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A Dynamic-Shape-Prior Guided Snake Model with

Application in Visually Tracking Dense Cell

Populations
Sha Yu∗, Yao Lu, Derek Molloy

Abstract—This work proposes a dynamic-shape-prior guided
snake model (DSP G-snake) that is designed to improve the
overall stability of the point-based snake model. The dynamic
shape prior is first proposed for snakes, that efficiently unifies
different types of high-level priors into a new force term. To
be specific, a global-topology regularity is first introduced that
settles the inherent self-intersection problem with snakes. The
problem that a snake’s snaxels tend to unevenly distribute along
the contour is also handled, leading to good parameterization.
Unlike existing methods that employ learning templates or
commonly enforce hard priors, the dynamic-template scheme
strongly respects the deformation flexibility of the model, while
retaining a decent global topology for the snake. It is verified by
experiments that the proposed algorithm can effectively prevent
snakes from self-crossing, or automatically untie an already self-
intersected contour. In addition, the proposed model is combined
with existing forces and applied to the very challenging task
of tracking dense biological cell populations. The DSP G-snake
model has enabled an improvement of up to 30% in track-
ing accuracy with respect to regular model-based approaches.
Through experiments on real cellular datasets, with highly dense
populations and relatively large displacements, it is confirmed
that the proposed approach has enabled superior performance,
in comparison to modern active-contour competitors as well as
state-of-the-art cell tracking frameworks.

Index Terms—Snakes, self-intersection, cell population track-
ing, dynamic shape prior, global-topology regularity.

I. INTRODUCTION

S
INCE the development of snakes in the seminal work

by Kass et al. [1], they have been applied to object

segmentation and widely adopted in various forms of bio-

logical image analysis. Snakes are used to define an object’s

outline in images under analysis by minimising an energy

or cost function associated with different object properties

(e.g., average intensity value), and intrinsic curve properties

(e.g., smoothness). Due to the fact that the traditional internal

energies of snakes encourage smooth and circular-like shapes,

deformable active contours are intuitive tools for modelling

cell membranes and regions. They have thus received large

popularity in the cell tracking community since the 1990s.

Works such as [2] and [3] are pioneering in applying the
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active contour model (ACM) to cell tracking. Recent works on

cell detection and tracking, e.g. [4] and [5], employ the active

disc model [6] and the radial snake model [7]. The ACM in

[8] takes the prior of elliptical shapes. Pan et al. propose a

new shape force that captures tubular patterns with particular

types of cells in [9]. External forces that embed motion priors

of cells are also considered in [5] and [7]. Nowadays, along

with the intense requisite for quantitative analysis of cellular

behaviors, there is a growing demand for the automated

tracking and analysis of dense cell populations [10]–[13], due

to the manual effort involved in marking up vast volumes of

cell data for biological study. This brings forward many new

challenges for the vision-based cell tracking community, and

models or tools with more stable performance are required.

A. Motivation

Reliable analysis of cell migration and proliferation typ-

ically involves large numbers of cells (usually hundreds to

thousands) within videos or image sequences. This makes

manual tracking labor-intensive and often unfeasible [14]–

[16]. Dense cell-population tracking is by itself a complicated

problem, with many particular challenges, arising from the

obscure boundaries of tightly packed cells, the variety of cell

shapes and sizes, the varying levels of cell deformation and

displacement, temporal occlusions, etc. Blurred boundaries are

common in low-contrast cellular images (see Fig. 1), which

means the segmentation of active contours may leak, causing

under-segmentation. Snaxels on the leaked contour can be

attracted by noise, or incorrect/neighboring features, resulting

in segmentation error or the commonly occurring effect of

snakes self intersecting, as illustrated in Fig. 2. If the snakes

are region based, this self-intersection can cause a divergence

of the snake, since the invalid loop changes the normal

direction and thus reverses the inside/outside of the closed

contour [17]. Within an edge-clutter environment, the false

loops may trap irrelevant features or regions/edges of nearby

cells (see Fig. 2b), leading to tracking failures. Occlusions,

or cells displaying temporary intensity changes also have an

influence on the snake performance, leading to undesirable

convergence results. More seriously, errors from self-crossed

snakes tend to have knock-on effects in the neighborhood. In

tracking a small number of objects, or dense cell populations,

the self-crossing effect can directly cause a center or boundary

localisation error, and lead to a degraded tracking result. It

is therefore important that a solution is found to solve the
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Fig. 1: Illustrating cell populations in phase-contrast image

samples. Note the densely packed cells, the variety of shapes

and sizes, and the ambiguous cell boundaries. Square contours

denote cropped and magnified regions.

(a) Images taken from [17].

(b) From left to right, Frame# 40 and 80.

Fig. 2: Illustrating the self-intersection effect of snakes in

segmentation/tracking.

self-crossing problem. Other issues that also affect a snake’s

performance in object segmentation and tracking are the

snaxels’ uneven-distribution effect and the contour shrinkage

problem. However, these problems are usually overlooked or

ignored.

B. Related Work

During the past decades, the snake model and its extensions

have developed greatly, particularly for modelling cell mor-

phology and movement. In spite of this, the inherent topology

defect remains with parametric snakes, due to the fact that the

traditional model lacks a global topology constraint. Snakes

tend to develop false loops, particulary during the tracking

phase due to noise, clutter, occlusion, large motion, etc. In

fact, none of the aforementioned snake models are specifically

targeted at the self-crossing problem. By using algorithms

such as [4], [6], [8] with circular or elliptic priors, or snake

models with more specific shape priors [18]–[20], the snake

self-crossing problem can be side-stepped. However, these

methods generally have strong shape priors that exclude them

(a) (b) (c)

Fig. 3: Inside and outside self-crossed snakes on (a) real and

(b)-(c) synthetic images.

from tracking an object with flexible deformation, or multiple

objects with a variety of shapes and sizes, such as dense cell

populations.

From the small amount of literature available that discusses

the self-crossing problem, it is noted that the underlying

problem persists, since existing solutions cannot preclude

the problem from re-occurring. In [17], Nakhmani et al.

develop an algorithm for automated self-crossing detection,

after which a process for accurately locating the knot points

is needed, and incorrect loops are removed or the contour is

split. Another approach in [21] is based on the line-segment

intersection strategy. Ji and Yan proposed a raster-inspection

mechanism [22], by checking if the same raster location is

plotted more than once by (densely interpolated) points on

the snake. Note that, after self-crossing detection by those

aforementioned methods, the snake contour is re-initialized.

However, re-initialization cannot stop the re-occurrence of the

self-crossing section, as the image information that caused

the problem remains. Other methods for detecting snake self-

crossing are referred to in [17], [22], [23]. Existing work

ignores the intrinsic fact that the traditional snake model only

has a local range regularity, which is not sufficient to retain a

desirable global topology for the contour. As demonstrated in

Fig. 3, the local regularity mechanism won’t penalise the self-

crossed snakes or contours, since the smoothness requirement

is already satisfied. In the family of non-parameteric active

contours, much effort has been made to control or reduce the

topology sensitivity, i.e., stopping the contour from undesirable

splitting or merging [24]–[26]. Existing works such as [16]

and [27] employ topology constrained level-sets to multiple

cell tracking. However, the strategies in the non-parametric

family cannot be borrowed, since the physical configurations

of the two families are quite different. Still, other works can

be referred to in [28]–[31], where active contour/shape models

have been applied to segmenting different modes of medical

images and a wide range of targets.

