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Abstract

Using multi-atlas registration (MAR), information carried by atlases can be transferred onto a new 

input image for the tasks of region of interest (ROI) segmentation, anatomical landmark detection, 

and so on. Conventional atlases used in MAR methods are monomodal and contain only normal 

anatomical structures. Therefore, the majority of MAR methods cannot handle input multimodal 

pathological images, which are often collected in routine image-based diagnosis. This is because 

registering monomodal atlases with normal appearances to multimodal pathological images 

involves two major problems: (1) missing imaging modalities in the monomodal atlases, and (2) 

influence from pathological regions. In this paper, we propose a new MAR framework to tackle 

these problems. In this framework, a deep learning based image synthesizers are applied for 

synthesizing multimodal normal atlases from conventional monomodal normal atlases. To reduce 

the influence from pathological regions, we further propose a multimodal low-rank approach to 

recover multimodal normal-looking images from multimodal pathological images. Finally, the 

multimodal normal atlases can be registered to the recovered multimodal images in a multi-

channel way. We evaluate our MAR framework via brain ROI segmentation of multimodal tumor 

brain images. Due to the utilization of multimodal information and the reduced influence from 

pathological regions, experimental results show that registration based on our method is more 

accurate and robust, leading to significantly improved brain ROI segmentation compared with 

state-of-the-art methods.
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I. Introduction

USING multi-atlas registration (MAR), information carried by atlases can be transferred 

onto a new input image for tasks such as segmentation [1]–[3], landmark detection [4], and 

surgical planning [5]. Atlases adopted in MAR methods are generally obtained from 

monomodal normal images (e.g., T1-weighted MR images of normal brains) [6]–[9]. Thus, 

the majority of MAR methods cannot be applied to multimodal pathological images. This is 

because registering monomodal normal atlases to multimodal pathological images involves 

two major problems: (1) missing imaging modalities in the monomodal atlases, and (2) 

influence from pathological regions because of lacking correspondence between 

pathological and normal regions. However, multimodal pathological images are often 

collected in routine image-based diagnosis. For example, T1-weighted, T1 contrast-

enhanced (T1c), T2-weighted and FLAIR MR images are usually acquired for patients with 

brain tumors.

One way to deal with the problem of missing imaging modalities is by discarding the 

modalities that are not available in the monomodal atlases, but at the cost of losing useful 

information. An alternative is to use cross-modal similarity metrics such as mutual 

information (MI) [10] and normalized mutual information (NMI) [11] for cross-modality 

registration. However, unlike monomodal similarity metrics, such as the mean squared 

difference of image intensity, local anatomical similarity cannot be directly or efficiently 

calculated with MI or NMI [12].

To reduce the influence from pathological regions, Brett et al. [13], [14] proposed a cost 

function masking (CFM) strategy to exclude pathological regions from registration, and 

registration is driven only by normal regions. Gooya et al. [15], [16] synthesized 

pathological regions (i.e., tumors) in a normal brain atlas to make the brain atlas similar to 

the input tumor brain image, facilitating subsequent registration. Liu et al. [17], [18] used a 

method called Low-Rank plus Sparse matrix Decomposition (LRSD) [19] to recover 

normal-looking brain image from the input tumor brain image. Then typical image 

registration methods [20]–[24] can be used to register normal brain atlases to the recovered 

normal-looking image.

In this paper, we propose a new MAR framework to solve the two aforementioned problems 

in traditional MAR methods, which have not been well addressed in the literature. Our MAR 

framework can handle multimodal pathological images based on conventional monomodal 

normal atlases. In our framework, deep learning based image synthesizers are introduced to 

produce multimodal normal atlases from conventional monomodal normal atlases. Then 

based on the resulting multimodal normal atlases, a multimodal low-rank method is further 

proposed to recover a multimodal normal-looking image from the input multimodal 

pathological image. Finally, the multimodal normal atlases are registered to the recovered 
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multimodal image in a multi-channel way, where each channel operates one modality guided 

by monomodal image similarity metric. In our MAR framework, the multimodal low-rank 

recovery and the multi-channel registration are iteratively refined until convergence. We 

demonstrate the effectiveness of our MAR framework via segmentation of brain region of 

interest (ROI) in multimodal tumor brain images. The experimental results indicate that 

segmentation is significantly improved compared with state-of-the-art methods.

