
ar
X

iv
:1

80
6.

00
77

1v
2

 [
cs

.C
V

]
 5

 J
un

 2
01

8
1

Low Cost Edge Sensing for High Quality

Demosaicking

Yan Niu et al.,

Abstract

Digital cameras that use Color Filter Arrays (CFA) entail a demosaicking procedure to form full RGB

images. As today’s camera users generally require images to be viewed instantly, demosaicking algorithms for

real applications must be fast. Moreover, the associated cost should be lower than the cost saved by using CFA.

For this purpose, we revisit the classical Hamilton-Adams (HA) algorithm, which outperforms many sophisticated

techniques in both speed and accuracy. Based on a close look at HA’s strength and weakness, we design a very

low cost edge sensing scheme. Briefly, it guides demosaicking by a logistic functional of the difference between

directional variations. We extensively compare our algorithm with 28 demosaicking algorithms by running their

open source codes on benchmark datasets. Compared to methods of similar computational cost, our method achieves

substantially higher accuracy; Whereas compared to methods of similar accuracy, our method has significantly lower

cost. Moreover, on test images of currently popular resolution, the quality of our algorithm is comparable to top

performers, whereas its speed is tens of times faster.

Index Terms

Demosaicking, Color Filter Array (CFA), Bayer Pattern, Logistic Function

I. INTRODUCTION

The vast majority of current consumer digital cameras have Color Filter Arrays (CFA) placed on the

light sensing units, to capture only one of the three primary color components at each pixel [1]. Fig.1

shows the most frequently used CFA layout named Bayer Pattern: in each 2 × 2 subblock, the diagonal

sensing units response to the green wavelength component and the anti-diagonal ones response to the

red and blue wavelength components of light rays. Recovering the missing primary color values to form

standard RGB color images, is called Demosaicking.

Fig. 1. The most widely used Bayer pattern for CFA arrangement.

A faithful demosaicking algorithm not only enables obtaining good quality images with low hardware

cost, but also provides a potential solution to image compression. Therefore, demosaicking has been of

intense interest in both academic research and industry. Similar to many ill-posed image recovery problems,

The authors are with the State Key Laboratory of Symbol Computation and Knowledge Engineering, Ministry of Education, College of

Computer Science and Technology, Jilin University, Changchun 130012, China (e-mail: niuyan@jlu.edu.cn; ouyj@jlu.edu.cn). This work is

supported by the National Natural Science Foundation of China under Grant NSFC-61472157 and NSFC-61170092.

http://arxiv.org/abs/1806.00771v2

2

what demosaicking research really aims to solve is demosaicking at non-regular regions such as edge and

textures. Thus the numerous existing demosaicking methods commonly focus on how to accurately detect

the least variation direction from the CFA sampled image data. They differ in the aspects of: 1) the

domain to conduct finite differencing; 2) the measurement of directional variation by differencing; 3) the

strategy of steering interpolation along local dominant direction; 4) the exploitation of the inter- and intra-

channel correlation for higher accuracy; 5) the procedure to enhance the quality of a fully interpolated

RGB image.

Differencing Domain As a natural indicator of variation, magnitude of the first- or second-order

finite differencing can be computed in each CFA sampled channel (e.g., [2] [3] [4] by Shao-Rehman);

or across different channels (e.g. [5] [6]). Alternatively, differencing can be conducted in each tentatively

estimated color channel (e.g., [7]), or their color-difference planes (e.g., [8] [9]). Many recent works

perform differencing in the residual planes, which are the difference between the CFA samples and

intermediately interpolated channels, and have shown promising results (e.g., [10] [11] [12] [13]).

Measuring Variation To measure directional variation, the Hamilton-Adams (HA) method combines

the first- and second-order differencing magnitude in two channels at the current single pixel [2]. This

method is also adopted in subsequent works such as [6] and [14]. A more robust approach is to accumulate

the directional differencing magnitude in a local neighbourhood (e.g., [15] [10] [5] [13]), or further at a

mixture of scales (e.g., [16]).

Edge Directed Interpolation HA compares the horizontal and vertical variation and selects the

smoother direction to perform interpolation. In case of ties, interpolations in both directions are averaged

[2]. Su extended this idea by fusing the horizontal and vertical interpolation using machine learned

weights [17]; Chung-Chan selected the local dominant direction based on the variance of directional color

differences [14]; In [18], local dominant direction is determined by voting for the horizontal or vertical

or none edge hypotheses; Wu et al. relaxed the strict prerequisite for none-edge judgment to approximate

equality [6]. More methods estimate missing values by weighted summation of the estimation from the

north, south, west and east directions, where the weights are obtained from the directional variation (e.g.

[15] [10] [5] [13] [19]) and spatial distance (e.g. [3] [20]). Ref. [21] tests multiple direction hypotheses

and chooses the one that shows the highest consistency among all channels. Deciding edge direction by

maximizing a posteriori is also adopted in [22] and [23].

Exploitation of Cross-Channel Correlation The color channels of a natural image generally show

strong correlation, meaning that the color or edge information of one channel is also implied by other

channels. Hence cross-channel priors are extensively explored for demosaicking. For example, HA assumes

that the color difference planes are locally bilinear. As this assumption fails at edges, Ref. [12] pro-

poses compensating inter-channel interpolation by intra-channel interpolation if evidence of non-linearity

presents; Ref. [21] assumes that the three channels have consistent edge directions; Regularization is

investigated to formulate the inter- and intra- channel correlation (e.g., [24] [8]). Ref. [25] assumes that

the local region in one channel is a linear transform of another channel in the intermediate estimation

step.

Quality Enhancement Due to the existence of cross-channel correlation, many works refine each

channel by other channels’ reconstruction alternatively and iteratively (e.g., [26] [27] [28] [17] [29] [30]).

Postprocessing techniques such as non-local regularization and median filtering have also been widely

employed to suppress spurious high frequency components [31] [15] [8] [23]. It is known that non-local

regularization and median filtering are essentially a series of iterative linear filtering, robust to outliers

but computationally heavy [32]. For efficiency, Wu et al. proposed a postprocessing technique based on

machine learned regression priors.

Deep Learning Demosaicing Convolutional Neural Networks (CNN) recently have attracted the

attention of demosaicing research ([33] [34] [35] [36]). Some of these works have achieved the top

demosaicing accuracy on benchmarks yet is faster than many classical methods (e.g., [34]). An implicit

cost for CNN is the non-trivial memory required to store the trained model (e.g., [34], [36]) .

3

The accuracy of recent demosaicking methods keeps increasing, and so is the associated computational

cost (see Sec.IV). For real time visualization, sophisticated demosaicking may entail expensive processing

hardware and high power supply, against the intention of using CFAs. In the vast literature on demosaicing,

the HA method is extremely simple. Seemingly such simplicity may only yield baseline accuracy. However,

it performs surprisingly well. Buades et al. tested the HA algorithm and 8 well-known methods on 10
images selected from McM dataset [21], and the HA algorithm is shown to achieve the least Mean Square

Error (MSE) [15]. Gharbi et al. compared the HA algorithm with 16 high-impact demosaicking methods

of the literature (till year of 2016) [34] . While HA is the second fastest (only slower than Bilinear

Interpolation), its Peak Signal to Noise Ratio (PSNR) accuracy on benchmark datasets Kodak [37] and

McM is higher than 10 methods.