Another issue also weakening the model’s performance is

the uneven-distribution effect of the snaxels, especially when

edge signals have uneven intensity or contrast. Unevenly

converged snaxels affect the segmentation result in the current

frame and also degrade the subsequent tracking. However, this

problem is also overlooked and there is limited literature on

the topic. In [32], the original L1-norm term that constrains

the contour length is replaced with a squared L2-norm based

regularity, in the B-spline active contour framework. This
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helps to enforce an equidistant spacing for the spline’s control

points. In the case of point-based snakes, the quadratic L2-

norm based regularity is used more commonly; however, it

encourages short contours.

In order to solve either the self-crossing problem, or the

improper distribution or aggregation of snaxels, one may

resort to existing shape-priors-based regularities. However, for

tracking an object with flexible deformation, or segmenting

dense cell populations with various modes of shape and size,

restricting snakes with relatively strong shape constraints is

inappropriate. In this paper, a novel dynamic shape prior is

proposed for the parametric snake model. In this way, we

aim to significantly enhance the model stability while also

respecting the deformation flexibility of snakes.

II. THE DYNAMIC-SHAPE-PRIOR GUIDED SNAKE MODEL

A traditional parametric ACM or snake, contains internal,

external and constraint energy terms [1]. The snake can be

represented by a closed curve C(s) = (x(s), y(s)), that is

parameterised by s ∈ [0, 1]. In practice, the snake contour is

usually shaped by a number of discrete control points, also

called snaxels. The traditional snake works by minimising an

associated energy functional E(C), as defined below:

E(C) =

∫ 1

0

(α|Cs(s)|
2 + β|Css(s)|

2+

γEimg(C(s)) + κEcon(C(s)))ds, (1)

where the first two terms respectively constrain the elasticity

and smoothness of the contour. Eimg represents the external

energy term, encouraging the snaxels to converge onto desired

features in the image. Econ gives rise to external constraint

forces. α, β, γ, κ are the associated weights. The snake that

minimises E(C) must satisfy the Euler equation:

−αCss + βCssss − γF img(C)− κF con(C) = 0 (2)

where the image force F img(C) = ∇Eimg(C), and

F con(C) = ∇Econ(C). The snake will move because of the

competition between the forces, and will reach equilibrium

when the forces are balanced by each other.

A. Topology and Distribution Constraints based Guiding

Force

In order to deal with the self-looping problem, existing

works try to seek efficient ways to check the order of the snax-

els, such as [17] and [33]. After that, processes are required

to delete in particular the knot snaxels or entirely remove

incorrect loops, and then to re-initialize the snake. Since the

order of the snaxels can be badly affected with multiple knots

and incorrect loops on the snake, automated order-checking

or knot-localisation is typically non-trivial. More importantly,

the self-intersection may keep re-occurring as the underlying

problem remains. Inspired by these observations, we suggest

to initiatively supply the snaxels a correct order, and assign

preferred seats to the snaxels along the contour. The proposed

method first extracts a binary mask according to the run-

time shape of the snake. As illustrated in Figs. 4a, and 4d,

a so-called minimum-envelop (ME) based template is first

introduced, which is simply the boundary contour that closely

wraps around the snake region. Other forms of dynamic

templates are also designed (to be explained respectively in

section II-B). Based on the dynamic template, a new constraint

force is proposed, called the deformation-guiding force F dg,

with an initial formulation defined as,

F dg,0(C(s), C̃(s)) = C̃(s)− C(s) (3)

where C̃ represents the template contour. C̃(s) gives the

particular guiding point for the snaxel C(s). So, the attraction

force F dg,0 aims to pull each snaxel C(s) closer to the position

C̃(s). Please note that the template C̃ is always a simple and

continuous curve, which involves no self-loops. So, driven by

the guiding force, the snake automatically pursues a desired

global topology. In order to find an optimal guiding point for

each of the snaxels, C̃ can be obtained by contour registration,

namely solving the equation below,

argmin
C̃

∫ 1

0

|C̃(s)− C(s)|ds, (4)

with C̃ parameterising the ME boundary of the snake-covered

region. In fact, given the same ME mask, the boundary curve

has no unique parametrisation, i.e., setting the starting point to

a different position (along the boundary) leads to a different

parametrisation. To facilitate implementation, the template

contour C̃ is also discretely represented as a number of evenly

sampled control points (referring to number of the snaxels).

See the red control points in Fig. 4b, and 4e. So, Eqn. (4)

can be trivially solved by plugging every possible formulation

of C̃, namely varying the coordinates of C̃(s = 0) along the

ME boundary. This essentially performs a (discrete) contour

alignment, where each snaxel at C(s) is thus associated to a

guiding point at C̃(s), as illustrated in Figs. 4c, and 4f.

Thanks to the guiding-force mechanism, the uneven-

distribution effect of the snaxels is also handled with ease,

since the guiding points are evenly sampled. As demonstrated

in Figs. 4b, and 4e, the snaxels not only follow a correct

order but also achieve an equidistant distribution. Compared

with the classic continuity term that gradually leads to a

longer contour, the even-distribution (ED) constraint helps the

snake to maintain continuity while also controlling the contour

length.

Before presenting the final formulation, an important fact

needs to be explained: if the snaxels are moved directly

towards or onto the paired positions, an undesired effect is

that the contour will contract from iteration to iteration. See

the first two graphs in Fig. 5. Noting that the contours are

only driven by the guiding force, the contraction is thus not

caused by the (internal) elastic force, but relates with the

guiding direction of the attraction force. To accommodate

the contraction issue, a force-projection (FP) process can be

considered (to be explicitly defined in Eqn. (5)). The idea

is to guide the snaxel closer to the paired position along the

local tangent direction. In the third graph in Fig. 5, the snaxels

are translocated along the tangent directions, also approaching

the guiding points, while not altering the size of the contour

region.
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(a) (b) (c)

(d) (e) (f)

Fig. 4: Within each row: First, the ME based template is

extracted from the snake (denoted with a green colour). Then,

the boundary contour (with blue colour) of the ME template

is discretely sampled to get a sequence of control points (red

ones). The third column shows that the sampled control points

are paired with the snaxels by contour alignment. The arrows

connect the snaxels with the associated guiding points.

Fig. 5: Left: Directly moving the snaxels onto the guiding

points, where a contour-shrinkage effect is observed, by com-

paring the region sizes of the evolved (green) contour and the

original (black) contour. Middle: Gradually moving the snaxels

towards the guiding points. See the green contour also gets a

reduced area. Right: The snaxels are translocated along local

tangent directions, also approaching the guiding points, while

the size of the contour region is retained.