II. Methods

Since brain tumor is a common brain disease, and multimodal MR tumor brain images are 

usually captured for patients with suspicious brain cancer syndromes, our MAR framework 

is formulated for multimodal MR tumor brain images. By default, each multimodal MR 

tumor brain image has four modalities: T1, T1c, T2 and FLAIR, denoted as 

𝒯 = {𝒯T1, 𝒯T1c, 𝒯T2, 𝒯FLAIR}. The monomodal brain atlases adopted in our framework are 

N T1-weighted MR normal brain images, denoted as 𝒜i, T1, i = 1, ..., N. An overview of our 

framework is shown in Fig. 1.

Our MAR framework consists of three main components. The first component contains 

CycleGAN [25] based image synthesizers, which synthesize the brain atlases of missing 

modalities, i.e., 𝒜i, T1c, 𝒜i, T2 and 𝒜i, FLAIR, from 𝒜i, T1, i = 1, ..., N, resulting in the 

multimodal brain atlases 𝒜i = 𝒜i, T1, 𝒜i, T1c, 𝒜i, T2, 𝒜i, FLAIR , i = 1, ..., N. This component 

is needed to be executed only once. The second component uses a low-rank method called 

multimodal SCOLOR (Spatially COnstrained LOw-Rank), which is an improvement of our 

previously proposed method [26], to recover multimodal normal-looking image 

𝒯 = {𝒯T1, 𝒯T1c, 𝒯T2, 𝒯FLAIR} from the input multimodal tumor brain images 𝒯 based on 

the information provided by 𝒜i, i = 1, ..., N. The third component involves multi-channel 

image registration of the multimodal brain atlases 𝒜i, i = 1, ..., N to the recovered 

multimodal image 𝒯, where each channel operates one modality using monomodal image 

similarity metric. The multimodal SCOLOR based image recovery and the multi-channel 

image registration components are iteratively proceeded to refine the image recovery and 

registration results until convergence (illustrated by the two blue arrows in Fig. 1). Details 

on each component are presented next.

A. CycleGAN based image synthesizers

We use CycleGAN [25] to get multimodal brain atlases by synthesizing missing modalities 

from available monomodal brain atlases. CycleGAN is a special kind of generative 

adversarial network (GAN). Conventional GAN [27] consists of a generator G : X ⟼ Y 
which is responsible for synthesizing image y ∈ Y from image x ∈ X and a discriminator D 
which is responsible for discriminating the synthesized images G(x), x ∈ X, from the images 

in Y. G is typically a fully convolutional network (FCN) [28], and D is a convolutional 

neural network (CNN) [29]. Given a set of training data X = {x1, ..., xM} (from the reference 

modality) and Y = {y1, ..., yM} (from the desired modality), the objective function of GAN 

is
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ℒGAN(G, D, X, Y) = min
G

max
D

𝔼yi ∈ Y log D yi

+ 𝔼xi ∈ X log 1 − D G xi .

(1)

To minimize (1), G should produce synthetic images G(x) that cannot be discriminated by D 
from images in Y. On the other hand, D tries to reject all synthetic images produced by G, 

i.e., D(G(x)) = 0. The optimization process consists of two steps. In the first step, the 

discriminator D is updated by stochastic gradient ascent

∇ 1
M ∑

i = 1

M
log D yi + log 1 − D G xi . (2)

In the second step, the generator G is updated by stochastic gradient descent

∇ 1
M ∑

i = 1

M
log 1 − D G xi . (3)

These two steps are iterated until convergence, i.e., the discriminator D cannot differentiate 

the synthetic images G(x) from the images in Y. GAN requires paired training data to make 

G(xi) have consistent image content with xi. However, paired normal brain images of 

different modalities are usually unavailable. Therefore, we use CycleGAN, which only 

require unpaired training data. The CycleGAN can be regarded as a combination of two 

GANs. Given a set of unpaired training data X = x1, …, xM  of the reference modality and 

Y = y1, …, yM  of the desired modality, One GAN (G1 and D1) is created for X Y, and the 

other GAN (G2 and D2) is created for Y X. The objective function of CycleGAN is 

defined as

ℒCycGAN(G1, G2, D1, D2, X, Y) = min
G1, G2

max
D1, D2

(

ℒGAN(G1, D1, X, Y)

+ ℒGAN(G2, D2, Y , X)

+ ℒcyc(G1, G2))

(4)

where ℒGAN(G1, D1, X, Y) and ℒGAN(G2, D2, Y , X) are two GANs defined in (1), λ is a 

weighting factor, and ℒcyc G1, G2  is the cycle consistency loss which is defined as
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ℒcyc G1, G2 = 𝔼yi ∈ Y G1 G2 yi − yi 1

+ 𝔼xi ∈ X G2 G1 xi − xi 1 .

