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Abstract

In this paper, we will disclose that the Guided Filter (GF)
can be interpreted as the Cyclic Coordinate Descent (CCD)
solver of a Least Square (LS) objective function. This dis-
covery implies a possible way to extend GF because we can
alter the objective function of GF and define new filters as
the first pass iteration of the CCD solver of modified objec-
tive functions. Moreover, referring to the iterative minimiz-
ing procedure of CCD, we can derive new rolling filtering
schemes. Hence, under the guidance of this discovery, we
not only propose new GF-like filters adapting to the specific
requirements of applications but also offer thoroughly ex-
planations for two rolling filtering schemes of GF as well
as the way to extend them. Experiments show that our new
filters and extensions produce state-of-the-art results.

1. Introduction

Image filters are probably the most fundamental tools in
computer vision and graphics applications. Existing filters
can be roughly divided into two categories: the Explicit Fil-
ter (EF) and the Implicit Filter (IF). EF explicitly exploits a
Mapping Operator (MO) to transform inputs to outputs. The
well-known Gaussian, Bilateral and Guided filters [5, 22, 6]
all belong to this type as their MOs can be expressed by
convolution. The MO of IF is not given explicitly. Instead,
the filtering output is considered as the minimizer of an ob-
jective function. Xu et al. [24] give an instance of this filter.

Each kind of filters has its own merits and demerits. EF
is easy to implement and often has a low computational
cost. However, its MO is usually defined intuitively with-
out theoretical explanation. The drawback makes designing
a new EF and analyzing its rolling filtering behavior hard.
Conversely, IF usually pays expensive computational time
for state-of-the-art quality because final results are yielded
by the iterative solver such as gradient descent [19]. Disre-
garding the shortcoming, IF also brings us convenience: the
procedure of designing a new IF reduces to proposing an
objective function and finding its solver, which have been
well studied and own a solid theoretical foundation.

One can draw upon one another’s strong point to over-

come deficiencies. Specifically, if we establish the connec-
tion between EF’s MO and IF’s iterative solver, the prob-
lem that cannot be addressed from single explicit/implicit
perspective would be solved by uniting two filtering view-
points. The benefits of this joint perspective are twofold: 1)
EF’s filtering behavior as well as its rolling filtering usage
is described by the iterative solver. We thus can not only
define new filters by modifying objective functions but also
disclose its rolling filtering usage from the minimizing pro-
cedure of its iterative solver. 2) EF deepens our understand-
ing for IF as it entitles each minimizing pass a filtering con-
notation other than its original optimization interpretation.
This undoubtedly facilitates the intuitive understanding of
each iteration and its functions in optimization.

Establishing the connection between EF and IF is not
new. Let q, p, L and Λ be an N × 1 output vector, con-
straint, N ×N Laplacian matrix and diagonal matrix, He et
al. [6] proved the output of GF approximates to one Jacobi
iteration in optimization (1), But the discovery leaves much

min
q

(q − p)TΛ(q − p) + qTLq (1)

to be desired because GF and the iterative solver of opti-
mization (1) is not strictly equal and thus the Jacobi algo-
rithm fails to describe the behavior of multiple times guided
image filtering.

Considering the potential benefits of the joint perspec-
tive for GF [6], we will disclose the equivalence between
GF and the CCD solver of Least Square (LS) optimization.
Further, the connection is exploited to extend GF as well as
its rolling usages. Our main contributions are threefold:

• We unveil that GF equals to the CCD solver of an LS
objective function and point out GF rolling filtering
equals to the minimizing procedure for the objective
function.

• We find a general framework to define new GF-like
filters and develop novel instances of GF-like filters in
this framework.

• We offer mathematical foundation for two rolling fil-
tering schemes of GF and the way to extend them.
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2. Related Work
In literatures, a lot of efforts are devoted to disclose the

connection between EF and IF. Li et al. [10] reveal the Me-
dian filter corresponds to the analytic form of the minimizer
of the sum of weighted absolute error, thus it has fully ex-
plainable connections to global energy minimization. Un-
like Li et al., Elad [4] shows the Bilateral Filter (BF) [22]
emerges from a Bayesian optimization, as a single itera-
tion, but fails to prove BF is the solver of the optimization.
Dong et al. [3] make a progress by showing BF equals to the
iterative reweighting solver, which is a good approximation
to the Newton’s method [19]. Later, Caraffa et al. [1] in-
troduce guidance information to a robust optimization and
define the Guided BF (GBF) as the solver of the robust op-
timization. Imitating the iteratively minimizing procedure,
they invent a rolling filtering scheme for GBF.