Although the HA algorithm does not put much effort on edge detection, it is highly effective. Based

on a close look at the HA algorithm, we propose a high-quality fast edge-sensing image demosaicking

scheme that adopts the HA pipeline. Particularly, we recover the green channel first, and then the green-

red and green-blue color difference planes. For adaptive edge-sensing, we replace HA’s green channel

selective directional interpolation by blending the directional estimation, using a logistic functional of

the difference between directional variations. We extend this edge-sensing strategy to the green-red and

green-blue colour difference planes. This extension is not straightforward, since Bayer CFA samples the

green channel twice as many the red or blue channels. Our approach is to derive a logistic functional to

blend the diagonal and anti-diagonal estimation, leveraging the diagonal symmetry of the Bayer pattern.

Then the green channel interpolation scheme is applicable to computing the rest missing values in the

green-red and green-blue difference planes. The proposed demosaicking process is highly parallelable:

although the red and blue channels have to be estimated subsequently to the green channel estimation, the

restoration in each step at a pixel is independent of the restoration of other pixels. This feature means that

our method is very suitable for Graphics Processing Units (GPU) and Field Programmable Gate Arrays

(FPGA) implementation, achieving instant image visualization in real applications.

The rest of the paper is organized as follows. Section-II analyzes the strength and weakness of the HA

algorithm. Subsequently, Section III formulates a new fast edge-sensing demosaicking technique. Section

IV compares the efficiency and accuracy of our proposed method with the state-of-the-art methods by

extensive experiments. Section V concludes our work.

II. HAMILTON-ADAMS DEMOSAICKING

Assuming the mosaicked image M has m rows and n columns, let

L =
{

(i, j) ∈ N2|i ∈ [1 m], j ∈ [1 n]
}

be the set of all pixel positions. According to the Bayer mosaicking pattern (Fig.1), we define

G =
{

(i, j) ∈ N2|(i+ j) is even
}

R =
{

(i, j) ∈ N2|i is even, j is odd
}

B =
{

(i, j) ∈ N2|i is odd, j is even
}

to be the sets of positions where the green, red and blue values are originally available respectively. Hence

their complementary sets Gc = L \ G, Rc = L \ R and Bc = L \ B are the sets of positions where the

green, red and blue values are to be recovered respectively. We use r,g and b to denote the original RGB

components of a pixel (i, j), and denote its estimated color components by adding a “hat” symbol to the

corresponding notation. For example, if a pixel (i, j) ∈ G, we write its true RGB values as (r, g, b) and

its estimated RGB values as
(

r̂, g, b̂
)

.

4

A. HA Green Channel Demosaicking

Let (i, j) ∈ Gc. The HA algorithm first computes its horizontal and vertical intensity variation, then

selects the less variation direction to perform interpolation. In particular, at pixel (i, j), the horizontal first

and second order partial derivatives (denoted by ∂h and ∂2
h), as well as the vertical first and second order

differential (denoted by ∂v and ∂2
v) of M, are computed by

∂hM(i, j) =
M (i, j + 1)−M (i, j − 1)

2

∂2
hM(i, j) =

M (i, j + 2) +M (i, j − 2)− 2M (i, j)

4

∂vM(i, j) =
M (i+ 1, j)−M (i− 1, j)

2

∂2
vM(i, j) =

M (i+ 2, j) +M (i− 2, j)− 2M (i, j)

4
, (1)

Note that in Eq.1, pixels that are one unit away from (i, j) are in G, and pixels that are two units away

are in the same set as (i, j).
The HA algorithm defines the horizontal variation vh and vertical variation vv as

vh = |∂hM(i, j)|+
∣

∣2∂2
hM(i, j)

∣

∣

vv = |∂vM(i, j)|+
∣

∣2∂2
vM(i, j)

∣

∣ . (2)

Let ḡh and ḡv be the average of the neighbouring green values in the horizontal and vertical directions

respectively, i.e.,

ḡh =
1

2
(M(i, j + 1) +M(i, j − 1))

ḡv =
1

2
(M(i+ 1, j) +M(i− 1, j)) . (3)

Finally, ĝ(i, j) is estimated by

ĝ(i, j) =

ḡh − ∂2
hM(i, j) if vh < vv

ḡv − ∂2
vM(i, j) if vh > vv

1
2
[ḡh − ∂2

hM(i, j)) + (ḡv − ∂2
vM(i, j)] if vv = vh

(4)

B. HA Red and Blue Channel Demosaicking

The HA demosaicking method utilizes the recovered green plane to regulate the blue and red recovery.

Particularly for the Bayer CFA pattern, this is a typical 2×2 times super-resolution problem, with available

subsamples evenly spaced at every other row and column. Instead of directly enlarging the red plane r(R)
and blue plane b(B), the HA algorithm enlarges the colour difference planes ĝ(R)−r(R) and ĝ(B)−b(B),
based on the observation that g(L)− r(L) and g(L)− b(L) are generally smoother than r(L) and b(L)
respectively. The magnification is simply performed by a bilinear interpolation

(̂g − r)(i, j) =
∑

(k,l)∈R∩Ni,j

ωk,l (ĝ(k, l)− r(k, l)) for (i, j) ∈ Rc (5a)

(̂g − b)(i, j) =
∑

(k,l)∈B∩Ni,j

̟k,l (ĝ(k, l)− b(k, l)) for (i, j) ∈ Bc, (5b)

where (k, l) index the pixels that are in the local neighbourhood Ni,j with ĝ − r (in Eq.5a) or ĝ − b (in

Eq.5b) values available for bilinear interpolation; ω and ̟ are the corresponding bilinear interpolation

coefficients, determined by the spatial distance between (i, j) and (k, l).

5

Finally the missing red and blue values are recovered by

r̂(i, j) =

{

g(i, j)− (̂g − r)(i, j) for (i, j) ∈ G
ĝ(i, j)− (̂g − r)(i, j) for (i, j) ∈ B

. (6)

and

b̂(i, j) =

{

g(i, j)− (̂g − b)(i, j) for (i, j) ∈ G
ĝ(i, j)− (̂g − b)(i, j) for (i, j) ∈ R

. (7)

C. Advantages and limitations of the HA algorithm

The high effectiveness of the HA method is due to the wisdom of taking full advantage of the green

channel, which is sampled more densely than the other two channels. The green channel is recovered

first based on available samples. It is then used to regulate the recovery of the red and blue channels. In

other words, it trusts the sampling frequency more than edge detection. Such a strategy is suitable for

today’s digital CFA cameras, the resolution of which is generally several mega-pixels. This high sampling

frequency means that the intensity at each pixel is highly correlated to its local neighbours; whereas to

perform edge detection in a non-local neighbourhood, especially when 2
3

information at each pixel is lost,

could be time consuming.

Nevertheless, HA’s smoothness assumption is over simplified. In real applications, due to the existence

of noise, the HA scheme restores the green component at a pixel exclusively from either its horizontal

or vertical neighbours, as the variation in the two directions vv and vh are hardly equal (see Eq.2 and

Eq.4). This is disadvantageous in smooth regions, where more neighbours should be used to smooth out

random noises. Moreover, its red and blue channel recovery assumes that the color difference plane is

locally bilinear, which is seriously violated at edge or texture area and results in the “false color” artifacts

[31]. In the next section, we propose a more adaptive and flexible edge-sensing demosaicking scheme,

which lifts the HA demosaicking accuracy to state-of-the-art comparable methods, while still being fast.