(5)

The cycle consistency loss encourages G1 G2 yi = yi and G2 G1 xi = xi, therefore it 

prevents images in X from mapping to random images in Y.

We construct three CycleGAN image synthesizers, each of which is used to synthesize the 

brain atlases of one of the three missing modalities (i.e., T1c, T2 and FLAIR) from available 

T1-weighted brain atlases. Three training datasets, each containing images from the 

available modality (i.e., T1) and one of the desired modalities (i.e., one of T1c, T2 and 

FLAIR) are used to train the image synthesizers. Ideally, these training datasets should be 

collected from normal brain images. However, normal MR brain images with all four 

modalities are rare. For example, the T1c modality is only used for tumor cases. Therefore, 

we create these three training image datasets based on a tumor brain image dataset called 

BRATS2015 [30]. In BRATS2015, the multimodal MR image of each subject has T1, T1c, 

T2 and FLAIR modalities. For each modality, 1000 image slice sections containing only 

normal brain regions, are extracted from 100 subjects in BRATS2015. Each image slice 

section has three consecutive 2D image slices in an MR image. Based on the resulting four 

sets of image slice sections, the three training datasets, i.e., (T1, T1c), (T1, T2) and (T1, 

FLAIR), can be created and used to train each CycleGAN based image synthesizer. In the 

testing stage, for each T1-weighted MR normal brain atlas 𝒜i, T1, i = 1, ..., N, every image 

slice section in 𝒜i, T1 is proceeded by the three CycleGAN based image synthesizers to 

produce synthetic image slice sections of respective modalities. Then center slices of the 

resulting synthetic image slice sections of each modality are stacked into the final synthetic 

brain atlas of the corresponding modality. In this way, the multimodal brain atlases of four 

modalities 𝒜i = 𝒜i, T1, 𝒜i, T1c, 𝒜i, T2, 𝒜i, FLAIR , i = 1, ... , N can be obtained. Fig. 2 shows 

an example of a multimodal brain atlas, which has T1, T1c, T2 and FLAIR modalities. It is 

worth noting that, except the T1 modality which is real, the other modalities are synthetic.

B. Multimodal SCOLOR based image recovery

We represent a set of MR brain images of the same modality as a matrix 

I = I1, …, IW ∈ ℝH × W with each image in a column. W is the number of images, and H is 

the number of voxels in each image. Conventional low-rank methods, e.g., Low-Rank plus 

Sparse matrix Decomposition (LRSD) [19], can recover a low-rank matrix 

I = [I1, …, IW] ∈ ℝH × W from I by minimizing the following function:

min
I

(‖I − I‖1 + λ‖I‖*) . (6)
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The first term of (6) is the residual error constraint, which is a L1 norm of residual error 

I − I, encouraging I to be close to I. The second term is the low-rank constraint, which is a 

nuclear norm of I, preventing I having large rank. If images in I contain tumor regions, the 

rank of I will be larger than the case that I is comprised of normal brain images. This is 

because tumors usually have inconsistent image appearances and locations. Therefore, tumor 

regions in I are recovered by normal-looking brain regions in I to make I satisfy the low-

rank constraint. In this way, if an MR brain image Ii ∈ I contains tumors, Ii ∈ I is its 

corresponding recovered image of normal-looking brain. To achieve effective recovery of 

tumor regions, the residual error constraint has to be relaxed to allow large difference 

between I and I, i.e., large residual error I − I. Since the residual error constraint is equally 

imposed on the whole images in I regardless of tumor regions or normal brain regions, 

effective recovery of tumor regions is always at the cost of seriously distorted normal brain 

regions in recovered images.