Since 2010, GF has attracted much attention. In order to
address the defect of GF caused by the box window, Lu et
al. [12] design a cross window for CLMF. However, their
geometric-adaptive window is still problematic. To solve
the problem, Tan et al. [21] design a symmetrical window
for their MLPA. In addition, Tan et al. introduce a spatial
regularization term to GF and make MLPA spatial-aware.
But the ability is at the cost of increasing run time drasti-
cally. This shortcoming is conquered by Dai et al. [2] who
assemble FCGF by introducing tree distance to GF. Simi-
larly, incorporating an edge-aware weighting into GF, Li et
al. [11] propose WGF to address the halo artifacts of GF.
Unlike Li, Qiu et al. [14] put forward LLSURE that ex-
ploits Steins unbiased risk estimate as a predictor for the
mean squared error adopted by GF to filter out noise while
preserving edges and fine-scale details.

Although GF is designed as one pass, non-iterative fil-
ter, its rolling filtering usage arouses extensive concerns re-
cently. Seo et al. [17] propose an iterative guided filter-
ing method, which is also taken by Yelameli et al. [25], for
robust flash denoising/deblurring. Unlike previous works,
Zhang et al. [26] propose a novel Rolling Guidance Fil-
tering (RGF) scheme with the complete control of detail
smoothing under a scale measure. However, none of above
works establishes the connection between GF and some it-
erative solvers and thus is not able to benefit from uniting
two filtering schemes.

3. The Equivalence Between GF and CCD
GF has a close connection with the CCD solver. This

section is devoted to exhibit the equivalence between GF
and CCD as illustrated in Fig 1.

3.1. The Original Definition of GF

Initially, GF is defined in the two steps local multipoint
filtering framework:

1) multipoint estimation: calculating multipoint esti-
mates q′i for each pixel i in the image domain Ω according
to the linear transform q′i = akIi+bk,∀k ∈ ωi in a window
ωi centered at i, where I is the guidance image, (ak, bk) are
the minimizer (3) of optimization (2), p is the filtering in-
put, ε is a constant, Eωi(x) and Dωi(x) denote the average
and variance of x in the window ωi.

min
ak,bk

∑

i∈ωk

((akIi + bk − pi)2 + εa2
k) (2)

ak =
Eωk

(Ip)− Eωk
(I)Eωk

(p)

Dωk
(I) + ε

bk = Eωk
(p)− akEωk

(I)

(3)

2) aggregation: as each pixel i has a number of estimates
indexed by k ∈ ωi, the filtering result q is defined as the
average of these multipoint estimates.

qi = Eωi(q
′) = Eωi(a)Ii + Eωi(b) (4)

3.2. A CCD Interpretation for GF

Cyclic Coordinate Descent (CCD) is based on the idea
that the minimizer of a multivariable function F can be ob-
tained by minimizing it along one direction at a time. That
is, in each iteration, for each index n of the problem in turn,
CCD algorithm cyclically solves the optimization problem

xn+1
i = arg min

y
F (xn+1

1 , . . . ,xn+1
i−1 ,y,x

n
i+1, . . . ,x

n
n) (5)

where xni and y are vectors. Thus, one can begin with an
initial guess x0 and gets a sequence {x0,x1,x2, . . . } that
has F (x0) ≥ F (x1) ≥ F (x2) ≥ . . . .

Applying the CCD algorithm to optimization the objec-
tive function (6), we can verify that GF’s definition (3) (4)
are the closed-form solutions of cyclically minimizing q

min
q,a,b

∑

k∈Ω

∑

i∈ωk

((akIi + bk − qi)2 + εa2
k) (6)

and (a, b). Specifically, in the first step, let q0 = p and
P0(qn, I, ε) =

∑
i∈ωk

((akIi+bk−qni )2 +εa2
k), CCD min-

imizes optimization (7), where Eq (8) formulates the closed

an+1
k , bn+1

k = arg min
ak,bk

P0(qn, I, ε) (7)

form solutions of an+1
k , bn+1

k . In the second step with fixed

an+1
k =

Eωk
(Iqn)− Eωk

(I)Eωk
(qn)

Dωk
(I) + ε

bn+1
k = Eωk

(qn)− an+1
k Eωk

(I)

