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Segmented Stacked Autoencoders Considering The
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Qinggang Meng, Senior Member, IEEE, and Baihua Li

Abstract—Most of the current blind stereoscopic image quality
assessment (SIQA) algorithms cannot show reliable accuracy.
One reason is that they do not have the deep architectures and
the other reason is that they are designed on the relatively weak
biological basis, compared with findings on human visual system
(HVS). In this paper, we propose a Deep Edge and COlor Signal
INtegrity Evaluator (DECOSINE) based on the whole visual
perception route from eyes to the frontal lobe, and especially
focus on edge and color signal processing in retinal ganglion
cells (RGC) and lateral geniculate nucleus (LGN). Furthermore,
to model the complex and deep structure of the visual cortex,
Segmented Stacked Auto-encoder (S-SAE) is used, which has
not utilized for SIQA before. The utilization of the S-SAE
complements weakness of deep learning-based SIQA metrics that
require a very long training time. Experiments are conducted on
popular SIQA databases, and the superiority of DECOSINE in
terms of prediction accuracy and monotonicity is proved. The
experimental results show that our model about the whole visual
perception route and utilization of S-SAE are effective for SIQA.

Index Terms—stereoscopic image quality assessment, retinal
ganglion cell, lateral geniculate nucleus, segmented stacked auto-
encoders, edge quality, color quality.

I. INTRODUCTION

3D visual content has penetrated our lives deeply. We
can easily find 3D movies, 3D TVs, 3D digital cameras

and mobile phones equipped with dual cameras around us.
Through them countless stereoscopic images are produced
everyday. These images often suffer from perceptual quality
degradation caused by distortions when they are transmitted,
stored, compressed and processed. The degraded images need
to be restored and SIQA indices can provide a criterion for
restoration [1], [2]. Image quality assessment (IQA) models
are divided into three categories according to usage of the
original image: full-reference (FR) [3]–[12], reduced-reference
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(RR) [13]–[15] and no-reference (NR)/blind [16]–[20] IQA
metrics. In the majority of cases, we cannot have direct access
to the pristine images of the degraded ones [21]. Therefore,
FR and RR IQA models find very limited usage. However
most studies on SIQA so far have concentrated on FR and RR
methods. To avoid such limitation, in this paper, we propose
a SIQA method belongs to the NR metric.

The main goal of IQA is to make an accurate prediction
about stereopairs’ quality like a human being. It is very rational
to mimic the pathway of our visual processing system. Most
people see the world through two eyes, and slightly different
images individually fall on the retinas [22]. The two views are
compressed by retinal ganglion cells (RGC) remaining edge
signals mainly. Color information is also conveyed through the
RGCs. These are transmitted to visual cortex via LGNs. The
right and left view signals are integrated in the primary visual
cortex (V1) first [23]. Each part of the visual cortex seems to
have their own particular role. However it is almost impossible
to specify completely their roles because they interact with
each other. Through numerous complicated steps, information
about the stereopair eventually reaches the frontal lobe that
determines perceived quality. Previous SIQA metrics tried to
model HVS, but they were designed on the relatively weak
biological basis like follows.

In the initial stage of SIQA, 2D-IQA metrics were straight-
forwardly applied to both left and right views, and then two
obtained quality scores from each side were combined into one
overall score [3]. Further, disparity information was integrated
on a 2D-IQA basis [4]–[7]. But these metrics cannot deal with
binocular perception such as binocular rivalry and suppression
arising from V1 where information from both eyes comes
together. As a result, such methods cannot predict well the
quality of asymmetrically distorted stereopairs. To solve this,
Wang et al. [8] presented a framework that integrates a spatial
weighting system considering the suppression phenomenon.
Ryu et al. [9] applied an unequal weighting system according
to the respective quality of left and right images and sup-
pression degree. Furthermore, an intermediate image called
a cyclopean image was generated by Chen et al. [10] so
as to mimic a single fused percept in V1. They produced
two cyclopean images respectively from original and distorted
stereopairs and then evaluated the quality using FR 2D-IQA
metrics. More sophisticated algorithms have been developed
since then. Lee et al. [11] proposed a model that divides a
stereo image into binocular and monocular vision segments
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and applies different visual weights to the pooling method.
Zhang et al. [12] devised a 3D-MAD that estimates perceived
quality degradation by distortion of monocular views and a
cyclopean view respectively.

In addition to these FR-SIQA algorithms, some NR-SIQA
metrics have been presented. Chen et al. [16] extracted 2D fea-
tures from a cyclopean image and 3D features from a disparity
map and an uncertainty map. All of the extracted features were
used to train a support vector regressor (SVR). Ryu et al.
[24] explored the relationship between the perceptual quality
and visual information, and introduced a method modeling
the binocular quality perception in the context of blurriness
and blockiness. Su et al. [17] formed a convergent cyclopean
image and extracted bivariate and correlation NSS features in
the spatial and wavelet domains. Shao et al. [18] proposed
a metric that learns binocular receptive field properties and
quality lookups, from perspective of dictionary learning. With
the development of deep learning (DL), the study on IQA was
further improved. Zhang et al. [19] proposed a metric based on
convolutional neural network (CNN) that can effectively learn
the complicated mapping relations between raw images and
their labels. This metric does not need handcrafted features.
Shao et al. [20] trained two separate 2D deep belief networks
(DBN) for monocular images and cyclopean images, and
then combined the quality scores using weighting schemes.
These two DL-based methods achieved higher consistence
with subjective assessment than shallow structure metrics.

To develop biologically plausible NR-SIQA, four aspects
should be addressed: 1) to establish a sufficient biological
model mimicking a visual processing system, 2) to reflect
binocular perception properties, 3) to have a deep structure,
and 4) to deliver good prediction accuracy. But most of the pre-
vious methods did not have strong biological underpinnings,
and were also based on shallow architectures. As a result, they
could not achieve the satisfactory performance.

In this paper, we propose a Deep Edge and COlor Signal
INtegrity Evaluator (DECOSINE) modeling the whole visual
perception route that consists mainly of feature extraction
about edge and color and multiple levels of abstraction. Our
contributions are as follows.