To effectively recover tumor regions and avoid introducing distortion to normal brain regions 

in the recovered image, in our previous study, we proposed a low-rank method called 

spatially constrained low-rank (SCOLOR) [26] for image recovery. Unlike conventional 

low-rank methods, a tumor mask is introduced to impose different residual error constraints 

on tumor regions and normal brain regions. Specifically, weak residual error constraint is 

imposed on tumor regions for effective recovery, whereas strong residual error constraint is 

imposed on normal brain regions for good preservation. The objective function of SCOLOR 

is

min
I, C

‖(1 − C) ⊙ (I − I)‖F
2 + λ‖I‖*

+ α ∑
1 ≤ h ≤ H1 ≤ w ≤ W

Phw ⋅ Chw

+ β ∑
1 ≤ h, k ≤ H 1 ≤ w ≤ W

Whw, kw Chw − Ckw

(7)

where 1 ∈ ℝH × W, 1hw = 1,1 ≤ h ≤ H, 1 ≤ w ≤ W, C ∈ ℝH × W is the tumor mask whose 

elements Chw are equal to 0 (normal brain regions) or 1 (tumor regions). Therefore, only the 

residual error of normal brain regions is restricted by the first item (Frobenius norm). The 

second item is the nuclear norm which is the same as the conventional low-rank methods, 

e.g., LRSD. The third and fourth items are constraint and regularization terms for the tumor 

mask C. Specifically, P ∈ ℝH × W in the constraint term is the probability map of normal 

brain regions, and it has large values in normal brain regions and small values in tumor 

regions. C is constrained by P, which will be discussed later. W ∈ ℝ(H × W) × (H × W) is an 

adjacent matrix, and its element Whw,kw = 1 means Chw and Ckw are adjacent to each other, 

otherwise Whw,kw = 0. So the regularization term encourages adjacent elements in C have 

the same label (i.e., 1 or 0). In this paper, for each element in C, its adjacent elements are set 

to be within its 1 voxel radius (i.e., 26-voxel neighborhood) in the same image (3D space), 

which corresponds to the same column of C. Optimization of (7) is composed of two steps. 

In the first step, I is updated with fixed tumor mask C, then (7) becomes
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min
I

‖(1 − C) ⊙ (I − I)‖F
2 + λ‖I‖* . (8)

(8) is a matrix completion problem which can be solved by soft impute method [31]. Based 

on the result of (8), the probability map of normal brain region P can be obtained by

Phw = 1
W − 1 ∑

1 ≤ l ≤ W l ≠ w
e

−
(rhw( I − I ) − rhl( I − I ))2

2 (9)

where rhw( | I − I | ) is the average absolute residual error in 3×3×3 image patch centered at the 

hth voxel (i.e., row) in the wth image (i.e., column) of absolute residual error |I − I|. It is 

worth noting that both rhw( | I − I | ) and rhl( | I − I | ) are calculated in 3D image space where 

each column of |I − I| is reformed as a 3D image. The definition of P is based on the 

observation that tumor regions usually have inconsistent positions and big values in |I − I|, 
while normal brain regions usually have consistent positions and small values in |I − I|. 
Therefore, the value of P is larger in normal brain regions than in tumor regions. In the 

second step, C is updated with fixed I, then (7) can be rewritten as

min
C

∑
1 ≤ h ≤ Hl ≤ w ≤ W

(αPhw − (Ihw − Ihw)2)Chw

+ β ∑
1 ≤ h, k ≤ H l ≤ w ≤ W

Whw, kw Chw − Ckw + ϵ

(10)

where ϵ is a constant. Element in C, i.e., Chw, tends to be 0 (normal brain regions) when Phw 

is larger and 1 (tumor regions) when Phw is smaller. This is because large Phw indicates 

normal brain region, and the corresponding square residual error (Ihw − Ihw)2 is usually 

small. In this way, the first item of (10), i.e., (αPhw − (Ihw − Ihw)2), is of high probability to 

be positive, which encourages Chw to be 0. While small Phw means tumor region, whose 

corresponding square residual error is usually large, making the first item of (10) be 

negative. So Chw is encouraged to be 1. (10) is in the form of Markov random field and can 

be solve by graph cut method [32]. These two steps are iterated until convergence, for 

obtaining recovered images I. It is worth noting that, in the first iteration, all elements in C 

are set to 0. Therefore, SCOLOR is identical to conventional low-rank methods. As the 

iteration goes, C is refined based on the square residual error from previous iteration. Since 

the objective function of SCOLOR (7) decreases in each step and has a low bound, the 

convergence of SCOLOR is always guaranteed.