However, there is another issue to be discussed. For a snake

free of self-looping, it is acceptable to universely apply the

FP process. Gradually translocating the snaxels along tangent

directions ends up with a sequence of evenly-spaced snaxels.

While for a snake already with a self-loop, e.g. in Fig. 3c the

order of the 6th to 15th snaxels is corrupted. These snaxels

must swap positions, or the entire incorrect loop must be

removed. Actually, it is unclear which approach is better

or safer. Thankfully, moving these snaxels straight towards

the registered points, can not only achieve the position re-

ordering, but also gradually shortens the invalid loop. Thus, it

is rational to have a divide-and-conquer strategy, by classifying

the snaxels into the FP-process group or not. Here, an efficient

method is suggested by checking the intensity values along the

normal vector. As illustrated in Fig. 6, a snaxel on a valid loop

satisfies the simple rule: the intensities (in the binary mask)

change from bright to dark from the inward normal towards

the outward normal. If that condition is violated then there is

a clear indication of a self-crossing. Correspondingly, the final

formulation of the guiding force is defined as,

F dg(C, C̃) = (1−Ω)(C̃−C)+Ω(< C̃−C,N⊥ > N⊥) (5)

where Ω encodes the divide-and-conquer strategy, to be spec-

ified below. Without ambiguity here, the curve parameter s is

omitted. Recall that (C̃−C) describes the same attraction force

as in Eqn. (3). < ·, · > stands for the inner product operator

and N⊥(·) denotes tangent vector. So, < C̃ − C,N⊥ >
measures the magnitude of the attraction force that is projected

on the tangent direction, and N⊥ specifies the force direction.

For symbol consistency, we employ N(·) and −N(·) to

represent outward normal and inward normals respectively.

Explicitly, Ω(s) is defined as,

Ω(s) =

{

1 if MC̃(C(s)−N(s)) > MC̃(C(s) +N(s)),
0 otherwise.

(6)

So, for snaxels with Ω(s) = 1, the FP process is applied;

for Ω(s) = 0, the original attraction force is employed. MC̃

denotes the binary template mask, as shown in Fig. 6, with

only the elements in the template region set to one. C(s) +
νN(s) denotes the position away from C(s) by 1 unit length

along the outward or inward normal, respectively for ν =
1,−1.

B. Potential Types of Dynamic Templates

Except for the ME template, two other types of dynamic

templates are considered: major-blob (MB) and convex-hull

(CH) based, as illustrated in Fig. 6. The MB and CH based

templates are constructed as follows. For the MB based

template, the original binary mask (covered by the snake) is

first eroded, so potential blobs from different loops are divided.

Then, the biggest blob is reconstructed by image dilation, and

the smaller blobs are removed. Fundamentally, the ME based

shape prior assumes valid and invalid loops both contain useful

information, more or less about the final shape and position

of the target. So, all the snaxels are taken into account in

the construction of the template; in fact the MB type prior

excludes invalid loops in the template construction, with an

assumption that invalid loops have a relatively smaller area

(at least at the beginning of the self-intersection); The CH

type prior assumes convex-shape targets.

Similar to the ME based case, in MB and CH based ones,

the snaxels can be efficiently classified into FP- and non-FP-

process groups, according to the binary values pointed by the

inward and outward normal vectors. Also, see illustrations in

Fig. 6b and 6c.

C. Implementation and Evaluation

1) Implementation: The implementation of the DSP G-

snake model is straightforward. It involves finding the steady-

state solution of the equation below:

Ct+1 − Ct

∆t
= −αCt

ss + βCt
ssss −F img(Ct)− κF dg(Ct, C̃t)

(7)
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(a) (b) (c)

Fig. 6: (a)-(c) respectively illustrates the ME-, MB- and CH-

based template masks, for the same snake. The snake is still

represented as a green contour with snaxels. The blue contours

are the corresponding template boundaries. The local normal

vectors are represented as blue pins, with the inward and

outward vectors represented respectively with thick and thin

ends. According to the binary values along the normal direc-

tions, the snaxels are classified into two groups. The snaxels

that do not need the FP mechanism are highlighted with

magenta. These snaxels should directly follow the attraction-

force mechanism, so as to eliminate invalid-loops, or achieve

the position swapping (for some magenta snaxels in (a)), or

to remove concavities (for some magenta snaxels in (c)).

where the superscripts denote the time index and ∆t is the

step size. Note, in each iteration of the snake deformation,

the dynamic template C̃t is updated according to the current

snake contour Ct. To summarise the steps:

• Step 0: Initialize Ct=0;

• Step 1: Extract a run-time template mask MCt

from the current snake Ct. Template shapes include

ME, MB, and CH types. If the foreground area of

MCt is less than a pre-defined size τa, a circular

template or a dilated template is constructed;

• Step 2: Along the boundary contour C̃t of the

template mask, extract a sequence of control points

with equal intervals;

• Step 3: Align the discretely sampled Ct and C̃t,

and associate each snaxel Ct(s) with the guiding

point C̃t(s̃);
• Step 4: Update Ct+1 according to Eqn. (7);

• Step 5: Stop if the snake has converged; Otherwise,

update C̃t+1, and repeat steps 1-5.

Note that a snake may contract to a small dot or an overly

thin structure, which can be caused by occlusion, object exits

from the image frame, and other factors. If during the snake

evolution, the contour-covered region becomes too small (i.e.

less than a tolerable size τa), we consider that a shrinkage

effect has happened. In that case, a dilated template or a

circular template (specified by τa) will be used, rather than

constructing a template directly from the snake.

In the following section, the DSP G-snake model is tested on

synthetic contours with varying levels of self-intersection. The

weighting parameters for the snake model are set as α = 0,

β = 0, γ = 0, κ = 1. By that means, only the deformation-

guiding (DG) force is activated for validating the performance

of the proposed model. The convergence condition is defined

according to two conditions: First, the standard deviation of

the snaxels’ intervals should be sufficiently small. Secondly,

the ω values (as defined in Eqn. (6)) along the contour should

be all positive, i.e., invalid loops are entirely eliminated.

2) Automatically Untying Self-Crossed Contours: The ME

based G-snake model is applied to synthetic contours, as

shown in Fig. 7. The evolution processes of the snakes with

the FP mechanism are illustrated from the 1st column to the

5th, with the converged contours in the 5th column. The self-

crossed contours are successfully untied, no matter with simple

or complex self-intersections. Note that the invalid loops are

eliminated and the snaxels gradually attain equal intervals.

It is worthy of discussion that, comparing Fig. 7b with Fig.

4d, 4e, and 4f, why the upper blob disappears in Fig. 7b. The

reason is that the self-untying process should not be conducted

within one iteration. First, this is to avoid the undesirable

effect that using the guiding-force mechanism fully cancels

the work/effort of other snake forces. Also, it is important

to realise that, self-looping usually happens in the case of a

contour being distracted by noise, or incorrect neighboring

features. That means fully conserving the self-loop region

could be dangerous. The question relies on the fact that the

amount of region to preserve is unknown. A conservative

way is to temporally preserve the region but allow a gradual

deflation, just like employing the ME G-snake. A more radical

way is to totally remove the self-loop region, namely using the

MB template based scheme.