1) We make a novel neuro-biological model based on
the whole visual perception route from eyes to the
frontal lobe unlike most SIQA metrics that imitate a
part of the route. The route is organized by us into
two sub-routes considering edge and color signals, and
two local scores from these sub-routes are computed:
edge quality score and color quality score. Concretely,
contour images of left and right views are computed to
model edge extraction of RGCs, and they are used to
calculate intermediate maps such as sum, difference and
cyclopean maps based on binocular sum and difference
channel theory. Contrary to the edge information, the
color information was not thoroughly applied in the field
of SIQA. To deal with color information, we model the
opponent coding occurred in LGNs.

2) Segmented SAE (S-SAE) is utilized to mimic deep and
complex architecture of the visual cortex. It can solve
a drawback of conventional SAE that requires a long

training time. Using these S-SAEs, the proposed method
can achieve not only low computational complexity,
but also accurate prediction ability. We believe this
“segmentation” idea can be also used in DBNs or CNNs-
based IQA metrics [19], [20], [25]. Three separate S-
SAEs for edge information and one SAE for color
information are trained, and the resulting deeper features
are fed into regression models, respectively.

3) According to biological discoveries of binocular vision
[26], [27], two dynamic weighting systems and one
static weighting system are newly designed. Especially
the dynamic weighting systems consider the extent of
correlation between left and right images of stereopairs.
Locally measured quality scores are combined into one
overall score via these weighting systems. They obvi-
ously improve prediction performance of the proposed
algorithm. Comparing with previous SIQA metrics, DE-
COSINE provides the most precise and unbiased estima-
tion.

The remainder of this paper is organized as follows. Section
II introduces theoretical bases about the retinal ganglion cells,
LGNs, V1 and S-SAE. In Section III, the proposed metric,
DECOSINE, is elaborately explained. The methodology and
the experimental results are presented in Section IV. Finally
conclusions and future work are summarized in Section V.

II. THEORETICAL BACKGROUND

In this section, we explain how edge and color signals are
processed in the retinal ganglion cells and LGNs. Next, binoc-
ular summation and difference channels in V1 are described.
The fundamentals of S-SAE are also introduced.

(a) (b)

(c) (d)

Fig. 1: (a) An original image. (b), (c) and (d) LoG images
modeling ON-cells with (3, 0.5), (7, 1) and (13, 2) parameters
respectively. The parameters determine the thickness of edge.
Refer to Section III.B. Note that the edges are picked out,
whereas areas of uniform brightness look the same mid-grey.
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A. Retinal Ganglion Cells and LGNs

We have about 120 million rods and 8 million cones in each
eye [22]. Photoreceptor cells comprised of rods and cones are
analogous to the pixels of digital cameras. The number of
these photoreceptor cells is much more than 16 million pixel of
smart-phone cameras sold on the market. The more the pixels,
the greater the volume of information. Our visual system has
a compression function for dealing with massive amounts of
visual information. It is performed by retinal ganglion cells
(RGC). They have parvocellular (P), koniocellular (K) and
magnocellular (M) cells [28]. The P and K pathways carry
color information, whereas the M pathway carries information
about movements and edges in the view. Among these, M
pathway is most deeply involved in edge extraction. M cells
have two types of receptive fields: ON-center and OFF-center.
ON-center cells become hyperpolarized in response to light,
and OFF-center cells become depolarized on exposure to light
[29]. The receptive field cares about changes in a small region
of the world and ignores the rest. Fig. 1 shows a scene and
images after being filtered by ON-center cells. These are not
the same as an ordinary grey image. Look at the shadow of
banisters or mountains in Fig. 1(b)-(d), on contours including
changes from bright spots to dark spots, you can see the white
line first and then the black line. On the other hand, areas of
uniform brightness look the same mid-grey. It is correlated
with the response of the ON-center cells. In summary, only
‘edges’ or ‘changes’ in the pattern are extracted and transferred
to the V1 via the left and right LGNs separately.

Fig. 2: A scene and the corresponding Lum, RG and BY as-
pects. The Lum, RG and BY maps are generated by opponent
channel encoding.

In addition to signaling edge information, the RGCs get
involved in color vision too. As mentioned above the P and
K cells of RGCs respond to changes in color, and these are
linked with P and K cells of LGNs. Passing the LGNs, an
opponent coding is fulfilled, which encodes color activation
by comparing the activities of cone types [30]. The types
of cones in retinas are divided into three: L-, M- and S-
cones [31]. They are sensitive to long (related to red), medium
(green), and short (blue) wavelengths, respectively. There are
three opponent channels encoding the red-green (RG), blue-
yellow (BY ) and light-dark (Lum) aspects of a scene [31].

These aspects are drawn in Fig. 2. Especially the P cells are
heavily related to color vision based on RG comparison, while
the color information carried through the K cells is based on
the BY comparison. We thus calculate these three opponent
responses for SIQA’s sake, which are also conveyed to V1.

Fig. 3: Two monocular test stimuli and the corresponding
binocular sum and difference images.

B. Binocular sum and difference channels in V1

When the above-mentioned signals about edge and color
are transmitted into V1, the signals from the right eye are
kept separate from the ones from the left eye [22]. However,
about 70% of neurons in V1 can be regarded binocular and
neurons in the later areas of the visual cortex are almost all
binocular. The binocular neurons in V1 combine signals from
the two eyes into a single fused image of the world, while the
small differences between the two images are used to deduce
information about depth [23].

Much previous work has shown that the fused image is
dominated by the sum of left and right images [26], [32].
According to this, a sum image and a cyclopean image were
generally utilized to model the fused image in SIQA. The
sum image is a simple sum of the two images, whereas
the cyclopean image is the weighted sum of two images
considering the disparity information and the Gabor filter
responses [10]. The cyclopean image reflects well binocular
rivalry and suppression phenomenons. However, recent studies
reported that, in addition to the binocular summation channel,
there is also a binocular difference channel which subtracts
one image from the other [27], [33].

