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Abstract

Selective segmentation methods involve incorporating user input to partition an image into a 

foreground and background. Often these methods are sensitive to some aspect of the user input in 

a counter intuitive manner, making their use in practice difficult. The most robust methods often 

involve laborious refinement on the part of the user, and sometimes editing/supervision. The 

proposed method reduces the burden on the user by simplifying the requirements on the input. 

Specifically, the fitting term does not depend on a distance function and so no selection parameter 

is introduced. Instead, we consider how the user input relates to some general intensity fitting term 

to ensure the approach is less sensitive to the decisions or intuition of the user. We give 

comparisons to existing approaches to show the advantages of the new selective segmentation 

model.

I Introduction

SEGMENTATION is the task of partitioning an image into regions of interest. In the case of 

two-phase segmentation, this consists of determining the foreground and background. 

Specifically, in the continuous setting, for an image z(x) ∈ [0, 1] in the domain Ω ⊂ R2 the 

task is to compute disjoint subregions Ω1 and Ω2, such that Ω1 ∪ Ω2 = Ω, based on some 

partitioning criteria on the data z(x). Notable examples include edge based methods, such 

as ’Snakes’ [1] and Geodesic Active Contours [2], and region based methods, such as the 

two-phase piecewise-constant version of Mumford and Shah [3] from Chan and Vese [4]. 

However, in practice it is often useful to enhance such approaches by incorporating user 

input. An example of this, from the discrete setting, is Intelligent Scissors [5]. We refer to 

the task of two-phase segmentation with minimal user input as selective segmentation 

(although it is also described as interactive segmentation). Reliably incorporating simple 

constraints to determine the regions Ω1 and Ω2 is still often crucial, especially when manual 

segmentation approaches continue to be used or insufficient data is available to perform 

machine learning tasks. In cases where learning based methods are applicable, the work of 

Xu et al. [6] and Benard and Gygli [7] are state of the art approaches.
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We consider two different types of input. One is to mark foreground/background regions. 

Important works that have utilised this input are graph cut approaches [8], geodesic methods 

[9], and Random Walks [10], based in the discrete setting, where each pixel in the image is 

treated as a node in a weighted graph. An energy function on this graph is minimised to 

extract a region of interest. We are interested in a more recent approach that uses the ideas 

discussed in [8], [9], and [10] in a continuous setting. That is the work of Nguyen et al. [11], 

an example of which can be seen in Fig. 1. They use Gaussian mixture models (GMMs) and 

distance terms to define a continuous data fitting term, with accurate results for many 

difficult cases.

The other type of approach is to consider n marker points, defined by the set ℳ = {xi ∈ Ω|i = 

1, …, n}, in order to apply geometrical constraints to the model. One of the first approaches 

to use this was from Gout et al. [12]. This was extended by Zhang et al. [13] and Rada and 

Chen [14] who incorporated area constraints on the polygon of the set ℳ, in an analogous 

way to Chan and Vese [4]. Also closely related is the recent work of Liu et al. [15]. These 

methods use the nonconvex framework of the level set method in a similar way to [4]. In 

[16], this work was extended to the convex relaxation framework of Chan, Esedoglu, and 

Nikolova [17], Bresson et al. [18], and many other more recent works. This combined a data 

fitting term from [4] with distance constraints based on ℳ. This had the advantage of 

improved robustness as for fixed intensity constants a global minimiser can be found. 

Approaches with foreground markers, ℳ, have the advantage of not needing user input in the 

background of the image, which is simpler and more intuitive. However, often results can be 

sensitive to the user input.

Here, we are interested in variational methods. Specifically, the convex relaxation approach 

of [17], [18] and many others, where a binary labelling of the foreground and background is 

determined based on minimising the following energy functional:

min
u ∈ [0, 1] ∫

Ω
g x ∇u x dx + λ∫

Ω
f x u x dx , (1)

involving a total variation (TV) regularisation term weighted by an edge function, g(x), and 

some data fidelity term, f(x). We will refer to this formulation throughout the paper, with 

different choices of g(x) and f(x) based on the model being considered. Minimisation of this 

energy is a well understood problem, but is not the focus of this work. Many methods are 

