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An Unsupervised Game-Theoretic Approach to
Saliency Detection

Yu Zeng, Mengyang Feng, Huchuan Lu, and Ali Borji

Abstract—We propose a novel unsupervised game-theoretic
salient object detection algorithm that does not require labeled
training data. First, saliency detection problem is formulated
as a non-cooperative game, hereinafter referred to as Saliency
Game, in which image regions are players who choose to
be ”background” or ”foreground” as their pure strategies. A
payoff function is constructed by exploiting multiple cues and
combining complementary features. Saliency maps are generated
according to each region’s strategy in the Nash equilibrium of the
proposed Saliency Game. Second, we explore the complementary
relationship between color and deep features and propose an
Iterative Random Walk algorithm to combine saliency maps
produced by the Saliency Game using different features. Iterative
random walk allows sharing information across feature spaces,
and detecting objects that are otherwise very hard to detect. Ex-
tensive experiments over 6 challenging datasets demonstrate the
superiority of our proposed unsupervised algorithm compared to
several state of the art supervised algorithms.

I. INTRODUCTION

Saliency detection is a preprocessing step in computer
vision which aims at finding salient objects in an image [2].
Saliency helps allocate computing resources to the most infor-
mative striking objects in an image, rather than processing the
background. This is very appealing for many computer vision
tasks such as object tracking, image and video compression,
video summarization, image retrieval and classification. A lot
of previous effort has been spent on this problem and has
resulted in several methods [4], [5]. Yet, saliency detection
in arbitrary images remains to be a very challenging task,
in particular over images with several objects amidst high
background clutter.

On the one hand, unsupervised methods are usually more
economical than supervised ones because no training data is
needed. But they usually require a prior hypothesis about
salient objects, and their performance heavily depend on
reliability of the utilized prior. Take a recently popular label
propagation approach as an example (e.g., [12][36][14][32]).
First, seeds are selected according to some prior knowledge
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)
Fig. 1. Saliency detection results by different methods. (a) Input
images, (b) Ground truth maps, (c) DRFI method [13], a supervised
method based on handcrafted features, (d) MR method [36], an
unsupervised method taking image boundary regions as background
seeds, (e) Our method.

(e.g., boundary background prior), and then, labels are propa-
gated from seeds to unlabeled regions. They work well in most
of the cases, but their results will be inaccurate if the seeds are
wrongly chosen. For instance, when image boundary regions
serve as background seed, the output will be unsatisfactory if
the salient objects touch the image boundary (see the first row
of Figure I(d)).

On the other hand, supervised methods are generally more
efficient. Compared with unsupervised methods based on
heuristic rules, supervised methods can learn more represen-
tative properties of salient objects from numerous training
images. The prime example is deep learning based meth-
ods [30][37][18][17]. Owning to their hierarchical architec-
ture, deep neural networks (e.g., CNNs [16]) can learn high-
level semantically rich features. Consequently, these methods
are able to detect semantically salient objects in complex
backgrounds. However, off-line training a CNN needs a great
deal of training data. As a result, using CNNs for saliency
detection, although effective, is relatively less economical than
unsupervised approaches.

In this paper, we attempt to overcome the aforementioned
drawbacks. To begin with, the saliency detection problem is
formulated as a Saliency Game among image regions. Our
main motivation in formulating saliency and attention in a
game-theoretic manner is the very essence of attention which
is the competition among objects to enter high level pro-
cessing. Most previous methods formulate saliency detection
as minimizing one single energy function that incorporates
saliency priors. Different image regions are often considered
through adding terms in the energy function (e.g., [38]) or se-
quentially (e.g., [36]). If the priors are wrong, optimization of
their energy function might lead to wrong results. In contrast,
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we define one specific payoff function for each superpixel
which incorporates multiple cues including spatial position
prior, objectness prior, and support from others. Adopting two
independent priors makes the proposed method more robust
since when one prior is inappropriate, the other might work.
The goal of the proposed Saliency Game is to maximize
the payoff of each player given other players strategies. This
can be regarded as maximizing many competing objective
functions simultaneously. The game equilibrium automatically
provides a trade-off, so that when some image region can not
be assigned a right saliency value by optimizing one objective
function (e.g., due to misleading prior), optimization of the
other objective functions might help to give them a right
saliency value. This approach seems very natural for attention
modeling and saliency detection, as also features and objects
compete to capture our attention.

In addition, it is known that one main factor for the aston-
ishing success of deep neural networks is their powerful ability
to learn high-level semantically-rich features. Using features
extracted from a pre-trained CNN to build an unsupervised
method seems a considerable option, as it allows utilizing
the aforementioned strength while avoiding time-consuming
training. However, rich semantic information comes with the
cost of diluting image features through convolution and pool-
ing layers. Due to this, we also use traditional color features
as supplementary information. To make full use of these two
complementary features for better detection results, we avoid
taking the weighted sum of the raw results generated by the
above Saliency Game in the two feature spaces. Instead, we
further propose an Iterative Random Walk algorithm across
two feature spaces, deep features and the traditional CIE-Lab
color features, to refine saliency maps. In every iteration of
the Iterative Random Walk, the propagation in the two feature
spaces are penalized by the latest output of each other. Figure 2
shows the pipeline of our algorithm.

In a nutshell, the main contributions of our work include:
1) We propose a novel unsupervised Saliency Game to

detect salient objects. Adopting two independent priors
improves robustness. The nature of game equilibria
assures accuracy when both priors are unsatisfactory,

2) Utilizing semantically-rich features extracted from pre-
trained fully convolutional networks (FCNs) [22], in
an unsupervised manner, the proposed method is able
to identify salient objects in complex scenes, where
traditional methods that use handcrafted features may
fail (see Figure I(c)), and

3) An Iterative Random Walk algorithm across two feature
spaces is proposed that takes advantage of the comple-
mentary relationship between the color feature space and
the deep feature space to further refine the results.

II. RELATED WORK

Some saliency works have followed an unsupervised ap-
proach. In [12], saliency of each region was defined as its
absorbed time from boundary nodes, which measures its
global similarity with all boundary regions. Yang et al. . [36]
ranked the similarity of image regions with foreground or

background cues via graph-based manifold ranking. Saliency
value of each image element was determined based on its
relevance to given seeds. In [14], saliency pattern was mined
to find foreground seeds according to prior maps. Foreground
labels were propagated to unlabeled regions. Tong et al. . [27]
proposed a learning algorithm to bootstrap training samples
generated from prior maps. These methods exploited either
boundary background prior or foreground prior from a prior
map, while we adopt two different priors in our method for
robustness purposes. Priors only act as weak guidance with
very small weights in the payoff function of our proposed
Saliency Game.

Some deep learning based saliency detection methods have
achieved great performance. In [30], two deep neural networks
were trained, one to extract local features and the other to
conduct a global search. Zhao et al. . [37] proposed a multi-
context deep neural network taking both global and local
context into consideration. Li et al. . [18] explored high-
quality visual features extracted from deep neural networks
to improve the accuracy of saliency detection. In [17], high
level deep features and low level handcrafted features were
integrated in a unified deep learning framework for saliency
detection. All above methods needed a lot of time and many
images for training. In this work, we are not against the CNN
models, but we combine deep features with traditional color
features in an unsupervised way, which result in an efficient
unsupervised method complementary to CNNs that does on
par with the above models that need labeled training data.
Hopefully, this will encourage new models that can utilize
both labeled and unlabeled data.

Furthermore, there are many computer vision and learning
tasks in which game theory has been applied successfully.
A grouping game among data points was proposed in [28].
Albarelli et al. . [3] proposed a non-cooperative game between
two sets of objects to be matched. A game between a region-
based segmentation model and a boundary-based segmentation
model was proposed in [6] to integrate two sub-modules.
Erdem et al. [9] formulated a multi-player game for trans-
duction learning, whereby equilibria correspond to consistent
labeling of the data. In [23], Miller et al. showed that the
relaxation labeling problem [11] is equivalent to finding Nash
equilibria for polymatrix n-person games. However, to the best
of our knowledge, game theory has not yet been used for
salient object detection.

III. DEFINITIONS AND SYMBOLS

In this section, we introduce definitions and symbols that
will be used throughout the paper.
Superpixels: In our model, the processing units are superpix-
els segmented from an input image by the SLIC algorithm [2].
I = {1, 2, 3, ..., N} denotes the enumeration of the set of
superpixels. Pi(x, y), i ∈ I, denotes the mask of the i-th
superpixel, where Pi(x, y) = 1 indicates that the pixel located
at (x, y) of the input image belongs to the i-th superpixel, and
Pi(x, y) = 0, otherwise.
Features: We use FCN-32s [22] features due to its great
success in semantic segmentation. We choose the output of
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Fig. 2. The pipeline of our algorithm. The input image is segmented into superpixels in several scales. Th following process is applied to
each scale, and the average of the results in all scales is taken as the final saliency map. First, the Saliency Game among superpixels is
formulated in two feature spaces ((a) and (b)), respectively to generate corresponding results ((c) and (d)). Second, an Iterative Random
Walk is constructed to refine the results of the Saliency Game. Then outputs (e) and (f) are summed (with weights) as the result in one scale.
In the Iterative Random Walk, complete affinity metric ((g) in deep feature space and (h) in color space) in one feature space is fused with
neighboring affinity metric ((i) in color space and (j) in deep space) in another feature space. This is done to exploit the complementary
relationship between the two feature spaces. Finally, we average the results in all scales to form the final saliency map.

the Conv5 layer as feature maps for the input image. This is
because features in the last layers of CNNs encode semantic
abstraction of objects and are robust to appearance variations.
Since the feature maps and the image are not of the same
resolution, we resize the feature maps to the input image size
via linear interpolation. We denote the affinity between the
i-th superpixel and the j-th superpixel in deep feature space
as Ad(i, j), which is defined to be their Gaussian weighted
Euclidean distance:

Ad(i, j) = exp
(
−
∥∥fdi − fdj

∥∥2
σ2

)
, (1)

where fdi is the deep feature vector of superpixel i. Each
superpixel is represented by the mean deep feature vector of
all its contained pixels.