III. EDGE-SENSING DEMOSAICKING BY LOGISTIC FUNCTIONAL OF DIFFERENCE BETWEEN

DIRECTIONAL VARIATIONS

A. Green Channel Demosaicking

The green channel demosaicking process of the HA algorithm, as shown in Eq.4, can be rewritten as

ĝ(i, j) = ωh(ḡh − ∂2
hM(i, j)) + (1− ωh)(ḡv − ∂2

vM(i, j)), (8)

where

ωh =

0 if vh > vv
1 if vh < vv
1
2

if vh = vv.
(9)

In practice, even in very flat region, vh and vv are rarely equal because of noise. A more practical

solution is to relax the strict equality requirement vh = vv to the approximate equality vh ≈ vv, which

can be expressed by the inequality |vh − vv| ≤ T , where T is the allowed noise level. That is,

ωh =

0 if vh − vv > T

1 if vh − vv < −T
1
2

if |vh − vv| ≤ T .

(10)

Although ωh defined by Eq.10 is more flexible than by Eq.9, the value of T has to be carefully defined

for each image, as a small bias in T may lead to an opposite interpolation decision. Desirably, ωh should

be a continuous function, which smoothly blends the estimation from both directions, thus a small bias

does not cause the demosaicking result to vary abruptly. In particular, rather than using the step function

defined by Eq.10, we seek for a smooth function ωh that meets the criteria:

6

1) ωh → 0, when T < vh − vv → ∞;

2) ωh → 1, when −T > vh − vv → −∞;

3) ωh ≈ 1
2
, if |vh − vv| ≤ T ;

Note that, 1 − ωh and ωh should have the same form. That is, if there is a function f , such that ωh =
f(vh − vv), then 1− ωh = f(vv − vh) should hold. In other words,

f(vh − vv) + f(vv − vh) = 1. (11)

It can be shown that the logistic function

fk(x) =
1

1 + ekx
, (12)

where k is a positive real number adjusting the convergence of fk(x), fulfills all requirements on ωh. Thus

we define

ωh =
1

1 + ek(vh−vv)
. (13)

It can be verified that

1− ωh =
1

1 + ek(vv−vh)
. (14)

Algorithm 1 summarizes the green channel demosaicking pipeline. To examine the influence of hyper-

parameter k on demosaicking performance, we run the algorithm on 100 high quality natural images from

Waterloo Exploration Database [38] [39], with k varying from 0.01 to 1.0 at a step size of 0.01. We

observe that k = 0.05 yields the highest PSNR (averaged over the 100 training images), hence we fix

k to be 0.05 in this work. Fig.2 plots the function curve of f0.05(x). Note that, the high pass filtering

involved in the interpolation scheme does not preserve energy. Consequently, ĝ might be out of the range

of [min(g(G)),max(g(G))], hence we clip such ĝ values to be either min(g(G)) or max(g(G)), whichever

is closer, at the final step of the algorithm.

-100 -80 -60 -40 -20 0 20 40 60 80 100

0.0180

0.1192

0.2689

0.5

0.7311

0.8808

0.9820

Fig. 2. The curve of logistic function fk(x) = (1 + ekx)−1, with k = 0.05, which we use to balance the contribution from the horizontal

and vertical neighbours.

B. Red and Blue Channels Demosaicking

We transform r(Rc) and b(Bc) estimation to (ĝ−r)(Rc) and (ĝ−b)(Bc) interpolation. We treat the two

channels in the same fashion, hence this section only articulates the red channel demosaicking. Its blue

channel counterpart can be derived by simply exchanging the positions of red and blue in the algorithm.

To respect edges and textures, we apply our edge-sensing strategy also to the red channel. This is

cannot be done by a straightforward extension from the green to the red channel. Due to Bayer CFA color

7

Algorithm 1: Green Channel Demosaicking

Input: Mosaicked image M; hyper-parameter k

Output: ĝ(i, j) for each (i, j) ∈ Gc

1 mmax := max(g(G));
2 mmin := min(g(G));
3 for each (i, j) ∈ Gc do

4 Compute ∂h,∂v,∂2
h,∂2

v of M at pixel (i, j) by Eq.1;

5 Compute vh and vv by Eq.2, ḡh and ḡv by Eq.3;

6 Compute ωh by Eq.13;

7 Compute ĝ(i, j) by Eq.8;

8 ĝ(i, j) = max(min(ĝ(i, j), mmax), mmin);

9 return ĝ(Gc)

sensors arrangement, in the green channel, at a pixel (i, j) ∈ Gc, its horizontal and vertical neighbours all

have original green values available. In contrast, if (i, j) ∈ Rc, at most two of its horizontal and vertical

neighbours have green-red difference values available. Our approach is to leverage the diagonal symmetry

of the red sensors’ positions. We first derive the edge-sensing interpolation scheme for (g−r)(i, j), where

(i, j) ∈ B, using its diagonal and anti-diagonal neighbours. This makes the green-red difference values

available at the horizontal and vertical neighbours for each of the rest pixels. We then infer r(G) from

(ĝ − r)(R) and the estimated (g − r)(B).
1) Estimating red values at B: As shown in Fig.3(a), the nearest available red values around a pixel

(i, j) ∈ B are r(i− 1, j − 1), r(i+ 1, j + 1), r(i− 1, j + 1), and r(i+ 1, j − 1), located in the diagonal

and anti-diagonal directions. To obtain edge information, we compute the difference between the diagonal

and anti-diagonal intensity variation (in the mosaicked image plane M). We then use the logistic function

value of this difference to weight the contribution of (ĝ− r) at (i− 1, j− 1), (i+1, j+1), (i− 1, j+1),
and (i+ 1, j − 1) to restore (ĝ − r)(i, j).

In particular, we compute the first and second order diagonal and anti-diagonal partial derivatives of

M at (i, j) by

∂dM(i, j) =
M (i+ 1, j + 1)−M (i− 1, j − 1)

2
√
2

∂2
dM(i, j) =

M (i+ 2, j + 2) +M (i− 2, j − 2)− 2M (i, j)

8

∂aM(i, j) =
M (i− 1, j + 1)−M (i+ 1, j − 1)

2
√
2

∂2
aM(i, j) =

M (i− 2, j + 2) +M (i+ 2, j − 2)− 2M (i, j)

8
, (15)

The local intensity variation in the diagonal and anti-diagonal directions are computed as

vd = |∂dM(i, j)|+
∣

∣

∣
2
√
2∂2

dM(i, j)
∣

∣

∣

va = |∂aM(i, j)|+
∣

∣

∣
2
√
2∂2

aM(i, j)
∣

∣

∣
. (16)

Let ωd be the logistic function value of vd − va, i.e.,

ωd =
1

1 + ek(vd−va)
, (17)

where hyper-parameter k is fixed to 0.05, as described in Section III-A for green channel recovery.

8

(a) (b)

Fig. 3. Illustration of recovering (g− r)(i, j) for (i, j) ∈ Rc. Pixels used for computing the second order partial derivatives are surrounded

by a circle; Pixels used for computing the first order partial derivatives are surrounded by both a circle and a curved square. (a) First, for each

pixel (i, j) ∈ B, ̂(g − r)(i, j) is obtained from its diagonally and anti-diagonally neighbouring (ĝ− r) and (ĝ− b) values; (b) Subsequently,

at each pixel (i, j) ∈ G, ̂(g − r)(i, j) is obtained from its vertically neighbouring (ĝ − r) values and horizontally neighbouring ̂(g − r)
values.