applicable in this case, such as Split-Bregman [19], the dual formulation ([18], [20], [21]), as 

well as many others. A thorough review of these methods in the continuous setting is given 

by Chambolle and Pock [22]. The focus of this paper is on the appropriate choice of f(x) in 

order to effectively and robustly incorporate user input for selective segmentation problems, 

particularly with respect to medical examples from X-ray computed tomography data. Our 

main contribution is to propose an approach with minimal sensitivity to user input, based on 

not introducing additional parameters to the model. Here, it is applied in the context of 

piecewise-constant segmentation but can be extended to a wider range of examples.
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An overview of recent developments in medical image segmentation is given by [23], 

providing a background for methods such as clustering and graph cuts. A survey of how 

deep learning has been applied to medical image analysis, including segmentation, is 

provided by Litjens et al. [24]. Details of how this is applied to specific anatomical areas is 

also discussed. Two recent examples of this type of application can be found for cardiac MR 

images [25] and cervical vertebrae in X-ray images [26].

The paper is organised as follows. In Section II we introduce some related work and discuss 

the limitations of related approaches. In Section III we detail the proposed method, to 

introduce selective segmentation without additional parameters. We discuss the new 

selection function, where the values of the intensity fitting term incorporate the user input. In 

Section IV we present some experimental results where we first compare the proposed 

method to the work of [11] and [16], examine its robustness to a variety of user input, and 

perform further tests on a large data set. The paper ends with some concluding remarks and 

discussion of future work.

II Related Work

In the following we discuss related work involving different types of user input. We first 

highlight the approach of Nguyen et al. [11] and then recent work by Spencer and Chen 

[16]. We comment on their relation to similar approaches ([8], [9], [10], [12], [13], [14]) and 

mention some drawbacks of approaching the selective segmentation problem in this way.

A Constrained Active Contours (CAC) [11]

The authors use a probability map, P1(x), from Bai and Sapiro [9] where the geodesic 

distances to the foreground/background regions are denoted by DF(x) and DB(x), 

respectively. An approximation of the probability that a point x belongs to the foreground is 

then given by P1(x), based on distance from the user input. An example of user input is 

shown in Fig. 1, leading to foreground/background GMM estimations. The normalised log 

likelihood that a point x belongs to the foreground and background is then given by PF(x) 

and PB(x), respectively. GMMs are widely used in selective segmentation ([5], [8], [9], [10]) 

and the authors in [11] define the following data fitting term:

h1 x = α(PB x − PF x ) + (1 − α) 1 − 2P1(x ), (2)

for a weighting parameter α ∈ [0, 1], selected automatically. The TV regularisation is 

weighted by an edge function involving the following function, applied to the image z(x):

g0 x = 1
1 + β0 ∇z x 2 . (3)

In [11], they set β0 = 1 and define g1 as an enhanced edge function involving an 

automatically selected parameter, β. Thus, Nguyen et al. [11] define the Constrained Active 

Contours (CAC) Model as the formulation of (1) with g(x) = g1(x) and f(x) = h1(x). In Fig. 2 
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we present a result that illustrates a common drawback of this type of method. That is, the 

results can be quite sensitive to the user-defined foreground/background regions. For each 

case, we can see an object of interest marked by the red foreground region, with a nearby 

object marked with a blue background region. Fig. 2 demonstrates that the user input is 

similar, but that the result is very different in each case. The first result has accuracy (a ∈ [0, 

1] defined by (13)) of a = 0.952 but the second has accuracy of a = 0.562. The aim of our 

paper is to move towards an arbitrary user input, such that results are less sensitive to 

intuition on the part of the user.

B Convex Distance Selection (CDS) [16]

In a similar way to [12], [13] and [14] this approach requires the user to provide marker 

points ℳ = {xi ∈ Ω|i = 1, …, n}. In Fig. 1, an example of this is shown for a case when n = 

3. This allows the solution of (1) to be constrained by values associated with the polygon 

region, 𝒫, associated with the set ℳ. In [16] the selection function is the normalised 