The semantically-rich deep features can help accurately
locate the targets but fail to describe the low-level information.
Therefore, we also employ color features as a complement
to deep features. Inspired by [12], we use CIE-Lab color
histograms to describe superpixels’ color appearance. With
CIE-Lab color space divided into 83 ranges, the color feature
vector of the i-th superpixel is denoted as f ci . Affinity between
superpixels i and j in the color feature space is denoted as
Ac(i, j), which is defined to be their Gauss weighted Chi-
square distance:

Ac(i, j) = exp
(
−
χ2(f ci ,f

c
j )

σ2

)
. (2)

Neighbor: We adopt a definition of 2-hoop neighbor which
is frequently used in superpixel based saliency detection
methods. The set of the i-th superpixel’s neighbors is denoted
as N (i) = N1(i) ∪N2(i) ∪N3(i), where N1(i) indicates the
set of superpixels who share at least one common edge with

the i-th superpixel. N2(i) and N3(i) are defined as follows:
N2(i) = {j|j ∈ N1(k), k ∈ N1(i), j 6= i}, (3)

N3(i) =

{
∅ if i /∈ B
{j|j ∈ B, j 6= i} if i ∈ B , (4)

where B denotes the set of superpixels in image boundary.

IV. SALIENCY GAME

Here, we formulate a non-cooperative game among super-
pixels to detect salient objects in an input image. The input
image is firstly segmented into N superpixels which act as
players in the Saliency Game. Each player chooses to be
”background” or ”foreground” as its pure strategy and its
mixed strategy corresponds to this superpixel’s saliency value.
After showing their strategies, players obtain some payoff
according to both their own and other players’ strategies.
Payoff is determined by a payoff function which incorporates
position and objectness cues as well as support from others.
We use each player’s mixed strategy in the Nash equilibrium
of the proposed Saliency Game as the saliency value of this
superpixel in the output saliency map. Such an equilibrium
corresponds to a steady state where each player plays a
strategy that maximize its own payoff when the remaining
players’ strategies are kept fixed, which provides a globally
plausible saliency detection result.

A. Game setting

The pure strategy set is denoted as S = {0, 1}, indicating
”to be foreground” or ”to be background”, respectively. All
superpixels’ pure strategies are collectively called a pure
strategy profile, denoted as s = (s1, ..., sN ). The strategy
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profile set is denoted as Θ. πij(si, sj) denotes a single payoff
that superpixel i obtains, when playing pure strategy si against
superpixel j who holds a pure strategy sj , in their 2-person
game. There are four possible values for πij(si, sj) that can
be put into a 2× 2 matrix Bij ,

Bij =

(
πij(0, 0) πij(0, 1)
πij(1, 0) πij(1, 1)

)
. (5)

Payoff of superpixel i in pure strategy profile s, where ∀j ∈ I
the j-th superpixel’s pure strategy sj is the j-th component
of vector s, is denoted as πi(s). Payoff of superpixel i
when it adopts a pure strategy ti (not necessarily the i-
th component of s), while all other superpixels adopt pure
strategies in pure strategy profile s is denoted as πi(ti, s−i).
We make an assumption that the total payoff of superpixel i
for playing with all others is the summation of payoffs for
playing 2-player games with every other single superpixel.
Formally, we assume that πi(s) =

∑
j 6=i πij(si, sj) and

πi(ti, s−i) =
∑
j 6=i πij(ti, sj).

A pure best reply for player i against a pure strategy profile
s is a pure strategy such that no other pure strategy gives a
higher payoff to i against s. The i-th player’s pure best-reply
correspondence, which maps each pure strategy profile s ∈ Θ
to a pure strategy si ∈ S, is denoted as βi : Θ→ S:
βi(s) = {si ∈ S|πi(si, s−i) ≥ πi(ti, s−i),∀ti ∈ S}. (6)

The combined pure best-reply correspondence β : Θ → Θ is
defined as the cartesian product of all players’ pure best-reply
correspondence:

β(s) = ×i∈Iβi(s) ⊂ Θ. (7)
A pure strategy profile s is a pure Nash equilibrium if s ∈
β(s).

A probability distribution over the pure strategy set is
termed as a mixed strategy. Mixed strategy of the i-th su-
perpixel is denoted as a 2-dimensional vector zi = (z0i , z

1
i )T,

while z0i = P (si = 0), z1i = P (si = 1) and z0i + z1i = 1.
The set of mixed strategies is denoted as ∆. A pure strategy
thereby can be regarded as an extreme mixed strategy where
only one component is 1 and the other one is 0, e.g., i-
th player’s pure strategy si = 1 is equivalent to its mixed
strategy zi = (0, 1)T because P (si = 0) = 0 and P (si =
1) = 1. Correspondingly, expected payoff of superpixel i
for playing mixed strategy zi against superpixel j holding
mixed strategy zj is denoted as uij(zi, zj) = zT

i Bijzj . We
also denote Z = (z1, ...,zN ), ui(Z) =

∑
j 6=i uij(zi, zj)

and ui(wi, Z−i) =
∑
j 6=i uij(wi, zj) to be mixed strategy

version of s, πi(s) and πi(ti, s−i). Similarly, a mixed Nash
equilibrium is also defined to be a mixed strategy profile which
is a mixed best reply to itself. These symbols or definitions
are not stated here individually due to limited space.

From the definition of the Nash equilibrium above, it can
be inferred that in a Nash equilibrium of a game, each player
adopts a strategy that maximizes its own payoff when other
players’ strategies are fixed.

B. Payoff function
We have assumed in Section IV-A that the total payoff of

superpixel i for playing with all others is the summation of
every single payoff in its 2-person games with every other

superpixel. Hence, here we focus on modeling payoff of every
2-person game. We define the payoff πij(si, sj) of superpixel
i for its 2-person game with j as a weighted sum of three
terms:
πij(si, sj) = λ1 · posi(si) + λ2 · obji(si) + sptij(si, sj), (8)

where posi(si), obji(si), and sptij(si, sj) indicate the i-th
superpixel’s position prior, objectness prior and support that
superpixel j gives to superpixel i, respectively. λ1 and λ2 are
parameters controlling the weight of the first two terms.
Position: Position prior term in the payoff function is formu-
lated based on the observation that salient objects often fall at
the image center. The position term should give a greater pay-
off when, a) Center superpixels choose to be foreground, and
b) Boundary superpixels choose to be background. Assuming
(x0, y0) to be the image center, and (xi, yi) to be the center
coordinate of superpixel i, the position prior term is defined
as follows,

posi(si) =

{
1
N exp{− (xi−x0)

2+(yi−y0)2
σ } if si = 1

1
N (1− exp{− (xi−x0)

2+(yi−y0)2
σ }) if si = 0

.

(9)
Objectness: Generally, objects attract more attention than
background clutter. Hence superpixels which are part of an
object are more likely to be salient. The objectness term
should give a greater payoff when, a) Superpixels with high
objectness choose to be foreground, and b) Superpixels with
low objectness choose to be background.

We exploit the geodestic object proposal (GOP) [15]
method to extract a set of object segmentations, and define
the objectness of a superpixel according to its overlap with all
GOP proposals as follows:

obji(si) =


1

N·No

∑No
j=1

∑
x,y Oj(x,y)×Pi(x,y)∑

x,y Pi(x,y)
, if si = 1

1
N
(1− 1

No

∑No
j=1

∑
x,y Oj(x,y)×Pi(x,y)∑

x,y Pi(x,y)
), otherwise

(10)
where {Oj}No is the set of object candidate masks generated
by the GOP method, where Oj(x, y) = 1 indicates that the
pixel located at (x, y) of the input image belongs to the j-th
object proposal, and Oj(x, y) = 0, otherwise. Pi is the mask
of the i-th superpixel as in Section III.
Support: With a much larger weight in the payoff function (λ1
and λ2 being small), support from others is the main source
of payoff obtained by each superpixel. When playing with an
opponent, each superpixel judges if the opponent’s strategy
is right or wrong with its own stance, and provides a higher
or lower even negative support to the opponent accordingly.
More precisely,

• Each superpixel takes a neutral attitude to opponents who
hold different pure strategies from itself, and provides
them zero support.

• If an opponent adopts the same pure strategy as super-
pixel i,

– if the opponent’s strategy is similar to it, then su-
perpixel i provides the opponent a great support in
recognition of its choice.

– else if the opponent is not similar with it, then
superpixel i provides the opponent a small even
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)
Fig. 3. The proposed Saliency Game still works well even when position
prior and objectness prior are not very satisfying. (a) Input images. (b) Ground
Truth maps. (c) and (d) Illustration of the position term and objectness term
in Eqn. 9. (e) Saliency maps by Saliency Game using the color feature.

negative support as punishment.
Formally, the support term is defined as follows,

sptij(si, sj) =

{
A(i, j)− α

N

∑N
k=1A(i, k), if si = sj

0, if si 6= sj
,

(11)
where α is a positive constant, A(i, j) is the affinity between
superpixels i and j, defined as Ac and Ad in Section III.