Define

(g − r)d =
(ĝ − r) (i+ 1, j + 1) + (ĝ − r) (i− 1, j − 1)

2

(g − r)a =
(ĝ − r) (i− 1, j + 1) + (ĝ − r) (i+ 1, j − 1)

2
, (18)

which compute the diagonal mean and anti-diagonal mean of (ĝ − r) at (i, j). Furthermore, the second

order partial derivatives in the colour-difference plane ĝ − b at (i, j) are approximated by the central

differencing scheme,

∂2
d(ĝ − b) =

(ĝ − b) (i+ 2, j + 2) + (ĝ − b) (i− 2, j − 2)− 2(ĝ − b) (i, j)

8

∂2
a(ĝ − b) =

(ĝ − b) (i+ 2, j − 2) + (ĝ − b) (i− 2, j + 2)− 2(ĝ − b) (i, j)

8
, (19)

We infer (g − r)(i, j) by fusing the directional estimation using ωd, that is,

(̂g − r)(i, j) = ωd

(

(g − r)d − ∂2
d(ĝ − b)

)

+ (1− ωd)
(

(g − r)a − ∂2
a(ĝ − b)

)

, (20)

which recovers r(i, j) by

r̂(i, j) = ĝ(i, j)− (̂g − r)(i, j), (21)

for (i, j) ∈ B.

2) Estimating red values at G: Once (̂g − r)(B) is available, (̂g − r)(G) can be estimated from its

horizontal and vertical neighbours, as shown in Fig. 3(b). Note that in this step, for each (i, j) ∈ G,

either (ĝ− r) or (̂g − r) values have been already computed at the four nearest neighbours (i− 1, j),(i+

9

1, j),(i, j− 1) and (i, j +1). For notation simplicity, we denote them uniformly by (̃g − r). In the green-

red difference plane at pixel (i, j), we compute its horizontal and vertical average values (g − r)h and

(g − r)v by

(g − r)h =
(̃g − r) (i, j + 1) + (̃g − r) (i, j − 1)

2

(g − r)v =
(̃g − r) (i+ 1, j) + (̃g − r) (i− 1, j)

2
. (22)

Moreover, we approximate the second order partial derivatives of (̃g − r) at (i, j) by the central differ-
encing scheme as

∂2

h
˜(g − r) =

∂h
˜(g − r) (i, j + 1) − ∂h

˜(g − r) (i, j − 1)

2

∂2

v
˜(g − r) =

∂v ˜(g − r) (i+ 1, j)− ∂v ˜(g − r) (i− 1, j)

2
, (23)

where ∂h(̃g − r)(i, j − 1), ∂h(̃g − r)(i, j + 1), ∂v (̃g − r)(i − 1, j) and ∂v (̃g − r)(i + 1, j) are further

approximated by central differencing

∂h(̃g − r)(i, j − 1) =
∂h(̃g − r)(i, j + 1)− ∂h(̃g − r)(i, j − 3)

4

∂h(̃g − r)(i, j + 1) =
∂h(̃g − r)(i, j + 3)− ∂h(̃g − r)(i, j − 1)

4

∂v (̃g − r)(i− 1, j) =
∂h(̃g − r)(i+ 1, j)− ∂h(̃g − r)(i− 3, j)

4

∂v (̃g − r)(i+ 1, j) =
∂h(̃g − r)(i+ 3, j)− ∂h(̃g − r)(i− 1, j)

4
(24)

Subsequently, (̂g − r)(i, j) is given by

(̂g − r)(i, j) = ωh

(

(g − r)h − ∂2
h(̃g − r)

)

+ (1− ωh)
(

(g − r)v − ∂2
v (̃g − r)

)

, (25)

where ωh is computed by the same formula as in Eq.1, Eq.2 and Eq.13. Finally, r(i, j) is restored by

Eq.21 for (i, j) ∈ G. Algorithm 2 summarizes the estimation process of the missing red components.

At image boundaries where pixels required for central differencing or averaging are unavailable, we

simply restore the missing colour components by linear interpolation or nearest-neighbour interpolation.

IV. EXPERIMENTAL RESULTS

We experimentally evaluate the proposed algorithm, which we name Logistic Edge-Sensing Demo-

saicking (LED). To examine the pure effectiveness of steering demosaicking by logistic functional of

the difference between directional variation, we do not enhance the image restoration quality by any

post-processing or refinement technique.

Datasets Following the literature convention, we first test LED on traditional benchmarks Kodak [37]

and McM [8]. The Kodak dataset contains 24 images of size 768 × 512 and the McM dataset contains

18 images of size 500 × 500. As each of these test images has fewer than 0.4-Mega pixels, whereas

current consumer camera resolution typically has several Mega pixels, experiments on traditional McM

and Kodak datasets may not fully reflect real applications. To examine the potential performance of LED

in real practice, we further test it on the 3072 × 2048 (about 6.2-Mega pixels) version of the Kodak

10

Algorithm 2: Red Channel Demosaicking

Input: Mosaicked image M; estimated green channel ĝ(L); hyper-parameter k

Output: r̂(i, j) for each (i, j) ∈ Rc

1 rmax := max(r(R));
2 rmin := min(r(R));
3 for each (i, j) ∈ B do

4 Compute r̂(i, j) by sequentially implementing Eq.15 until Eq.21;

5 r̂(i, j) = max(min(r̂(i, j), rmax), rmin);

6 for each (i, j) ∈ G do

7 Compute (̂g − r)(i, j) by sequentially implementing Eq.22 until Eq.25;

8 Compute r̂(i, j) by Eq.21;

9 r̂(i, j) = max(min(r̂(i, j), rmax), rmin);

10 return r̂(Rc)

dataset [40], the resolution of which is comparable to the 8-Mega pixels resolution of Iphone6. We term

this modern resolution Kodak dataset as MR Kodak.

Comparison and Metrics Beside comparing to the HA algorithm, we extensively compare LED with

28 existing demosaicking methods by running their publicly available source codes. The performance

comparison is conducted in terms of demosaicking accuracy and efficiency. We measure the accuracy

of the demosaicked images by Peak Signal to Noise Ratio (PSNR), Structural SIMilarity (SSIM) and

S-CIELAB [41]. In the case that the competing methods have source codes in MATLAB, we measure

the demosaicking efficiency by timing the particular demosaicking process, which outputs the final RGB

image from the Bayer mosaicked input, on McM 500×500 images. More specifically, if the demosaicking

process is implemented by a single function in the source code, we add the MATLAB timing function

timeit to record its running time; Whereas if the demosaicking process consists of multiple functions, we

use the MATLAB timing function tic and toc. In the case that the competing methods have source codes

in C, we use the time library functions clock.

Due to the “warm up” factor, the demosaicking generally takes longer on the first test image than the

other images, hence we report the median running time from the 2nd to the 18th McM images as the

final time measurement. All experiments are conducted on a 2.8GHz Intel i7-4900MQ CPU with 8GB

RAM, unless otherwise specified.

