the number of pixels. The proposed algorithm
is inherently parallel and can get faster speed by adding
simple OpenMP directives to our implementation. According to
our experiments, our algorithm outperforms the state-of-the-art
superpixel algorithms in accuracy and presents a competitive
performance in computational efficiency.

Index Terms—Superpixel, image segmentation, parallel algo-
rithms, Gaussian mixture model, expectation-maximization.

I. INTRODUCTION

PARTITIONING image into superpixels can be used as
a preprocessing step for complex computer vision tasks,

such as segmentation [1]–[3], visual tracking [4], image
matching [5], [6], etc. Sophisticated algorithms benefit from
working with superpixels, instead of just pixels, because su-
perpixels reduce input entries and enable feature computation
on more meaningful regions.

Like many terminologies in computer vision, there is no rig-
orous mathematical definition for superpixel. The commonly
accepted description of a superpixel is “a group of connected,
perceptually homogeneous pixels which does not overlap any
other superpixel.” For superpixel segmentation, the following
properties are generally desirable.
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Prop. 1. Accuracy. Superpixels should adhere well to object
boundaries. Superpixels crossing object boundaries arbitrarily
may lead to bad or catastrophic result for subsequent algo-
rithms. [7]–[10]

Prop. 2. Regularity. The shape of superpixels should be
regular. Superpixels with regular shape make it easier to
construct a graph for subsequent algorithms. Moreover, these
superpixels are visually pleasant which is helpful for algorithm
designers’ analysis. [11]–[13]

Prop. 3. Similar size. Superpixels should have a similar
size. This property enables subsequent algorithms to deal with
each superpixel without bias [14]–[16]. As pixels have the
same “size” and the term of “superpixel” is originated from
“pixel”, this property is also reasonable intuitively. This is a
key property to distinguish between superpixel and other over-
segmented regions.

Prop. 4. Efficiency. A superpixel algorithm should have a
low complexity. Extracting superpixels effectively is critical
for real-time applications. [8], [14].

Under the constraint of Prop. 3, the requirements on ac-
curacy and regularity are to a certain extent oppositional.
Intuitively, if a superpixel, with a limited size, needs to adhere
well to object boundaries, the superpixel has to adjust its shape
to that object which may be irregular. A satisfactory compro-
mise between regularity and accuracy has not yet been found
by existing superpixel algorithms. As four typical algorithms
shown in Fig. 1(b)-1(e), the shape of superpixels generated by
NC [17], [18] (Fig. 1(b)) and LRW [12] (Fig. 1(c)) is more
regular than that of superpixels extracted by SEEDS [8] (Fig.
1(d)) and ERS [9] (Fig. 1(e)). Nonetheless, the superpixels
generated by SEEDS [8] and ERS [9] adhere object boundaries
better than those of NC [17] and LRW [12]. In this work,
A Gaussian mixture model (GMM) and an algorithm derived
from the expectation-maximization algorithm [19] are built. It
turns out the proposed method can strike a balance between
regularity and accuracy. An example is displayed in Fig. 1(a),
the compromise is that superpixels at regions with complex
textures have an irregular shape to adhere object boundaries,
while at homogeneous regions, the superpixels are regular.

Computational efficiency is a matter of both algorithmic
complexity and implementation. Our algorithm has a linear
complexity with respect to the number of pixels. As an algo-
rithm has to read all pixels, linear time theoretically is the best
time complexity for superpixel problem. Generally, algorithms
can be categorized into two major groups: parallel algorithms
that are able to be implemented with parallel techniques and
its performance scales with the number of parallel processing
units, and serial algorithms whose implementations are usually
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(a) (b) (c) (d) (e)

Fig. 1. Superpixel segmentations by five algorithms: (a) Our method, (b) NC [17], (c) LRW [12], (d) SEEDS [8], and (e) ERS [9]. Each segmentation has
approximately 200 superpixels. The second row zooms in the regions of interest defined by the white boxes in the first row. At the third row, superpixel
boundaries are drawn to purely black images to highlight shapes of the superpixels.

executed sequentially and only part of the system resources
can be used on a parallel computer. Modern computer archi-
tectures are parallel and applications can benefit from parallel
algorithms because parallel implementations generally run
faster than serial implementations for the same algorithm.
The proposed algorithm is inherently parallel and our serial
implementation can easily achieve speedups by adding few
simple OpenMP directives.