For a close comparison, the last column in Fig. 7 presents

the results using the ME G-snake model without the FP

mechanism. As demonstrated, the G-snakes without the FP

mechanism suffer from the impact of contour contraction.

While for the case of G-snakes with FP, allowing that the

invalid loops are deflated, the converged structures respect the

initial shapes very well.

3) Experiments with Different Dynamic Templates: Quali-

tative results of applying G-snakes with MB and CH based

dynamic templates are presented in Fig. 8.

To confirm the integrity of this approach, the DSP G-

snake model was also tested on real images for evaluating the

segmentation performance. Corresponding results are included

as supplementary materials.

To summarise, the ME and MB based DSPs are both

designed for general application, but with differences on how

they treat invalid loops on a self-crossed contour. The CH-

based shape prior is relatively application specific. Neverthe-

less, the three dynamic templates can be used in a flexible way

in combination with practical situations.

III. DSP G-SNAKES BASED CELL TRACKING

The proposed snake model is applied to tracking dense cell

populations over phase-contrast datasets. Since this is a quite

challenging problem, it provides a good scenario in which

to validate whether the model stability and performance is

enhanced by engaging the DSP mechanism.

A. Repulsive, G-Snakes with DGVF force

The proposed cell tracker model is based on the DSP G-

snake model, in combination with two other forces, namely
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(a) Case I: ME wFP Iter#1,8,15,22,32; ME w/oFP Iter#27

(b) Case II: ME wFP Iter#1,7,14,31,61; ME w/oFP Iter#200

(c) Case III: ME wFP Iter#1,15,50,90,165; ME w/oFP Iter#115

Fig. 7: From column 1 to 5, the self-crossed contours are automatically untied by the ME G-snake model with the FP

mechanism. The fifth column includes both the initial contours (dashed contours with magenta) and the converged contour. For

a close comparison, the last column presents the results from the ME G-snake without the FP mechanism (the intermediate

results are omitted).

(a) Case I-V: MB wFP

(b) Case I-V: CH wFP

Fig. 8: The first row display converged results from MB based G-snakes, and the second row provides the results from CH

based G-snakes, both with the FP mechanism.

an inter-object repulsion force and a dynamic gradient-vector-

flow (DGVF) based image force. To be specific, the associated

Euler equation can be written as below:

− αCss + βCssss − κF dg(C, C̃)−

γ1F
dgvf (C) − γ2F

rep(C) = 0 (8)

• F dg(C, C̃) is defined in equations (5) and (6). Only the

template type of C̃ is to be specified from the possible

types {ME,MB,CH,R(τa)}. R(τa) denotes a small

circular template with a predefined size τa, applied when

the snake-covered region become inappropriately small.

• The same repulsive force F r is borrowed from our recent

work [34], with the specified formula as

F rep(C(s)) = −N(s) · M−C(C(s)) (9)

where M−C is a binary map, denoting the regions of

all the snakes except the snake C. The repulsive force

direction is −N(s) (the inward normal vector), with a

magnitude of 1. This gives the local repulsion force a

privilege to overcome the influence of other forces, and

to stop the snakes from overlapping.

• The DGVF force is defined according to the original work

of Cheng et al, which is able to provide efficient segmen-

tation in a clutter environment. To avoid overloading the

paper, we determine not to repeat the equations (10-13)

that are detailed in [35].

Note that the magnitude of the repulsion force is always

1, and the DGVF and DG force fields are both normalised.

So, only three out of the five weights in Eqn. (8) need to be

tuned in practice. According to the Euler equation in Eqn. (8),
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the algorithm can be trivially implemented with the gradient

descent method.
1) System Overview: Since cell-population tracking is a

relatively complicated problem, this work also develops a full

cell tracking system, that consists of the following function

blocks:

• Image pre-processing, by applying the median filter to

each frame in the image sequence.

• Snakes initialization: the cell detection method as de-

scribed in [12] is employed, which results in a binary map

with candidate cell regions (see demonstration in Fig.2

(h) in [12]). Snakes are then initialized as small circular

contours that are centered at the candidate regions. Since

low-level image segmentation cannot avoid the under- or

over-segmentation problem, manual corrections are also

involved with limited effort.

• DSP G-snake based cell trackers: With the exception

of the first frame, the cell trackers are automatically

initialized by the converged snakes from the last frame.

They then track cells across subsequent frames. Note

that the guiding-force mechanism is involved during the

whole evolution process of the G-snake model. At each

iteration, a new dynamic template is constructed for the

G-snake, and guiding points are updated by extracting

equidistant samples along the template boundary. The

guiding force then works together with other types of

snake forces, by following the gradient-descent method.

Details are provided in Section II-C1.

• Repulsive force, and DGVF force calculation.

• Cell-Division detection: After the snakes converge in each

frame, the number of cell candidates inside each snake

region is checked using the same cell-detection method as

described above. A positive mitosis event is determined

if more than one cell candidate appears in the same

snake region for three consecutive frames. This aims to

lower the chance of over-segmented regions being falsely

reported as mitosis events. The snake is then split and

new identities are assigned. Since cell-division detection

is not the current focus, only a basic strategy is employed.

Thus, this cannot guarantee that all the mitosis events are

captured.

• Dealing with exiting cells: For a snake whose centroid is

very close to or exceed the image border, e.g., within 3

pixels, the snake will be killed.

• Measurements output, including the estimated cell re-

gions and centroid in each frame.

The basic functional blocks are similar to our previous

work [34], while the current system employs the proposed

G-snake model as the core algorithm, and two new blocks are

introduced for dealing with cell division and exiting events

respectively. Still, note that the final tracking system is of quite

simple design, with no sophisticated steps or post-processing

requirements.

IV. EVALUATION AND DISCUSSION

A. Dataset Description

The performance of the developed tracking algorithm was

tested on three different datasets: a dataset of wound-healing

TABLE I: Cellular datasets in the experiments

Dataset #of Time #of #of #of
type frames/ interval cells leaving cells into

sequence (min/frame) cells account

WH-PEC-d1 100 4 74 1 73
WH-PEC-d5 20 20 74 1 73
MDCK1 80 10-20 82 4 78
MDCK2 100 10-20 102 14 88

pig epithelial (WH-PEC) cells, as described by [36], and

two image sequences of Madin Darby Canine Kidney Ep-

ithelial (MDCK) cells (similar to [12]), all acquired using

a phase-contrast microscope. The WH-PEC dataset consists

of 100 frames of dimensions 300x300 (40µmx40µm). The

two sequences of the MDCK data are respectively referred

to as MDCK1 and MDCK2. More details about the cellular

datasets are listed in Table I. WH-PEC-d1 denotes the original

sequence with the time interval 4 min/frame, and the WH-

PEC-d5 sequence is obtained by taking one out of five frames

from WH-PEC-d1, so the time interval is 20 min/frame.