In order to demonstrate the existence of difference channel,
May and Zhaoping [33] designed an experiment based on
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adaptation and after-effect. First, they tried to selectively adapt
the binocular sum and difference channels. For adapting the
difference channel selectively, they presented two images,
I and −I , of photographic negative version each other to
observer’s two eyes, respectively. As a result, the difference
channel, if it exists, should have a strong response because of
I − (−I) = 2I , while the sum channel, if it exists, should
not respond because of I + (−I) = 0. Conversely, to adapt
the sum channel selectively, identical images were presented
to the eyes, and the sum channel took I + I = 2I , and the
difference channel took I − I = 0. As a result, only the
sum channel should respond strongly. After these adaptation
processes, May and Zhaoping showed two monocular test
stimuli to observers’ left and right eyes, respectively. The test
stimuli as shown in Fig. 3 have following properties: if the
brain sums the monocular images, people can see right-tilted
bars, whereas if the brain subtracts them, people can see left-
tilted bars. Note that there is no information about direction of
tilt in these stimuli. The tilt emerges only when the monocular
images are combined. After adapting the sum channel, when
the test stimuli were presented, observers could see left-tilted
bars that is their difference image, whereas after the difference
channel was adapted, observers could see right-tilted bars as
their sum image. Because it did not occur after adaptation
to tilt, these observation was not a tilt after-effect. It is a
compelling evidence that distinct sum and difference channels
exist. For further details of this experiment, refer to [33].

Very few SIQA methods take account of the difference
channel [34]. Based on that signals from the sum and differ-
ence channels are multiplexed [27], we combine edge signals
of the two views into three types of intermediate images:
cyclopean and sum images for modeling the sum channel, and
a difference image for the difference channel.

Fig. 4: A Segmented Stacked Auto-Encoder (S-SAE). An input
vector is divided into smaller segments, and the segments
are fed into each local SAE. The resulting local outputs are
concatenated to form an output vector.

C. S-SAE

For the development of a blind IQA method, it is needed to
learn a proper mapping model from quality-aware features to
perceptual quality scores. Because human brain is organized
in a deep architecture, e.g. from V1 to IT cortex [35], machine
learning methods with the shallow structure cannot mimic it
enough [36]. We thus use a SAE that is one of DL algorithms.
Among many variants of the SAE, a S-SAE [37] is chosen be-
cause of its efficacy improving the characterization of features
and its efficiency relieving computational complexity [37].

In a basic auto-encoder (AE), an input vector x is trans-
formed into a reduced hidden representation h [38], and the
h is mapped back into a reconstructed vector x̃:

h = A(Wx+ b), (1)

x̃ = A(W ′h+ b′), (2)

where A means an activation function, W,W ′ and b, b′ are
parameters for weights and biases. These parameters are
optimized to minimize an average reconstruction error:

argmin
W,W ′,b,b′

1

n

n∑
i=1

||x(i) − x̃(i)||2, (3)

where i is the i-th training sample and n is the total number of
training samples. We can input h into a new AE and the hidden
representation of h is learned. Repeating this procedure, a
Stacked AE (SAE) is formed. It learns deep and abstract
representation of the input vector. The learned deeper features
can be used to train a regressor such as a support vector
machine regressor (SVR) [39].

However the SAE has a relatively large computational
complexity when it is trained, especially in an unsupervised
learning phase. It thus requires a very long time for training. To
alleviate it, a Segmented SAE (S-SAE) was proposed recently
[37]. The S-SAE consists of several local SAEs. The input data
is divided into smaller k segments according to the correlation
among features. k local SAEs are applied to each segment
separately, and the resulting outputs are concatenated to form
an output vector, refer to Fig. 4.

We compare the S-SAE with the traditional SAE in terms
of computational complexity. To this end, we suppose that a
SAE has N input nodes and three hidden layers with M , L
and P nodes respectively. The number of connections for the
SAE is as below:

(N ×M) + (M × L) + (L× P ). (4)

If a S-SAE comprising of k local SAEs is used in place
of the SAE, the k-th local SAE has Nk input nodes and
Mk, Lk and Pk hidden nodes, where N =

∑K
k=1 Nk,M =∑K

k=1 Mk, L =
∑K

k=1 Lk and P =
∑K

k=1 Pk. It has∑K
k=1(Nk ×Mk +Mk ×Lk +Lk ×Pk) connections. If every

local SAE is designed in the same form, i.e. N1 = N2 =
· · · = NK ,M1 = M2 = · · · = MK , L1 = L2 = · · · = LK

and P1 = P2 = · · · = PK , the complexity for the S-SAE can
be expressed as:
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Fig. 5: The proposed biological model for SIQA.

Fig. 6: The proposed algorithm, DECOSINE. It is a computational model of the biological model in Fig. 5.

K[(
N

K
× M

K
) + (

M

K
× L

K
) + (

L

K
× P

K
)]

=
[(N ×M) + (M × L) + (L× P )]

K

(5)

As a result, the complexity of the SAE is reduced by K times
in the S-SAE. This segmentation concept can be applied to
other DL algorithms like DBNs and CNNs. In our DECO-
SINE, one SAE for a color signal and three S-SAEs for a
edge signal are utilized to find deeper representations from
quality-aware features.

III. THE PROPOSED SIQA METRIC: DECOSINE

In this section, the proposed DECOSINE is explained. It is
a biologically-inspired metric. Considering visual perception
route of human beings, we design a model for SIQA. Based
on the model, a computational algorithm is embodied. The
feature extraction process and pooling systems of DECOSINE
are also elaborated here.

A. The Biological Model of DECOSINE

When we look at some scenes, slightly different images
are focused on the retinas. Each view is captured by L-,
M- and S-cones like R, G and B components. These are
conveyed to RGCs separately, and edge images of the left
and right scenes are extracted from the RGCs. Next the R,
G, B images and edge images are arrived at LGNs, and
opponent coding occurs there. Consequentially the RG, BY ,
Lum signals and edge images are transmitted into the visual

cortex via P, K and M streams. In V1 which is the first
area of visual cortex, two eyes’ signals are combined into
summation (S), difference (D) and cyclopean (C) maps. S
and C maps are based on the theories that the fused image is
dominated by the sum of the left and right images [26], [32],
while D map is inspired by the recent discovery that there
is also the difference channel along with the sum channel
[27], [33]. From total six types of maps, feature extraction
for edge and color signals is proceeded. The extracted signals
are transmitted into extra-striate cortex including more than
30 visual areas, such as V2, V3, V4 and so on [40]. There
are tremendously complex connections between each area. In
the extra-striate cortex, the simple features are transformed
into gradually more abstract features in hierarchical ways.
Synthesizing the abstract features, the frontal lobe that controls
information and behavior from federal areas finally makes a
decision about the perceived quality [22]. Fig. 5 describes this
process organized for SIQA.