So far, we have modeled the payoff πi(si, sj) that superpixel
i obtains by playing a 2-person pure strategy game with
superpixel j. The expected payoff ui(wi, Z−i) that superpixel
i obtains by playing mixed strategy game with all others
adopting strategies in mixed strategy profile Z can be given
based on the definition stated at the beginning of this section,

ui(wi, Z−i) =

N∑
j=1∧j 6=i

wT
i Bijzj . (12)

C. Computing equilibrium

We use Replicator Dynamics [26] to compute the mixed
strategy Nash equilibrium of the proposed Saliency Game.
In Replicator Dynamics, a population of individuals play the
game, generation after generation. A selection process acts
on the population, causing the number of users holding fitter
strategies to grow faster. We use discrete time Replicator
Dynamics to find the equilibrium of the game, iterating until
∀i ∈ I, |zi(t)− zi(t− 1)| < ε,

zhi (t+ 1) = zhi (t)
const+ ui(e

h, Z(t)−i)

const+ ui(Z(t))
, (13)

where zhi (t) represents the h-th component of the i-th player’s
mixed strategy at time t, eh is a vector whose h-th component
is 1, while other components are 0. We set the initial mixed
strategies of player i to zi(0) = (0.5, 0.5),∀i ∈ I. const
is background birthrate for an individual, which is set to
a positive number to make sure const + ui(e

h, Z(t)−i) is
positive for all i in I [34]. There could be multiple equilibria
in a game, likewise in the proposed Saliency Game. Replicator
Dynamics might reach different Nash equilibria if the initial
state zi(0) is set to different interior points of ∆. Empirically,
we find that zi(0) = (0.5, 0.5) is a good initialization leading
to plausible saliency detection.

In the proposed Saliency Game, each superpixel inspects
strategies of all other superpixels and takes a stance by pro-

viding large or small even negative support. Usually, no matter
what strategy a superpixel adopts, there are both protesters and
supporters. Game equilibira provide a good trade off among
different influences. Thus, in the equilibrium of the proposed
Saliency Game with payoff function as defined in Eqn. 8, each
superpixel chooses a strategy that suits itself best given its
position, objectness, and support from others. Doing so has
two advantages: 1) the center position prior and the objectness
prior are almost independent, when one prior is unsatisfactory,
the other may work.

As shown in the first row of Figure 3, the little pug appears
away from image center, but since it is the only object in the
image, the objectness prior identifies it correctly. 2) the two
priors only serve as weak guidance and obtain small weights
in the payoff function. Even when they are both unsatisfactory
on some image regions, pressure from peers will impel these
regions to get proper saliency values in the equilibrium of the
game. As shown in the second row of Figure 3, although only
heads of the people are high in position prior and objectness
prior, the produced saliency map can highlight the entire
object. From the third row of Figure 3, we can see that
the proposed algorithm also suppresses background effectively
when prior highlights background areas by mistake. Note that
in order to illustrate effectiveness of the proposed Saliency
Game, only color feature is used in the three shown cases.

V. ITERATIVE RANDOM WALK

Traditional color features are of high-resolution, so saliency
maps generated in color space are detailed and with clear
edges. But due to lack of high-level information, sometimes
they fail to locate the targets accurately (see Figure 4(c)). On
the contrary, since deep features encode high-level concept of
objects well, saliency maps generated in the deep feature space
are able to find correct salient objects in an image. But due to
several layers of convolution and pooling, these features are
too coarse. Thus the generated saliency maps are indistinctive,
as shown in Figure 4(d).

Accordingly, here, we use both complementary features for
a better result. However, as shown in Figure 4(e), although
the weighted sum of the two is slightly better, they are not
satisfactory. To solve this problem, in this section, inspired by
the metric fusion presented in [29], we propose an Iterative
Random Walk method to best exploit this two complementary
feature spaces. In the proposed Iterative Random Walk, metrics
in the two feature spaces are fused as stated in [29] (corss
fusion in Eqn. 16 is the work of Tu et al. .), in addition, we
also make the two propagation penalized by the latest output
of each other (cross propagation in Eqn. 17 and Eqn. 18 is
our work). Figure 5 shows that both cross fusion and cross
penalization contribute.

With superpixels as nodes, a neighbor graph and a complete
graph are constructed in both feature space (deep and color
features). The affinity between two superpixels is assigned to
the edge weight. Four weight matrices are defined:
• Wd and W d: weight matrices of neighbor and complete

graphs in the deep feature space, respectively.
• Wc and W c: weight matrices of neighbor and complete

graphs in the color space, respectively.
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In the complete graphs, there is an edge between every pair of
nodes, while in the neighbor graphs, each node is connected
only to its neighbors. ∀i ∈ I, Wd and W d are defined as
follows,

W d(i, j) = Ad(i, j),∀j ∈ I, (14)

Wd(i, j) =

{
Ad(i, j) if j ∈ N (i)

0 if j /∈ N (i)
, (15)

Wc and W c are defined similarly but using Ac. See Section III
for definitions of Ad and Ac.

Firstly, let P(0)(i, j) = W (i, j)/
∑N
j=1W (i, j),

P(0)(i, j) = W(i, j)/
∑N
j=1W(i, j), and t to be the

number of iterations. Symbols with superscript c or d
correspond to variables in the color or deep feature space,
respectively. Following [29], we fuse these four affinity
matrices as follows,{

P d(t+1) = Pc × P d(t) × Pc
P c(t+1) = Pd × P c(t) × Pd

. (16)

Then, using the fused affinity matrices, we let the propaga-
tion results in the two feature spaces penalize each other. Two
random walk energy functions are defined as follows,

Ed
(t+1)(l) =

∑
i,j

P d
(t)(i, j)(li − lj)

2 + β

N∑
i=1

(li − lci(t))
2, (17)

Ec
(t+1)(l) =

∑
i,j

P c
(t)(i, j)(li − lj)

2 + β

N∑
i=1

(li − ldi(t))
2. (18)

where l is the label vector, li is the i-th superpixel’s label, and
β is a parameter.

By minimizing the two energy functions above, we have,
ld(t+1) = arg min

l
Ed(t+1)(l) = (Ld(t+1) + βI)−1lc(t), (19)

lc(t+1) = arg min
l
Ec(t+1)(l) = (Lc(t+1) + βI)−1ld(t), (20)

where L is the Laplacian matrix. lc(0) and ld(0) are set to the
results of the Saliency Game stated in Section IV. After T
rounds, the iteration converges and the final saliency map is
obtained as:

S = ρ1 · lc(T ) + ρ2 · ld(T ), (21)

where ρ1 and ρ2 control the weight of the two results.
As shown in Figure 4(f), through the Iterative Random

Walk, information from the color space helps cut the whole
salient object clearly. Semantic information from deep features
helps locate the target object accurately. Also, objects that
could not be detected in one feature space can be detected
with the help of results from the other feature space.

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed method on 6
benchmark datasets: ECSSD [35] (1000 images), PASCAL-
S [20] (850 images), MSRA-5000 [21] (5000 images), HKU-
IS [18] (4447 images), DUT-OMRON [36] and SOD [24].

We compare our algorithm with 11 state-of-the-art methods
including BL [27], BSCA [25], DRFI [13], DSR [19], HS [35],
LEGS [30], MCDL [37], MR [36], RC [7], wCO [38], and
KSR [33]. Results of different methods are provided by
authors or achieved by running available codes.

(a) (b) (c) (d) (e) (f)(a) (b) (c) (d) (e) (f)
Fig. 4. Effect of the Iterative Random Walk. (a) Input images. (b) Ground
Truth maps. (c) Saliency maps generated by our Saliency Game in the color
feature space. (d) Saliency maps generated by our Saliency Game in the deep
feature space. (e) The weighted summation of (c) and (d). (f) Saliency maps
after refinement by the Iterative Random Walk proposed in this section.

A. Parameter setting

All parameters are set once fixed over all the datasets. We
segment an image into 100, 150, 200, and 250 superpixels
(i.e., 4 segmentation image), run the algorithm on each map,
and average the four outputs to form the final saliency map. σ
is set to 0.1 and ε is set to 10−4. The parameters controlling
the weight of each term in the payoff function (Eqn. 8) are
set to λ1 = 2.1 × 10−6, λ2 = 9 × 10−7, respectively. α in
Eqn. 11 is set to 0.007. β in Eqn. 19 and Eqn. 20 is set to 1.
In Eqn. 21, we set T = 20, ρ1 = 0.3 and ρ2 = 0.7.

The proposed method is implemented in MATLAB on a
PC with a 3.6GHz CPU and 32GB RAM. It takes about 2.3
seconds to generate a saliency map, excluding the time for
deep feature extraction and superpixel segmentation.

B. Evaluation metrics

We use precision-recall curve, F-measure curve, F-measure
and AUC to quantitatively evaluate the experimental results.
The precision value is defined as the ratio of salient pixels cor-
rectly assigned to all salient pixels in the map to be evaluated,
while the recall value corresponds to the percentage of the
detected salient pixels with respect to all salient pixels in the
ground-truth map. The F-measure is an overall performance
indicator computed by the weighted harmonic of precision and
recall. We set β2 = 0.3 as suggested in [1] to emphasize the
precision.

Given a saliency map with intensity values normalized to
the range of 0 and 1, a series of binary maps are produced by
using several fixed thresholds in [0, 1]. We compute the preci-
sion/recall pairs of all the binary maps to plot the precision-
recall curves and the F-measure curves. As suggested in [1],
we use twice the mean value of the saliency maps as the
threshold to generate binary maps for computing F-measure.
Notice that some works have reported slightly different F-
measures using different thresholds.