Original SCOLOR proposed in [26] accepts monomodal images only. In this paper, we 

improve the original SCOLOR to make it work in the context of multimodal images. The 
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new SCOLOR is denoted as multimodal SCOLOR. In our MAR framework, the multimodal 

SCOLOR is responsible for recovering the multimodal normal-looking image 

𝒯 = {𝒯T1, 𝒯T1c, 𝒯T2, 𝒯FLAIR} from the input multimodal tumor brain image 

𝒯 = {𝒯T1, 𝒯T1c, 𝒯T2, 𝒯FLAIR} based on the information of multimodal brain atlases 

𝒜i = 𝒜i, T1, 𝒜i, T1c, 𝒜i, T2, 𝒜i, FLAIR , i = 1, ..., N. Specifically, the objective function of the 

multimodal SCOLOR is defined as

min
Imod, C

1
mod ∑

mod
(‖(1 − C) ⊙ (Imod − Imod)‖

F
2 + λ‖Imod‖*)

+ α ∑
1 ≤ h ≤ H1 ≤ w ≤ W

Phw′ ⋅ Chw

+ β ∑
1 ≤ h, k ≤ H1 ≤ w ≤ W

Whw, kw Chw − Ckw

(11)

where input matrices Imod = 𝒯mod, 𝒜1, mod, …, 𝒜N, mod ∈ ℝH × (N + 1), mod ∈ {T1, T1c, T2, 

FLAIR}, |mod| is the number of possible modalities, and here |mod| = 4. Similar to the 

original SCOLOR defined in (7), optimization of (11) consists of two steps: one is the 

matrix completion problem which can be solved by soft impute method

min
Imod

1
mod ∑

mod
(‖(1 − C) ⊙ (Imod − Imod)‖

F
2 + λ‖Imod‖*), (12)

and the other is the graph cut problem

min
C

( ∑
1 ≤ h ≤ Hl ≤ w ≤ N + 1

(αPhw′ − 1
mod ∑

mod
(Ihw, mod − Ihw, mod)2)Chw

+ β ∑
1 ≤ h, k ≤ H l ≤ w ≤ N + 1

Whw, kw Chw − Ckw + ϵ)

(13)

where Ihw,mod and Ihw, mod are values at the hth row and wth column of the input matrix and 

the low-rank matrix of each modality, respectively. P′ is the probability map of normal brain 

region, which is defined by

Phw′ = 1
W − 1 ∑

1 ≤ l ≤ W l ≠ w
e

−
∑mod(rhw( Imod − Imod ) − rhl( Imod − Imod ))2

2 mod . (14)

The two steps of the multimodal SCOLOR are iterated until convergence, and each modality 

in the recovered multimodal normal-looking image 𝒯 = {𝒯T1, 𝒯T1c, 𝒯T2, 𝒯FLAIR} is at the 
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first column of the corresponding low-rank matrix Imod = [𝒯mod, 𝒜1, mod, …, 𝒜N, mod], mod 

∈ {T1, T1c, T2, FLAIR}. It is worth noting that, the first column of Imod is the tumor brain 

image, and the rest columns are normal brain atlases. Thus, only the first column of C is 

needed to be calculated using (13), and the values for the rest columns of C are all 0, i.e., 

normal brain regions.

The core of SCOLOR is the tumor mask C, by which tumor regions can be effectively 

recovered without distorting normal brain regions in the recovered image. In essence, the 

accuracy of the tumor mask heavily depends on the intensity difference between tumor 

regions and normal brain regions in the input images. If tumor regions have discriminative 

image intensity from normal brain regions, (Ihw − Ihw)2 in (10) and 

1
|mod| ∑mod (Ihw, mod − Ihw, mod)2, mod ∈ {T1, T1c, T2, FLAIR} in (13) will be large, making 

Chw be prone to 1 (tumor regions). Comparing with (10) proposed in original SCOLOR, 

which is based on mono-modality, (13) utilizes multi-modality to calculate the tumor mask. 

Usually, tumor regions can be more easily discriminated from normal brain regions using 

multi-modality than mono-modality. Therefore, the resulting tumor mask calculated based 

on multi-modality could be more accurate and reliable than that using mono-modality. With 

improved tumor mask, tumor regions can be more effectively recovered and normal brain 

regions can be better preserved in the resulting recovered images.