(8)

ank , b
n
k , CCD computes the minimizer of optimization (9),

where P1(an+1, bn+1, I) =
∑
k∈ωi

(an+1
k Ii + bn+1

k − qi)2

qn+1
i = arg min

qi

P1(an+1, bn+1, I) (9)

and qn+1
i can be formulated as Eq (10).



qn+1
i = Eωi

(an+1)Ii + Eωi
(bn+1) (10)

Note that Eq (8) (10) are same to Eq (3) (4) except for an
extra iteration index n. This implies that GF equals to the
first CCD iteration of Eq (6) with an initial guess q0 = p. In
addition, let GF(qn, I, ε) denote the filtering outputs of GF
with respect to the input qn, the rolling filtering scheme (11)
can be interpreted as the CCD minimizing procedure of op-
timization (6). The specific reason is that the filtering result

qn+1 = GF(qn, I, ε) (11)

qn+1 of GF with input qn obtained from the nth CCD iter-
ation equals to qn+1 i.e. n + 1th CCD iteration. To further
broaden the understanding for above two equivalences, we
outline the discovery and main idea in Fig 1. Specifically,
employing the equivalences,

• We can modify the objective function and exploit CCD
to define new GF-like filters due to the equivalence be-
tween GF and one CCD iteration.

• We can derive rolling filtering schemes from CCD be-
cause the iteratively minimizing procedure of CCD in-
dicates new rolling filtering schemes.

4. The Way to Extend GF
The equivalence between GF and CCD exposes possible

ways to extend GF. In this section, we are going to develop
new GF-like filters and their rolling filtering schemes ac-
cording to the technical roadmap illustrated in Fig 1.

4.1. New GF-like Filters

New filters can be derived by modifying the objective
function (6) and defining them as the first CCD pass of new
objective functions. Following this roadmap, we propose
four GF-like filters( i.e. TVGF, CGF, IGF, ICGF) and two
rolling filtering usages (i.e. CGF-RMSF and RFNF). Refer
to Table 1 for details of these abbreviations.

Cyclic 
Coordinate 

Descent

The Explicit Filter
The Guided 

Filter(2)(3) and
Rolling Filtering 

Scheme(11)

New GF-like 
Filter and

Rolling Filtering 
Schemes

Equivalence

The Implicit Filter
The 

objective 
function (6)

New 
objective 
functions

solved by

solved by Equivalence

Iteration

Figure 1. The CCD interpretation for GF and the way to extend
it. The MO (3) (4) of GF equals to the CCD solver (7) (9) of
objective function (6). We can modify the objective function and
derive new GF-like filters and rolling filtering schemes from its
CCD solver. More specifically, new GF-like filters can be derived
from the first pass iteration of the CCD solver of the modified ob-
jective functions and the minimizing procedure determined by the
CCD solver indicates new rolling usages.

IGF The Inverse Guided Filter
TVGF The Total Variation Guided Filter
CGF The Conservative Guided Filter
ICGF The Inverse Conservative Guided Filter
RMSF Rolling Mutual Structure Filtering

GF-RMSF GF based RMSF
CGF-RMSF CGF based RMSF

Table 1. Abbreviations for filters and rolling filtering.

4.1.1 The Total Variation Guided Filter (TVGF)

GF has no idea about what kind of the output is preferred
because the cost function (6) of GF only considers the con-
straint between the guidance I and output q. In order to pro-
duce the most favorite noise free result, we assemble a new
cost function (12) by appending a Total Variation (TV) reg-

min
q,a,b

∑

k∈Ω

(λTV2(qk)+
∑

i∈ωk

((akIi+bk−qi)2 +εa2
k)) (12)

ularization term TV(gi) =
√
∂2
xgi + ∂2

ygi to the cost func-

tion (6). Putting P2(an+1, bn+1, I) =
∑
k∈Ω(λTV2(qk) +∑

i∈ωk
((an+1

k Ii+bn+1
k −qi)2) and q0 = p, we can achieve

the minimizer by iteratively calculating Eq (13) (14) accord-
ing to the CCD algorithm. The optimal solutions of an+1

k ,

an+1
k , bn+1

k =arg min
ak,bk

P0(qn, I, ε) (13)

qn+1
i =arg min

qi

P2(an+1, bn+1, I) (14)

bn+1
k are expressed as Eq (15) which is same to GF’s (7).