Parameter Settings The only hyper-parameter of our method to set is the logistic function steepness

coefficient k in Eq.13, which is fixed to 0.05 (see SectionIII-A) in all experiments. Many existing works

shave off image boundaries of various width from measuring demosaicking accuracy (for example, 11
pixels in Ref. [42] and 20 pixels in Ref. [8]), and we also shave off 4 pixels wide image boundaries. If

the source code of a competing method does not specify the shave-off boundary width, we also set it

to 4. For methods that simultaneously address demosaicking and denoising, we set the additional noise

level to zero in their source codes. We leave other parameters (including boundary shaved-off size) as

their default values in the original code, since they may lead to the optimal performance. Nevertheless,

we suggest that future research to take image boundaries into account, as the demosaicked image should

not shrink in real applications.

A. Numerical Evaluation on Low Resolution Images

Table IV-A and Table IV-A present the demosaicking accuracy, quantitatively measured by PSNR for

each channel, PSNR for the whole image (a.k.a., cPSNR), SSIM and S-CIELAB, of the proposed LED

algorithm on each individual image from Kodak and McM respectively. Table III compares the accuracy

and computation time of the LED against the traditional HA method under the same implementation

11

settings. Significantly, LED improves HA by 2.51dB and 1.74dB in PSNR, 0.01 and 0.01 in SSIM, 0.27
and 0.31 in S-CIELAB on Kodak and McM respectively, at an extra cost of merely 0.038 seconds for

500× 500 pixels.

We compare LED with previous demosaicking methods by running their available source codes, mostly

found according to [43] and [44] 1. They are: Alternating Projection (AP) [26] (using the implementation

by Y. M. Lu in [29]); High Quality Linear Interpolation (HQLI) [7] (using the MATLAB build-in function

demosaic); Primary Consistent Soft Decision (PCSD) [21]; Adaptive Homogeneity-Directed (AHD) [28];

Directional Linear Minimum Mean Square-Error Estimation (DLMMSE) [45]; Weighted Edge and Color

Difference (WECD) [17]; Total Least Square (TLS) [46]; Directional Filtering and A Posteriori Decision

(DFAPD) [22]; Wavelet Analysis of Luminance Component (WALC) [47]; Heterogeneity-Projection Hard-

Decision (HPHD) [48]; Regularization Approach (RA) [24]; Self-Similarity Driven (SSD) [15]; Contour

Stencils (CS) [49]; One Step Alternating Projections (OSAP) [29]; Local Directional Interpolation and

Non-local Adaptive Thresholding (LDINAT) [8]; Directional Filtering and Weighting (DFW) [50]; Resid-

ual Interpolation (RI) [10]; Multiscale Gradient (MSG) [5]; Least Square Luma-Chroma Demultiplexing

and Noise Estimation (LSLCD-NE) [42]; Flexible Image Processing Framework (FlexISP) [51] (using the

implementation by Tan et al. in [52]2); Inter-color Correlation [12]; Adaptive Residual Interpolation (ARI)

[11]; Multidirectional Weighted Interpolation (MDWI) [53] (using the implementation found in Github);

Directional Difference Regression (DDR) [13]; Minimized-Laplacian Residual Interpolation (MLRI) [25];

Sequential Energy Minimization [54]; and Alternating Direction Method of Multipliers (ADMM) [52]3.

Web addresses of these source codes are provided along with the bibliography of this work.

For the clearance of comparison, Table IV only shows the accuracy measured by cPSNR and efficiency

measured by running time of each competing method on the McM dataset, which is more challenging

than the Kodak dataset [19]. Evidently, it is observed that:

• None of the competing methods outperforms the proposed method by both higher cPSNR and lower

computation cost; Whereas the proposed LED clearly outperforms 18 out of 28 methods by both

cPSNR and running time.

• OS-AP and LSLCD-NE have similar running time to the proposed method, but their cPSNRs are

about 2dB and 1.15dB lower respectively. SSD and FlexIP have similar (slightly superior) cPSNRs

to the proposed method, but they are about 69 and 2633 times slower.

• The proposed LED has lower cPSNR than RI, ICC, MLRI, CS, DDR, MDWI, ARI and LDINAT,

but is about 12, 17, 27, 28, 122, 280, 420 and 4400 times faster than them respectively.

B. Visual Performance on Low Resolution Images

Fig.4-Fig.6 show examples that LED works visually favorably to state-of-the-art methods. Fig.4 shows

a local region taken from the 1st image of McM. Demosaicking by ICC and MLRI in this region suffers

noticeable “false color” artifacts, whereas DDR and LED recoveries look more natural. Fig.5 shows

another example taken from the 9th McM image. MLRI incompletely recovers the black lines in the

example region, whereas LED and ICC both slightly blur the black lines with the red background, but their

recovery is visually more acceptable. In the example shown by Fig.6, DDR produces obvious “smearing”

artifacts. In contrast, demosaicking results by ICC, MLRI and LED are all visually close to the original

image.

1Deep Convolutional Neural Network based method proposed in [34] has Matlab code available online. However, as deep learning methods

trade memories for computation time and accuracy, they are in a very different vein from our method, and hence Ref. [34] is not included

in this experiment.
2The original implementation of FlexISP in [52] computes PSNR for each channel first, then averages them as cPSNR. We modified this

computation, by using the mean squared error over all pixels and all channels to compute cPSNR.
3Same modification as we did for FlexISP.

12

TABLE I

DEMOSAICKING ACCURACY OF THE PROPOSED METHOD LED, MEASURED BY PSNR OF EACH CHANNEL, CPSNR, SSIM AND

S-CIELAB, ON EACH INDIVIDUAL IMAGE OF THE TRADITIONAL LOW RESOLUTION KODAK DATASET.

13

TABLE II

DEMOSAICKING ACCURACY OF THE PROPOSED METHOD LED, MEASURED BY PSNR OF EACH CHANNEL, CPSNR, SSIM AND

S-CIELAB, ON EACH INDIVIDUAL IMAGE OF THE MCM DATASET.

14

Kodak McM

time
cPSNR SSIM S-CIELAB cPSNR SSIM S-CIELAB

(sec)

HA 35.80 0.971 1.246 33.49 0.958 1.622 0.024

LED (ours) 38.31 0.982 0.979 35.23 0.968 1.308 0.062

TABLE III

PERFORMANCE COMPARISON BETWEEN THE TRADITIONAL HA AND THE PROPOSED LED. DEMOSAICKING ACCURACY IS MEASURED

BY CPSNR, SSIM AND S-CIELAB VALUES AVERAGED OVER THE KODAK AND MCM DATASETS; DEMOSAICKING EFFICIENCY IS

MEASURED BY THE MEDIAN RUNNING TIME (IN SECONDS) OF DEMOSAICKING. BOLD NUMBERS INDICATE THE SUPERIOR

PERFORMANCE UNDER EACH METRIC.