The proposed method is constructed by associating each
superpixel to one Gaussian distribution; modeling each pixel
with a mixture of Gaussian distributions, which are related to
the given pixel; and estimating unknown parameters in the pro-
posed mixtures via an approach modified from the expectation-
maximization algorithm; The superpixel of a pixel is deter-
mined by a post probability. The proposed approach was
tested on the Berkeley Segmentation Data Set and Benchmarks
500 (BSDS500) [20]. It is shown that the proposed method
outperforms state-of-the-art methods in accuracy and presents
a competitive performance in computational efficiency. Our
main contributions are summarized as follows:

1) Our model is novel for superpixel segmentation, as
GMM has not yet been well explored for the superpixel
problem.

2) We present a pixel-related GMM for each individual
pixel, in which case pixels may be non-identically
distributed, meaning that two pixels may have different
GMMs.

3) The proposed algorithm offers an option for controlling
the regularity of superpixel shapes.

4) Our algorithm is a parallel algorithm.
5) The proposed approach give a better accuracy than state-

of-the-art algorithms.
6) Our method strike a balance between superpixel regu-

larity and accuracy (see Fig. 1(a)).

The rest of this paper is organized as follows. Section II

presents an overview of related works on superpixel segmenta-
tion. Section III introduces the proposed method. Experiments
are discussed in section IV. Finally, the paper is concluded in
section V.

II. RELATED WORKS

The concept of superpixel was first introduced by Xiaofeng
Ren and Jitendra Malik in 2003 [21]. During the last decades,
the superpixel problem has been well studied [22], [23].
Existing superpixel algorithms extract superpixels either by
optimizing superpixel boundaries, such as finding paths and
evolving curves, or by grouping pixels, e.g. the most well-
known SLIC [14]. We will give a brief review on how existing
algorithms solve the superpixel problem in the two aspects in
this section.

Optimize boundaries. Algorithms extract superpixels not by
labeling pixels directly but by marking superpixel boundaries,
or by only updating the label of pixels on superpixel boundary
is in this category. Rohkohl et al. present a superpixel method
that iteratively assigns superpixel boundaries to their most
similar neighboring superpixel [24]. A superpixel is repre-
sented with a group of pixels that are randomly selected from
that superpixel. The similarity between a pixel and a super-
pixel is defined as the average similarities from the pixel
to all the selected representatives. Aiming to extract lattice-
like superpixels, or “superpixel lattices”, [13] partitions an
image into superpixels by gradually adding horizontal and
vertical paths in strips of a pre-computed boundary map.
The paths are formed by two different methods: s-t min-cut
and dynamic programming. The former finds paths by graph
cuts and the latter constructs paths directly. The paths have
been designed to avoid parallel paths crossing and guarantee
perpendicular paths cross only once. The idea of modeling
superpixel boundaries as paths (or seam carving [25]) and
the use of dynamic programming were borrowed by later
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variations or improvements [26]–[31]. In TurboPixels [16],
Levinshtein et al. model the boundary of each superpixel as
a closed curve. So, the connectivity is naturally guaranteed.
Based on level-set evolution, the curves gradually sweep over
the unlabeled pixels to form superpixels under the constraints
of two velocities. In VCells [7], a superpixel is represented
as a mean vector of color of pixels in that superpixel. With
the designed distance [7], VCells iteratively updates super-
pixel boundaries to their nearest neighboring superpixel. The
iteration stops when there are no more pixels need to be
updated. SEEDS [8], [32] exchanges superpixel boundaries
using a hierarchical structure. At the first iteration, the biggest
blocks on superpixel boundary are updated for a better energy.
The size of pixel blocks becomes smaller and smaller as the
number of iterations increases. The iteration stops after the
update of boundary exchanges in pixel level. Improved from
SLIC [14], [33] and [34] present more complex energy. To
minimize their corresponding energy, [33] and [34] update
boundary pixels instead of assigning a label for all pixels
in each iteration. Based on [33], [34] adds the connectivity
and superpixel size into their energy. For the pixel updating,
[34] uses a hierarchical structure like SEEDS [32], while [34]
exchanges labels only in pixel level. Zhu et al. propose a
speedup of SLIC [14] by only moving unstable boundary
pixels, the label of which changed in the previous iteration
[26]. Besides, based on pre-computed line segments or edge
maps of the input image, [35] and [11] extract superpixels by
aligning superpixel boundaries to the lines or the edges.