B. The Algorithm of DECOSINE
On the basis of the neuro-biological model, we design an

algorithm named DECOSINE, as shown in Fig. 6. It is divided
into two parts: edge quality index and color quality index.
To simulate the edge extraction of RGCs, the Laplacian of a
Gaussian (LoG) filter is applied on each view image:

▽2G(x, y) = [
x2 + y2 − 2σ2

σ4
]e−

x2+y2

2σ2 , (6)

where ▽2 is the Laplacian operator, G is the 2D Gaussian
function and σ is standard deviation. According to [41], we
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filter the input image with a n × n Gaussian lowpass filter
and compute the Laplacian of the image using the 3×3 mask
in Fig. 7(a). In this paper, the parameters of the Gaussian

(a) (b)

Fig. 7: Simple Laplacian masks. (a) ON-cell mask. (b) OFF-
cell mask.

filter are set to (n, σ) ∋ {(3, 0.5), (7, 1), (13, 2)} to obtain the
LoG maps with different thickness of edge like Fig. 1, which
models bar and edge detectors of different sizes in V1 [22]. As
a result, 3 left and 3 right LoG maps are computed. The LoG
maps of left and right images (LLoG and RLoG) are combined
into three forms: S, D and C maps. The S and D maps are
simply generated through summing and subtracting the LoG
images as follows:

S(i, j) = LLoG(i, j) +RLoG(i, j), (7)

D(i, j) = LLoG(i, j)−RLoG(i, j). (8)

where i and j are spatial indices. Note that for D map we
use the simple difference rather than the absolute difference
because the simple difference reflects the relative difference.
C map is computed as a weighted sum of the LLoG and the
disparity-compensated RLoG as below:

C(i, j) =WLLLoG(i, j)

+WR((i+ d(i, j)), j)RLoG((i+ d(i, j)), j),
(9)

where WL and WR are computed from the Gabor filter
responses, and d is the disparity. For further information, refer
to [10].

From S, D and C maps, the quality-aware features are
extracted respectively. These are further fed into the well
trained S-SAEs and the obtained deep features are separately
inputted into individual SVRs. The serial connection of S-
SAEs and SVRs plays a role mimicking functions from the
extra-striate cortex to the frontal lobe. The resulting quality
scores, QS , QD and QC , are combined into an edge quality
score Qedge via pooling systems which will be explained later
chapter.

For color quality index, opponent coding is firstly imple-
mented in LGNs. We model the opponent coding by the
following formulas [43]:

Lum = (R̄+ Ḡ+ B̄)/
√
3, (10)

RG = (R̄− Ḡ)/
√
2, (11)

BY = (R̄+ Ḡ− 2B̄)/
√
6, (12)

Fig. 8: Stereopairs and the corresponding differential mean
opinion scores (DMOS) in LIVE 3D phase 1 database [42]
for validating the usefulness of S, D and C maps. Because of
symmetrically distorted pairs, left view images of stereopairs
are only displayed. (a) a pristine image. (b) a JP2K compressed
image. (c) a JPEG compressed image. (d) a white noise (WN)-
added image. (e) a blurred image. (f) a fast-fading (FF) image.
The higher DMOS, the lower quality.

where R̄, Ḡ and B̄ are mean subtracted and contrast nor-
malized (MSCN) coefficients [44] of the log(R), log(G)
and log(B), respectively [45]. The quality-aware features are
captured in the Lum, RG and BY maps. These features
from maps of left and right versions are fed into one SAE
network to obtain deep features about color. The deep features
are inputted into a SVR, and a color quality score Qcolor is
computed. Finally, an overall quality score can be calculated
via a weighed sum of Qedge and Qcolor.

C. Feature Extraction for DECOSINE

Fig. 9: A histogram of the MSCN coefficients of the S maps.
Six stereopairs in Fig. 8 were used. The kurtosis and variance
become smaller as the DMOSs are getting larger except for
white noise.

Total 6 types of feature maps are exploited for extracting
features. Because the S,D and C maps computed from left
and right LoG maps have not been used in the field of SIQA,
we test to see whether the maps can provide quality-aware
features. To do this, we select a pristine stereopair and five
distorted stereopairs (Fig. 8). From LoG maps of six pairs,
the corresponding S maps are computed. In order to visualize
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(a) (b)

(c) (d)

Fig. 10: A histogram of the pair-wised products of MSCN coefficients of the S maps. Six stereopairs in Fig. 8 were used. (a)
Horizontal product. (b) Vertical product. (c) Main-diagonal product. (d) Secondary-diagonal product. The kurtosis and variance
become smaller as the DMOSs are getting larger except for white noise.

that MSCN coefficients of the S maps vary with certain rules
according to subjective quality scores, we plot histograms of
the MSCN coefficients in Fig. 9. The kurtosis and variance
of the histograms are clearly changed depending on DMOSs.
Except for the case of the stereopair degraded with white noise
(WN), the kurtosis and variance are getting smaller as DMOS
values are getting higher. The pairwise products of neighboring
MSCN coefficients [44] also display similar tendencies, as
shown in Fig. 10. The analysis about features obtained from
D and C maps are omitted due to the similarity.

From S,D and C maps, the 2 generalized Gaussian dis-
tribution (GGD) and 16 asymmetric generalized Gaussian
distribution (AGGD) fitting parameters are extracted like [44].
According to [46], magnitude, variance and entropy features
are calculated. In addition, we calculate the contrast as stan-
dard deviation minus the mean value of MSCN coefficient of
the S,D and C maps. The 22 features are extracted in three
versions of the S,D and C maps resulting from three different
left and right LoG images. Total 66 features (22 features
per version ×3 versions) are thus obtained for S, D and
C maps, respectively. These features are used to train three
S-SAEs for edge signal processing.

For an in-depth analysis on the potential for the utilization
of these new features, we representatively choose features of
S maps of 365 stereopairs on LIVE-1 database [42]. We plot

several features versus DMOSs by distortion type in Fig. 11.
For the five distortion types in LIVE-1 database, subjective
scores decrease or increase monotonically with the increase
of feature values. These monotonic and linear correlations can
be easily interpreted and learned by regressor models. The
features from D and C maps also have the equivalent potential
in learning degree of distortion.

For Lum, RG and BY maps for left and right eyes,
3 AGGD fitting parameters (shape, left variance and right
variance) are extracted. Refer to [45], two sample parameters
(kurtosis and skewness) are also calculated. Because the 5
features are captured in Lum,RG and BY maps for left and
right views, so total 30 features (5 features per map × 6
maps) are captured to represent color quality degradation. We
use these 30 features to train a SAE for color signal processing.