method time (sec) cPSNR shave width

HQLI [7] 0.002 ↑ 34.34 ↓ 4

HA [2] 0.024 ↑ 33.49 ↓ 4

OS-AP [29] 0.04 ≈ 33.26 ↓ 10

LSLCD-NE [42] 0.05 ≈ 34.08 ↓ 11

WECD [17] 0.13 ↓ 32.19 ↓ 4

HPHD [48] 0.14 ↓ 34.75 ↓ 10

PCSD [21] 0.14 ↓ 34.93 ↓ 3

AP [26] 0.29 ↓ 33.27 ↓ 10

RA [24] 0.30 ↓ 34.29 ↓ 4

DFAPD [22] 0.45 ↓ 34.28 ↓ 4

DFW [50] 0.52 ↓ 34.58 ↓ 6

WALC [47] 0.65 ↓ 33.85 ↓ 4

RI [10] 0.75 ↓ 36.50 ↑ 10

AHD [28] 0.97 ↓ 33.52 ↓ 4

ICC [12] 1.03 ↓ 36.79 ↑ 10

MLRI [25] 1.65 ↓ 36.91 ↑ 10

CS [49] 1.68 ↓ 35.59 ↑ 4

DLMMSE [45] 1.88 ↓ 34.40 ↓ 20

SSD [15] 4.32 ↓ 35.38 ≈ 4

MSG [5] 7.29 ↓ 34.72 ↓ 10

DDR [13] 7.32 ↓ 37.17 ↑ 4

MDWI [53] 17.09 ↓ 36.16 ↑ 10

ARI [11] 25.23 ↓ 37.49 ↑ 10

TLS [46] 151.08 ↓ 30.67 ↓ 4

FlexISP [51] 158.06 ↓ 35.45 ≈ 4

LDINAT [8] 264.10 ↓ 36.18 ↑ 20

SEM [54] 568.69 ↓ 34.19 ↓ 7

ADMM [52] 587.97 ↓ 32.25 ↓ 4

LED (ours) 0.06 35.23 4

TABLE IV

THE MEAN CPSNR VALUES AND MEDIAN RUNNING TIME (IN SECONDS) OF THE COMPETING METHODS AND THE PROPOSED LED ON

MCM. DOWN-ARROW SYMBOL “↓” (OR UP-ARROW SYMBOL “↑”) INDICATES THAT THE CORRESPONDING PERFORMANCE IS INFERIOR

(OR SUPERIOR) TO THE PROPOSED METHOD; SYMBOL “≈” MEANS SIMILAR PERFORMANCE TO THE PROPOSED METHOD. METHODS

THAT ARE EVIDENTLY OUTPERFORMED BY OUR METHOD ARE HIGHLIGHTED FOR CLARITY.

C. Evaluation on Modern Resolution Images

The resolution of the MR Kodak dataset is similar to today’s popular daily-use cameras, which entail

fast demosaicking speed. Table V compares the proposed LED with faster algorithms HA and HQLI, as

well as more sophisticated algorithms RI, ICC, MLRI, CS and DDR, which have higher cPSNR accuracy

than LED on low resolution dataset McM. In this experiment, we exclude methods that are more than 200
times slower than LED, since they would have different application scenarios. On test images of modern

resolution, LED and DDR have the highest average SSIM value. It outperforms CS by cPSNR, SSIM

and running time. The cPSNR of LED is still notably (more than 1db) higher than HA and HQLI, while

it is comparable to the top-performing state-of-the-art methods that are tens of time slower. It takes LED

only 2.86 seconds, but takes RI, ICC, MLRI tens of seconds and DDR hundreds of seconds.

15

(a) Original (b) Zoomed (c) ICC

(d) MLRI (e) DDR (f) LED (proposed)

Fig. 4. An example of the demosaicking results by ICC, MLRI, DDR and the proposed LED on a local region of McM image 1. Visually,

LED performs better than ICC and MLRI.

metrics HQLI HA RI ICC CS MLRI DDR LED

time(sec) 0.034 0.820 20.96 30.87 33.71 50.21 192.90 2.86

cPSNR 41.23 39.90 42.50 42.55 41.60 42.74 42.79 42.28

SSIM 0.975 0.967 0.974 0.978 0.971 0.975 0.980 0.980

TABLE V

THE MEAN CPSNR, SSIM AND MEDIAN RUNNING TIME OF HQLI, HA, RI, ICC, CS, MLRI, DDR AND LED DEMOSAICKING

METHODS ON THE MR KODAK DATASET. BOLD NUMBERS INDICATE THE BEST PERFORMANCE UNDER EACH METRIC.

V. CONCLUSION

We have proposed a very low cost edge sensing strategy, termed as LED, for color image demosaicking.

It guides the green channel interpolation and color difference plane interpolation by logistic functional of

the difference between directional variation. Among 29 demosaicking methods tested by code running, our

method is one of the fastest. Without using any refinement or post-processing technique, LED achieves the

accuracy higher than many recently proposed methods on low resolution images, and comparable to top

performers on images of currently popular resolution. Our extensive experiments suggest that, accurate

non-local edge detection for demosaicking is generally difficult and time consuming. Instead, leveraging

the originally captured values of the nearest neighbours is much more efficient.

Our algorithm is highly parallelable, and hence its GPU or FPGA implementation can easily restore

very high resolution images in real time. This is desirable in the digital camera industry, as the camera

resolution is increasing rapidly. Furthermore, in demosaicking applications where speed is allowed to trade

for accuracy, the proposed method provides a quick and high quality initialization, which is generally

needed in sophisticated iterative demosaicking algorithms.

16

(a) Original (b) Zoomed (c) ICC

(d) MLRI (e) DDR (f) LED

Fig. 5. An example of the demosaicking results by ICC, MLRI, DDR and the proposed LED, on a local region of McM image 9. Visually,

LED performs better than MLRI.

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England: Addison-Wesley, 1999.

Generated by IEEEtran.bst, version: 1.12 (2007/01/11)

REFERENCES

[1] R. Szeliski, Computer vision: algorithms and applications. Springer Science & Business Media, 2010.

[2] J. F. H. Jr. and J. E. Adams, “Adaptive color plane interpolation in single sensor color electronic camera,” 1997, uS Patent 5,629,734.

[3] C. Zhang, Y. Li, J. Wang, and P. Hao, “Universal demosaicking of color filter arrays,” IEEE Transactions on Image Processing, vol. 25,

no. 11, pp. 5173–5186, 2016.

[4] L. Shao and A. U. Rehman, “Image demosaicing using content and colour-correlation analysis,” Signal Processing, vol. 103, pp. 84–91,

2014.

[5] I. Pekkucuksen and Y. Altunbasak, “Multiscale gradients-based color filter array interpolation,” IEEE Transactions on Image Processing,

vol. 22, no. 1, pp. 157–165, 2013, [Online Code: https://sites.google.com/site/ibrahimepekkucuksen/publications; accessed 27-Feb-2018].

[6] J. Wu, M. Anisetti, W. Wu, E. Damiani, and G. Jeon, “Bayer demosaicking with polynomial interpolation,” IEEE Transactions on

Image Processing, vol. 25, no. 11, pp. 5369–5382, 2016.

[7] H. S. Malvar, L. He, and R. Cutler, “High-quality linear interpolation for demosaicing of bayer-patterned color images,” in Proc. IEEE

International Conference on Acoustics, Speech, and Signal Processing, 2004, pp. iii–485–8, [Matlab build-in function demosaic()].

[8] L. Zhang, X. Wu, A. Buades, and X. Li, “Color demosaicking by local directional interpolation and nonlocal adaptive thresholding,” Jour-

nal of Electronic imaging, vol. 20, no. 2, p. 023016, 2011, [Online Code: http://www4.comp.polyu.edu.hk/∼cslzhang/CDM Dataset.htm;

accessed 27-Feb-2018].

[9] I. Pekkucuksen and Y. Altunbasak, “Gradient based threshold free color filter array interpolation,” in Image Processing, IEEE

International Conference on, 2010, pp. 137–140.