Grouping pixels. Superpixels algorithms that assign labels
for all pixels in each iteration is in this category. With an
affinity matrix constructed based on boundary cue [36], the
algorithm developed in [18] [21], which is usually abbreviated
as NC [14], uses normalized cut [17] to extract superpixels.
In Quick shift (QS) [37], the pixel density is estimated on a
Parzen window with a Gaussian kernel. A pixel is assigned
to the same group with its parent which is the nearest pixel
with a greater density and within a specified distance. QS
does not guarantee connectivity, or in other words, pixels
with the same label may not be connected. Veksler et al.
propose an approach that distributes a number of overlapping
square patches on the input image and extracts superpixels
by finding a label for each pixel from patches that cover
the present pixel [38]. The expansion algorithm in [39] is
gradually adapted to modify pixel label within local regions
with a fixed size in each iteration. A similar solution in [40]
is to formulate the superpixel problem as a two-label problem
and build an algorithm through grouping pixels into vertical
and horizontal bands. By doing this, pixels in the same vertical
and horizontal group form a superpixel. Starting from an
empty graph edge set, ERS [9] sequentially adds edges to
the set until the desired number of superpixels is reached. At
each adding, ERS [9] takes the edge that results in the greatest
increase of an objective function. The number of generated
superpixels is exactly equal to the desired number. SLIC
[14] is the most well-known superpixel algorithm due to its
efficiency and simplicity. In SLIC [14], a pixel corresponds to
a five dimensional vector including color and spatial location,
and k-means is employed to cluster those vectors locally,

i.e. each pixel only compares with superpixels that fall into
a specified spatial distance and is assigned to the nearest
superpixel. Many variations follow the idea of SLIC in order to
either decrease its run-time [41]–[43] or improve its accuracy
[33], [44]. LSC [10] also uses a k-means method to refine
superpixels. Instead of directly using the 5D vector used in
SLIC [14], LSC [10], [45] maps them to a feature space and a
weighted k-means is adopted to extract superpixels. Based on
marker-based watershed transform, [15] and [41] incorporate
spatial constraints to an image gradient in order to produce
superpixels with regular shape and similar size. LRW [12]
groups pixels using an improved random walk algorithm. By
using texture features to optimize an initial superpixel map,
this method can produce regular superpixels in regions with
complex texture. However, this method suffers from a very
slow speed.

Although FH [46], mean shift [47] and watersheds [48],
have been refereed to as “superpixel” algorithms in the liter-
ature, they are not covered in this paper as the sizes of the
regions produced by them vary enormously. This is mainly
because these algorithms do not offer direct control to the
size of the segmented regions. Structure-sensitive or content-
sensitive superpixels in [49], [50] are also not considered to be
superpixels, as they do not aim to extract regions with similar
size (see Prop. 3 in section I).

A large number of superpixel algorithms have been pro-
posed, however, few models have been presented and most
of the existing energy functions are variation of the objective
function of k-means. In our work, we propose an alternative
model to tackle the superpixel problem. With an elaborately
designed algorithm, the underlying segmentation from the
model is well revealed.

III. THE METHOD

A. Model
Let i stands for the pixel index of an input image I with its

width W and height H in pixels. Hence, the total number of
pixels N of image I is W ·H , and i ∈ V def= {0, 1, . . . , N −
1}. Let (xi, yi) denotes pixel i’s position on the image plane,
where xi ∈ {0, 1, . . . ,W − 1} and yi ∈ {0, 1, . . . ,H − 1},
and ci denotes pixel i’s intensity or color. If color image is
used, ci is a vector, otherwise, ci is a scalar. The number of
elements in ci is ignored for now and it will be discussed later.
We use vector zi = (xi, yi, ci)

T to represent pixel i.
Most existing superpixel algorithms require the desired

number of superpixels K as an input. However, instead of
using K directly, we use vx and vy as essential inputs. If K
is specified, vx and vy are obtained by the following equation.

vx = vy =

⌊√
W ·H
K

⌋
. (1)

If vx and vy are preferred, it is encouraged to assign the same
value to the two variables. Using equation (2), the desired
number of superpixels K is computed when vx and vy are
directly specified, or re-computed in the case when vx and vy
are obtained by equation (1).

nx =

⌊
W

vx

⌋
, ny =

⌊
H

vy

⌋
, K = nx · ny . (2)
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For simplicity of discussion, we assume that W mod vx = 0
and H mod vy = 0. We define the superpixel set as K def=
{0, 1, . . . ,K − 1}.