B. Parameter Setting

As explained in the last section, only three weights need to

be adapted in Eqn. (8), namely α, β, κ. In the experiments,

α = 0.1, β = 1, γ1 = 1, γ2 = 1 are used in all the

experiments. A relatively small value for α permits a weak

constraint on the elastic force. Other parameters are intuitively

determined as following: Each snake is discretely sampled as

sN = 40 snaxels; The initial radius of the active contour is set

as R = 6 for MDCK1, and R = 7 for the other datasets; The

SR constraint is invoked when the size of the snake region is

less than the threshold τa = 10. For estimating the DGVF-

based image force, the diffusion weight and the iteration

number are also tuned once and fixed for all the cellular

datasets. All of the involved parameters are kept exactly the

same in all of the experiments, except that κ is varied in the

sensitivity-analysis section.

C. Testing Results

On one hand, the experiments are conducted to evaluate the

G-snake model with different types of dynamic templates. On

the other hand, by replacing the G-snake with the traditional

model in the proposed system, the performance of the two

model types are compared. For the traditional model based

tracking, within one set of tests, the snakes are not re-

initialized (except after cell-division events). For the second

set of experiments, the snakes are re-initialized in every frame.

Besides, all the G-snake based trackers are only initialized

to trigger the tracking process, and then they are left to

automatically deform frame by frame.

Although the dynamic template needs to be extracted at

each iteration (during the contour evolution), and so a seemly

implicit re-parametrisation is involved. However, the proposed

G-snake differs fundamentally to a regular snake re-sampled

at each iteration (RAEI). The latter will quickly give rise to

segmentation and tracking errors. To demonstrate this factor,
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detailed experiments are performed in the supplementary Ap-

pendix A. It is actually dangerous to directly alter the snaxels’

positions after each iteration or even too frequently (during

the contour evolution). By applying the RAEI strategy, the

required global-topology constraint is essentially decoupled

from the other forces of the snake. This can to a large

extent cancel out the work of other forces at each iteration.

While, the proposed G-snake aims to couple all the forces

and extra constraints in a unified formula, which enables a

collaboration/competition environment.

Since ground truth data of cell segmentation is not available,

only qualitative results are presented in Fig. 9. Note that κ = 1
is fixed for testing G-snakes based trackers on all the datasets.

For testing traditional snakes with or without re-initialization,

the exact same system is employed except for shutting down

the guiding-force mechanism, i.e., setting κ = 0 in Eqn. (8).

To numerically quantify the accuracy of the proposed ap-

proach, the automated tracking results are compared against

the manually annotated data that is established by a human

expert. The expert was provided with a graphical user interface

that allowed her to place markers at the pixel locations closest

to the centers of the cells. Each marked cell in the first

frame is automatically assigned a unique identity by the user

interface. The expert is allowed to scroll through the slices

and follow the centroid movement of the cell until the last

frame. The tracking accuracy is given by the number of correct

(automatically) tracked cells that are identified by the proposed

approach with respect to the total number of cells that have

been (automatically) taken into account in the first image.

Only cells that are always in the image field over the entire

image sequence are taken into account. So, earlier exiting cells

are excluded. To be more precise, in the last frame of each

sequence, the automated cell centroid is compared with the

manually marked positions. If the deviation is within the cell

radius, the tracking is considered correct. In addition, during

the early stage of cell division, a snake may wrap around both

of the child cells for several frames. Once the correct child

cells are captured, the tracking is still considered valid for a

temporary period.

In Table II, the abbreviation “re-init” stands for re-

initialization. In Table III, e.g., 1185(70) means that the total

number of the self-crossing events is 1185, which happens

on the same 70 snakes (with repeated self-crossing). The

self-crossing event (SCE) is only examined once per frame

for each snake. To be specific, only for contours with area

sizes > 10, the SCE is checked according to the line-

segment intersection strategy. For the traditional ACM based

experiments, re-initialization is processed as following: First,

each snake is examined for whether a SCE is evolved; For

snakes without self-crossing, a new sequence of control points

are evenly sampled along the snake contour; For a snake with

self-crossing, the current centroid is extracted and then the

snake is re-initialized at the position as a circular contour with

radius R.

In the traditional snakes-based experiments, relatively lower

tracking accuracies are reported in Table II. After checking the

identities of the lost tracks and the self-looped snakes, it is

found that about 70% to 80% of the identities are coincident.

It is thus proved that many failure tracks are directly caused

by the contour self-intersection. Particularly, blurred bound-

aries, close contact between neighbours, cell division and

death events, and large/strong motions are major inducement

factors for the SCEs. For traditional snakes, it is in fact

very hard to maintain a relatively stable tracking performance

without frequent re-initialization. By contrast, the G-snakes

based segmentation and tracking results are not degraded over

time. See a demonstration in Fig. 9. Thanks to the dynamic

template based guiding-force mechanism, the global structure

of the G-snakes are well preserved during the entire tracking

process. The SCEs are nearly all eliminated using the proposed

snake model, as reflected in Fig. 9 and Table III. A small

number of cells are under-segmented due to the cell division

or death events. These events are usually accompanied with

appearance and intensity changes, and may continue for 3-

5 frames (and also repeat). As a result, they impose large

difficulties in accurate segmentation and continuous tracking.

Still, one or two cells (out of the about 80 cells) get lost due

to large displacement or strong deformation. This is because

the existing snake models are still limited by the capture

range problem. However, the problem is currently beyond the

focus of this research paper. In spite of the various difficulties,

the proposed snake model has greatly enhanced the accuracy

of tracking. And, the rate of improvement is ranging from

10%− 30% (see Table II).

The ME, MB and CH based G-snakes have all enabled

high tracking accuracies. The ME and MB based developments

are both general approaches, so they can be straightforwardly

applied to other scenarios of segmentation and tracking. From

observation, since the SCEs are largely suppressed in the

experiment, the performance difference of the two template

types is not obvious. The CH based G-snakes achieved slightly

higher accuracies due to an extra prior involved, that encour-

ages the contour to capture convex shapes. This is beneficial in

the tracking of dense cell populations. Since cell boundaries

are usually blurred or incomplete, and the intensity or edge

signals might be not constant between consecutive frames,

some of the snaxels can easily get trapped in local minima.

So, the convexity prior provides a soft constraint to prevent

the contour structure from collapsing. This is demonstrated in

Fig. 10.

Recall the definition of ω(s) in Eqn. (6). By checking

if any of the ω(s) values becomes zero, a simple way is

suggested to identify whether a self-crossing has occurred.

Based on that knowledge, within one set of experiments, the

guiding force is activated only when the contour needs to

be automatically untied. Otherwise, the whole guiding-force

mechanism is blocked (also including the even-distribution

constraint). See Table IV, the tracking accuracies on the

three datasets (with relatively low frame rates) are slightly

decreased, without always running the ED constraint. The

statistics are compared with the first column of Table II).