D. Pooling systems of DECOSINE

As we mentioned above, the obtained partial scores are
pooled into an overall quality score. First, the quality scores
that are obtained using the features of the S and D maps,
QS and QD, are combined. According to [26], [27], weakly
correlated two eyes’ images induce similar weight to sum and
difference channels. But, in general, the images are strongly
correlated, and a larger weight is assigned to the difference
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(a)

(b)

(c)

(d)

(e)

Fig. 11: The relation between some features from the S map
and DMOSs by distortion type. (a) WN, feature #2-#5. (b)
JP2K, feature #22-#25. (c) JPEG, feature #1-#4. (d) Blur,
feature #23-#26. (e) FF, feature #24, #25, #30 and #55.

channel. Based on this theory, we design a dynamic weighting
system:

WD = C1 −
1− ρ(L,R)

C2
, (13)

where

ρ(L,R) =
E[(L− µL)(R− µR)]

σLσR
. (14)

In Eq. (14), µL and µR are expected values and σL and σR are
standard deviations of L and R. Because there are disparities
between left and right images, it is not elaborate to use L and
R directly for calculating correlation in Eq. (14). Instead of L

and R themselves, the 22 features that are identical to those
for edge signals are extracted from left and right images to
represent the images. These features are hardly affected by the
disparities. For this work, we set C1 = 0.6, C2 = 5 to give
a larger weight to the difference channel when two images
are weakly correlated. As a result, QSD = WDQD + (1 −
WD)QS . Second, the QSD and QC are pooled. The C map
has strengths for treating asymmetrically distorted stereopairs
because C map reflects the binocular suppression well. Thus,
when the left and right images are weakly correlated, the C
channel will have a greater impact. Accordingly, we design an
another dynamic weighting system:

WC = C3 −
1− ρ(L,R)

C4
. (15)

We set C3 = 0.55, C4 = 0.8 to give a similar weight to two
QSD and QC when the two images are strongly correlated.
Likewise, 22 features from left and right images are used
instead of L and R. Using this system, the quality for edge is
determined by:

Qedge = WCQC + (1−WC)QSD. (16)

Lastly, an overall quality score is computed. Because an
edge signal is more important than color signal with regard to
perceived quality [47], it is rational to give a larger weight on
Qedge than Qcolor. We thus make a static weighting system:

Q = WedgeQedge +WcolorQcolor, (17)

where Wedge + Wcolor = 1. Fig. 12 shows Spearman rank-
order correlation coefficients (SROCC) values according to
the variation of the weights in the experiment conducted on
the LIVE-1 database [42]. Note that the higher the SROCC,
the better the performance. As shown in the graph, when
two weights are set to Wedge = 0.7 and Wcolor = 0.3, the
proposed DECOSINE performs best.

Fig. 12: The performance of DECOSINE according to the
variation of Wedge and Wcolor in an experiment on the LIVE
SIQA Database Phase 1. Wedge = 0.7 and Wcolor = 0.3 make
DECOSINE works best.
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IV. EXPERIMENTS

A. S-SAEs, SAE and SVR configurations

DECOSINE needs three separate S-SAEs for edge signal
and one SAE for color signal. We design each S-SAE includ-
ing three local SAEs. The input vectors of these local SAEs are
segments of the 66 features. Recall that there are three versions
of S, D and C maps, respectively, because the three LoG maps
having different thickness of the edges are computed for left
and right views. We thus segment 66 features of S, D and C
into three groups which are fed into local SAEs, and every
local SAE has three hidden layers with 18 − 14 − 12 nodes.
The three S-SAEs for S,D and C channels are designed with
the same structure. A SAE for color has three hidden layers
with 25 − 20 − 15 nodes. The reason we give three hidden
layers to SAEs lies in better experimental results than SAEs
having different number of hidden layers. Refer to Fig. 13.

Fig. 13: The performance of DECOSINE according to the
variation of the number of hidden layers in an experiment
on the LIVE SIQA Database Phase 1. The three hidden layers
make DECOSINE works best.

For training DECOSINE, some parameters need to be set.
We obtained the optimum hyper-parameters considering exper-
imental results of five popular SIQA databases synthetically,
so DECOSINE was not overfit to a specific database. We set
up with batch size as 1 due to lack of the number of samples
in SIQA databases. As a result, the weights of networks are
trained in the manner of stochastic gradient descent. A learning
rate is set to 0.5 for all networks, and the number of epoch
is 1000. To speed up the learning, we stop the process if full-
batch train errors are less than 0.005 for first hidden layer and
0.001 for other layers.

In addition, the SVR also has two parameters: penalty (C)
and kernel (γ) parameters. In this paper, (C, γ) = (29, 1)
is selected for all the SVRs. For your information, we use
Deep Learning Toolbox [48] to train the S-SAEs and SAE,
and LIBSVM [49] are utilized for training the SVRs.

B. SIQA Databases

To evaluate the performance of DECOSINE, five famous
SIQA databases are utilized.

The LIVE SIQA Database Phase 1 (LIVE-1) [42] contains
20 reference stereopairs and 365 distorted ones. The size of
left and right view images is 640 × 360 pixels. The left and

right images of stereopairs were symmetrically degraded by
WN, gaussian blur, JPEG, JP2K and fast fading. Differential
mean opinion score (DMOS) values are provided as subjective
quality scores on distorted ones.

The LIVE SIQA Database Phase 2 (LIVE-2) [16] consists of
8 reference stereopairs and 360 distorted ones that have size of
640 × 360 pixels like LIVE-1. Among them, 120 pairs were
symmetrically distorted and 240 pairs were asymmetrically
distorted. The distortion types are the same as LIVE-1. Due
to the presence of asymmetrically distorted ones, the LIVE-2
is more challenging than LIVE-1. The DMOS values are also
provided for distorted stereopairs.

The Waterloo IVC SIQA Database Phase 1 (WIVC-1) [50]
has 6 reference stereopairs and 330 symmetrically or asymmet-
rically degraded ones. The size of left and right view images
is 1390 × 1080. The types of distortions are WN, gaussian
blur and JPEG. Each distortion type has 4 distortion levels
that ensures a good perceptual separation. Mean opinion score
(MOS) values are presented for subjective quality scores. Note
that stereopairs in WIVC-1 has larger horizontal disparities
than the other databases.