[10] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Residual interpolation for color image demosaicking,” in Proc. IEEE International

Conference on Image Processing, 2013, pp. 2304–2308, [Online Code: http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html; accessed 27-

Feb-2018].

https://sites.google.com/site/ibrahimepekkucuksen/publications
http://www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm
http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html

17

(a) Original (b) Zoomed (c) ICC

(d) MLRI (e) DDR (f) LED (proposed)

Fig. 6. An example of the demosaicking results by ICC, MLRI, DDR and the proposed LED on a local region of McM image 18. Visually,

LED performs better than DDR.

[11] Y. Monno, D. Kiku, M. Tanaka, and M. Okutomi, “Adaptive residual interpolation for color image demosaicking,” in Proc. IEEE

International Conference on Image Processing, 2015, pp. 3861–3865, [Online Code: http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html;

accessed 27-Feb-2018].

[12] S. P. Jaiswal, O. C. Au, V. Jakhetiya, Y. Yuan, and H. Yang, “Exploitation of inter-color correlation for color im-

age demosaicking,” in Proc. IEEE International Conference on Image Processing, 2014, pp. 1812–1816, [Online Code:

http://spjaiswal.student.ust.hk/color demosaicing.html; accessed 27-Feb-2018].

[13] J. Wu, R. Timofte, and L. V. Gool., “Demosaicing based on directional difference regression and efficient regression priors,” IEEE

Transactions on Image Processing, vol. 25, no. 8, pp. 3862–3874., 2016, [Online Code: http://www.vision.ee.ethz.ch/∼timofter/; accessed

27-Feb-2018].

[14] K.-H. Chung and Y.-H. Chan, “Color demosaicing using variance of color differences,” IEEE Transactions on Image Processing, vol. 15,

no. 10, pp. 2944–2955, 2006.

[15] A. Buades, B. Coll, J.-M. Morel, and C. Sbert, “Self-similarity driven color demosaicking,” IEEE Transactions on Image Processing,

vol. 18, no. 6, pp. 1192–1202, 2009, [Online code: http://www.ipol.im/pub/art/2011/bcms-ssdd/; accessed 27-Feb-2018].

[16] S. Tajima, R. Funatsu, and Y. Nishida, “Chromatic interpolation based on anisotropy-scale-mixture statistics,” Signal Processing, vol. 97,

pp. 262–268, 2014.

[17] C. Y. Su, “Highly effective iterative demosaicing using weighted-edge and color-difference interpolations,” IEEE Transactions on

Consumer Electronics, vol. 52, no. 2, pp. 639–645, 2006, [Online Code: http://web.ntnu.edu.tw/∼scy/heid demo.html; accessed 27-

Feb-2018].

[18] X. Chen, G. Jeon, and J. Jeong, “Voting-based directional interpolation method and its application to still color image demosaicking,”

IEEE Transactions on circuits and systems for video technology, vol. 24, no. 2, pp. 255–262, 2014.

[19] Y. Kim and J. Jeong, “Four-direction residual interpolation for demosaicking,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 26, no. 5, pp. 881–890, 2016.

[20] J. Wang, J. Wu, Z. Wu, G. Jeon, and J. Jeong, “Bilateral filtering and directional differentiation for bayer demosaicking,” IEEE Sensors

Journal, vol. 17, no. 3, pp. 726–734, 2017.

[21] X. Wu and N. Zhang, “Primary-consistent soft-decision color demosaicking for digital cameras (patent pending),” IEEE Transactions on

Image Processing, vol. 13, no. 9, pp. 1263–1274, 2004, [Online Code: www.ece.mcmaster.ca/%7Exwu/executables/pcsd.rar; accessed

27-Feb-2018].

http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html
http://spjaiswal.student.ust.hk/color_demosaicing.html
http://www.vision.ee.ethz.ch/~timofter/
http://www.ipol.im/pub/art/2011/bcms-ssdd/
http://web.ntnu.edu.tw/~scy/heid_demo.html
www.ece.mcmaster.ca/%7Exwu/executables/pcsd.rar

18

[22] D. Menon, S. Andriani, and G. Calvagno, “Demosaicing with directional filtering and a posteriori decision,” IEEE Transactions on

Image Processing, vol. 16, no. 1, pp. 132–141, 2007, [Online Code: http://www.danielemenon.netsons.org/pub/dfapd/dfapd.php; accessed

27-Feb-2018].

[23] J. Duran and A. Buades, “Self-similarity and spectral correlation adaptive algorithm for color demosaicking,” IEEE transactions on

image processing, vol. 23, no. 9, pp. 4031–4040, 2014.

[24] D. Menon and G. Calvagno, “A regularization approach to demosaicking,” in Proc. of IS& T/SPIE Visual Communications and Image

Processing, 2008, p. 68221L, [Online Code: http://www.dei.unipd.it/∼menond/pub/rad/rad.html; accessed 27-Feb-2018].

[25] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, “Beyond color difference: residual interpolation for color image demosaicking,” IEEE

Transactions on Image Processing, vol. 25, no. 3, pp. 1288–1300, 2016, [Online Code: http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html;

accessed 27-Feb-2018].

[26] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating pro-

jections,” IEEE transactions on image processing, vol. 11, no. 9, pp. 997–1013, 2002, [Online Code:

lu.seas.harvard.edu/software/demosaicking-matlab-code-implementing-fast-demosaicking-algorithm-described-following; accessed

27-Feb-2018].

[27] X. Li, “Demosaicing by successive approximation,” IEEE Transactions on Image Processing, vol. 14, no. 3, pp. 370–379, 2005.

[28] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed demosaicing algorithm,” IEEE Transactions on Image Processing,

vol. 14, no. 3, pp. 360–369, 2005, [Online Code: http://issl.udayton.edu/index.php/software/; accessed 27-Feb-2018].

[29] Y. M. Lu, M. Karzand, and M. Vetterli, “Demosaicking by alternating projections: theory and fast one-step

implementation,” IEEE Transactions on Image Processing, vol. 19, no. 8, pp. 2085–2098, 2010, [Online Code:

lu.seas.harvard.edu/software/demosaicking-matlab-code-implementing-fast-demosaicking-algorithm-described-following; accessed

27-Feb-2018].

[30] W. Ye and K.-K. Ma, “Color image demosaicing using iterative residual interpolation,” IEEE Transactions on Image Processing, vol. 24,

no. 12, pp. 5879–5891, 2015.

[31] W. Lu and Y.-P. Tan, “Color filter array demosaicking: new method and performance measures,” IEEE transactions on image processing,

vol. 12, no. 10, pp. 1194–1210, 2003.

[32] Y. Niu, A. Dick, and M. Brooks, “Locally oriented optical flow computation,” IEEE Transactions on Image Processing, vol. 21, no. 4,

pp. 1573–1586, 2012.

[33] Y.-Q. Wang, “A multilayer neural network for image demosaicking,” in Image Processing, 2014 IEEE International Conference on,

2014, pp. 1852–1856.

[34] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand, “Deep joint demosaicking and denoising,” ACM Transactions on Graphics, vol. 35,

no. 6, p. 191, 2016.

[35] R. Tan, K. Zhang, W. Zuo, and L. Zhang, “Color image demosaicking via deep residual learning,” in 2017 IEEE International Conference

on Multimedia and Expo (ICME), 2017, pp. 793–798.

[36] D. S. Tan, W.-Y. Chen, and K.-L. Hua, “Deepdemosaicking: Adaptive image demosaicking via multiple deep fully convolutional

networks,” IEEE Transactions on Image Processing, vol. 27, no. 5, pp. 2408–2419, 2018.