Different from GF’s (9), the minimizer qn+1
i of Eq (14)

an+1
k =

Eωk
(Inq)− Eωk

(In)Eωk
(q)

Dωk
(In) + ε

bn+1
k = Eωk

(q)− an+1
k Eωk

(In)

(15)

equals to Eq (16), where fn+1
i =

∑
i∈ωk

an+1
k Ii + bn+1

k ,

qn+1
i = F−1

( F(fn+1)

|ωk|F(1) + λD

)

i

(16)

D = F∗(∂x)F(∂x) + F∗(∂y)F(∂y), F is the Fast Fourier
Transform (FFT) operator andF∗ denotes the complex con-
jugate. F(1) is the Fourier Transform of the delta function
and |ωk| denotes the pixel number in the window ωk. More-
over, the plus, multiplication and division in Eq (16) are all
component-wise operators.

We define TVGF as the first CCD pass of Eq (15) (16).
Hence above CCD minimization can be written in the

qn+1 = TVGF(qn, I, ε, λ) (17)

rolling filtering form Eq (17), where q = TVGF(p, I, ε, λ)
denotes the filtering output q of TVGF.



Input GF CLMF MLPA FCGF WGF LLSURE TVGF

Figure 2. Noise and Haze Removal. The images in the first two rows are denoising results and their close-ups. The images in the last
two rows are haze removal results and their close-ups which illustrate halo artifacts. From left to right, the images are input and results
yielded by GF(r = 10, ε = 0.1), CLMF(τ = 0.196, ε = 0.04), MLPA(k = 0.1/255, εs = 0.0052, εr = 1), FCGF(σ = 0.5, ε = 1),
WGF(r = 20, ε = 0.001), LLSURE(r = 5), TVGF(r = 10, ε = 0.01, λ = 45).

4.1.2 The Conservative Guided Filter (CGF)

We found that the minimizer of objective functions (6) (12)
are trivial zeros. This discovery indicates that both GF and
TVGF will consume the “energy” of images at each itera-
tion and therefore are dissipative. Note that previous GF-
like filters such as CLMF [12], MLPA [21], WGF [11],
FCGF [2] and LLSURE [14] are also dissipative filters.
Readers can verify this from their trivial results of multi-
ple times filtering. We consider that an ideal filter should be
conservative, i.e. the rolling filtering result must converge
to a nontrivial solution. To achieve this goal, we build the
cost function (18) and exploit its CCD iteration to derive
CGF. Here g is an alias for input p. Since the data term

min
q,a,b

∑

k∈Ω

(
∑

i∈ωk

((akIi+bk−qi)2+εa2
k)+λ(qk−gk)2) (18)

(qi− gi)2 constrains the derivation between output q and g,
the solution of Eq (18) must be nontrivial.

According to the CCD algorithm, we can achieve the
minimal point of the objective function (18) by iteratively
computing Eq (19) (20) with an initial guess q0 = p, where

an+1
k , bn+1

k =arg min
ak,bk

P0(qn, I, ε) (19)

qn+1
i =arg min

qi

P3(an+1, bn+1, I, g, λ) (20)

P3(an+1, bn+1, I, g, λ) =
∑
k∈ωi

(an+1
k Ii + bn+1

k − qi)2 +

λ(qi − gi)
2. Note that the solution of Eq (19) is same to

Eq (15), and by putting α = λ
|ωi|+λ , the solution of Eq (20)

Iteration 1 Iteration 10 Iteration 50 PBP

Figure 3. Stereo Matching Comparison. From top to down, the
images are the results of GF (a typical dissipative filters) and CGF
(our conservative filter) respectively. The images in the left are
groundtruth disparity map and its color reference, the images in the
center are stereo matching results produced by GF and CGF with
different iteration numbers, where red pixels indicate bad match-
ing pixels. The images in the right illustrate PBP performance
curve with respect to different iteration numbers, where PBP de-
notes the Percentage of Bad matching Pixels [16].

can be reformulated as

qn+1
i = (1− α)GF(qn, I, ε)i + αgi (21)

Similar to the definition of TVGF, CGF is defined as
the first pass iteration of Eq (19) (20). We thus have
CGF(qn, I, g, ε, λ) = (1−α)GF(qn, I, ε)+αg. Further, the
CCD minimizing procedure for the objective function (18)
can be reformulated in the rolling filtering form (22).

qn+1 = CGF(qn, I, g, ε, λ) (22)