Each superpixel k ∈ K corresponds to a Gaussian distribu-
tion with p.d.f. p(z;θk), where θk = {µk,Σk} and

p(z;θk) = (3)
1

(2π)D/2
√

det(Σk)
exp

{
− 1

2
(z− µk)TΣ−1k (z− µk)

}
,

in which D is the number of components in z.
If pixel i is drawn from superpixel k, we assume that pixel

i can be only in pixel set Ik which is defined in equation (4).
Fig. 2 gives an visual illustration for Ik. The definition of Ik
is one of the key points in our method.

Ik def= {i | xk,b ≤ xi < xk,e, yk,b ≤ yi < yk,e, i ∈ I} , (4)

where

xk,b def= max(0, vx · (kx − 1)) , (5)
xk,e def= min(W, vx · (kx + 2)) , (6)
yk,b def= max(0, vy · (ky − 1)) , (7)
yk,e def= min(H, vy · (ky + 2)) , (8)

and for any given superpixel k ∈ K, we have

kx def= k mod nx , ky def= bk/nxc. (9)

For each pixel i ∈ V , the possible superpixels from which
pixel i may be generated form a superpixel set Ki

def= {k|i ∈
Ik, k ∈ K} ⊆ K. Let L̃i stand for the unknown superpixel
label of pixel i, and L̃i are treated as random variables
whose possible values are in Ki, i ∈ V . We now treat zi as
observations of random variables Zi. The probability density
function pi(z) of each random variables Zi is defined as a

H
v y

vx

v y

vx

v y

vx

v y

vx

v y

vx
W

Fig. 2. Illustration of pixel set Ik . Pixel set I7, I11, and I18 are correspond-
ingly surrounded with blue, red, and green rectangles in this figure.

mixture of Gaussian functions, known as Gaussian mixture
model (GMM).

pi(z) =
∑
k∈Ki

Pr(L̃i = k)p(z;θk) ,∀i ∈ V , (10)

in which Pr(L̃i = k), the probability that L̃i takes value k,
are defined to be Pi def= 1/|Ki| for k ∈ Ki, where | · | is the
number of elements in a given set. Therefore, pi(z) become

pi(z) = Pi
∑
k∈Ki

p(z;θk) . (11)

Note that pixels may have different distributions when Ki $ K
which is the most common case. This is the main difference
between our GMM and the traditional GMM. The usage of
Pi results in superpixels with similar size.

Once an estimator of θ def= {θk|k ∈ K} is found, superpixel
label Li of pixel i can be obtained by

Li = argk max
k∈Ki

Pr(L̃i = k|Zi = zi) , (12)

By Bayes’ theorem, we have the posterior probability of each
L̃i,

Pr(L̃i = k|Zi = zi) =

p(zi;θk) Pr(L̃i = k)∑
k∈Ki

p(zi;θk) Pr(L̃i = k)
=

p(zi;θk)∑
k∈Ki

p(zi;θk)
. (13)

Therefore, superpixel labels can be obtained by

Li = argk max
k∈Ki

p(zi;θk)∑
k∈Ki

p(zi;θk)
. (14)

B. Parameter estimation

Maximum likelihood estimation is used to estimate the
parameters in θ. Suppose that Zi, i ∈ V , are independently
distributed. For all observed vectors zi, i ∈ V , the logarithmic
likelihood function will be

f(θ) =
∑
i∈V

ln pi(zi)

=
∑
i∈V

lnPi +
∑
i∈V

ln
∑
k∈Ki

p(zi;θk) . (15)

Because
∑
i∈V logPi is constant, the value of θ that maxi-

mizes f(θ) will be the same as the value of θ that maximizes

L(θ) =
∑
i∈V

ln
∑
k∈Ki

p(zi;θk) . (16)

According to Jensen’s inequality, L(θ) is greater than or
equal to Q(R,θ) as shown below.

L(θ) =
∑
i∈V

ln
∑
k∈Ki

Ri,k
p(zi;θk)

Ri,k
(17)

≥
∑
i∈V

∑
k∈Ki

Ri,k ln
p(zi;θk)

Ri,k
= Q(R,θ) , (18)

where Ri,k ≥ 0,
∑
k∈Ki

Ri,k = 1 for i ∈ V and k ∈ Ki, and
R = {Ri,k | i ∈ V, k ∈ Ki}. We now use the expectation-
maximization algorithm to iteratively find the value of θ that
maximizes Q(R,θ) to approach the maximum of L(θ) with
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two steps: the expectation step (E-step) and the maximization
step (M-step).