Euclidean distance from 𝒫, which we denote P2(x). The authors use the data fitting term

f 0(x) = (z − c1)2 − (z − c2)2, (4)

as in Chan and Vese [4] and the corresponding convex formulation [17], where c1, c2 ∈ R 
are the average intenities in the foreground and background, respectively. This was extended 

to cases of intensity inhomogeneity in [27] and is consistent with other types of data fitting 

term, such as [28] and [29]. This selective fitting term is defined as follows, weighted by a 

selection parameter:

h2(x) = f 0(x) + θP2(x) . (5)

The Convex Distance Selection (CDS) Model [16] is then defined as (1), with f(x) = h2(x) 

and g(x) = g0(x) and a variable β0. Whilst the results are often very good, the method can be 

overly dependent on the choice of ℳ and θ. In Fig. 3 we include a particular example where 

the accuracy of the result (a ∈ [0, 1]) is given when varying θ for different sets of user input, 

ℳ. We can see that for slightly different choices of ℳ, the optimal selection parameter is θ* 

= 0.4 and θ* = 0.7, respectively. Whilst some guidance on the appropriate choice of θ can be 

provided, this feature makes methods that incorporate distance constraints to a marker set, 

ℳ, challenging. Again, the aim of this paper is to remove this sensitivity to the user input to 

increase the robustness of the approach.

C Alternative Methods

In this section we briefly mention recent work relevant to the proposed model. First is the 

work of Deriche et al. [30], which involves Chan-Vese fitting after a geodesic or dynamic 

region merging based initialisation, using foreground/backgroud regions provided by the 

user. Another recent approach is that of Liu et al. [15] which works in a similar framework 

to Cai et al. [31], by introducing a new weighting function to their formulation. The focus of 

this approach is on applications to medical images, and requires user-markers on the 
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boundary of the target object. Each method seems to be a competitive approach to interactive 

segmentation, and future work could establish how they perform in relation to the proposed 

method.

The work we intend to highlight in this section are recent approaches based on extensions of 

the random walks approach [10]. This includes Shen et al. [32], which is closely related to a 

more recent method known as Submarkov Random Walks (SRW) by Dong et al. [33]. SRW 

can be viewed as a traditional random walker with added auxiliary nodes, and is capable of 

achieving impressive results with user-defined foreground/background regions. We do not 

detail the method of SRW here as it uses a different framework to the proposed method. 

However, the user input is defined in the same way as CAC making it ideal for comparison 

and further details can be found in [33]. We compare SRW to our proposed approach on a 

large data set in Section IV.

III Proposed Method

In this section we introduce details behind the proposed method. It is designed to prevent 

any additional parameter selection being required, and to simplify the user input such that it 

does not depend on intuition. In this section we introduce the method in the context of 

piecewise-constant segmentation, in a similar way to CDS, as many of the examples of 

interest contain target objects with approximately homogeneous intensities. However, it is 

consistent with related methods that do not include this assumption, such as [27], [28], [29], 

[34], and many others. First, we will introduce the details behind the fitting term we define 

to incorporate some foreground markers, wf(x) ∈ {0, 1}. We will then detail the 

implementation of the proposed method, in relation to minor adjustments to the formulation 

and details behind obtaining a solution. We refer to the proposed method as Parameter-Free 

Selection (PFS), as we do not define any new parameters in the data fitting term.

A Parameter-Free Fitting Term

Initially, the foreground region wf is selected by the user (1 inside this region, 0 elsewhere). 

The fixed intensity approximations are then determined as follows:

c1 =
∫

Ω
w f z dx

∫
Ω

w f dx
, c2 =

∫
Ω

(1 − w f )z dx

∫
Ω

(1 − w f ) dx
. (6)

From here we compute the intensity fitting term [4]:

f (x) = (z − c1)2 − (z − c2)2 . (7)

The new model depends primarily on the function w(x) ∈ {0, 1}, which we define as 

follows. We first determine a point μ ∈ R2 chosen from the region(s), r ⊂ Ω, defined by the 

intersection of wf = 1 and H(− f ) = 1 (where H(·) is the Heaviside function). In other words, 
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μ is within the user-defined region, wf, and the region indicated as being foreground by the 

fitting term, f (x) . Specifically, μ is automatically selected within r as the point furthest away 

from the boundary of r. This is illustrated in Fig. 4. The selection term w(x) is defined as 

follows:

w(x) = 1, x ∈ Ω , H( − f (x)) = 1, connected to μ
0, else.