C. Algorithm validation

To demonstrate the effectiveness of each step of our algo-
rithm, we test the proposed Saliency Game and the Iterative
Random Walk (with and without metric fusion) separately on
ECSSD and PASCAL-S datasets. PR curves in Figure 5 show
that:



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, XX 7

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C(s1) C(s2) C(s3) C(s4) C D CD(AVE) CD(IRW*) CD(IRW) MR MCDL

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

) C(s3) C(s4) C D CD(AVE) CD(IRW*) CD(IRW) MR MCDL DRFI

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C(s1)
C(s2)
C(s3)
C(s4)
C
D
CD(AVE)
CD(IRW*)
CD(IRW)
MR
MCDL
DRFI

ECSSD PASCAL-S
Recall

0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C(s1) C(s2) C(s3) C(s4) C D CD(AVE) CD(IRW*) CD(IRW) MR MCDL

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

) C(s3) C(s4) C D CD(AVE) CD(IRW*) CD(IRW) MR MCDL DRFI

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C(s1)
C(s2)
C(s3)
C(s4)
C
D
CD(AVE)
CD(IRW*)
CD(IRW)
MR
MCDL
DRFI

ECSSD PASCAL-S

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

P
re
ci
si
on

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

P
re
ci
si
on

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C(s1) C(s2) C(s3) C(s4) C D CD(AVE) CD(IRW*) CD(IRW) MR MCDL

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

) C(s3) C(s4) C D CD(AVE) CD(IRW*) CD(IRW) MR MCDL DRFI

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C(s1)
C(s2)
C(s3)
C(s4)
C
D
CD(AVE)
CD(IRW*)
CD(IRW)
MR
MCDL
DRFI

ECSSD PASCAL-S
Recall

0 0.2 0.4 0.6 0.8 1
Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

P
re
ci
si
on

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.2 0.4 0.6 0.8 1

P
re
ci
si
on

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C(s1) C(s2) C(s3) C(s4) C D CD(AVE) CD(IRW*) CD(IRW) MR MCDL

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

) C(s3) C(s4) C D CD(AVE) CD(IRW*) CD(IRW) MR MCDL DRFI

Recall
0 0.2 0.4 0.6 0.8 1

Pr
ec
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C(s1)
C(s2)
C(s3)
C(s4)
C
D
CD(AVE)
CD(IRW*)
CD(IRW)
MR
MCDL
DRFI

ECSSD PASCAL-S
Fig. 5. Effect of each step of the algorithm. Left) PR curves on ECSSD
dataset. Right) PR curves on PASCAL-S dataset. The performances are
compared with three existing methods MCDL [37], DRFI [13] and MR [36].
C(s1), C(s2), C(s3), C(s4): Color feature Saliency Game with four different
scales of superpixels. C: Color feature Saliency Game over scales. D: Deep
feature Saliency Game averaged over scales. CD(AVE): a weighted sum of
C and D. CD(IRW): Saliency Game refined by the Iterative Random Walk
with metric cross fusion. SG(IRW*): Saliency Game refined by the Iterative
Random Walk without metric cross fusion.

• The proposed saliency game algorithm achieves favorable
performance. Note that even when using only simple
color features, as a fully unsupervised method, our
proposed Saliency Game (C in Figure 5) algorithm is
comparable with supervised methods.

• The Iterative Random Walk improves performance in
both deep feature space (D in Figure 5) and color
space CD(IRW). Comparing results of Iterative Random
Walk CD(IRW), Iterative Random Walk without metric
fusion CD(IRW*), and weighted sum of results in the
two feature spaces CD(ave), demonstrates the advantage
of cross penalization and metric fusion in the Iterative
Random Walk.

In addition, as an unsupervised approach, our method is
economical and practical. Although some deep learning based
methods outperform ours in few cases, a lot of time and
a large number of training samples are required to assure
their effectiveness. Otherwise, performance of these methods
might not be as well as ours. To demonstrate this, we show
comparison in terms of F-measure between our method and
RFCN [31] fine-tuned on different number of training samples
in Figure 6. RFCN is a recently proposed deep learning based
method that achieved excellent performance. However, it can
be seen from the figure that RFCN does not do well without
fine-tuning. Its F-measure increases as the number of training
samples grows. Our method is equivalent to RFCN fine-tuned
on about 5000-9000 images.

D. Comparison with state-of-the-Art methods

As is shown in Figure 10, Figure 11, Table I and Table II,
our proposed method compares favorably against 11 state-of-
the-art approaches over six different datasets. Among models,
BL, BSCA, DSR, HS, MR, RC, wCO are unsupervised
methods. DRFI, LEGS, MCDL, KSR are supervised methods.
DRFI learns a random forest regressor, LEGS and MCDL
train a convolutional neural network, KSR learns a classifier
and a subspace projection to rank object proposals based on
R-CNN features. For a fair comparison, we do not provide
evaluation results of DRFI, LEGS, MCDL, and KSR methods
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Fig. 6. Comparison in terms of F-measure between our method and RFCN
fine-tuned on different number of training samples, evaluated on ECSSD and
HKU-IS datasets.

dataset BL DSR HS MR RC wCO
ECSSD 0.6838 0.6618 0.6347 0.6905 0.4560 0.6764

PASCAL-S 0.5742 0.5575 0.5314 0.5863 0.4039 0.5999
MSRA 0.7840 0.7841 0.7671 0.8041 0.5754 0.7937

HKU-IS 0.6597 0.6774 0.6359 0.6550 0.5008 0.6770
SOD 0.5723 0.5962 0.5212 0.5695 0.4184 0.5987

DUT-OMRON 0.4989 0.5243 0.5108 0.5280 0.4058 0.5277
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.7046 0.7329 0.7959 0.7851 0.7817 0.8215
PASCAL-S 0.6006 0.6182 0.6912 - 0.7039 0.7062

MSRA 0.7934 - - - - 0.8666
HKU-IS 0.6545 0.7219 0.7573 0.7229 0.7468 0.8015

SOD 0.5835 0.6470 0.6772 0.6834 0.6679 0.6896
DUT-OMRON 0.5091 0.5505 0.6250 0.5916 0.5911 0.5981

TABLE I
F-measure scores. The best and the second best results are shown in red and

green, respectively. Supervised methods are marked in bold.

on MSRA-5000 dataset since these methods all randomly
select images from this dataset for training. Further, since
LEGS also selects images from PASCAL-S dataset, we do
not show its performance over the PASCAL-S dataset. Visual
comparison of the proposed method against state-of-the-art on
different datasets is shown in Figure 12, 13, 14, 15.

E. Sensitivity analysis

In this section, we test sensitivity of the proposed Saliency
Game to parameters λ1, λ2, α and sensitivity of the Iterative
Random Walk to parameters β and ρ1. As shown in Figure 7
and 8, the performance in terms of F-meansure score almost
keeps the same when varying the parameters a little, so the
proposed method is not sensitive to these parameters.

F. Equilibria

The proposed Saliency Game is a special category of games
named polymatrix games [10], where each player plays a two-
player game against each other and his payoff is then the sum
of the payoffs from each of the two-player games [8]. Howson
et al. [10] showed that every polymatrix game has at least
one equilibrium. Therefore, the proposed Saliency Game also
has at least one, but could have more than one equilibria.
Replicator Dynamics is invoked to find a Nash equilibrium of
the game, in which different Nash equilibria might be reached
if the initial state zi(0) is set to different interior points of ∆.
Empirically, we find that ∀i ∈ I, zi(0) = (0.5, 0.5) is a good
initialization leading to plausible saliency detection. In this
section, we show the saliency detection results corresponding
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Fig. 7. Sensitivity of the Saliency Game to parameters α, λ1and λ2, evaluated on ECSSD dataset.

dataset BL DSR HS MR RC wCO
ECSSD 0.9143 0.8619 0.8838 0.8827 0.8342 0.8814

PASCAL-S 0.8671 0.8118 0.8362 0.8259 0.8139 0.8482
MSRA 0.9535 0.9382 0.9279 0.9267 0.8951 0.9360

HKU-IS 0.9140 0.9008 0.8782 0.8611 0.8530 0.8952
SOD 0.8503 0.8208 0.8145 0.7903 0.7924 0.8026

DUT-OMRON 0.8778 0.8787 0.8586 0.8447 0.8476 0.8846
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.9176 0.9404 0.9186 0.9235 0.9268 0.9272
PASCAL-S 0.8665 0.8950 0.8699 - 0.9012 0.8724

MSRA 0.9484 - - - - 0.9583
HKU-IS 0.9140 0.9435 0.9175 0.9026 0.9099 0.9183

SOD 0.8358 0.8813 0.8163 0.8268 0.8403 0.8481
DUT-OMRON 0.8779 0.9157 0.9014 0.8841 0.8921 0.8869

TABLE II
AUC scores. Supervised methods are marked in bold.
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Fig. 8. Sensitivity of the Iterative Random Walk to parameters β and ρ2,
evaluated on ECSSD dataset.

to other four Nash equilibria, reached by Replicator Dynamics
starting from four different interior points of ∆. We denote
the initial state used in the paper as V half , and the other four
initial states as V bd, V pos, V obj , and V prior. Each of them
is a 2×N matrix, where the i-th column vector (denoted as
vbdi , vposi , vobji , vpriori , respectively) corresponds to the mixed
strategy of superpixel i. Variables vbdi , vposi , vobji and vpriori

are set as follows:

vbd,1i =

{
0.4 if i ∈ B
0.5 otherwise

,vbd,0i = 1− vbd,1i ; (22)

vpos,1i = N · posi(1),vpos,0i = N · posi(0); (23)

vobj,1i = N · obji(1),vobj,0i = N · obji(0); (24)

vprior,1i = priori,v
prior,0
i = 1− priori; (25)

where priori is the saliency value of superpixel i computed
by another saliency detection method. In this experiment, we

use MR [36] model to compute priori,∀i ∈ I. We try four
different initial states to test whether inducing prior knowledge
into the initial state leads to a better saliency detection result.
Each of the five different Nash equilibria corresponds to a
saliency detection result. We show the quantitative comparison
of the five different results in terms of F-measure curves and
PR curves in Figure VI-F. It can be seen that the initial state
V half without any prior knowledge, which is adopted in the
paper, leads to the best saliency detection.
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Fig. 9. Comparison of different saliency detection results corresponding to
five different Nash equilibria (evaluated on ECSSD dataset). V half , V pos,
V obj , V bd and V prior : Saliency detection results corresponding to five Nash
equilibria reached by Replicator Dynamics starting from initial state V half ,
V pos, V obj , V bd and V prior , respectively.