E-step: once a guess of θ is given, Q(R,θ) is expected to be
tightly attached to L(θ). To this end, R is required to ensure
L(θ) = Q(R,θ). Equation (19) is a sufficient condition for
Jensen’s inequality to hold the equality of inequality L(θ) ≥
Q(R,θ).

p(zi;θk)

Ri,k
= α , (19)

where α is a constant. Since
∑
k∈Ki

Ri,k = 1, α can be
eliminated and hence Ri,k can be updated by equation (20) to
hold the equality to be true.

Ri,k =
p(zi;θk)∑

k∈Ki
p(zi;θk)

. (20)

M-step: in this step, θ is derived by maximizing Q(R,θ)
with a given R. To do this, we first calculate the derivatives
of Q(R,θ) with respect to mean vectors µk and covariance
matrices Σk, and set the derivatives to zero, as shown in
equations (21)-(23). Then the parameters are obtained by
solving equation (23).

∂Q(R,θ)

∂µk
=
∑
i∈Ik

Ri,k

{
Σ−1k (zi − µk)

}
, (21)

∂Q(R,θ)

∂Σk
=∑

i∈Ik

Ri,k

{
1

2
Σ−1k (zi − µk)(zi − µk)TΣ−1k −

1

2
Σ−1k

}
, (22)

∂Q(R,θ)

∂µk
= 0,

∂Q(R,θ)

∂Σk
= 0, (23)

µk =

∑
i∈Ik Ri,kzi∑
i∈Ik Ri,k

, (24)

Σk =

∑
i∈Ik Ri,k(zi − µk)(zi − µk)T∑

i∈Ik Ri,k
. (25)

After initializing θ, the estimate of θ is obtained by itera-
tively updating R and θ using equations (20), (24), and (25)
until θ converges.

C. Algorithm in practice

Although the estimate of θ in section III-B supports full
covariance matrices, i.e., a covariance matrix with all its ele-
ments as shown in equation (25), only block diagonal matrices
are used in this work (see equation (26)). This is because
computing on block diagonal matrices is more efficient than
computing on full matrices, and full matrices will also not
bring better performance in accuracy.

Σk =

[
Σk,s 0

0 Σk,c

]
, (26)

where Σk,s and Σk,c respectively represent the spatial covari-
ance matrices and the color covariance matrices for k ∈ K. For
color images, it is encouraged to split their color covariance
matrices into lower dimensional matrices to save computation.

For example, if an image with CIELAB color space is inputted,
it is better to put color-opponent dimensions a and b into a
2 by 2 covariance matrix. In this case, Σk,c in equation (26)
will become

Σk,c =

[
σ2
k,l 0

0 Σk,(a,b)

]
. (27)

However, we will keep using (26) to discuss the proposed
algorithm for simplicity.

The covariance matrices will be updated according to equa-
tions (28) and (29) which are derived by replacing Σk in
equation (22) with the block diagonal matrices in equation
(26), and by further solving (23).

Σk,s =

∑
i∈Ik Ri,k(zi,s − µk,s)(zi,s − µk,s)T∑

i∈Ik Ri,k
, (28)

Σk,c =

∑
i∈Ik Ri,k(zi,c − µk,c)(zi,c − µk,c)T∑

i∈Ik Ri,k
, (29)

where zi,s and µi,s are the spatial components of zi and
µi, and zi,c and µi,c are, for grayscale images, the intensity
components, or, for color image, the color components of zi
and µi.

Since Σk,s and Σk,c are positive semi-definite in practice,
they may be not invertible sometimes. To avoid this trouble,
we first compute the eigendecompositions of the covariance
matrices as shown in equations (30) and (31), then eigenval-
ues on the major diagonals of Λk,s and Λk,c are modified
using equations (32) and (33), and finally Σk,s and Σk,c are
reconstructed via the equations (34) and (35).

Σk,s = Qk,s Λk,s Q
−1
k,s , (30)

Σk,c = Qk,c Λk,c Q
−1
k,c , (31)

where Λk,s and Λk,c are diagonal matrices with eigenvalues
on their respective major diagonals, and Qk,s and Qk,c are
orthogonal matrices. We use λk,s(js) and λk,c(jc) to denote
the respective eigenvalues on major diagonals of Λk,s and
Λk,c, where js ∈ {0, 1} and jc ∈ {0, 1, 2}. If the input image
is grayscale, then we will have that Qk,c = 1, Σk,c and Λk,c
are scalars, and jc = 0.