(8)

This function indicates parts of the domain Ω that are most likely to be in the foreground 

based on the values of the intensity fitting term, f(x), and the user input, wf. The fitting term 

is then given by

h(x) = f (x) 1 − H( − f ) + w . (9)

In this way we essentially neutralise/suppress values of the fitting term that are unlikely to 

be in the foreground, based on the user input. The main consideration in terms of achieving a 

successful result is that the target object must be relatively distinct in terms of its intensity, 

as the function w(x) relies on connected regions of negative values of f (x) . It should also be 

noted that this is similar, but not equivalent, to performing a segmentation using f (x) directly 

and then defining regions of the binary solution connected to μ. This approach is less likely 

to successfully identify the correct region as minor differences in intensity will be 

exaggerated unless a large λ is chosen. Whilst it is likely to work in simple cases it is not 

robust enough for use in practice, and a parameter dependence is created though the choice 

of λ.

In Fig. 4 we introduce two examples to illustrate how the proposed fitting term works in 

practice, and how the result depends on the user input in cases where there is some 

inhomogeneity in the target foreground. We consider an example with two different user 

input selections (rows 1 and 2, respectively). Here, the user-defined region wf is shown in 

red in relation to the ground truth (green contour) in the left column. The second column 

illustrates the functions H(− f x ) and w(x) for these cases. Here, H(− f x ) = 0 is given in 

black, H(− f x ) = 1 is given in grey/white, and w(x) = 1 is given in white. The point μ is also 

shown in red. The third column is the fitting term as defined in (8). Darker regions (negative 

values) are more likely to be in the foreground, with lighter regions (positive values) more 

likely to be considered background. The zero threshold of this function is given in blue and 

is generally very close to the final result. The corresponding result is shown by the red 

contour in the right column. In this example the optimal intensity constants are c1* = 0.71 and 

c2* = 0.35 . The proposed model is most likely to succeed if the region wf is chosen such that 

c1 and c2 are close to c1* and c2*, respectively. However, because of the nature of the Chan-

Vese fitting term some variation from this is acceptable. This allows the proposed method to 

be robust to user input except in cases of high levels of inhomogeneity, such as the image 

here. Typically, in the case that c1* > c2*, a user selection that underestimates the foreground 
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intensity is superior to one that overestimates it. If c1* < c2*, this phenomenon is reversed. 

This is illustrated in Fig. 4. For the example in row 1 we have c1 = 0.60 and c2 = 0.41 . For 

row 2 we have c1 = 0.85 and c2 = 0.41 It can be seen that the proposed fitting term 

successfully segments the target region in the first case.

The important aspect of this approach is that no new parameters are introduced and that the 

dependence on the user input is minimal, which we will return to later. CAC [11], despite 

often producing very good results, occasionally requires multiple foreground/background 

regions to define a viable fitting term. In the case of CDS [16] the parameter θ is introduced 

that can be difficult to optimise intuitively, and is therefore difficult to use in practice. The 

key aspect of our approach is that we do not require any new parameters, primarily because 

we do not introduce a distance function to the fitting term. The value introduced from the 

user selection, wf (whether similar to foreground regions from [11] or markers, ℳ, from 

[16]), is the point μ and the values of c1 and c2, and is used to locate the region of negative 

fitting values of interest. It should also be noted that we do not require a background region 

to be selected, which simplifies the requirements on the user in practice. Results do not vary 

much depending on the input (assuming the foreground is approximately homogeneous), 

which is an important feature of any method depending on user input, and offers a clear 

advantage over the alternative methods discussed. It is also possible to incorporate the input 

to define alternative fitting terms to (7), which we use here because of the images under 

consideration, such that a wider range of examples can be successfully segmented.

B New Model and its Implementation

We now define the new model with a parameter-free fitting term, and clarify some details 

concerning computing a solution. In this work we standardise the fitting terms by defining 

the maximum absolute value of h(x), mh ∈ R. Then, the new scaled fitting term is defined as

h x = h x
mh

. (9)

This allows the choice of λ to be more predictable, and in the tests below we fix it at λ = 2. 