The Waterloo IVC SIQA Database Phase 2 (WIVC-2)
[50] has 10 reference stereopairs and 460 symmetrically or
asymmetrically degraded ones. The size of left and right view
images is 1920× 1080. Note that the resolution of images in
WIVC-1 and WIVC-2 is better than the LIVE-1, LIVE-2 and
IVC. The types of distortions are the same as them of WIVC-
1. MOS values are provided for subjective quality scores.

The IVC SIQA Database (IVC) [5] contains 6 reference
stereopairs, 90 symmetrically distorted ones and their associ-
ated DMOS values. Images have size of about 512×512. Four
types of distortion like JPEG, JP2K, blur and down/up scaling
were used to deteriorate stereopairs.

C. Algorithms and Performance Measures
To compare performance of DECOSINE, we exploit exist-

ing 9 IQA metrics: 3 FR 2D-IQA metrics (IWSSIM [47], VSI
[51], VIF [52]), 3 FR SIQA metrics (Benoit et al. [5]’s scheme,
Chen et al. [10]’s scheme, STRIQE [7]) and 3 NR 2D-IQA
metrics (DIIVINE [53], BLIINDS-II [54], BRISQUE [44]).
For convenience’s sake, we call the algorithms authors’ names
for cases of no particular algorithm names. For quality pre-
diction of stereopairs, FR 2D-IQA metrics are applied to left
and right images, respectively. A mean value of the obtained
scores is selected as an overall quality score. We name the 2D-
FR extended algorithms 3D-IWSSIM, 3D-VSI and 3D-VIF,
respectively. FR SIQA metrics are tested according to each
researcher’s instruction. For Benoit [5], we choose a ssim-
d2 version among many others. One parameter α of STRIQE
[7] is set to 0.8. Because previous NR SIQA metrics are not
opened to the public, we model NR SIQA metrics using the
NR 2D-IQA metrics. We first generate cyclopean images to
deal with binocular perception and then extract their features
from them. The features are used to train a SVR. For each
algorithm, we obtained optimum SVR parameter sets by a
grid search like: (C, γ) = (29, 0.5), (211, 0.5) and (211, 0.5),
respectively. We name the algorithms CYC-DIIVINE, CYC-
BLIINDS and CYC-BRISQUE, respectively. In addition to the
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TABLE I: The performance evaluation on LIVE SIQA Database Phase I, Phase II, Waterloo IVC SIQA Database Phase I,
Phase II and IVC SIQA Database. Top three performed metrics are highlighted in bold type.

Type Metric
LIVE-1 LIVE-2 WIVC-1 WIVC-2 IVC

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

FR

3D-IWSSIM [47] 0.9420 0.9285 0.6912 0.7412 0.6795 0.5717 0.3669 0.2952 0.5339 0.6861
3D-VSI [51] 0.8565 0.8583 0.6381 0.7473 0.7904 0.7378 0.5196 0.3992 0.5415 0.7274
3D-VIF [52] 0.9255 0.9132 0.8537 0.8198 0.8013 0.7787 0.5722 0.4406 0.7544 0.7053
Benoit [5] 0.7954 0.7891 0.7301 0.7018 0.4635 0.3321 0.3209 0.1651 0.5854 0.4523
Chen [10] 0.9244 0.9113 0.8721 0.8975 0.6318 0.4577 0.4420 0.2724 0.4938 0.5852

STRIQE [7] 0.9319 0.9164 0.8973 0.8819 0.6515 0.4681 0.5026 0.3441 0.8561 0.7978

NR

CYC-DIIVINE [53] 0.9457 0.9359 0.9235 0.9070 0.9265 0.9003 0.9098 0.8872 0.7820 0.7449
CYC-BLIINDS [54] 0.9265 0.9167 0.9045 0.8992 0.8765 0.8490 0.8341 0.7965 0.8980 0.8789
CYC-BRISQUE [44] 0.9503 0.9408 0.9296 0.9210 0.9180 0.9067 0.9247 0.9072 0.9017 0.8834

DECOSINE-edge 0.9561 0.9478 0.9415 0.9331 0.9476 0.9324 0.9261 0.9025 0.9366 0.9089
DECOSINE-color 0.9235 0.9091 0.9199 0.9096 0.8843 0.8610 0.8208 0.8042 0.8761 0.8537

DECOSINE 0.9615 0.9527 0.9497 0.9412 0.9439 0.9246 0.9331 0.9143 0.9469 0.9270

(a) (b) (c)

(d) (e)

Fig. 14: Results of the t-test performed between SROCC values from the algorithms.

devised DECOSINE, its edge (DECOSINE-edge) and color
(DECOSINE-color) parts are also tested separately. All param-
eters of the metrics are equally adapted regardless of databases.
After nonlinear regression with a 5-parameter logistic function
suggested from VQEG [55], we compute Pearson linear cor-
relation coefficients (PLCC) between subjective scores and
predicted scores. Calculating Spearman rank-order correlation
coefficients (SROCC) does not need the nonlinear fitting
process [47]. Generally, a good metric produces high PLCC
and SROCC values. That is, PLCC = SROCC = 1 means
a perfect match between the predicted scores and subjective
scores. For evaluating NR methods including the proposed
one, we randomly split the datasets into 80% training sets and
20% testing sets. Using the training sets and the corresponding
DMOS or MOS values, NR metrics are trained. Then, we

compute the predicted quality scores on the testing sets. For
a fair comparison, the FR IQA metrics which do not require
training are also tested on the 20% testing sets. It is repeated
100 times to remove the influence of the selection of training
sets. Every time we repeat it, the PLCC and SROCC are
computed for performance comparison, and each mean value
is finally reported.

D. Test on Individual Databases

The test results on LIVE-1, LIVE-2, WIVC-1, WIVC-2 and
IVC databases are shown in Table I. The proposed metric
delivers the best performance on all the databases. Although it
belongs to a NR method, the performance is better than that of
FR metrics. On LIVE-1, its SROCC exceeds 0.95. Although
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TABLE II: The performance of the NR methods under dif-
ferent partition proportions on WIVC-2. SROCC values are
reported for performance evaluation.