C. Multi-channel image registration

At this stage, we have the multimodal brain atlases 𝒜i = 𝒜i, T1, 𝒜i, T1c, 𝒜i, T2, 𝒜i, FLAIR , i = 

1, ..., N from the Cycle-GAN based image synthesizers and the recovered multimodal image 

of normal-looking brain 𝒯 = {𝒯T1, 𝒯T1c, 𝒯T2, 𝒯FLAIR} from the multimodal SCOLOR 

based image recovery. Thus, each atlas 𝒜i can be registered to 𝒯 in a multi-channel way, 

where each channel operates one modality. We choose SyN [20] to do multi-channel 

registration, which uses the monomodal similarity metric mean squared difference (MSD). 

The objective function of the multi-channel SyN is

min
d

𝒜i 𝒯
( ∑
mod ∈ T1, T1c, T2, FLAIR

1
H ∑

x ∈ Ω
(𝒯mod(x)

− 𝒜i, mod ∘ d𝒜i 𝒯(x))2)

(15)

where d𝒜i 𝒯 is the deformation field warping 𝒜i to 𝒯, Ω is the whole image, and H is the 

number of voxels in an image.

In our MAR framework, the multimodal SCOLOR based image recovery and the multi-

channel image registration components are iteratively proceeded to mutually refine their 

results until convergence. Specifically, in the tth iteration, the original multimodal brain 
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atlases 𝒜i, i = 1, ..., N are warped using the deformation fields d
𝒜i 𝒯t − 1, i = 1..., N 

produced by the multi-channel image registration in the previous iteration, i.e., 

𝒜i ∘ d
𝒜i 𝒯t − 1, i = 1, …, N (𝒯t − 1 is the recovered multimodal image in the previous 

iteration). The warped multimodal brain atlases and the original input multimodal tumor 

brain image 𝒯 = 𝒯T1, 𝒯T1c, 𝒯T2, 𝒯FLAIR  can then be combined into new input matrices 

Imod
t = 𝒯mod, 𝒜1, mod ∘ d

𝒜1 𝒯t − 1, …, 𝒜N, mod ∘ d
𝒜N 𝒯t − 1], mod ∈ {T1, T1c, T2, 

FLAIR}, which are proceeded by the multimodal SCOLOR based image recovery to get the 

new recovered multimodal image 𝒯t. Then the original multimodal brain atlases 𝒜i, i = 

1, ..., N are registered to the new recovered multimodal image 𝒯t by the multi-channel 

image registration. The resulting deformation fields d
𝒜i 𝒯t, i = 1..., N are used to warp the 

original multimodal brain atlases 𝒜i, i = 1, ..., N again for the next iteration.

It is worth noting that in the first iteration (t=1), the multimodal brain atlases in Imod
t  are 

aligned to the input multimodal tumor brain image 𝒯 by affine transformation on T1 

modality, i.e., Imod
t = 𝒯mod, 𝒜1, mod ∘ d𝒜1, T1 𝒯T1

, …, 𝒜N, mod ∘ d𝒜N, T1 𝒯T1
], mod ∈ 

{T1, T1c, T2, FLAIR}, where d𝒜i, T1 𝒯T1
, i = 1, ..., N means the affine transformation 

from 𝒜i, T1 to 𝒯T1. It is clear that images cannot be well aligned using affine transformation 

only. Therefore large modification in Imod
t  is needed in the multimodal SCOLOR based 

image recovery to meet the low rank criterion, which results in a relatively low quality 

recovered multimodal image 𝒯t. Such kind of 𝒯t could also make the subsequent multi-

channel image registration inconvenience. As the iteration goes, images in Imod
t  get well 

aligned. Therefore, little modification in Imod
t  is required to make Imod

t  satisfy the low-rank 

criterion, making the recovered multimodal image 𝒯t has more consistent normal brain 

regions with 𝒯 in each modality. In turn, with improved recovered multimodal image 𝒯t, 

images in Imod
t  can get further aligned. The iteration stops when 𝒯t is stable or changes 

little.

III. Results

We evaluate our MAR framework via multi-atlas segmentation (MAS) of brain ROI of 

multimodal tumor brain images. Specifically, a label fusion stage is added after our MAR 

framework to get the final segmentation result from registered atlases for each input image. 