VII. SUMMARY AND CONCLUSION

We propose a novel saliency detection algorithm. Firstly, we
formulate a Saliency Game among superpixels, and a saliency
map is generated according to each region’s strategy in the
Nash equilibrium of the proposed Saliency Game. Secondly,
an iterative random walk that combines a deep feature and
a color feature is constructed to refine the saliency maps
generated in the last step. Extensive experiments over four
benchmark datasets demonstrate that the proposed algorithm
achieves favorable performance against state-of-the-art meth-
ods. The sensitivity analysis shows the robustness of the
proposed method to parameter changes.

Different from most previous methods that formulate
saliency detection as minimizing one single energy function,
the game-theoretic approach can be regarded as maximizing
many competing objective functions simultaneously. The game
equilibrium automatically provides a trade-off. This seems
very natural for attention modeling and saliency detection, as
also features and objects compete to capture our attention.
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Figure 7. Quantitative comparisons in terms of PR curves and F-measure curves.

Input GT Ours KSR LEGS MCDL DRFI BSCA BL DSR MR HS RC wCO

Figure 8. Visual comparison of saliency maps.

our method and RFCN [28] fine-tuned on different number
of training samples in Figure 6. RFCN is a recently pro-
posed deep learning based method that achieved excellent
performance. However, it can be seen from the figure that
RFCN does not do well without fine-tuning. Its F-measure
increases as the number of training samples grows. Our
method is equivalent to RFCN fine-tuned on about 5000-
9000 images.

dataset BL DSR HS MR RC wCO
ECSSD 0.6838 0.6618 0.6347 0.6905 0.4560 0.6764

PASCAL-S 0.5742 0.5575 0.5314 0.5863 0.4039 0.5999
MSRA 0.7840 0.7841 0.7671 0.8041 0.5754 0.7937

HKU-IS 0.6597 0.6774 0.6359 0.6550 0.5008 0.6770
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.7046 0.7329 0.7959 0.7851 0.7817 0.8215
PASCAL-S 0.6006 0.6182 0.6912 - 0.7039 0.7062

MSRA 0.7934 - - - - 0.8666
HKU-IS 0.6545 0.7219 0.7573 0.7229 0.7468 0.8015

Table 1. F-measure scores. The best and the second best results
are shown in red and green, respectively. Supervised methods are
marked in bold.

6.4. Comparison with state-of-the-Art methods

As is shown in Figure 7, Table 1 and Table 2, our pro-
posed method compares favorably against 11 state-of-the-
art approaches over four different datasets. Among mod-
els, BL, BSCA, DSR, HS, MR, RC, wCO are unsupervised

dataset BL DSR HS MR RC wCO
ECSSD 0.9143 0.8619 0.8838 0.8827 0.8342 0.8814

PASCAL-S 0.8671 0.8118 0.8362 0.8259 0.8139 0.8482
MSRA 0.9535 0.9382 0.9279 0.9267 0.8951 0.9360

HKU-IS 0.9140 0.9008 0.8782 0.8611 0.8530 0.8952
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.9176 0.9404 0.9186 0.9235 0.9268 0.9272
PASCAL-S 0.8665 0.8950 0.8699 - 0.9012 0.8724

MSRA 0.9484 - - - - 0.9583
HKU-IS 0.9140 0.9435 0.9175 0.9026 0.9099 0.9183

Table 2. AUC scores. Supervised methods are marked in bold.

methods. DRFI, LEGS, MCDL, KSR are supervised meth-
ods. DRFI learns a random forest regressor, LEGS and
MCDL train a convolutional neural network, KSR learns
a classifier and a subspace projection to rank object propos-
als based on R-CNN features. For a fair comparison, we do
not provide evaluation results of DRFI, LEGS, MCDL, and
KSR methods on MSRA-5000 dataset since these methods
all randomly select images from this dataset for training.
Further, since LEGS also selects images from PASCAL-S
dataset, we do not show its performance over the PASCAL-
S dataset. Several saliency maps are shown in Figure 8 for
visual comparison of our method versus others.

7. Summary and Conclusion
We propose a novel saliency detection algorithm. Firstly,

we formulate a Saliency Game among superpixels, and
a saliency map is generated according to each region’s
strategy in the Nash equilibrium of the proposed Saliency
Game. Secondly, an iterative random walk that combines a
deep feature and a color feature is constructed to refine the
saliency maps generated in the last step. Extensive exper-
iments over four benchmark datasets demonstrate that the
proposed algorithm achieves favorable performance against
state-of-the-art methods.
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Figure 7. Quantitative comparisons in terms of PR curves and F-measure curves.
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Figure 8. Visual comparison of saliency maps.

our method and RFCN [28] fine-tuned on different number
of training samples in Figure 6. RFCN is a recently pro-
posed deep learning based method that achieved excellent
performance. However, it can be seen from the figure that
RFCN does not do well without fine-tuning. Its F-measure
increases as the number of training samples grows. Our
method is equivalent to RFCN fine-tuned on about 5000-
9000 images.

dataset BL DSR HS MR RC wCO
ECSSD 0.6838 0.6618 0.6347 0.6905 0.4560 0.6764

PASCAL-S 0.5742 0.5575 0.5314 0.5863 0.4039 0.5999
MSRA 0.7840 0.7841 0.7671 0.8041 0.5754 0.7937

HKU-IS 0.6597 0.6774 0.6359 0.6550 0.5008 0.6770
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.7046 0.7329 0.7959 0.7851 0.7817 0.8215
PASCAL-S 0.6006 0.6182 0.6912 - 0.7039 0.7062

MSRA 0.7934 - - - - 0.8666
HKU-IS 0.6545 0.7219 0.7573 0.7229 0.7468 0.8015

Table 1. F-measure scores. The best and the second best results
are shown in red and green, respectively. Supervised methods are
marked in bold.

6.4. Comparison with state-of-the-Art methods

As is shown in Figure 7, Table 1 and Table 2, our pro-
posed method compares favorably against 11 state-of-the-
art approaches over four different datasets. Among mod-
els, BL, BSCA, DSR, HS, MR, RC, wCO are unsupervised

dataset BL DSR HS MR RC wCO
ECSSD 0.9143 0.8619 0.8838 0.8827 0.8342 0.8814

PASCAL-S 0.8671 0.8118 0.8362 0.8259 0.8139 0.8482
MSRA 0.9535 0.9382 0.9279 0.9267 0.8951 0.9360

HKU-IS 0.9140 0.9008 0.8782 0.8611 0.8530 0.8952
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.9176 0.9404 0.9186 0.9235 0.9268 0.9272
PASCAL-S 0.8665 0.8950 0.8699 - 0.9012 0.8724

MSRA 0.9484 - - - - 0.9583
HKU-IS 0.9140 0.9435 0.9175 0.9026 0.9099 0.9183

Table 2. AUC scores. Supervised methods are marked in bold.

methods. DRFI, LEGS, MCDL, KSR are supervised meth-
ods. DRFI learns a random forest regressor, LEGS and
MCDL train a convolutional neural network, KSR learns
a classifier and a subspace projection to rank object propos-
als based on R-CNN features. For a fair comparison, we do
not provide evaluation results of DRFI, LEGS, MCDL, and
KSR methods on MSRA-5000 dataset since these methods
all randomly select images from this dataset for training.
Further, since LEGS also selects images from PASCAL-S
dataset, we do not show its performance over the PASCAL-
S dataset. Several saliency maps are shown in Figure 8 for
visual comparison of our method versus others.

7. Summary and Conclusion
We propose a novel saliency detection algorithm. Firstly,

we formulate a Saliency Game among superpixels, and
a saliency map is generated according to each region’s
strategy in the Nash equilibrium of the proposed Saliency
Game. Secondly, an iterative random walk that combines a
deep feature and a color feature is constructed to refine the
saliency maps generated in the last step. Extensive exper-
iments over four benchmark datasets demonstrate that the
proposed algorithm achieves favorable performance against
state-of-the-art methods.
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1. Performance Comparison
In the paper, we evaluate the proposed method on 4 benchmark datasets, and compare performance of the proposed method

with 11 state-of-the-art methods including BL [8], BSCA [7], DRFI [4], DSR [5], HS [11], LEGS [9], MCDL [13], MR [12],
RC [1], wCO [14], and KSR [10]. Here we compare our method with them on other two datasets: DUT-OMRON [12] and
SOD [6]. Performance comparison in terms of PR curves and F-measure curves are shown in Figure 1. F-measure scores
are shown in Table 1. Visual comparison of the proposed method against state-of-the-art on different datasets is shown in
Figure 7, 8, 9, 10.
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Figure 7. Quantitative comparisons in terms of PR curves and F-measure curves.
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Figure 8. Visual comparison of saliency maps.

our method and RFCN [28] fine-tuned on different number
of training samples in Figure 6. RFCN is a recently pro-
posed deep learning based method that achieved excellent
performance. However, it can be seen from the figure that
RFCN does not do well without fine-tuning. Its F-measure
increases as the number of training samples grows. Our
method is equivalent to RFCN fine-tuned on about 5000-
9000 images.

dataset BL DSR HS MR RC wCO
ECSSD 0.6838 0.6618 0.6347 0.6905 0.4560 0.6764

PASCAL-S 0.5742 0.5575 0.5314 0.5863 0.4039 0.5999
MSRA 0.7840 0.7841 0.7671 0.8041 0.5754 0.7937

HKU-IS 0.6597 0.6774 0.6359 0.6550 0.5008 0.6770
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.7046 0.7329 0.7959 0.7851 0.7817 0.8215
PASCAL-S 0.6006 0.6182 0.6912 - 0.7039 0.7062

MSRA 0.7934 - - - - 0.8666
HKU-IS 0.6545 0.7219 0.7573 0.7229 0.7468 0.8015

Table 1. F-measure scores. The best and the second best results
are shown in red and green, respectively. Supervised methods are
marked in bold.