4.1.3 The Inverse Guided Filters

In the filtering scheme of GF, the guidance image is used to
compute the smoothing result. People may raise following
question naturally: can we inverse the filtering procedure
by estimating the guidance G from a smoothing result p?
Luckily, the answer is positive. We employ the objective
function (23) with the initial guess G0 = I to formulate the
Inverse Guided Filter (IGF).

min
G,a,b

∑

k∈Ω

∑

i∈ωk

((akGi + bk − pi)2 + εa2
k) (23)

Applying the CCD algorithm to the cost function (23),
we iteratively calculate following two subproblems, where

an+1
k , bn+1

k = arg min
ak,bk

P0(p,Gn, ε) (24)

Gn+1
i = arg min

Gi

P4(an+1, bn+1, p) (25)

P0(p,Gn, ε) =
∑
i∈ωk

((akG
n
i + bk − pi)

2 + εa2
k) and

P4(an+1, bn+1, p) =
∑
k∈ωi

(an+1
k Gi + bn+1

k − pi)2. Min-
imizing P0(p,Gn, ε), we can formulate the closed-form so-
lution of an+1

k , bn+1
k as Eq (26). Solving the least square

an+1
k =

Eωk
(Gnp)− Eωk

(Gn)Eωk
(p)

Dωk
(Gn) + ε

bn+1
k = Eωk

(p)− an+1
k Eωk

(Gn)

(26)

optimization (25), we have

Gn+1
i =

Eωi
(an+1)pi − Eωi

(an+1bn+1)

Eωi
(an+1an+1)

(27)

We define IGF as the first CCD pass of Eq (26) (28) with
G0 = I and denote its output G as Eq (28).

G = IGF(p, I, ε) (28)

Similarly, the Inverse Conservative Guided Filter (ICGF)
G = ICGF(p, I, g, ε, λ) is defined as the first CCD pass of
optimizations (29). In the first step, we solve an+1

k , bn+1
k =

min
G,a,b

∑

k∈Ω

∑

i∈ωk

((akGi + bk − pi)2 + εa2
k) + λ(Gk − gk)2 (29)

arg min
ak,bk

P0(p,Gn, ε) and obtain Eq (30). In the second

an+1
k =

Eωk
(Gnp)− Eωk

(Gn)Eωk
(p)

Dωk
(Gn) + ε

bn+1
k = Eωk

(p)− an+1
k Eωk

(Gn)

(30)

step, we optimize minG
∑
k∈Ω

∑
i∈ωk

((akGi+bk−pi)2 +

εa2
k) + λ(Gk − gk)2 and thus have Eq (31).

Gn+1
i =

∑
k∈ωi

(an+1
k pi − an+1

k bn+1
k ) + λgi∑

k∈ωi
(an+1
k )2 + λ

(31)

At last, we note that it is not wise to use IGF or ICGF
alone because they usually do not produce visually mean-
ingful results. We instead compose these inverse guided fil-
ters with their guided filtering counterparts to perform mu-
tual structure filtering in the section 4.2.1.

4.2. Rolling Filtering Schemes

Although GF is designed as a non-iterative one pass fil-
ter originally, its rolling filtering usages still have important
applications. This section is devoted to the theoretical ex-
planation and improvement for rolling filtering schemes.

4.2.1 Rolling Mutual Structure Filtering (RMSF)

GF assumes the geometric structure of guidance coincides
with input completely. In practice, the assumption is too
strong. GF thus likely yields texture mapping artifacts. One
way to deal with the inconsistent structure between guid-
ance and input is to take all possible differences between
the guidance and input into account and estimate their mu-
tual structures as a new guidance for rolling guided filter-
ing. Based on the discovery of Shen et al. [18], we can
minimize following objective function E(q, a, b,G, c, d) =∑
k∈Ω

∑
i∈ωk

((akGi + bk − qi)2 + εa2
k) + ((ckqi + dk −

Gi)
2 + εc2k) to achieve desired results.

min
q,a,b,G,c,d

E(q, a, b,G, c, d) (32)

The optimization can be solved by iteratively computing
four subproblems (33)-(36) with q0 = p andG0 = I , where
αi(x) = 1

1+Eωi
(x2) . Eq (33) (34) are used to estimate the

linear coefficients used in GF and IGF. Eq (35) (36) calcu-
late the linear combination of GF and IGF. So we are rea-
sonable to say that we disclose the filtering explanation for
RMSF successfully and thus we call above procedure the
GF based RMSF For clarity, we list the GF based RMSF
algorithm in Alg 1.