D. Parameter Sensitivity Analysis

This section aims to evaluate the parameter sensitivity

for κ, varied in the set {0.2, 0.4, 0.6, 0.8, 1, 1.2}. All of the
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(a) WH-PEC-d5, Frame# 1(1), 5(21), 13(61), 17(81), 20(96).

(b) MDCK1, Frame# 1, 20, 40, 60, 70, 80.

(c) MDCK2, Frame# 1, 20, 40, 60, 80, 100.

Fig. 9: Illustrating the cell segmentation and tracking effects by using the proposed ME G-snake based system on different

image sequences. In (a) e.g. with Frame# 5(21), 5 denotes the frame number in WH-PEC-d5, and 21 indicates the frame

number in the original data WH-PEC-d1.

TABLE II: Quantitative results for tracking accuracies

G-snake Regular snake

ME MB CH w/o re-init w re-init

WH-PEC-d1 (69/73)94.52% (70/73)95.89% (71/73)97.26% (63/73)86.30% (69/73)94.52%

WH-PEC-d5 (69/73)94.52% (69/73)94.52% (69/73)94.52% (53/73)72.60% (64/73)87.67%

MDCK1 (75/78)96.15% (75/78)96.15% (75/78)96.15% (49/78)62.82% (60/78)76.92%

MDCK2 (85/88)96.59% (83/88)94.32% (86/88)97.73% (65/88)73.86% (76/88)86.36%

(a) ME G-snake #19, frames #2-11.

(b) CH G-snake #19, frames #2-11.

(c) ME G-snake #37, frames #30-42.

(d) CH G-snake #37, frames #30-42.

Fig. 10: Performance comparison between the ME and CH based G-snakes on the same cells. For the cells #19 and #37 (in

MDCK1), the CH based G-snakes achieved better segmentation results due to the involved convexity constraint.

other parameters are maintained as the same values. Table V

provides a full list of statistics that are obtained by applying

different templates based G-snake models to the four image

sequences. The best accuracies of the G-snake model, by
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TABLE III: Quantitative results of the self-crossing events

G-snake Regular snake

ME MB CH w/o re-init w re-init

WH-PEC-d1 0 0 0 420(27) 124(27)
WH-PEC-d5 0 0 0 219(27) 83(11)
MDCK1 1(1) 7(3) 0 1185(70) 716(40)
MDCK2 1(1) 4(3) 0 1224(70) 652(37)

TABLE IV: Evaluating the ED constraint

WH-PEC-d5 MDCK1 MDCK2

ME G-snake 93.15% 93.59% 93.18%

TABLE V: Quantitative results for tracking accuracies, with

varied κ

κ

0.2 0.4 0.6 0.8 1

ME WH-PEC-d1 95.89% 97.26% 97.26% 95.89% 94.52%
WH-PEC-d5 95.89% 95.89% 95.89% 95.89% 94.52%

MDCK1 92.31% 94.87% 94.87% 96.15% 96.15%
MDCK2 95.45% 95.45% 96.59% 95.45% 95.45%

MB WH-PEC-d1 94.52% 95.89% 97.26% 97.26% 95.89%
WH-PEC-d5 91.78% 94.52% 94.52% 94.52% 94.52%

MDCK1 93.59% 94.87% 97.44% 96.15% 96.15%
MDCK2 95.45% 94.32% 94.32% 95.45% 94.32%

CH WH-PEC-d1 94.52% 97.26% 97.26% 97.26% 97.26%
WH-PEC-d5 94.52% 94.52% 94.52% 93.15% 94.52%

MDCK1 92.31% 93.59% 94.87% 96.15% 96.15%
MDCK2 95.45% 97.73% 97.73% 96.59% 97.73%

Fig. 11: The average tracking accuracies of the G-snake model

based on different dynamic templates. The experiments are

conducted by manually adapting κ ∈ {0.2, 0.4, 0.6, 0.8, 1}.

adapting the κ value, are highlighted in the table. Although

κ is varied from 0.2 to 1, all of the tracking accuracies

are successfully maintained in high and steady rates. Fig. 11

intuitively illustrates the average performance of the G-snake

model based tracking. Even with a relatively small κ that gives

a less competitive guiding force, the tracking accuracies are

only slightly decreased.

As can be seen in Fig. 12, by lowering down the κ value,

the average numbers of the SCEs are mildly increased. Peak

numbers are at κ = 0.2. However, the largest SCE number

is not exceeding 5% of the average SCE number with the

traditional model. When κ is above 0.6, the SCEs are almost

excluded.

Fig. 12: The average numbers of the SCEs according to the

G-snake model, with κ ∈ {0.2, 0.4, 0.6, 0.8, 1}. Each curve

shows how the average number of the SCEs changes with a

varied value of κ.

V. EXPERIMENTS AND COMPARISON

A. Modern Active Contours Dealing with Self-intersection

In [33], a so-called, contour-simplicity (CS) term is pro-

posed that penalises self-intersected curves for geodesic active

contour, which is a model closely related to parameteric

snakes. Assuming control points on a simple closed contour

are distributed in a clockwise order, inverted loops are con-

sidered as those following the anti-clockwise. To facilitate a

later discussion, the explicit CS term of [33] is introduced as

below,

Ecs(C) = −
∑

(u,v)∈IS(C)

∫ v

u

x(s)y′(s)− x′(s)y(s)

2
ds (10)

where IS(C) denotes the set of ordered pairs of curve posi-

tions (u, v) s.t. u < v, that describe inverted segments (either

closed or open). In fact, Ecs here is a simplified expression

for the original Eqn. (11) in [33]. This is achieved by treating

single or double types of inverted loops equally, since they

both follow anti-clockwise orders. Note in [33] collision points

are classified as positive/negative crossings, for distinguishing

single/double inverted loops. Taking the derivative of Eqn.

(10), the associated CS force can be written as,

F cs(C(s)) =

{

N(s) if s ∈ IS(C),
0 if s /∈ IS(C)).

(11)

which presents an interesting formula, since the potential CS

force is decided by the normal vector N(·), and s inside

(resp. not inside) the set IS(C) identifies where to switch

on (resp. off) the CS force (along the contour). From the

implementation, this is also reasonable: evolving an inverted

loop along the local normal directions will make the loop

smaller or disappear, considering the inside/outside of the loop

is reversed.

Also, note the algorithm of [33] is developed for the

interactive segmentation tasks. Here, we directly employ the

CS force and combine that with the regular snake. By that

means, the constructed model (hereinafter CS-snake) is more

convenient for a joint segmentation and tracking task. The

following experiments compare the CS-snake and the proposed

G-snake, particularly in dealing with the problem of contour

self-intersection. From the energy functional aspect, the CS-

snake consists of the same terms as defined in Eqn. (8), only

with the GD term replaced by the CS term. And, all the
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Fig. 13: Illustrating CS-snakes tested on the MDCK1 image

sequence. Left to right: frames #4 and #10. Note that the

CS-snake model is constructed by borrowing the contour-

simplicity term from [33]).

weighting values of the CS-snake are set as the same as the

G-snake, except the CS-force weight is tuned.