λ̃k,s(js) =

{
λk,s if λk,s(js) ≥ εs ,
εs else. (32)

λ̃k,c(jc) =

{
λk,c if λk,c(jc) ≥ εc ,
εc else. (33)

where εs and εc are two constants. Although this two con-
stants are originally designed to prevent covariance matrices
from being singular, they also give an opportunity to control
regularity of the generated superpixels by weighing the relative
importance between spatial proximity and color similarity. For
instance, a larger εc produces more regular superpixels, and the
opposite is true for a smaller εc. As εc and εs are opposite to
each other, we set εs = 2 and leave εc for detailed description
in section IV.

Σk,s = Qk,s Λ̃k,s Q
−1
k,s , (34)

Σk,c = Qk,c Λ̃k,c Q
−1
k,c , (35)
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where Λ̃k,s and Λ̃k,c are diagonal matrices with λ̃k,s(js) and
λ̃k,c(jc) on their respective major diagonals.

In the proposed algorithm, µk are initialized using K center
pixels over the input image uniformly at fixed horizontal and
vertical intervals vx and vy , i.e. µk = zj , where

j = kx · vx + bvx/2c+W · (ky · vy + bvy/2c). (36)

We initialize Σk,s with diag(v2x, v
2
y) so that neighboring

superpixels can be well overlapped at the beginning. The
initialization of Σk,c is not very straightforward, the basic
idea is to set their main diagonal equal to the square of a
small color distance λ with which two pixels are perceptually
uniform. The effect of different values for λ will be discussed
in section IV.

Once parameter θ is initialized, it will finally be estimated
by iteratively updating (20), (24), (34), and (35) until θ
converges. As a preprocessing step to subsequent applications,
superpixel algorithm should run as fast as possible. We have
found that iterating 10 times is sufficient for most images
without checking convergence, and we will use this iteration
number for all our experiments and will denote it with T to
avoid confusion.

As the connectivity of superpixels cannot be guaranteed,
a postprocessing step is required to enforce connectivity of
the generated superpixels. This is done by sorting the isolated
superpixels in ascending order according to their sizes, and
sequentially merging small isolated superpixels, which are less
than one fourth of the desired superpixel size, to their nearest
neighboring superpixels, with only intensity or color being
taken into account. Once an isolated superpixel (source) is
merged to another superpixel (destination), the size of the
source superpixel is cleared to zero, and the size of the
destination superpixel will be updated by adding the size of
the source superpixel. This size updating trick will prevent the
size of the produced superpixels from significantly varying.

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 The proposed superpixel algorithm.
Input: vx and vy , or K; I .
Output: Li, i ∈ V .

1: Initialize parameter θ.
2: Update R using equation (20), and set t = 0.
3: while t < T do
4: Update µk using equation (24).
5: Update Σk,s and Σk,c using equations (34) and (35).
6: Update R using equation (20), and set t = t+ 1.
7: end while
8: Li are determined by equation (14).
9: Postprocessing for connectivity enforcement.

D. Analysis on the proposed method

As the frequency of a single processor is difficult to im-
prove, modern processors are designed using parallel architec-
tures. If an algorithm is able to be implemented with parallel
techniques, its performance generally scales with the number
of parallel processing units and its computational efficiency
can be significantly improved on multi-core or on many-core

systems. Fortunately, the most expensive part of our algorithm,
namely the iteration of updating of R and θ, can be parallelly
executed as each Ri,k can be updated independently, and so do
µk and Σk. In our experiments, we will show that our C++
implementation is easy to get speedup on multi-core CPUs
with only few OpenMP directives inserted.

By the definition of Ki, we have 1 ≤ |Ki| ≤ 9 for i ∈ V .
Therefore, the updating of R has a complexity of O((T + 1) ·
N). Because we use T as a constant in the proposed algorithm,
the complexity of R is O(N). By the definition of Ik, we have
vx · vy ≤ |Ik| ≤ 9 · vx · vy . Based on equations (24), (28), and
(29), the complexity of updating θ is O(T ·K · |Ik|). Since K ·
|Ik| = (nx ·ny)·(vx ·vy) = W ·H = N , the updating of θ has a
complexity of O(N). In the worst case, the sorting procedure
in the postprocessing step requires O(m2) operations, where
m is the number of isolated superpixels. The merging step
needs O(m̃ · n) operations, where m̃ is the number of small
isolated superpixels and n represents the average number of
their adjacent neighbors. In practice, m2 + m̃ ·n� T ·N , the
operations required for the postprocessing step can be ignored.
Therefore, the proposed superpixel algorithm is of a linear
complexity O(N).