Algorithm 1 The GF based RMSF Algorithm

1: procedure GF-RMSF
2: Inputs:

p,I ,ε,ε,N
3: Initialize:

q0 = p,G0 = I
4: for n = 0 to N do
5: an+1

k , bn+1
k = arg minak,bk P0(qn, Gn, ε)

6: cn+1
k , dn+1

k = arg minck,ck P0(Gn, qn, ε)

7: qn+1
i = αi(c

n+1) GF(qn, Gn, ε)i + (1 −
αi(c

n+1)) IGF(Gn, qn, ε)i
8: Gn+1

i = αi(a
n+1) GF(Gn, qn+1, ε)i + (1 −

αi(a
n+1)) IGF(qn+1, Gn, ε)i

9: end for
10: end procedure



Algorithm 2 The CGF based RMSF Algorithm

1: procedure CGF-RMSF
2: Inputs:

p,I ,ε,ε,λ,β,N
3: Initialize:

q0 = p,G0 = I
4: for n = 0 to N do
5: an+1

k , bn+1
k = arg minak,bk P0(qn, Gn, ε)

6: cn+1
k , dn+1

k = arg minck,ck P0(Gn, qn, ε)

7: αi(c
n+1) = 1

1+Eωi
((cn+1)2)

, αi(a
n+1) =

1
1+Eωi

((an+1)2)

8: qn+1
i = αi(c

n+1) CGF(qn, Gn, p, ε, λ)i+(1−
αi(c

n+1)) ICGF(Gn, qn, I, ε, β)i
9: Gn+1

i = αi(a
n+1) CGF(Gn, qn+1, I, ε, β)i +

(1− αi(an+1)) ICGF(qn+1, Gn, p, ε, λ)i
10: end for
11: end procedure

an+1
k , bn+1

k = arg min
ak,bk

P0(qn, Gn, ε) (33)

cn+1
k , dn+1

k = arg min
ck,dk

P0(Gn, qn, ε) (34)

qn+1
i = arg min

qi

P1(an+1
k , bn+1

k , Gm) + P4(cn+1
k , dn+1

k , Gn)

= αi(c
n+1)GF(qn, Gn, ε)i (35)

+ (1− αi(cn+1))IGF(Gn, qn, ε)i

Gn+1
i = arg min

Gi

P1(cn+1
k , dn+1

k , qn) + P4(an+1
k , bn+1

k , qn)

= αi(a
n+1)GF(Gn, qn, ε)i (36)

+ (1− αi(an+1))IGF(qn, Gn, ε)i

Note that the filtering pair GF and IGF play important
roles in the GF based RMSF algorithm according to Eq (35)
(36). Specifically, when the guidance G0 and input q0 are
equal, the mutual structure for the same image G0 = q0

will be itself. Intuitively, we may consider that the output
should be same to the input. In fact, the output and input
are not equal. The specific reason is that in the rolling mini-
mizing procedure (35) (36), GF smooths out details but IGF
plays the role of preserving structure from a smoothed in-
put. Thanks to the two antagonistic terms, RMSF can pre-
serve the the major structure and suppress details/textures
in final results. Due to the same reason, the output cannot
be same to the input.

The objective function proposed by Shen [18] can be re-
duced to Eq (32) if Shen’s parameters λ = β = 0. However,
the equivalence does not imply our filtering interpretation
for RMSF is trivial. One major contribution of our work is
that we first disclose the filtering explanation for each iter-
ation step. In addition, we can disclose things that are not

revealed by Shen. For instance, Shen reports the rolling fil-
tering scheme (37) cannot produce mutual structure filtering
results. However, he does not provide an explanation for its
filtering behavior. Here we employ the GF based RMSF
stated above to illustrate the reason. Comparing Eq (35)
(36) with Eq (37), we can find that Eq (35) (36) have two
extra IGF terms which learn guidance from input. So, the
mutual structure filtering result is the linear combination of
GF and IGF. In contrast, Eq (37) only considers the GF part
which will wipe out details without the help of IGF.

qn+1
i = GF(qn, Gn, ε)i

Gn+1
i = GF(Gn, qn, ε)i

(37)

Another contribution of our filtering interpretation is that
we can employ the RMSF filtering interpretation to define
CGF based RMSF. This is because we can substitute the fil-
ter pair (GF (p, I, ε), IGF (p, I, ε)) in the GF based RMSF
with (CGF (p, I, ε, λ), ICGF (p, I, ε, λ)) to assemble the
CGF based RMSF which is illustrated in Alg 2 and has bet-
ter filtering results.