Fig. 13 presents the tracking results of the CS-snakes on

frames #4 and #7 of the MDCK1 sequence. The events of

contour self-intersection become frequent after a small number

of frames. Recall that G-snakes are able to track over a larger

number of frames, without developing self-loops, as previously

demonstrated in Fig. 9. In addition, contour expanding is

observed in CS-snakes, such as #16,#18 and #49 in frame

#10 (see also Fig. 13). In order to find inducing factors for

those undesirable events, additional experiments are conducted

in supplementary materials, where CS-snakes are tested on

synthetic images.

According to our experimental findings, the method that

starts with classifying inverted loops or self-crossing knots can

be highly unreliable, either for relatively simple or complex

self-crossings. Also, evolving the contour by blindly following

the local normal directions can be dangerous. Although our

approach also divides snaxels into two groups (to determine

which snaxels need the FP mechanism), there are key differ-

ences to note. First, all snaxels are treated as individuals in

our classification, with no need to further group them into

sub-loops or contour segments. This avoids the complexity

of resolving orders among different snaxels. And, we do

not evaluate clockwise/anti-clockwise loops for deciding upon

the inside/outside of the snake region, since that can be

confusing. Instead, by exploiting the snake-covered region, the

inside/outside can be more reliably determined.

Although [17] provides an elegant way for determining the

occurrence of self-crossing events, the algorithm does not deal

with (automated) contour untying. In addition, the authors

resort to extra strategies to locate self-crossing knots, and then

they choose to split or reorder the contour. By contrast, our

approach needs no explicit localization for collision points.

For any given contour, our first concern is not whether a self-

crossing occurs or not. Instead, we encourage the snake to

obey two intuitive rules, namely the simple-curve topology

and the even distribution of control points, which are unified

into the proposed guiding-force mechanism. The essential idea

of our method is to always provide a good template/example

for the snake.

In [23], algorithmic innovations for a so-called non-

intersecting force (NIF) are developed for snakes. Essentially,

a volcano force model is employed that grants a stronger push

force for snaxels that are close to the centerline (skeleton)

of the snake. Unfortunately, the contour’s self-intersection

problem is not excluded by NIF snakes, regardless of using

centerline or (extended) full skeleton based NIFs. Experimen-

tal tests are also included as supplementary materials. We

find that self-intersection or points collision can happen at

random locations along the contour, due to the fact that snaxels

relatively far away from the endpoints or the core structure of

the skeletons are less affected by the NIF. While, increasing

the NIF weight or diffusing the NIF into a larger range give

rise to the side effect of contour expansion. As long as the

snake has not converged onto desirable features or positions,

the volcano force (driven by the skeleton structure) might harm

the contour convergence.

Most recently, Barbu et al. developed a method for elimi-

nating contour self-intersection in the initialization step of a

level-set active contour. The basic idea of [37] can be viewed

as grouping (short) edges with orientation compatibility into

a simple curve, given start and end points. However, contour

grouping is by itself an unsolved problem. Also, the extension

of their approach to jointly tracking multiple objects is not

straightforward.

B. Comparison with Spline-based Snakes

So far, our work has been focused on points-based paramet-

ric snakes. Spline-based snakes, belonging to another branch

of parametric models, are also popular due to their advantages

of fewer coefficients [38], and ease of interaction. Notably,

modern spline snakes have gained success at segmenting cells

with different shape modes, by either interactive or automated

means. See demonstrations in works [8], [39], [40]. For that

reason, this section performs contrast experiments among so-

called E-snakes [39], Hermite snakes [40], as well as the

proposed G-snakes.

For both of the sparse and dense cell populations, snakes

are initialised as average-sized circles in the first frame, which

starts the full tracking process. Note that in [39] and [40],

snakes are initialized by manually outlining curves around

cell boundaries. Uhlmann et al. also allow users to specify

the number of control points (NCP) for each Hermite snake.

In our experiments, fixed NCPs are exploited for the spline

snakes, after a number of parameter tuning. This is for the

consideration that cell shapes can be quite flexible. An optimal

NCP is actually not available for all snakes/cells in the view,

nor for the same snake because of cell deformation. The point

sampling rate (per curve span) is also tuned, to enable suitable

values for different spline snakes. Other associated parameters

are set as default values by referring to [39] and [40]. See Fig.

14 for the experimental results.

The snakes behave varyingly at preserving shape/structure

stability, when reacting to cell deformation or neighbor interac-

tion. The structure of E-snakes or Hermite snakes can suddenly

collapse, resulting in undesirable loops or huge (random)

blobs. Checking the result of the edge-based E-snakes (namely

the second image in Fig. 14a), 4 out of 13 snakes have

achieved inferior segmentations in the frame #5. This includes

two cases of contour self-crossing (#2 and #8 snakes) and
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(a) From left to right: region-based E-snakes, edge-based E-snakes, and
the proposed G-snakes on the same frame (#5).

(b) Hermite snakes (left) and the proposed G-
snakes (right), tracking on the same image (frame
#1).

Fig. 14: Comparing the performances of E-snakes, Hermite

snakes and the proposed G-snakes on tracking sparse or dense

cell populations. Some snakes are not displayed, correspond-

ing to absent (cell/snake) identity indices. This is because a

notable rate of E-snakes or Hermite snakes suddenly develop

huge blobs.

two cases of under-segmentation (#12 and #13 snakes).

Neither region- nor edge-based E-snakes exclude contour self-

intersection, as reflected in Fig. 14a. For Hermite snakes, to

stably handle cells with different sizes/shapes is challenging

(see Fig. 14b). The testing results of E-snakes and Hermite

snakes on tracking dense populations are not presented, due to

that even higher degrees of contour instabilities are observed.

For the spline-based snakes, good initialization and the optimal

number of control points are usually required (preferably for

each snake). This makes the models less feasible, particularly

in tracking cells with flexible shapes and deformations.

Still, other works may improve the robustness of active

contours in object tracking. Researchers usually aim to include

specific prior knowledge about classes of objects, and also

they tend to use probability methods for describing families of

plausible shapes. Unlike existing works, no particular shapes

are enforced in our model, while strong contour stability and

performance consistency have been achieved, thanks to the

proposed guiding-force mechanism.

C. Comparison with Existing Cell-Tracking Works

Since existing works are commonly evaluated on different

cellular datasets, and associated statistics are not always re-

ported in the literature, qualitative and quantitative compar-

isons are thus jointly made in this section. See Table VI.