IV. EXPERIMENT

In this section, algorithms are evaluated in terms of accu-
racy, computational efficiency, and visual effects. Like many
state-of-the-art superpixel algorithms, we also use CIELAB
color space for our experiments because it is perceptually
uniform for small color distance.

Accuracy: three commonly used metrics are adopted:
boundary recall (BR), under-segmentation error (UE), and
achievable segmentation accuracy (ASA). To assess the perfor-
mance of the selected algorithms, experiments are conducted
on the Berkeley Segmentation Data Set and Benchmarks 500
(BSDS500) which is an extension of BSDS300. These two
data sets have been wildly used in superpixel algorithms.
BSDS500 contains 500 images, and each one of them has the
size of 481×321 or 321×481 with at least four ground-truth
human annotations.
• BR measures the percentage of ground-truth boundaries

correctly recovered by the superpixel boundary pixels.
A true boundary pixel is considered to be correctly
recovered if it falls within two pixels from at least one
superpixel boundary. A high BR indicates that very few
true boundaries are missed.

• A superpixel should not cross ground-truth boundary, or,
in other words, it should not cover more than one object.
To quantify this notion, UE calculates the percentage of
superpixels that have pixels “leak” from their covered
object as shown in equation (37).

UE = (−1) +
1

N

∑
|sk∩sg| > ε|sk|

|sk|, (37)

where sk and sg are pixel sets of superpixel k and
ground-truth segment g. ε = 0.05 is generally accepted.

• If we assign every superpixel with the label of a ground-
truth segment into which the most pixels of the su-
perpixel fall, how much segmentation accuracy can we
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(a) (b) (c)

Fig. 3. Effect of different λ. Experiments are performed on BSDS500 to generate different number of superpixels by adjusting K or vx and vy , and results
are averaged over 500 images. The results of BR, UE, and ASA are correspondingly plotted in (a), (b), and (c). In order to see more details, part of the
results are zoomed in. (better see in color)

(a) (b) (c) (d) (e)

Fig. 4. visual results with (a) λ = 2, (b) λ = 4, (c) λ = 6, (d) λ = 8, and (e) λ = 10. The test image is from BSDS500 and approximately 400 superpixels
are extracted in each image.

(a) (b) (c)

Fig. 5. Results with different εc. Experiments are performed on BSDS500 to generate different number of superpixels by adjusting K or vx and vy , and
results are averaged over 500 images. The results of BR, UE, and ASA are correspondingly plotted in (a), (b), and (c). In order to see more details, part of
the results are zoomed in. (better see in colour)

achieve, or how many pixels are correctly segmented?
ASA is designed to answer this question. Its formula is
defined in equation (38) in which G is the set of ground-
truth segments.

ASA =
1

N

∑
k∈K

max

{
|sk ∩ sg|

∣∣ g ∈ G}. (38)

Computational efficiency: execution time is used to quantify
this property.

A. Effect of λ and εc

As shown in Fig. 3, there is no obvious regularity for the
effect of λ. In Fig. 3, the maximum difference between two
lines is around 0.001∼0.006 which is very small. Although it
seems that small λ will lead to a better BR result, it is not
true for UE and ASA. For instance, in the enlarged region of
Fig. 3b, the result of λ = 10 is slightly better than λ = 6.
Visual results with different λ are plotted in Fig. 4, it is hard
for human to distinguish the difference among the five results.
εc can be used to control the regularity of the generated

superpixels. As shown in Fig. 5, small difference of εc does
not present obvious variation for UE and ASA, but it does
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(a) (b) (c) (d) (e)

Fig. 6. visual results with (a) εc = 2, (b) εc = 4, (c) εc = 6, (d) εc = 8, and (e) εc = 10. The test image is from BSDS500 and approximately 400
superpixels are extracted in each image. The second row is enlarged from the rectangular marked in the first row.

affect the results of BR. In other words, a small variation
of εc affects the boundary of the produced superpixels much
more than the content of the produced superpixels. Generally,
a larger εc leads to more regular superpixels whose boundary is
more smooth. Conversely, the shape of superpixels generated
with a smaller εc is relative irregular (see Fig. 6). Because
superpixels with irregular shape will produce more boundary
pixels, the result of BR with small εc is better than that with
greater εc.

We will use λ = 8 and εc = 8 in the following experiments.
Although this setting does not give the best performance in
accuracy, the shape of superpixels using this setting is regular
and visually pleasant (see Fig. 6(d)). Moreover, it is enough
to outperform state-of-the-art algorithms as shown in Fig. 7.