It is worth noting here that some work exists based on optimising the fitting parameter λ 
automatically (Mylona et al. [35]), but in general this choice is well understood for fitting 

terms in a similar range. In our tests we set g(x) = 1 as in the convex variational setting we 

have found that the choice does not heavily influence the result. In nonconvex formulations 

([1], [2], [14]) an edge function plays a crucial role as local minima are desirable. In this 

work, however, the quality of results is primarily dictated by the choice of f(x) in (1). 

Additionally, poor choices of β0 in (3) can actually reduce the quality of the results so it is 

omitted here. According to these choices, the problem then consists of a two-phase 

variational segmentation problem that we consider in a conventional manner, defined in 

Section I:
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min
u ∈ [0, 1] ∫

Ω
∇u x dx + λ∫

Ω
h x u x dx . (10)

We use the dual formulation of Bresson et al. [18], with further details provided in [20] and 

[21]. Other methods are also applicable, such as [19] and [36]. We do not detail them here, 

but the optimisation step is not the focus of this work. We have found that the fastest way to 

obtain a solution is to define the initialisation, u0(x), as

u0 x = 1, for x ∈ h x < 0
0, for x ∈ h x ≥ 0,

as this is quite close to the global minimum of (10). However, we note that for fixed h x  the 

solution is independent of initialisation. We define the solution as u*(x). Based on the work 

of [16], [17], [18], and others this will be approximately binary, such that any thresholding 

of the function will be a global minimiser of the original problem. We define the computed 

foreground region as follows:

Ω1* = x ∈ Ω u*(x) > γ . (11)

We select γ = 0.5 (although other values γ ∈ (0, 1) would yield a similar result). In the 

following we use the binary form of the solution, u*, denoted Ω1* .

IV Experimental Results

In this section we introduce some test examples to compare our approach to the work of 

CAC [11], CDS [16], and SRW [33]. In all the following tests, we use axial slices of CT 

data, with typical abdominal window width/levels. This is normalised and the resolution 

varies between 100x100 and 180x180, depending on the problem. We measure accuracy 

with respect to some ground truth, given by a manual segmentation:

GT = x ∈ Ω x ∈ foreground .

Using the thresholding of the solution defined in Section III, we denote the computed 

foreground as Ω1* . We then define the accuracy a ∈ [0, 1] of the solution (in terms of the 

Tanimoto Coefficient or Jaccard Index), u*, as follows:

a =
N GT ∩ Ω1*
N GT ∪ Ω1*

, (12)

where N (·) refers to the number of points in the enclosed region. We also provide a value 

that refers to the foreground consensus (FC); the percentage of the ground truth foreground 
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that is successfully segmented by all variations of the user input. Specifically, if we denote 

the intersection of Ω1* for all sets of user input as ΩF* , the foreground consensus is given by

FC =
N ΩF* ∩ GT

N GT × 100 . (13)

This helps highlight the consistency of each method, but doesn’t account for spurious 

background regions that are determined to be foreground. It is worth clarifying that a result 

could have an FC value of 100%, and an accuracy of a < 1. This is because FC only 

measures variation in the foreground of the ground truth. This can be useful to assess a 

method’s dependence on user input even when the accuracy is good. These values are listed 

in Table I, and help establish how robust to user input the proposed method is.

First, we compare the proposed method, PFS, against CAC for five different user inputs in 

each image. We then compare PFS against the CDS approach using optimal parameters for 

different choices of ℳ. In Fig. 5 we show the different user inputs used in Tables I and II. It 

should be noted that in Fig. 5 we exclude the background regions as PFS only requires wf. 

However, CAC requires background regions for each test and a representative example of 

the input used can be seen in Fig. 6 for Image 1. We then measure the robustness of the 

proposed approach to variations in user input, detailing the results in Table III. Finally, we 

compare the proposed method to CAC, CDS, and an additional method mentioned in 

Section II-C: SRW [33]. Here, we test each method on 100 CT images, using five variations 

of user input in each case, to assess their performance on a larger set of data.

A Comparisons with Related Work

In this section we compare the proposed method, PFS, to the methods of CAC and CDS by 

using identical user input for each set of tests. The results are displayed in Tables I and II, 

with additional detail provided in Figs. 6 and 7.