Metric 80%/20% 70%/30% 60%/40% 50%/50%
CYC-DIIVINE [53] 0.8872 0.8779 0.8679 0.8500
CYC-BLIINDS [54] 0.7965 0.7907 0.7834 0.7719
CYC-BRISQUE [44] 0.9072 0.9035 0.8976 0.8892

DECOSINE 0.9143 0.9101 0.9090 0.8996

LIVE-2 contains asymmetrically distorted stereopairs, it does
not significantly affect the performance of DECOSINE, as
shown in SROCC = 0.9412. On WIVC-1 and WIVC-2
which have high resolution stereopairs distorted asymmetri-
cally, the proposed method yields the best prediction among
the algorithms. In addition, DECOSINE shows robust ability
of prediction on IVC that has only 90 stereopairs and it is
demonstrated from SROCC = 0.9270. Although training-
based NR metrics generally require a lot of training samples
to achieve reliable prediction, the proposed method produces
satisfactory results on IVC. The possible reasons why our
algorithm performs well are due to the decent model about the
whole visual perception route and utilization of deep learning.

We can observe that the predicted scores about edge quality
are more consistent with subjective scores than the color
quality scores. It seems that the edge part plays a more
important role in DECOSINE. However, the integration of
these two parts increases prediction accuracy except on WIVC-
1. It verifies that the color part is also helpful for prediction
of perceived quality as well as the edge part.

Many other algorithms show quite good performance on
LIVE-1. Especially CYC-BRISQUE delivers SROCC =
0.9408 that is competitive with DECOSINE. However, the
performance of many algorithms is weakened on the LIVE-2,
WIVC-1 and WIVC-2 that contain asymmetrically distorted
stereopairs. It means most of the methods cannot interpret
binocular visual properties properly. On IVC, only CYC-
BLIINDS and CYC-BRISQUE among other algorithms de-
liver the fine performance.

To assess the statistical significance of the performance dif-
ference between any two metrics, we further conduct Welch’s
t-test [56] using the 100 SROCC values. The number ‘1’
indicates that the row metric is statistically superior to the
column metric, whereas the number ‘-1’ indicates that the row
is statistically worse than the column. The number ‘0’ indicates
that the two metrics are statistically indistinguishable. The
results of the t-test are shown in Fig. 14. On all the databases,
the proposed method is statistically superior to the others.

We further report results under other three partition pro-
portions on WIVC-2 which is the largest database among the
databases we used: 70%, 60% and 50% samples are used for
training and the remaining 30%, 40% and 50% are used for
testing, respectively. As shown in Table II, the partition ratio
has little effect on the performance of DECOSINE and it does
not suffer from an over-fitting problem.

E. Cross-Database Test

To verify the generalization capability of our proposed
algorithm, we implement cross-database tests. Among the
databases, IVC is excluded because it has very few stereopairs
to be used for the cross-database test. LIVE-1 and LIVE-
2 present DMOS values for subjective quality scores, while
WIVC-1 and WIVC-2 provide MOS values. Because DMOS
and MOS values are produced by different process [24], cross-
database tests between LIVE databases and WIVC databases
are not proper. Thus, total four tests are implemented: 1)
the algorithms are trained on LIVE-1 and tested on LIVE-
2 (LIVE-1/LIVE-2), 2) LIVE-2/LIVE-1, 3) WIVC-1/WIVC-
2 and 4) WIVC-2/WIVC-1. NR methods are trained on the
former database and tested on the latter one. On the contrary,
FR methods are tested using whole samples of the latter one
without training them because they do not need a training
phase.

From the results present in Table III, we can observe
four points. 1) As shown in weighted average PLCC and
SROCC values across the four tests, the proposed DECOSINE
computes a reliable prediction about the quality of stereopairs
despite cross-database tests. Some algorithms deliver decent
performance in one or two cross-database tests, but DECO-
SINE is the only one which computes good performance
on all the tests. 2) The performance of the other NR al-
gorithms in the cross-database tests is not as good as that
in the individual database tests. CYC-BRISQUE that shows
impressive performance on the individual database tests can
hardly predict perceptual quality well on the cross-database
tests. 3) The performance of FR algorithms remains no matter
what kind of cross-database tests. Especially, 3D-VIF ranks
second following DECOSINE. 4) When quality scores about
edge and color are combined, the predictive performance is
obviously improved. The performance improvement degree in
cross-database tests is larger than that of individual database
tests. It means the integration of edge and color quality has
potential in real-life applications of SIQA methods.

F. Performance on Individual Distortion Types

Further experiments have been conducted to demonstrate
the performance of DECOSINE on individual distortion types.
For training-based DECOSINE, we select the LIVE-1 and
LIVE-2 for our experiments as these two datasets contain the
same types of distortion. After DECOSINE is trained by a
subset of the LIVE-2 among five subsets which are partitioned
by distortion type, we test it on a subset of the LIVE-1
which of stereopairs are degraded by the same distortion
type. For comparing the performance, the other NR metrics
are also examined. The test results are presented in Table
IV which proves that DECOSINE predicts perceptual quality
well regardless of types of distortion, allowing for the cross-
database test. Comparing with the NR metrics, our proposed
metric delivers the most stable performance. On JPEG subsets,
the prediction accuracy of DECOSINE is not so good, but
it is better than that of the other algorithms. Note that the
performance of metrics on whole LIVE-2 is better than that
on other subsets. It can be explained by that the nonlinear
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TABLE III: Results of cross-database tests. If metrics were trained on LIVE-1 and tested on LIVE-2, we presented as (training
database)/(testing database). Top three performed metrics are highlighted in bold types.

Metric
LIVE-1 / LIVE-2 LIVE-2 / LIVE-1 WIVC-1 / WIVC-1 WIVC-2 / WIVC-1 Weighted average
PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

3D-IWSSIM [47] 0.6357 0.7491 0.9370 0.9327 0.3771 0.3025 0.7023 0.5900 0.6443 0.6231
3D-VSI [51] 0.7656 0.7480 0.8627 0.8649 0.5344 0.4089 0.7892 0.7368 0.7239 0.6708
3D-VIF [52] 0.8366 0.8186 0.9243 0.9195 0.5486 0.4449 0.8075 0.7835 0.7639 0.7218
Benoit [5] 0.7346 0.7226 0.8057 0.7936 0.3157 0.1578 0.2186 0.3389 0.5259 0.4846
Chen [10] 0.9073 0.9013 0.9200 0.9150 0.4818 0.2671 0.6320 0.4724 0.7212 0.6186