B. Parallel scalability

In order to evaluate scalability for the number of processors,
we test our implementation on an machine attached with an In-
tel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz and 8 GB RAM.
The source code is not optimized for any specific architecture.
Only two OpenMP directives are added for the updating of
Σk, µk, and R, as they can be computed independently (see
section III-D). As listed in Table I, for a given image, multiple
cores will present a better performance.

TABLE I
RUN-TIME (MS) OF OUR IMPLEMENTATION ON DIFFERENT IMAGES WITH

VARIOUS RESOLUTION. THE PROGRAM IS EXECUTED USING 1, 2, 4, AND 6
CORES.

Resolution 1 core 2 cores 4 cores 6 cores

240×320 393.646 303.821 227.078 200.708
320×480 776.586 589.785 400.073 321.548
480×640 1569.74 1011.62 743.629 624.561
640×960 3186.71 2244.12 1353.72 1069.79

C. Comparison with state-of-the-art algorithms

We compare the proposed algorithm to eight state-of-the-
art superpixel segmentation algorithms including LSC1 [10],

1http://jschenthu.weebly.com/projects.html

SLIC2 [14], SEEDS3 [8], ERS4 [9], TurboPixels5 [16], LRW6

[12], VCells7 [7], and Waterpixels8 [15]. The results of
the eight algorithms are all generated from implementations
provided by the authors on their respective websites with
their default parameters except for the desired number of
superpixels, which is decided by users.

As shown in Fig. 7, our method outperforms the selected
state-of-the-art algorithms especially for UE and ASA. It is
not easy to distinguish between our result and LSC in Fig.
7(a). However, if we use εc = 2, our result will obviously
outperforms LSC as displayed in Fig. 8.

To compare the run-time of the selected algorithms, we
test them on a desktop machine equipped with an Intel(R)
Core(TM) i5-4590 CPU @ 3.30GHz and 8 GB RAM. The
results are plotted in Fig. 9. According to Fig. 9(b), as the size
of the input image increases, run-time of our algorithm grows
linearly, which proves our algorithm is of linear complexity
experimentally.

A visual comparison is displayed in Fig. 10. According to
the zooms, only the proposed algorithm can correctly reveal
the segmentations. Our superpixel boundaries can adhere ob-
ject very well. LSC gives a really competitive result, however
there are still parts of the objects being under-segmented. The
superpixels extracted by SEEDS and ERS are very irregular
and their sizes vary tremendously. The remaining five algo-
rithms can generate regular superpixels, but they adhere object
boundaries poorly.

V. CONCLUSION

This paper presents an alternative method for superpixel
segmentation by associating each superpixel to a Gaussian dis-
tribution with unknown parameters; then constructing a Gaus-
sian mixture model for each pixel; and finally the superpixel
label of a pixel is determined by a posterior probability after
that the unknown parameters are estimated by the proposed

2http://ivrl.epfl.ch/research/superpixels
3http://www.mvdblive.org/seeds/
4https://github.com/mingyuliutw/ers
5http://www.cs.toronto.edu/ babalex/research.html
6https://github.com/shenjianbing/lrw14
7http://www-personal.umich.edu/ jwangumi/software.html
8http://cmm.ensmp.fr/ machairas/waterpixels.html
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(a) (b) (c)

Fig. 7. Comparison with state-of-the-art algorithms. Experiments are performed on BSDS500 to generate different number of superpixels by adjusting the
desired number of superpixels, and results are averaged over 500 images. The results of BR, UE, and ASA are correspondingly plotted in (a), (b), and (c).

Fig. 8. Comparison of BR between LSC and our method. Without changing
the default value of other parameters in our method, we use ε = 2 in this
figure.

(a) (b)

Fig. 9. Comparison of run-time. Seven algorithms are compared in (a). In
order to see more details, the rum-time of the fastest four algorithms is plotted
in (b). LRW is not included in the two figures due to its slow speed.

algorithm derived from the expectation-maximization method.
The main difference between the traditional GMM method
and the proposed one is that data points in our model are
not assumed to be identically distributed. Another important
contribution is the application of eigendecomposition used in
the updating of covariance matrices.

The proposed algorithm is of linear complexity, which has
been proved by both theoretical analysis and experimental
results. What’s more, it can be implemented using parallel
techniques, and its run-time scales with the number of pro-
cessors. The comparison with the state-of-the-art algorithms
shows that the proposed algorithm outperforms the selected
methods in accuracy and presents a competitive performance
in computational efficiency.

As a contribution to open source society, we will make our
test code public available at https://github.com/ahban.
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