In Table I we detail the comparison between PFS and CAC. For the six images given in Fig. 

5 we use five different sets of user inputs. An example of the inputs we use is shown in Fig. 

6 for Image 1. It is important to note that in the following tests we use the foreground 

regions (red) and background regions (blue) for CAC, but that for PFS we exclude the 

background input to define wf based on the corresponding foreground input only. We are 

interested in the optimal result in terms of accuracy but also the robustness to varying the 

input, such that we provide the average accuracy for each image. From Table I we can see 

that PFS provides the optimal result (given in bold) for Images 2, 3, and 6. For Images 4 and 

5, CAC is superior in this sense but the result for PFS is still 0.946 and 0.937 respectively 

which is good for these cases. It is also worth noting that for every image PFS beats CAC in 

terms of the average accuracy, which is very important for this type of problem. For most 

examples the difference is noteworthy as well. The reasons for this vary, as can be 

demonstrated by highlighting two images. For Image 3 PFS comfortably outperforms CAC 

for Inputs 1-5 resulting in a higher average for the proposed method. For Image 4, CAC is 

noticeably better than PFS for Inputs 1-4. However, for Input 5 CAC fails completely (a = 
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0.562) whilst PFS performs well (a = 0.938) resulting in a superior average for PFS. Each 

case highlights an important aspect of the proposed method; reliability and consistent 

quality. CAC [11] and related methods ([8], [9], [10]) can perform very well but are often 

sensitive to minor changes to the input that isn’t necessarily intuitive. The FC (%) 

demonstrate that PFS is a more consistent method than CAC. Generally, for any foreground 

regions within the object PFS will produce the same result whereas CAC is more 

temperamental.

In comparing the proposed PFS to CDS we first look at the dependence of CDS on the 

parameters λ and θ in Fig. 7. Here we present the accuracy of CDS for varying θ (horizontal 

axis) and λ (vertical axis), with a total of 160 tests for each user input (shown in Fig. 5). We 

can then compare the optimal result for CDS against the proposed parameter-free method. 

Along the horizontal axis we vary the selection parameter θ linearly between 0.1 and 2. 

Along the vertical axis we vary the fitting parameter between the following choices: λ ∈ 
{0.1, 0.5, 1, 2, 5, 10, 50, 100}. The colour represents the accuracy of the corresponding 

solution, a ∈ [0, 1]. Visually, it can be seen from Fig. 7 that the results are very sensitive to 

the parameter choice and that this varies between different examples. This makes the method 

difficult to use in practice. The only case where this is not the case is Image 3, Input 2 where 

there is a large range for which a good result can be found (indicated by the green region). 

However, it is important to note that ℳ uses n = 11 and 𝒫 closely resembles the shape of the 

target object. Image 3, Input 1 uses a more reasonable ℳ (n = 5) and consequently has a 

much narrower region where a good result can be achieved.

The comparison of CDS to PFS can be seen in Table II where we list the optimal result, 

CDS(*), and its corresponding selection parameters, (λ*, θ*), and the result of PFS using 

the input shown in Fig. 5, i.e. w f = 𝒫. From here, it can be seen that the optimal choice of 

the selection parameter, θ, varies between 0.1 and 0.7 and is often different for the same 

image with minor changes to the user input. We can see that the proposed parameter-free 

method is more accurate than the optimal result of CDS in all cases except Image 3. Even 

then, the difference is minor. For Image 6, the results are vastly superior for PFS. It is likely 

that increasing the number of marker points could enable a good result to be achieved for 

CDS but simplifying the requirements on the user is desirable in this context. The key 

conclusion from these tests is that for the same user input the proposed method, PFS, 

outperforms the best results of CDS despite requiring no parameter optimisation.

B Robustness to User Input

One challenge in determining the robustness of selective segmentation methods is that each 

test requires user input, which is often difficult to generalise. For the proposed method, PFS, 

it is possible to mimic the user input as the foreground input produces three variables that 

determine the fitting term, h:c1, c2, and μ. In these tests, for each image we have the 

corresponding GT and therefore know the true intensity constants, c1* and c2* . By using 

reasonable approximations of these values for c1 and c2 and a random choice of μ within the 

foreground of GT, we can compute h x . In Table III we present the average PFS result for 

200 simulations of user inputs for each image. We also include the optimal results for CAC 
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and CDS detailed in the previous results section. This demonstrates that for Images 1, 2, and 

6 the PFS average is better than the optimal result of CAC or CDS. For Images 3, 4, and 5 

PFS is only beaten by the optimal result of one of the other methods; it is never the worst. 