6.4. Comparison with state-of-the-Art methods

As is shown in Figure 7, Table 1 and Table 2, our pro-
posed method compares favorably against 11 state-of-the-
art approaches over four different datasets. Among mod-
els, BL, BSCA, DSR, HS, MR, RC, wCO are unsupervised

dataset BL DSR HS MR RC wCO
ECSSD 0.9143 0.8619 0.8838 0.8827 0.8342 0.8814

PASCAL-S 0.8671 0.8118 0.8362 0.8259 0.8139 0.8482
MSRA 0.9535 0.9382 0.9279 0.9267 0.8951 0.9360

HKU-IS 0.9140 0.9008 0.8782 0.8611 0.8530 0.8952
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.9176 0.9404 0.9186 0.9235 0.9268 0.9272
PASCAL-S 0.8665 0.8950 0.8699 - 0.9012 0.8724

MSRA 0.9484 - - - - 0.9583
HKU-IS 0.9140 0.9435 0.9175 0.9026 0.9099 0.9183

Table 2. AUC scores. Supervised methods are marked in bold.

methods. DRFI, LEGS, MCDL, KSR are supervised meth-
ods. DRFI learns a random forest regressor, LEGS and
MCDL train a convolutional neural network, KSR learns
a classifier and a subspace projection to rank object propos-
als based on R-CNN features. For a fair comparison, we do
not provide evaluation results of DRFI, LEGS, MCDL, and
KSR methods on MSRA-5000 dataset since these methods
all randomly select images from this dataset for training.
Further, since LEGS also selects images from PASCAL-S
dataset, we do not show its performance over the PASCAL-
S dataset. Several saliency maps are shown in Figure 8 for
visual comparison of our method versus others.

7. Summary and Conclusion
We propose a novel saliency detection algorithm. Firstly,

we formulate a Saliency Game among superpixels, and
a saliency map is generated according to each region’s
strategy in the Nash equilibrium of the proposed Saliency
Game. Secondly, an iterative random walk that combines a
deep feature and a color feature is constructed to refine the
saliency maps generated in the last step. Extensive exper-
iments over four benchmark datasets demonstrate that the
proposed algorithm achieves favorable performance against
state-of-the-art methods.

8

Figure 1. Quantity comparison in terms of PR curves and F-measure curves.
dataset BL DSR HS MR RC wCO
SOD 0.5723 0.5962 0.5212 0.5695 0.4184 0.5987

DUT-OMRON 0.4989 0.5243 0.5108 0.5280 0.4058 0.5277
BSCA DRFI MCDL LEGS KSR Ours

SOD 0.5835 0.6470 0.6772 0.6834 0.6679 0.6896
DUT-OMRON 0.5091 0.5505 0.6250 0.5916 0.5911 0.5981

Table 1. F-measure scores. The best and the second best results are shown in red and green, respectively. Supervised methods are marked
in bold.

2. Equilibria
It can be inferred that the proposed Saliency Game is a special category of games named polymatrix games [3]. In

polymatrix game, each player plays a two-player game against each other and is payoff is then the sum of the payoffs from
each of the two-player games [2]. Howson et al. showed in [3] that every polymatrix game has at least one equilibrium.
Therefore, the proposed Saliency Game also has at least one, but could have more than one equilibria. Replicator Dynamics
is invoked to find a Nash equilibrium of the game, in which different Nash equilibria might be reached if the initial state zi(0)
is set to different interior points of �. Empirically, we find that 8i 2 I, zi(0) = (0.5, 0.5) is a good initialization leading to
plausible saliency detection. In the supplementary material, we test saliency detection results corresponds to other four Nash
equilibria, which are reached by Replicator Dynamics starting from four different interior points of �. We denote the initial
state used in the paper as V half , and the other four initial states as V bd, V pos, V obj , V prior. Each of them is a 2 ⇥ N matrix,
where the i-th column vector (denoted as vbd

i , vpos
i , vobj

i , vprior
i , respectively) corresponds to mixed strategy of superpixel
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1. Performance Comparison
In the paper, we evaluate the proposed method on 4 benchmark datasets, and compare performance of the proposed method

with 11 state-of-the-art methods including BL [8], BSCA [7], DRFI [4], DSR [5], HS [11], LEGS [9], MCDL [13], MR [12],
RC [1], wCO [14], and KSR [10]. Here we compare our method with them on other two datasets: DUT-OMRON [12] and
SOD [6]. Performance comparison in terms of PR curves and F-measure curves are shown in Figure 1. F-measure scores
are shown in Table 1. Visual comparison of the proposed method against state-of-the-art on different datasets is shown in
Figure 7, 8, 9, 10.
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Figure 7. Quantitative comparisons in terms of PR curves and F-measure curves.
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Figure 8. Visual comparison of saliency maps.

our method and RFCN [28] fine-tuned on different number
of training samples in Figure 6. RFCN is a recently pro-
posed deep learning based method that achieved excellent
performance. However, it can be seen from the figure that
RFCN does not do well without fine-tuning. Its F-measure
increases as the number of training samples grows. Our
method is equivalent to RFCN fine-tuned on about 5000-
9000 images.

dataset BL DSR HS MR RC wCO
ECSSD 0.6838 0.6618 0.6347 0.6905 0.4560 0.6764

PASCAL-S 0.5742 0.5575 0.5314 0.5863 0.4039 0.5999
MSRA 0.7840 0.7841 0.7671 0.8041 0.5754 0.7937

HKU-IS 0.6597 0.6774 0.6359 0.6550 0.5008 0.6770
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.7046 0.7329 0.7959 0.7851 0.7817 0.8215
PASCAL-S 0.6006 0.6182 0.6912 - 0.7039 0.7062

MSRA 0.7934 - - - - 0.8666
HKU-IS 0.6545 0.7219 0.7573 0.7229 0.7468 0.8015

Table 1. F-measure scores. The best and the second best results
are shown in red and green, respectively. Supervised methods are
marked in bold.

6.4. Comparison with state-of-the-Art methods

As is shown in Figure 7, Table 1 and Table 2, our pro-
posed method compares favorably against 11 state-of-the-
art approaches over four different datasets. Among mod-
els, BL, BSCA, DSR, HS, MR, RC, wCO are unsupervised

dataset BL DSR HS MR RC wCO
ECSSD 0.9143 0.8619 0.8838 0.8827 0.8342 0.8814

PASCAL-S 0.8671 0.8118 0.8362 0.8259 0.8139 0.8482
MSRA 0.9535 0.9382 0.9279 0.9267 0.8951 0.9360

HKU-IS 0.9140 0.9008 0.8782 0.8611 0.8530 0.8952
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.9176 0.9404 0.9186 0.9235 0.9268 0.9272
PASCAL-S 0.8665 0.8950 0.8699 - 0.9012 0.8724

MSRA 0.9484 - - - - 0.9583
HKU-IS 0.9140 0.9435 0.9175 0.9026 0.9099 0.9183

Table 2. AUC scores. Supervised methods are marked in bold.

methods. DRFI, LEGS, MCDL, KSR are supervised meth-
ods. DRFI learns a random forest regressor, LEGS and
MCDL train a convolutional neural network, KSR learns
a classifier and a subspace projection to rank object propos-
als based on R-CNN features. For a fair comparison, we do
not provide evaluation results of DRFI, LEGS, MCDL, and
KSR methods on MSRA-5000 dataset since these methods
all randomly select images from this dataset for training.
Further, since LEGS also selects images from PASCAL-S
dataset, we do not show its performance over the PASCAL-
S dataset. Several saliency maps are shown in Figure 8 for
visual comparison of our method versus others.

7. Summary and Conclusion
We propose a novel saliency detection algorithm. Firstly,

we formulate a Saliency Game among superpixels, and
a saliency map is generated according to each region’s
strategy in the Nash equilibrium of the proposed Saliency
Game. Secondly, an iterative random walk that combines a
deep feature and a color feature is constructed to refine the
saliency maps generated in the last step. Extensive exper-
iments over four benchmark datasets demonstrate that the
proposed algorithm achieves favorable performance against
state-of-the-art methods.

8

Figure 1. Quantity comparison in terms of PR curves and F-measure curves.
dataset BL DSR HS MR RC wCO
SOD 0.5723 0.5962 0.5212 0.5695 0.4184 0.5987

DUT-OMRON 0.4989 0.5243 0.5108 0.5280 0.4058 0.5277
BSCA DRFI MCDL LEGS KSR Ours

SOD 0.5835 0.6470 0.6772 0.6834 0.6679 0.6896
DUT-OMRON 0.5091 0.5505 0.6250 0.5916 0.5911 0.5981

Table 1. F-measure scores. The best and the second best results are shown in red and green, respectively. Supervised methods are marked
in bold.