The accuracy of the final segmentation result mainly depends on the registration quality 

between the atlases and the input image. Both synthetic and real multimodal tumor brain 

images are used to evaluate our method. Each multimodal tumor brain image contains four 

modalities: T1, T1c, T2 and FLAIR. In addition, other four different MAS methods, which 
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use different MAR frameworks, are also tested. Particularly, the first MAS method uses 

conventional MAR framework, which registers each brain atlas to the input image by typical 

image registration methods, hence it can only handle normal brain images, and we denote it 

as ORI+MAS. The second MAS is based on the MAR framework which adopts a well-

known strategy called cost function masking (CFM) [13] for registering normal brain atlases 

to pathological brain images, and we denoted it as CFM+MAS. The third one integrates a 

conventional low-rank method i.e., LRSD (defined in (6)) to handle registration of tumor 

brain images, and we denote it as LRSD+MAS. The last one is similar as LRSD+MAS 

except that the low-rank method is SCOLOR (defined in (7)) instead of LRSD, and we 

denoted it as SCOLOR+MAS. LRSD+MAS and SCOLOR+MAS have similar processing 

flow as our method, where image recovery and registration of normal brain atlases to the 

recovered image are iterated until convergence. The difference is that our method works with 

multimodal images while monomodal images are used in LRSD+MAS and SCOLOR

+MAS. Note that, these four MAS methods can only handle monomodal brain images which 

have the same modality as the adopted brain atlases. For CFM+MAS, the tumor mask used 

in original CFM is delineated manually, but for the sake of fairness, the tumor mask used in 

CFM+MAS is the same as the tumor mask calculated in SCOLOR+MAS. The brain atlases 

used in all methods under comparison are T1-weighted MR normal brain images from 

LPBA40 [33], and each brain atlas carries 54 manually labeled brain ROIs. Therefore, 

except our method, ORI+MAS, CFM+MAS, LRSD+MAS and SCOLOR+MAS can only 

use T1 modality of the multimodal tumor brain images. The registration algorithm used in 

our method is multi-channel SyN, and the other four MAS methods under comparison use 

single-channel SyN. All the MAS methods under comparison adopt joint label fusion [9] to 

do the label fusion. Table I gives the summary of all MAS methods under comparison. The 

multimodal tumor brain images are preprocessed by affine transformation [34] with 

reference to MNI152 [35] of 182×218×182 voxels (1×1×1 mm3 voxel) and histogram 

matching [36] with reference to a multimodal brain atlas used in our method (i.e., generated 

by the Cycle-GAN based image synthesizers).

A. Parameter tuning

Like most low-rank based methods [17], [26], [37], [38], in LRSD+MAS, SCOLOR+MAS 

and our method, the parameter λ, which is used to balance the residual error constraint and 

the low-rank constraint, is heuristically determined in the experiment. Actually, the 

recovered images are relatively insensitive to λ, and the final segmentation results of our 

method keep a relatively consistent quality within a large range of λ. Particularly, for all the 

testing images including synthetic and real tumor brain images, λ is set to 800 in LRSD

+MAS and 40 in SCOLOR+MAS and our method. In section III-D, we will show the impact 

of λ on the final segmentation results of SCOLOR+MAS and our method. Parameters α and 

β in SCOLOR (see (10)) and multimodal SCOLOR (see (13)) are used to control the balance 

between the constraint and the regularization terms of the tumor mask C. In the experiment, 

we set α = 0.08 and β = 1 for SCOLOR in SCOLOR+MAS, and α = 0.1 and β = 1 for 

multimodal SCOLOR in our method. In section III-E, we will show the impact of α and β 
on the resulting tumor mask C in SCOLOR+MAS and our method.
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B. Evaluation of synthetic tumor brain images

The synthetic multimodal tumor brain images are produced based on LPBA40 image dataset 

which consists of 40 T1-weighted MR normal brain images of different subjects. For each 

test, one image from LPBA40 is selected to make the synthetic multimodal tumor brain 

image, and the rest are used as the available monomodal brain atlases. Specifically, a 

synthetic multimodal normal brain image is first produced from the selected image by 

CycleGAN based image synthesizers. Then tumor(s) in a real multimodal tumor brain 

image, which is randomly selelcted from BRATS2015 [30], are inserted into the synthetic 

multimodal normal brain image. The mass effect of the inserted tumor(s) is also considered. 