STRIQE [7] 0.8886 0.8826 0.9260 0.9211 0.4560 0.3561 0.7252 0.4772 0.7307 0.6437
CYC-DIIVINE [53] 0.5528 0.5230 0.5220 0.4839 0.4483 0.4201 0.2337 0.2207 0.4441 0.4165
CYC-BLIINDS [54] 0.7470 0.7430 0.8070 0.8062 0.0893 0.1102 0.5940 0.5011 0.5284 0.5134
CYC-BRISQUE [44] 0.4961 0.4920 0.8428 0.8325 0.6740 0.6474 0.4131 0.4566 0.6156 0.6135

DECOSINE-edge 0.8110 0.7870 0.8911 0.8871 0.7968 0.7940 0.8489 0.8077 0.8342 0.8178
DECOSINE-color 0.7896 0.7526 0.7883 0.7898 0.7203 0.6719 0.7405 0.7385 0.7576 0.7340

DECOSINE 0.8456 0.8231 0.9161 0.9149 0.8421 0.8313 0.8739 0.8687 0.8677 0.8676

TABLE IV: The performance of DECOSINE on different types of distortion. DECOSINE is trained on each distortion subset
of the LIVE-2 and tested on the same distortion subset of LIVE-1. The top performing metric is highlighted in bold face.

Metric
WN JP2K JPEG Blur FF All

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC
CYC-DIIVINE [53] 0.9002 0.8488 0.8829 0.8027 0.3683 0.2737 0.9114 0.8704 0.7079 0.6253 0.5220 0.4839
CYC-BLIINDS [54] 0.9283 0.9323 0.6530 0.6136 0.6507 0.5868 0.9212 0.8901 0.6765 0.6172 0.8070 0.8062
CYC-BRISQUE [44] 0.8922 0.8923 0.7713 0.7308 0.1825 0.1085 0.9317 0.8794 0.6974 0.6879 0.8428 0.8325

DECOSINE 0.9020 0.9443 0.9098 0.8493 0.6750 0.5879 0.9251 0.9004 0.8124 0.7575 0.9161 0.9149

regression using the 5-parameter logistic function is largely
influenced by the number of samples. As described in this
experimental results, DECOSINE can be used for general
purpose IQA tasks [57], [58] unlike distortion-specific IQA
metrics [59], [60].

G. Time Efficiency of S-SAE

When implementing deep learning algorithms, the biggest
challenge is the need of a very long time for a training
phase. In our proposed approach, this problem is alleviated
by using segmentation concept (Section II-B). To compare
training times of a S-SAE and a traditional SAE, we select a
S map. In our DECOSINE, the 66 features of the S map are
inputted into a S-SAE that consists of three local SAEs having
an input layer and three hidden layers of 22 − 18 − 14 − 12
nodes, respectively. For comparison, we also implement a
conventional SAE for the S map instead of the S-SAE. The
SAE is set to an input layer and three hidden layers with
66 − 54 − 42 − 36 nodes. In Table V, we list the time taken
on a PC with Intel Core i7 CPU at 2.80 GHz, 8.00 GB RAM,
Windows 10 64-bit, and MATLAB R2017a. The segmentation
does not show much performance improvement on IVC con-
taining only 90 stereopairs, whereas the computation times on
comparatively larger databases are substantially decreased. If
the size of the test database is not too small, using the S-SAE
reduces the time complexity in comparison to using the SAE.
An average reduction rate, 76.00%, reflects the decent time
efficiency of using S-SAEs. At the same time, the accuracy
and monotonicity of prediction are maintained. On LIVE-

TABLE V: The computation time in a SAE and a S-SAE.

Dataset SAE (sec) S-SAE (sec) Reduction
LIVE-1 35.30 21.22 60.11%
LIVE-2 30.26 19.74 65.23%
WIVC-1 16.58 12.80 77.20%
WIVC-2 18.25 14.01 76.77%

IVC 20.20 20.35 100.7%
Average 24.12 17.62 76.00%

TABLE VI: The computation time of NR algorithms.

Metrics CYC-DIIV. CYC-BLII. CYC-BRIS. DECOSINE
Time (sec) 20.82 30.31 9.10 28.26

1, we compute one of local quality scores, QS , using SAE
+ SVR and S-SAE + SVR, respectively. The result shows
similar or better mean PLCC and SROCC values as shown
in 0.9491, 0.9380 when SAE is used and 0.9531, 0.9398 when
S-SAE is used. Through it we can know using S-SAE is better
than using SAE in terms of time complexity.

In addition, we compare the time complexity between DE-
COSINE and other NR methods. The run time of metrics for
predicting quality of a stereopair from LIVE-1 is calculated.
The algorithms are first trained on LIVE-2, and tested on the
stereopair. Table VI shows DECOSINE has a moderate time
complexity.
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V. CONCLUSIONS

We propose a NR SIQA algorithm named DECOSINE
based on the whole visual perception route from eyes to
the frontal lobe. Especially functions of retinal ganglion cells
(RGC) and lateral geniculate nucleus (LGN) about edge and
color signal processing are importantly considered, and seg-
mented stacked autoencoders (S-SAE) is utilized to model
deep and complex structure of the visual cortex. Our DE-
COSINE computes two locally estimated scores: edge quality
and color quality scores. Inspired by that binocular integration
occurred in V1 after edge extraction of retinal ganglion cells,
sum, difference and cyclopean maps are computed from LoG
filtered left and right images. The opponent coding theory is
utilized for modeling color information processing occurred
in LGNs. The quality-aware features are mapped into local
quality scores via combination of S-SAEs/SAE and SVRs.
These scores are combined into an overall score through two
dynamic and one static weighting systems. Experiments have
been conducted on popular five SIQA databases and the results
verify a good and reliable performance of DECOSINE in
comparison with previous IQA metrics.

Although the proposed metric shows good performance,
there is still a room for improvement. We did not deal with
visual comfort aspect directly. This aspect is closely connected
with the development of 3D images and movies because most
viewers take count of it [61], [62]. We will make an effort to
add it to DECOSINE in future work.

For the development of SIQA field, larger and realistic
databases are urgently required. Previous databases contain
stereopairs corrupted by only one of a few synthetically
introduced distortions. In addition, the number of samples
are not sufficient. In LIVE-1, LIVE-2, WIVC-1, WIVC-2 and
IVC SIQA databases, there are 365, 360, 330, 460 and 90
stereopairs, respectively. We hope new databases consisting
of more samples and corresponding DMOS or MOS values
will be constructed.
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