Here, it can be seen that the proposed method holds up very well when the input is 

generalised.

C Further Testing

In order to further establish the robustness of our method we now introduce the results of 

testing on a large data set. This consists of 100 CT images of structures such as the kidney, 

spleen, and abdominal aorta. Whilst the proposed method generally assumes homogeneity in 

the foreground, many of the images contain high levels of inhomogeneity. Some 

representative examples are shown in Fig. 8. In Fig. 9 we present boxplots of the average 

accuracy results of each image, i.e. each value is the average of five variations of user input 

for each method. We present two sets of results for the proposed method. The first is PFS (i), 

where we use the markers provided by the input for CDS (optimising θ for each result). The 

second is PFS (ii), where we use the user foreground/background regions used in CAC and 

SRW. It is worth noting that the inputs used are precisely the same between each method. 

The average for each method is 0.84 (CAC), 0.90 (CDS), 0.64 (SRW), 0.94 (PFS (i) & (ii)). 

It can be seen that the results for the proposed method are very consistent, with the worst 

result being 0.84 and 0.86 for PFS (i) and (ii), respectively. Notably, this is similar to the 

average result of CAC which seems to be quite inconsistent for this data set. The results for 

CDS are reasonably good. However, it assumes that the selection parameter θ is near 

optimal. This is not true in practice and if the choice was automated the quality and 

consistency of the results would suffer. The results for SRW indicate that the user input is 

insufficient to achieve good quality results for this data set. The results are very inconsistent, 

with few images near an acceptable standard. The model tends to be sensitive to variations 

of the user input in a similar way to the examples shown in Fig. 2.

V Conclusions

In this paper we have introduced a parameter-free method for selective segmentation based 

on user input in the foreground of the image. We have compared it against the Constrained 

Active Contours (CAC) Method [11], the Convex Distance Selection (CDS) Method [16], 

and Submarkov Random Walk (SRW) [33] using a variety of input. We show that the 

proposed method is very consistent and generally outperforms the related approaches for the 

same input. Importantly, this is without any parameter choice or optimisation on behalf of 

the user, necessary in [16], [12], [13], [14]. We also demonstrate that the proposed method 

achieves good results for arbitrary user input. For 200 variations of the user input for each 

test image we show that the results are as good as, and often better than, the optimal results 

of CAC [11] and CDS [16]. This aspect of the method is particularly important for selective 

segmentation as it allows for this approach to be used in practice reliably, with minimal 

requirements on the user. In this work we incorporate the fitting term of [4], which assumes 

the foreground is approximately homogeneous. For the images under consideration here this 

is sufficient, but future work could focus on how to extend this to alternatives by 

generalising how the user input is defined in Section III.
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Fig. 1. 
Types of user input utilised in selective segmentation. a) Example image (ground truth in 

green). b) Foreground (red) and background (blue) regions used, e.g. in [11]. c) Polygon 

region 𝒫 (orange) defined by markers ℳ, e.g. in [16].
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Fig. 2. 
An example of the dependence on user input for CAC [11]; minor changes produce very 

different results. Accuracy in each case: (b) a = 0.952, (d) a = 0.562. Similar behaviour can 

be observed in [8], [9], and [10].
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Fig. 3. 
An example of the dependence on user input in CDS [16]. Different marker sets, ℳ, often 

require a variation of the parameter, θ. The optimal parameter in terms of accuracy (a ∈ [0, 

1]) in each case: Input 1 (θ* = 0.4), Input 2 (θ* = 0.7).
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Fig. 4. 
Examples for the proposed model (different user inputs in each row). From left to right: an 

example image (green indicating ground truth, red indicating user input region wf), the 

selection region (w(x) = 1 shown in white, μ in red), the fitting term h(x) (blue indicating the 

zero threshold) based on (8), and the corresponding result (red contour).
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Fig. 5. 
Test Examples displaying user input. Top row: Image (ground truth in green). Middle row: 

summation of five foreground regions (red) in relation to the ground truth, used with CAC. 