2. Equilibria
It can be inferred that the proposed Saliency Game is a special category of games named polymatrix games [3]. In

polymatrix game, each player plays a two-player game against each other and is payoff is then the sum of the payoffs from
each of the two-player games [2]. Howson et al. showed in [3] that every polymatrix game has at least one equilibrium.
Therefore, the proposed Saliency Game also has at least one, but could have more than one equilibria. Replicator Dynamics
is invoked to find a Nash equilibrium of the game, in which different Nash equilibria might be reached if the initial state zi(0)
is set to different interior points of �. Empirically, we find that 8i 2 I, zi(0) = (0.5, 0.5) is a good initialization leading to
plausible saliency detection. In the supplementary material, we test saliency detection results corresponds to other four Nash
equilibria, which are reached by Replicator Dynamics starting from four different interior points of �. We denote the initial
state used in the paper as V half , and the other four initial states as V bd, V pos, V obj , V prior. Each of them is a 2 ⇥ N matrix,
where the i-th column vector (denoted as vbd

i , vpos
i , vobj

i , vprior
i , respectively) corresponds to mixed strategy of superpixel

1

Fig. 10. Quantitative comparison of models in terms of PR curves.
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Figure 7. Quantitative comparisons in terms of PR curves and F-measure curves.
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Figure 8. Visual comparison of saliency maps.

our method and RFCN [28] fine-tuned on different number
of training samples in Figure 6. RFCN is a recently pro-
posed deep learning based method that achieved excellent
performance. However, it can be seen from the figure that
RFCN does not do well without fine-tuning. Its F-measure
increases as the number of training samples grows. Our
method is equivalent to RFCN fine-tuned on about 5000-
9000 images.

dataset BL DSR HS MR RC wCO
ECSSD 0.6838 0.6618 0.6347 0.6905 0.4560 0.6764

PASCAL-S 0.5742 0.5575 0.5314 0.5863 0.4039 0.5999
MSRA 0.7840 0.7841 0.7671 0.8041 0.5754 0.7937

HKU-IS 0.6597 0.6774 0.6359 0.6550 0.5008 0.6770
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.7046 0.7329 0.7959 0.7851 0.7817 0.8215
PASCAL-S 0.6006 0.6182 0.6912 - 0.7039 0.7062

MSRA 0.7934 - - - - 0.8666
HKU-IS 0.6545 0.7219 0.7573 0.7229 0.7468 0.8015

Table 1. F-measure scores. The best and the second best results
are shown in red and green, respectively. Supervised methods are
marked in bold.

6.4. Comparison with state-of-the-Art methods

As is shown in Figure 7, Table 1 and Table 2, our pro-
posed method compares favorably against 11 state-of-the-
art approaches over four different datasets. Among mod-
els, BL, BSCA, DSR, HS, MR, RC, wCO are unsupervised

dataset BL DSR HS MR RC wCO
ECSSD 0.9143 0.8619 0.8838 0.8827 0.8342 0.8814

PASCAL-S 0.8671 0.8118 0.8362 0.8259 0.8139 0.8482
MSRA 0.9535 0.9382 0.9279 0.9267 0.8951 0.9360

HKU-IS 0.9140 0.9008 0.8782 0.8611 0.8530 0.8952
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.9176 0.9404 0.9186 0.9235 0.9268 0.9272
PASCAL-S 0.8665 0.8950 0.8699 - 0.9012 0.8724

MSRA 0.9484 - - - - 0.9583
HKU-IS 0.9140 0.9435 0.9175 0.9026 0.9099 0.9183

Table 2. AUC scores. Supervised methods are marked in bold.

methods. DRFI, LEGS, MCDL, KSR are supervised meth-
ods. DRFI learns a random forest regressor, LEGS and
MCDL train a convolutional neural network, KSR learns
a classifier and a subspace projection to rank object propos-
als based on R-CNN features. For a fair comparison, we do
not provide evaluation results of DRFI, LEGS, MCDL, and
KSR methods on MSRA-5000 dataset since these methods
all randomly select images from this dataset for training.
Further, since LEGS also selects images from PASCAL-S
dataset, we do not show its performance over the PASCAL-
S dataset. Several saliency maps are shown in Figure 8 for
visual comparison of our method versus others.

7. Summary and Conclusion
We propose a novel saliency detection algorithm. Firstly,

we formulate a Saliency Game among superpixels, and
a saliency map is generated according to each region’s
strategy in the Nash equilibrium of the proposed Saliency
Game. Secondly, an iterative random walk that combines a
deep feature and a color feature is constructed to refine the
saliency maps generated in the last step. Extensive exper-
iments over four benchmark datasets demonstrate that the
proposed algorithm achieves favorable performance against
state-of-the-art methods.
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Figure 7. Quantitative comparisons in terms of PR curves and F-measure curves.
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Figure 8. Visual comparison of saliency maps.

our method and RFCN [28] fine-tuned on different number
of training samples in Figure 6. RFCN is a recently pro-
posed deep learning based method that achieved excellent
performance. However, it can be seen from the figure that
RFCN does not do well without fine-tuning. Its F-measure
increases as the number of training samples grows. Our
method is equivalent to RFCN fine-tuned on about 5000-
9000 images.

dataset BL DSR HS MR RC wCO
ECSSD 0.6838 0.6618 0.6347 0.6905 0.4560 0.6764

PASCAL-S 0.5742 0.5575 0.5314 0.5863 0.4039 0.5999
MSRA 0.7840 0.7841 0.7671 0.8041 0.5754 0.7937

HKU-IS 0.6597 0.6774 0.6359 0.6550 0.5008 0.6770
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.7046 0.7329 0.7959 0.7851 0.7817 0.8215
PASCAL-S 0.6006 0.6182 0.6912 - 0.7039 0.7062

MSRA 0.7934 - - - - 0.8666
HKU-IS 0.6545 0.7219 0.7573 0.7229 0.7468 0.8015

Table 1. F-measure scores. The best and the second best results
are shown in red and green, respectively. Supervised methods are
marked in bold.

6.4. Comparison with state-of-the-Art methods

As is shown in Figure 7, Table 1 and Table 2, our pro-
posed method compares favorably against 11 state-of-the-
art approaches over four different datasets. Among mod-
els, BL, BSCA, DSR, HS, MR, RC, wCO are unsupervised

dataset BL DSR HS MR RC wCO
ECSSD 0.9143 0.8619 0.8838 0.8827 0.8342 0.8814

PASCAL-S 0.8671 0.8118 0.8362 0.8259 0.8139 0.8482
MSRA 0.9535 0.9382 0.9279 0.9267 0.8951 0.9360

HKU-IS 0.9140 0.9008 0.8782 0.8611 0.8530 0.8952
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.9176 0.9404 0.9186 0.9235 0.9268 0.9272
PASCAL-S 0.8665 0.8950 0.8699 - 0.9012 0.8724

MSRA 0.9484 - - - - 0.9583
HKU-IS 0.9140 0.9435 0.9175 0.9026 0.9099 0.9183

Table 2. AUC scores. Supervised methods are marked in bold.

methods. DRFI, LEGS, MCDL, KSR are supervised meth-
ods. DRFI learns a random forest regressor, LEGS and
MCDL train a convolutional neural network, KSR learns
a classifier and a subspace projection to rank object propos-
als based on R-CNN features. For a fair comparison, we do
not provide evaluation results of DRFI, LEGS, MCDL, and
KSR methods on MSRA-5000 dataset since these methods
all randomly select images from this dataset for training.
Further, since LEGS also selects images from PASCAL-S
dataset, we do not show its performance over the PASCAL-
S dataset. Several saliency maps are shown in Figure 8 for
visual comparison of our method versus others.

7. Summary and Conclusion
We propose a novel saliency detection algorithm. Firstly,

we formulate a Saliency Game among superpixels, and
a saliency map is generated according to each region’s
strategy in the Nash equilibrium of the proposed Saliency
Game. Secondly, an iterative random walk that combines a
deep feature and a color feature is constructed to refine the
saliency maps generated in the last step. Extensive exper-
iments over four benchmark datasets demonstrate that the
proposed algorithm achieves favorable performance against
state-of-the-art methods.
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1. Performance Comparison
In the paper, we evaluate the proposed method on 4 benchmark datasets, and compare performance of the proposed method

with 11 state-of-the-art methods including BL [8], BSCA [7], DRFI [4], DSR [5], HS [11], LEGS [9], MCDL [13], MR [12],
RC [1], wCO [14], and KSR [10]. Here we compare our method with them on other two datasets: DUT-OMRON [12] and
SOD [6]. Performance comparison in terms of PR curves and F-measure curves are shown in Figure 1. F-measure scores
are shown in Table 1. Visual comparison of the proposed method against state-of-the-art on different datasets is shown in
Figure 7, 8, 9, 10.
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Figure 7. Quantitative comparisons in terms of PR curves and F-measure curves.
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Figure 8. Visual comparison of saliency maps.

our method and RFCN [28] fine-tuned on different number
of training samples in Figure 6. RFCN is a recently pro-
posed deep learning based method that achieved excellent
performance. However, it can be seen from the figure that
RFCN does not do well without fine-tuning. Its F-measure
increases as the number of training samples grows. Our
method is equivalent to RFCN fine-tuned on about 5000-
9000 images.

dataset BL DSR HS MR RC wCO
ECSSD 0.6838 0.6618 0.6347 0.6905 0.4560 0.6764

PASCAL-S 0.5742 0.5575 0.5314 0.5863 0.4039 0.5999
MSRA 0.7840 0.7841 0.7671 0.8041 0.5754 0.7937

HKU-IS 0.6597 0.6774 0.6359 0.6550 0.5008 0.6770
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.7046 0.7329 0.7959 0.7851 0.7817 0.8215
PASCAL-S 0.6006 0.6182 0.6912 - 0.7039 0.7062

MSRA 0.7934 - - - - 0.8666
HKU-IS 0.6545 0.7219 0.7573 0.7229 0.7468 0.8015

Table 1. F-measure scores. The best and the second best results
are shown in red and green, respectively. Supervised methods are
marked in bold.