Comparing with [12], [15], [41], [42], the developed system

has achieved higher or comparable accuracies. To facilitate

fair comparison, the statistics are precision values, i.e., the

number of correct (automatically) tracked cells divided by

the total number of cells as automatically identified by the

corresponding system or approach. Also noting that, the cell-

tracking accuracies in our work are returned by uniformly

fixing the guiding-force weight κ = 1. [12], [15], [41]

share a similar level of cell density and spatial resolution

to us. However, we achieved higher accuracies than [12]

and [41], in spite of our datasets containing more complex

cell dynamics, particularly in the MDCK1 and the WH-PEC-

d5 datasets. Although a comparable accuracy is reported by

[15], it is worth noting postprocessing steps as employed for

reconnecting broken or early-terminated trajectories. Our work

requires neither postprocessing nor mid-term re-initalization

for the cell trackers during the whole tracking process. Among

different types of imaging techniques, fluorescence microcopy

images usually have higher contrast. It is well known that

phase-contrast datasets have image artifacts, and blurred cell

boundaries that add considerable difficulties to image seg-

mentation. The works [11], [27], [42], [43] employ relatively

low-contrast images but take much sparser cell populations

as inputs. As the density of the cell population goes down,

the neighborhood-interference index and the tracking ambi-

guity are correspondingly decreased. So, a sparse population

provides an advantage in practical tracking. Except for using

sparser populations, existing works usually require the image

sequence to have a relatively high frame rate, where cells move

or deform slowly along the temporal axis. By contrast, our

experimental datasets include relatively large-scale motions

between consecutive frames (corresponding to a low frame

rate).

Since dense cell-population tracking is by itself a com-

plicated problem with many particular challenges, existing

approaches usually resort to combinations of models and

algorithms, and/or training processes. To temporally limit the

tracking difficulty, different focuses or assumptions are made

in the literature. That makes it difficult to fully implement

different systems or recover equal environments for compar-

ison. However, it is worth emphasizing that a sufficiently

generalised cell-tracking system is developed, where the core

algorithm is the proposed G-snake model. It is encouraging

to see the proposed approach has demonstrated comparable

or improved tracking accuracies, compared with the current

state-of-the-art.

VI. CONCLUSION

In this work, a novel DSP G-snake model is proposed

that solves the topology and parametrisation flaws that occur

with the traditional snake model. To the best knowledge of

the authors, it is the first time that a dynamic shape prior

is introduced to the parametric ACM field. In addition, the

following issues are efficiently tackled or solved: the contour’s

self-intersection problem, and the common effect that the

snaxels improperly distribute along the contour. Thanks to the

proposed guiding-force mechanism, the model stability and

performance has been significantly enhanced. Different sets

of experiments have been carried out, in order to compare

the proposed model with existing active contours and related

extensions. It is confirmed that the role of the proposed G-

snake model cannot be replaced by either snakes that are

simply re-sampled (at each iteration) or other modern competi-

tors. Moreover, the proposed G-snake is combined with other

existing forces and applied to a very challenging problem of

tracking dense biological cell populations. It is confirmed that
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TABLE VI: Comparison against Existing Cell-Tracking Systems

Image Mode Image Contrast Cell Density Accuracy (max) Accuracy (min)
Refs

[41] Confocal laser scan Low Dense 83.9% 83.9%

[12] Phase-contrast Low Dense 97.4% 81.8%

[11] Bright-field Medium Sparse n.a n.a

[42] Phase-contrast Low Sparse 87.3% 84.4%

[15] Confocal laser scan Low Dense 97.0% 96.8%

[43] Phase-contrast Low Sparse n.a n.a

Proposed Phase-contrast Low Dense 97.7% 94.5%

the system developed has resulted in a significant increase

in the cell tracking accuracy. Compared with existing state-

of-the-art works, the proposed approach has demonstrated

improved performance, in spite of application to challenging

dense populations with cells that have more complex motions

and larger displacements than are commonplace in the litera-

ture.

APPENDIX A

COMPARISON WITH SNAKES RE-SAMPLED AT EACH

ITERATION

In theory, directly resampling the snake, according to a

DSP template, is also able to remove self-intersections. So,

experiments are necessary to compare the proposed G-snake

model against regular snakes with resampling at each iteration

(RAEI). Recall the snake contour, in the first graph of Fig.

5, is actually contracted with respect to the original, after

a direct reparameterization. In order to resist the region-

shrinkage effect, another set of experiments use classic snakes

that are resampled according to dilated ME templates. To be

specific, two steps are carried out at each iteration: First, new

control points are evenly extracted along the boundary of a

regular ME template or a dilated one; Then, the gradient-

descent method is conducted to evolve the resampled contour.

The two types of RAEI models are hereinafter referred to as

ME or dilated-ME RAEI snakes. They are compared with the

proposed G-snakes on tracking dense/sparse cell populations,

with the experimental results shown in Fig. 15.

According to the experiments, ME RAEI snakes are grad-

ually shrinking from frame to frame. See the segmentation

failures even in the frame #3, as shown in the first column of

Fig. 15. On the other hand, the dilated-ME RAEI snakes are

quickly expanding into nearby regions or background (see the

images in the second column). Since cell boundaries in phase-

contrast images can be flexible decisions, even by human

experts, one may consider some cells get tolerable segmen-

tations by dilated-ME RAEI snakes in the dense-population

case. However, a dilated-template based resampling grants

expanding forces with full privilege. The contour expanding

thus dominates the evolution process, and overwhelms other

external forces of the snakes. This is not only severe for cells

with blurred boundaries, but also for crisp boundaries. No

matter whether the contour position is close enough to salient

features, the expansion or shrinkage “force” (inserted at each

iteration) might harm contour convergence. By contrast, the

G-snake contours better conform to cell boundaries, for either

(a) ME RAEI snakes, Dilated-ME RAEI snakes, and G-snakes on
dense cells tracking in frame #3.

(b) ME RAEI snakes, Dilated-ME RAEI snakes, and G-snakes on
tracking sparse cells in frame #12.

Fig. 15: From left to right, the segmentation and tracking

results sequentially correspond to ME RAEI snakes, dilated-

ME RAEI snakes and G-snakes.

dense or sparse cell populations (see the last column in the

figure).

In terms of computation time, the G-snake model takes

slightly increased time, in comparison to classical models with

RAEI. The extra computation is mainly due to the involvement

of guiding-force vectors, with a time complexity of O(n) (n
denoting the number of the sampled points). This process

could be less trivial than existing works that enforce particular

shape constraints, or it is at least similarly trivial to adding new

external/internal forces.
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[27] M. Möller, M. Burger, P. Dieterich, and A. Schwab, “A framework for
automated cell tracking in phase contrast microscopic videos based on
normal velocities,” J. Vis. Comun. Image Represent., vol. 25, no. 2, pp.
396–409, Feb. 2014.

[28] E. Goceri, B. Goksel, J. B. Elder, V. K. Puduvalli, J. J. Otero, and M. N.
Gurcan, “Quantitative validation of anti-ptbp1 antibody for diagnostic
neuropathology use: Image analysis approach,” International journal for

numerical methods in biomedical engineering, vol. 33, no. 11, 2017.
[29] J. Pedrosa, S. Queirós, O. Bernard, J. Engvall, T. Edvardsen, E. Nagel,

and J. D’hooge, “Fast and fully automatic 3d left ventricular segmenta-
tion using shape-based b-spline explicit active surfaces,” in Ultrasonics

Symposium (IUS), 2017 IEEE International. IEEE, 2017, pp. 1–1.
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