4.2.2 Rolling Flash/No-Flash Filtering (RFNF)

To enhance the quality of flash/no-flash image pairs, Seo et
al. [17] take GF to synthesize a new image which composes
a base image B and a detail image D computed from the
flash/no-flash image pairs (I f, In) and offer a spectral anal-
ysis to illustrate why the rolling usage (38) with q0 = In

qk+1 = GF(qk, I f, ε)︸ ︷︷ ︸
the base imageB

+λ (I f − GF(I f, I f, ε))︸ ︷︷ ︸
the detail imageD

(38)

can yield better result. Differently, we will interpret Eq (38)
as an approximation for the CCD solver of objective func-
tion (39), where Ie = GF(I f, I f, ε) + τ(I f − GF(I f, I f, ε)).

min
q,a,b

∑

k∈Ω

(
∑

i∈ωk

((akIi+bk−qi)2+εa2
k)+λ(qk−Ie

k)2) (39)

Let g be an alias of Ie, the objective function is same to
Eq (18). Hence we can achieve the minimizer by iteratively
computing Eq (40) with α = λ

|ωi|+λ .

qn+1
i = (1− α)GF(qn, I f, ε)i + αIe

i (40)

If α ≈ 0 and τ = λ
α , we have (1 − α) ≈ 1 and αIe ≈

λ(I f − GF(I f, I f, ε)). In addition, qn+1 in Eq (40) reduces
to GF(qn, I f, ε) + λ(I f−GF(I f, I f, ε)) which has the same
form with Eq (38). This discovery convinces that the rolling
filtering scheme of Seo is just an approximation for a special
case of Eq (40). We therefore can generalize Eq (38) to Eq
(40). More importantly, the generalization produces much
better results in motion deblurring.



Input Eq (37) Xu Zhang Shen CGF

Figure 4. Major Structure Extraction. The image of Xu and Zhang are subscribed to authors. Other results are yielded by Shen(ε1 = ε2 =
0.001, λ = β = 5), (37)(r = 6, ε = 0.01), CGF(r = 6, ε = 0.001, λ = 0.01).

GF CGF IGF ICGF TVGF
Time 0.82s 0.83s 0.81s 0.82s 0.87s

CLMF MLPA WGF FCGF LLSURE
Time 1.78s 3.52s 0.84s 1.81s 0.83s

Table 2. One megapixels filtering run times of GF-like filters.

5. Comparison and Experiments
We now demonstrate that our new filters and rolling fil-

tering schemes are capable to generate state-of-the-art re-
sults for different applications, where all filters are imple-
mented in C++ without SIMD optimization on a i7 CPU
with 4GB memory and five GF-like filters, including CLMF
[12], MLPA [21], WGF [11], FCGF [2] and LLSURE [14],
are used to perform comparison.

5.1. Computational Complexity

The computational complexity of IGF, CGF and ICGF
are same to GF which is linear computational complexity
because all of them only involves point-wise arithmetic cal-
culations and the average operator E(x). Table 2 reports
the run time of ten filters to filter one megapixel image. The
speed of our CGF, IGF and ICGF is almost same to GF and
significantly faster than CLMF, MLPA and FCGF. Theoreti-
cally, TVGF can no longer be computed in linear time. This
is because the computational complexity of FFT operator F
isO(n log n). However, it does not mean that TVGF cannot
be computed efficiently because the implementation of FFT
is highly optimized on modern hardware [13]. We can ver-
ify this in Table 2 as TVGF does not increase the run time
very much.

5.2. Noise and Haze Removal

Benefiting from TV regularization [15, 20], TVGF can
reduce noise without structure degradation. For qualitative
comparison, we demonstrate the denoising results of seven
filtering methods in the first two rows of Fig 2. Visually,
only the results of FCGF and LLSURE are comparable with

our TVGF. Table 3 adopts three indices including PSNR [7],
MSE [9] and SSIM [23] to estimate the denoisng quality.
Our TVGF ranks first on all the three indices.

TV regularization also empowers TVGF the halo arti-
facts suppression ability, which is the selling point of WGF.
The second row in Fig 2 and its close-ups show an instance
from the single image haze removal experiment. From this
figure, it is not difficult to find that only the results of TVGF
and WGF do not suffer from halo artifacts.