Bottom row: two polygon regions 𝒫 (orange, pink), used with CDS. Left to right: Images 

1-6, respectively. Each input type is used in PFS, defining wf (x).
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Fig. 6. 
Results for Image 1. The top row gives the user input, the middle row gives the output of 

CAC [11], and the bottom row gives the result of PFS (based on the corresponding 

foreground regions defining wf(x)). From left to right is Input 1-5. Accuracy results for each 

input are given in Table I.
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Fig. 7. 
Results for CDS [16] for permutations of λ, θ. The colour represents the accuracy of each 

result, a ∈ [0, 1], when varying λ (vertical axis) and θ (horizontal axis). The top row is for 

Input 1 and the bottom row is for Input 2, from Fig. 5.
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Fig. 8. 
Examples of images in the large data set tested, with results presented in Fig. 9.
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Fig. 9. 
Box plots of average accuracy results of varied user input on a large data set (100 CT 

images). The same user input was used for CAC, SRW, and PFS (ii), with a different set 

used for CDS and PFS (i) as described in Section II.
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Table I

Accuracy results (in term of the Tanimoto Coefficient or Jaccard Index) comparing the proposed method, PFS, 

to CAC [11] for five different inputs and six images. The optimal result for each image is in bold. The average 

accuracy and foreground consensus (FC) percentage for different inputs is given for each method and image.

Input
Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

CAC PFS CAC PFS CAC PFS CAC PFS CAC PFS CAC PFS

1 0.920 0.967 0.857 0.905 0.874 0.943 0.952 0.932 0.938 0.934 0.529 0.973

2 0.962 0.967 0.889 0.909 0.895 0.954 0.562 0.938 0.963 0.935 0.871 0.975

3 0.968 0.968 0.906 0.922 0.871 0.941 0.959 0.937 0.961 0.937 0.886 0.975

4 0.923 0.964 0.887 0.901 0.889 0.946 0.968 0.946 0.939 0.935 0.909 0.973

5 0.792 0.967 0.907 0.894 0.868 0.950 0.953 0.939 0.678 0.934 0.908 0.973

Average 0.913 0.967 0.889 0.906 0.879 0.946 0.879 0.938 0.896 0.935 0.821 0.974

FC (%) 76.8 96.8 89.2 89.7 90.9 94.7 94.6 93.6 94.1 93.7 94.6 99.0
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Table II

Accuracy results comparing the proposed method, PFS, to CDS [16]. The optimal result for CDS is provided, 

including the corresponding parameters, (λ*, θ*).

Image
Input 1 Input 2

(λ*, θ*) CDS(*) PFS (λ*, θ*) CDS (*) PFS

1 (0.1,0.2) 0.967 0.968 (0.1,0.2) 0.958 0.964

2 (2.0,0.4) 0.906 0.912 (2.0,0.4) 0.867 0.915

3 (0.5,0.2) 0.956 0.946 (0.5,0.3) 0.955 0.950

4 (0.5,0.5) 0.920 0.942 (1.0,0.7) 0.930 0.944

5 (0.5,0.5) 0.934 0.936 (0.5,0.5) 0.931 0.937

6 (0.5,0.1) 0.673 0.973 (2.0,0.2) 0.678 0.972
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Table III

Average accuracy for 200 random choices of the user input with the proposed method, PFS. For each image, 

the optimal results for CAC [11] and CDS [16] are included.

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

CAC (*) 0.968 0.906 0.895 0.968 0.963 0.909

CDS (*) 0.967 0.906 0.956 0.930 0.934 0.678

PFS average 0.973 0.924 0.954 0.940 0.944 0.966

IEEE Trans Image Process. Author manuscript; available in PMC 2020 May 01.


	Abstract
	Introduction
	Related Work
	Constrained Active Contours (CAC) [11]
	Convex Distance Selection (CDS) [16]
	Alternative Methods

	Proposed Method
	Parameter-Free Fitting Term
	New Model and its Implementation

	Experimental Results
	Comparisons with Related Work
	Robustness to User Input
	Further Testing

	Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Table I
	Table II
	Table III