[37] “Low resolution kodak image dataset,” http://r0k.us/graphics/kodak/, [Online; accessed 11-Jan-2018].

[38] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang, “Waterloo Exploration Database: New challenges for image

quality assessment models,” IEEE Transactions on Image Processing, vol. 26, no. 2, pp. 1004–1016, 2017.

[39] “Waterloo exploration dataset,” https://ece.uwaterloo.ca/∼k29ma/exploration/, [Online; accessed 1-Jun-2018].

[40] “Modern resolution kodak image dataset,” http://www.math.purdue.edu/∼lucier/PHOTO CD/BMP IMAGES/, [Online; accessed 11-

Jan-2018].

[41] X. Zhang and B. A. Wandell, “A spatial extension of CIELAB for digital colorimage reproduction,” Journal of the Society for Information

Display, vol. 5, no. 1, pp. 61–63, 1997.

[42] G. Jeon and E. Dubois, “Demosaicking of noisy bayer-sampled color images with least-squares luma-chroma demultiplex-

ing and noise level estimation,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 146–156, 2013, [Online Code:

http://www.site.uottawa.ca/∼edubois/lslcd ne/; accessed 27-Feb-2018].

[43] “D. khashabi list of online demosaicking codes,” http://www.cis.upenn.edu/∼danielkh/files/2013 2014 demosaicing/demosaicing.html,

[Online; accessed 11-Jan-2018].

[44] “Tokyo institute of technology list of online demosaicking codes,” http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html, [Online; accessed

11-Jan-2018].

[45] L. Zhang and X. Wu, “Color demosaicking via directional linear minimum mean square-error estimation,” IEEE Transactions on Image

Processing, vol. 14, no. 12, pp. 2167–2178, 2005, [Online Code: http://www4.comp.polyu.edu.hk/∼cslzhang/papers.htm; accessed 27-

Feb-2018].

[46] K. Hirakawa and T. W. Parks, “Joint demosaicing and denoising,” IEEE Transactions on Image Processing, vol. 15, no. 8, pp. 2146–

2157, 2006, [Online Code: http://issl.udayton.edu/index.php/software/; accessed 27-Feb-2018].

[47] D. Menon and G. Calvagno, “Demosaicing based on wavelet analysis of the luminance component,” in Proc. IEEE Int. Conf. Image

Processing, vol. 2, Sep. 2007, pp. 181–184, [Online Code: http://www.danielemenon.netsons.org/pub/dbwalc/dbwalc.php; accessed

27-Feb-2018].

[48] C.-Y. Tsai and K.-T. Song, “Heterogeneity-projection hard-decision color interpolation using spectral-spatial correlation,” IEEE

Transactions on Image Processing, vol. 16, no. 1, pp. 78–91, 2007, [Online Code: http://isci.cn.nctu.edu.tw/video/Demo/; accessed

27-Feb-2018].

[49] P. Getreuer, “Image demosaicking with contour stencils,” Image Processing On Line, vol. 2, pp. 22–34, 2012, [Online code:

http://www.ipol.im/pub/art/2012/g-dwcs/; accessed 27-Feb-2018].

[50] D. Zhou, X. Shen, and W. Dong, “Colour demosaicking with directional filtering and

weighting,” IET Image Processing, vol. 6, no. 8, pp. 1084–1092, 2012, [Online Code:

http://www.danielemenon.netsons.org/pub/dfapd/dfapd.php
http://www.dei.unipd.it/~menond/pub/rad/rad.html
http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html
lu.seas.harvard.edu/software/demosaicking-matlab-code-implementing-fast-demosaicking-algorithm-described-following
http://issl.udayton.edu/index.php/software/
lu.seas.harvard.edu/software/demosaicking-matlab-code-implementing-fast-demosaicking-algorithm-described-following
http://r0k.us/graphics/kodak/
https://ece.uwaterloo.ca/~k29ma/exploration/
http://www.math.purdue.edu/~lucier/PHOTO_CD/BMP_IMAGES/
http://www.site.uottawa.ca/~edubois/lslcd_ne/
http://www.cis.upenn.edu/~danielkh/files/2013_2014_demosaicing/demosaicing.html
http://www.ok.sc.e.titech.ac.jp/res/DM/RI.html
http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
http://issl.udayton.edu/index.php/software/
http://www.danielemenon.netsons.org/pub/dbwalc/dbwalc.php
http://isci.cn.nctu.edu.tw/video/Demo/
http://www.ipol.im/pub/art/2012/g-dwcs/

19

https://www.mathworks.com/matlabcentral/fileexchange/39843-colour-demosaicking-with-directional-filtering-and-weighting?s tid=gn loc drop;

accessed 27-Feb-2018].

[51] F. Heide, M. Steinberger, Y. T. Tsai, M. Rouf, D. Paja̧k, D. Reddy, G. Orazio, J. Liu, W. Heidrich, K. Egiazarian, J. Kautz, and K. Pulli,

“Flexisp: a flexible camera image processing framework,” ACM Transactions on Graphics, vol. 33, no. 6, p. 231, 2014, [Online Code:

implemented by https://github.com/TomHeaven/Joint-Demosaic-and-Denoising-with-ADMM; accessed 27-Feb-2018].

[52] H. Tan, X. Zeng, S. Lai, Y. Liu, and M. Zhang, “Joint demosaicing and denoising of noisy bayer images

with admm,” in Proc. IEEE International Conference on Image Processing, 2017, pp. 2951–2955, [Online Code:

https://github.com/TomHeaven/Joint-Demosaic-and-Denoising-with-ADMM; accessed 27-Feb-2018].

[53] X. Chen, L. He, G. Jeon, and J. Jeong, “Multidirectional weighted interpolation and refinement method for bayer pattern cfa

demosaicking,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 8, pp. 1271–1282, 2015, [Online

Code: http://https://github.com/skye17/MDWI demosaicking; accessed 27-Feb-2018].

[54] T. Klatzer, K. Hammernik, P. Knbelreiter, and T. Pock, “Joint demosaicing and denoising based on sequential

energy minimization,” in Proc. IEEE International Conference on Computational Photography, 2016, [Online Code:

https://github.com/VLOGroup/joint-demosaicing-denoising-sem; accessed 27-Feb-2018].

https://www.mathworks.com/matlabcentral/fileexchange/39843-colour-demosaicking-with-directional-filtering-and-weighting?s_tid=gn_loc_drop
https://github.com/TomHeaven/Joint-Demosaic-and-Denoising-with-ADMM
https://github.com/TomHeaven/Joint-Demosaic-and-Denoising-with-ADMM
http://https://github.com/skye17/MDWI_demosaicking
https://github.com/VLOGroup/joint-demosaicing-denoising-sem

	I Introduction
	II Hamilton-Adams Demosaicking
	II-A HA Green Channel Demosaicking
	II-B HA Red and Blue Channel Demosaicking
	II-C Advantages and limitations of the HA algorithm

	III Edge-Sensing Demosaicking by Logistic Functional of Difference between Directional Variations
	III-A Green Channel Demosaicking
	III-B Red and Blue Channels Demosaicking
	III-B1 Estimating red values at B
	III-B2 Estimating red values at G

	IV Experimental Results
	IV-A Numerical Evaluation on Low Resolution Images
	IV-B Visual Performance on Low Resolution Images
	IV-C Evaluation on Modern Resolution Images

	V Conclusion
	References
	References