5.3. Multiple Times Filtering for Stereo Matching

In the stereo matching framework [8], GF is employed
to smooth each slice of the cost volume one pass. However
“Is it optimal to filter each slice one pass?” We found that
the answer is negative. The reason is that the PBP perfor-
mance curve of GF, illustrated in the first row of Fig 3, is
a parabola-like line. We own this to the dissipative prop-
erty of GF. Specifically speaking, the PBP performance in-
creases with the iteration number N on an interval [0, N̄)
since the noise is removed gradually without degrade im-
age edges very much. Here N̄ denotes the optimal filter-
ing number and usually is greater than one. With the filter-
ing times increasing (i.e. N ∈ (N̄ ,∞]) the structure infor-
mation of inputs will be depleted by dissipative filters, so
the PBP performance will decrease on the interval (N̄ ,∞].
But it is very hard to decide the optimal filtering pass N̄ in
advance. Unlike dissipative GF, the PBP curve of CGF is
monotonically decreasing because CGF is conservative and
can preserve the structure information of input no matter
how many times filtering are applied. The property implies
an easy way to choose N for CGF: within a computational
burden we make N as large as possible. In this way we no
longer need to tweak N carefully.

5.4. Major Structure Extraction

We apply CGF based RMSF, rolling filtering (37) and the
methods of Xu [24], Zhang [26], Shen [18] to extract the
major structure and illustrate results in Fig 4. The rolling



GF CLMF MLPA FCGF WGF LLSURE TVGF
PSNR 21.8370 22.6815 22.3029 23.4069 23.1650 23.7239 24.5191
MSE 0.0066 0.0054 0.0060 0.0048 0.0050 0.0041 0.0035
SSIM 0.8878 0.8940 0.8908 0.9102 0.9059 0.9261 0.9384

Table 3. Quantitative comparison for seven denoisng methods in terms of PSNR, MSE and SSIM. The method with best denoisng ability
usually receives large PSNR and SSIM values and a small MSE index.

Flash No-Flash Zhou Seo RFNF

Figure 5. Flash/No-flash Deblurring. From left to right, the images are flash image, non-flash image and results yield by Zhou, Seo and
RFNF, where the image of Zhou suffers from over-saturated regions in the blurred image.

filtering scheme (37) does not yield satisfactory result as
it only considers the smoothing part of RMSF. The results
of Xu and Zhang are much better. This is because Xu de-
signs a relative total variation to extract main structures and
suppress textures. Unlike Xu, Zhang designs a new filter
and employs it to filter images with the complete control of
detail smoothing under a scale measure. However, taking
a close look at their results, we can find that both meth-
ods seemly could not distinguish major structures from tex-
tures very well and thus not only leave details in the ma-
jor structures but also blur some important major structures.
Although the method of Shen can produce the same re-
sults of the GF based RMSF, our CGF based RMSF derived
from the GF based RMSF are able to remove textures more
clearly.

5.5. Flash/No-Flash Deblurring

Motion blur due to camera shake is an annoying problem
while taking pictures. Our generalized Rolling Flash/No-
Flash Filtering (RFNF) can be applied to flash/no-flash de-
blurring. The method of Zhou et al. [27] as well as the
method (38) of Seo are used to perform comparison. Fig
5 illustrates the results of three methods, where no-flash
images suffer from mild noise and strong motion blur. As

shown in the close-ups, our method outperforms the method
of Zhou by obtaining much finer details with better color
contrast even though our method does not estimate a blur
kernel at all. In addition, compared with our method,
Zhou’s method also suffers from over-saturated regions in
the blurred image. Unlike Zhou, the results of Seo are rather
satisfactory. However, their edges are not as sharp as ours.

6. Conclusion and Future Work

We first disclose the equivalence between the Guided Fil-
ter (GF) and the Cyclic Coordinate Descent (CCD) solver of
a Least Square optimization. The equivalence provides us
new insight on how to extend GF as well as its rolling filter-
ing usage: employing the equivalence, we define GF as the
first pass iteration of the CCD solver and derive new rolling
filtering scheme from the minimizing procedure. Further,
we modify the objective function of GF and obtain several
GF-like filters and two rolling filtering usages from new ob-
jective functions. However, we think that this is not the
limit of the power of the equivalence. Our future work will
be extended to derive more GF-like filters as well as their
rolling usage according to new objective functions adapted
to various tasks in compute vision and graphics.
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