6.4. Comparison with state-of-the-Art methods

As is shown in Figure 7, Table 1 and Table 2, our pro-
posed method compares favorably against 11 state-of-the-
art approaches over four different datasets. Among mod-
els, BL, BSCA, DSR, HS, MR, RC, wCO are unsupervised

dataset BL DSR HS MR RC wCO
ECSSD 0.9143 0.8619 0.8838 0.8827 0.8342 0.8814

PASCAL-S 0.8671 0.8118 0.8362 0.8259 0.8139 0.8482
MSRA 0.9535 0.9382 0.9279 0.9267 0.8951 0.9360

HKU-IS 0.9140 0.9008 0.8782 0.8611 0.8530 0.8952
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.9176 0.9404 0.9186 0.9235 0.9268 0.9272
PASCAL-S 0.8665 0.8950 0.8699 - 0.9012 0.8724

MSRA 0.9484 - - - - 0.9583
HKU-IS 0.9140 0.9435 0.9175 0.9026 0.9099 0.9183

Table 2. AUC scores. Supervised methods are marked in bold.

methods. DRFI, LEGS, MCDL, KSR are supervised meth-
ods. DRFI learns a random forest regressor, LEGS and
MCDL train a convolutional neural network, KSR learns
a classifier and a subspace projection to rank object propos-
als based on R-CNN features. For a fair comparison, we do
not provide evaluation results of DRFI, LEGS, MCDL, and
KSR methods on MSRA-5000 dataset since these methods
all randomly select images from this dataset for training.
Further, since LEGS also selects images from PASCAL-S
dataset, we do not show its performance over the PASCAL-
S dataset. Several saliency maps are shown in Figure 8 for
visual comparison of our method versus others.

7. Summary and Conclusion
We propose a novel saliency detection algorithm. Firstly,

we formulate a Saliency Game among superpixels, and
a saliency map is generated according to each region’s
strategy in the Nash equilibrium of the proposed Saliency
Game. Secondly, an iterative random walk that combines a
deep feature and a color feature is constructed to refine the
saliency maps generated in the last step. Extensive exper-
iments over four benchmark datasets demonstrate that the
proposed algorithm achieves favorable performance against
state-of-the-art methods.
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Figure 1. Quantity comparison in terms of PR curves and F-measure curves.
dataset BL DSR HS MR RC wCO
SOD 0.5723 0.5962 0.5212 0.5695 0.4184 0.5987

DUT-OMRON 0.4989 0.5243 0.5108 0.5280 0.4058 0.5277
BSCA DRFI MCDL LEGS KSR Ours

SOD 0.5835 0.6470 0.6772 0.6834 0.6679 0.6896
DUT-OMRON 0.5091 0.5505 0.6250 0.5916 0.5911 0.5981

Table 1. F-measure scores. The best and the second best results are shown in red and green, respectively. Supervised methods are marked
in bold.

2. Equilibria
It can be inferred that the proposed Saliency Game is a special category of games named polymatrix games [3]. In

polymatrix game, each player plays a two-player game against each other and is payoff is then the sum of the payoffs from
each of the two-player games [2]. Howson et al. showed in [3] that every polymatrix game has at least one equilibrium.
Therefore, the proposed Saliency Game also has at least one, but could have more than one equilibria. Replicator Dynamics
is invoked to find a Nash equilibrium of the game, in which different Nash equilibria might be reached if the initial state zi(0)
is set to different interior points of �. Empirically, we find that 8i 2 I, zi(0) = (0.5, 0.5) is a good initialization leading to
plausible saliency detection. In the supplementary material, we test saliency detection results corresponds to other four Nash
equilibria, which are reached by Replicator Dynamics starting from four different interior points of �. We denote the initial
state used in the paper as V half , and the other four initial states as V bd, V pos, V obj , V prior. Each of them is a 2 ⇥ N matrix,
where the i-th column vector (denoted as vbd

i , vpos
i , vobj

i , vprior
i , respectively) corresponds to mixed strategy of superpixel
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1. Performance Comparison
In the paper, we evaluate the proposed method on 4 benchmark datasets, and compare performance of the proposed method

with 11 state-of-the-art methods including BL [8], BSCA [7], DRFI [4], DSR [5], HS [11], LEGS [9], MCDL [13], MR [12],
RC [1], wCO [14], and KSR [10]. Here we compare our method with them on other two datasets: DUT-OMRON [12] and
SOD [6]. Performance comparison in terms of PR curves and F-measure curves are shown in Figure 1. F-measure scores
are shown in Table 1. Visual comparison of the proposed method against state-of-the-art on different datasets is shown in
Figure 7, 8, 9, 10.
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Figure 7. Quantitative comparisons in terms of PR curves and F-measure curves.
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Figure 8. Visual comparison of saliency maps.

our method and RFCN [28] fine-tuned on different number
of training samples in Figure 6. RFCN is a recently pro-
posed deep learning based method that achieved excellent
performance. However, it can be seen from the figure that
RFCN does not do well without fine-tuning. Its F-measure
increases as the number of training samples grows. Our
method is equivalent to RFCN fine-tuned on about 5000-
9000 images.

dataset BL DSR HS MR RC wCO
ECSSD 0.6838 0.6618 0.6347 0.6905 0.4560 0.6764

PASCAL-S 0.5742 0.5575 0.5314 0.5863 0.4039 0.5999
MSRA 0.7840 0.7841 0.7671 0.8041 0.5754 0.7937

HKU-IS 0.6597 0.6774 0.6359 0.6550 0.5008 0.6770
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.7046 0.7329 0.7959 0.7851 0.7817 0.8215
PASCAL-S 0.6006 0.6182 0.6912 - 0.7039 0.7062

MSRA 0.7934 - - - - 0.8666
HKU-IS 0.6545 0.7219 0.7573 0.7229 0.7468 0.8015

Table 1. F-measure scores. The best and the second best results
are shown in red and green, respectively. Supervised methods are
marked in bold.

6.4. Comparison with state-of-the-Art methods

As is shown in Figure 7, Table 1 and Table 2, our pro-
posed method compares favorably against 11 state-of-the-
art approaches over four different datasets. Among mod-
els, BL, BSCA, DSR, HS, MR, RC, wCO are unsupervised

dataset BL DSR HS MR RC wCO
ECSSD 0.9143 0.8619 0.8838 0.8827 0.8342 0.8814

PASCAL-S 0.8671 0.8118 0.8362 0.8259 0.8139 0.8482
MSRA 0.9535 0.9382 0.9279 0.9267 0.8951 0.9360

HKU-IS 0.9140 0.9008 0.8782 0.8611 0.8530 0.8952
BSCA DRFI MCDL LEGS KSR Ours

ECSSD 0.9176 0.9404 0.9186 0.9235 0.9268 0.9272
PASCAL-S 0.8665 0.8950 0.8699 - 0.9012 0.8724

MSRA 0.9484 - - - - 0.9583
HKU-IS 0.9140 0.9435 0.9175 0.9026 0.9099 0.9183

Table 2. AUC scores. Supervised methods are marked in bold.

methods. DRFI, LEGS, MCDL, KSR are supervised meth-
ods. DRFI learns a random forest regressor, LEGS and
MCDL train a convolutional neural network, KSR learns
a classifier and a subspace projection to rank object propos-
als based on R-CNN features. For a fair comparison, we do
not provide evaluation results of DRFI, LEGS, MCDL, and
KSR methods on MSRA-5000 dataset since these methods
all randomly select images from this dataset for training.
Further, since LEGS also selects images from PASCAL-S
dataset, we do not show its performance over the PASCAL-
S dataset. Several saliency maps are shown in Figure 8 for
visual comparison of our method versus others.

7. Summary and Conclusion
We propose a novel saliency detection algorithm. Firstly,

we formulate a Saliency Game among superpixels, and
a saliency map is generated according to each region’s
strategy in the Nash equilibrium of the proposed Saliency
Game. Secondly, an iterative random walk that combines a
deep feature and a color feature is constructed to refine the
saliency maps generated in the last step. Extensive exper-
iments over four benchmark datasets demonstrate that the
proposed algorithm achieves favorable performance against
state-of-the-art methods.
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Figure 1. Quantity comparison in terms of PR curves and F-measure curves.
dataset BL DSR HS MR RC wCO
SOD 0.5723 0.5962 0.5212 0.5695 0.4184 0.5987

DUT-OMRON 0.4989 0.5243 0.5108 0.5280 0.4058 0.5277
BSCA DRFI MCDL LEGS KSR Ours

SOD 0.5835 0.6470 0.6772 0.6834 0.6679 0.6896
DUT-OMRON 0.5091 0.5505 0.6250 0.5916 0.5911 0.5981

Table 1. F-measure scores. The best and the second best results are shown in red and green, respectively. Supervised methods are marked
in bold.

2. Equilibria
It can be inferred that the proposed Saliency Game is a special category of games named polymatrix games [3]. In

polymatrix game, each player plays a two-player game against each other and is payoff is then the sum of the payoffs from
each of the two-player games [2]. Howson et al. showed in [3] that every polymatrix game has at least one equilibrium.
Therefore, the proposed Saliency Game also has at least one, but could have more than one equilibria. Replicator Dynamics
is invoked to find a Nash equilibrium of the game, in which different Nash equilibria might be reached if the initial state zi(0)
is set to different interior points of �. Empirically, we find that 8i 2 I, zi(0) = (0.5, 0.5) is a good initialization leading to
plausible saliency detection. In the supplementary material, we test saliency detection results corresponds to other four Nash
equilibria, which are reached by Replicator Dynamics starting from four different interior points of �. We denote the initial
state used in the paper as V half , and the other four initial states as V bd, V pos, V obj , V prior. Each of them is a 2 ⇥ N matrix,
where the i-th column vector (denoted as vbd

i , vpos
i , vobj

i , vprior
i , respectively) corresponds to mixed strategy of superpixel

1

Fig. 11. Quantitative comparison of models in terms of F-measure.
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In addition, compared with CNN based saliency detection
methods which need to be trained on images with pixel-
level masks as ground truth, the proposed method extracts
features from a pre-trained CNN and combines them with
color features in an unsupervised manner. This provides an
efficient complement to CNNs that does on par with models
that need labeled training data. Hopefully, our approach will
encourage future models that can utilize both labeled and
unlabeled data.
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Fig. 12. Qualitative comparison of our methods and state-of-the-art methods on ECSSD dataset.
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Fig. 13. Qualitative comparison of our methods and state-of-the-art methods on HKU-IS dataset.
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Fig. 14. Qualitative comparison of our methods and state-of-the-art methods on PASCAL-S dataset.
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