Particularly, since images are aligned with MNI152 by affine transformation in the 

preprocessing stage, tumor regions in the real multimodal tumor brain image are directly 

used to replace the image contents at the same location of the synthetic multimodal normal 

brain image. The mass effect of the inserted tumor(s) to the surrounding normal tissues is 

simulated by adding deformation fields at the boundaries of the inserted tumor(s) (with 

perpendicular direction to the tumor boundaries and diffused by a Gaussian kernel with σ = 

3.0) to deform the surrounding normal tissues. The magnitude of the resulting deformation 

vectors at the boundary of the inserted tumor(s) is around 3 mm. An example of a synthetic 

multimodal tumor brain image is shown in Fig. 3.

Totally, 40 synthetic multimodal tumor brain images, each of which contains tumor(s) from 

different real multimodal tumor brain image in BRATS2015, are made and tested in our 

experiment. Details of the 40 synthetic multimodal tumor brain images are listed in the 

supplement. Since we have the ground truth of tumor-free image and the corresponding 54 

manually labeled brain ROIs for each synthetic multimodal tumor brain image, recovery 

quality (for LRSD+MAS, SCOLOR+MAS and our method) and segmentation accuracy are 

evaluated. The recovery quality is quantified by recovery error ratio which is defined as

Erc=
∑x ∈ Ω 𝒯mod(x) − 𝒢mod(x)

∑x ∈ Ω 𝒢mod(x) , (16)

where Ω stands for the whole image, 𝒯mod(x) and 𝒢mod(x) are image intensities at position x 

in the recovered image and the ground truth of tumor-free image of certain modality, 

respectively. Since the real tumor-free images are T1-weighted MR images, and only T1-

weighted recovered images can be produced by LRSD+MAS and SCOLOR+MAS, the 

recovery error ratio is evaluated using T1 modality, i.e., mod = T1.

Fig. 4 shows some recovered images in LRSD+MAS, SCOLOR+MAS and our method. 

Specifically, Fig. 4 (a) shows an input synthetic multimodal tumor brain image. The square 

residual errors of each modality using SCOLOR, i.e., (Imod − Imod)2, and multi-modality 

using multimodal SCOLOR, i.e., 
∑mod(Imod − Imod)2

|mod| , mod ∈ {T1, T1c, T2, FLAIR}, are 

shown in Fig. 4 (b). The resulting tumor masks are presented in Fig. 4 (c). Since the tumor 

mask C of multimodal SCOLOR in our method is calculated based on the square residual 
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error of multi-modality, the resulting tumor mask is much closer to the ground truth than 

SCOLOR in SCOLOR+MAS which is based on the square residual error of T1 modality. 

Consequently, the recovered image of our method contains more effectively recovered tumor 

regions and better preserved normal brain regions than both LRSD+MAS and SCOLOR

+MAS, especially in the regions marked by red circles in Fig. 4 (d).

Details of the evaluation result of recovery error ratio using LRSD+MAS, SCOLOR+MAS 

and our method are shown in Fig. 5 (a). The recovery error ratios of the three methods 

decrease after each iteration. This is because as atlases and synthetic tumor brain images get 

well aligned after each iteration, less modification in the input image matrix is required to 

make the resulting recovered images satisfy the low-rank constraint. Due to the tumor mask 

in SCOLOR and multimodal SCOLOR, normal brain regions are well preserved, making the 

recovered images of SCOLOR+MAS and our method closer to their ground truth tumor-free 

images than LRSD+MAS. In contrast, normal brain regions are usually distorted in the 

recovered images using LRSD. Therefore, recovery error ratios of SCOLOR+MAS and our 

method are smaller than LRSD+MAS after each iteration. Since the multimodal SCOLOR 

used in our method works with multimodality where complementary information of tumor 

regions of different modalities is used, the tumor mask calculated in the multimodal 

SCOLOR is more accurate than the SCOLOR used in SCOLOR+MAS. Furthermore, as 

different modalities may contain exclusive features of the same anatomical structure, images 

could be better registered in multi-channel way than single-channel way. As a result, the 

recovery error ratio of our method is the smallest. For each synthetic brain tumor image, 

LRSD+MAS needs less than 7 iteration to reach to convergence, while less than 4 iterations 

are required for SCOLOR+MAS and our method.

Segmentation results are evaluated by calculating the Dice index [39] of the whole brain (54 

brain ROIs) between each segmented result and the corresponding ground truth, which is 

defined as

∑
i = 1

54 V i
GT

VGT ⋅
2 Ωi

seg ∩ Ωi
GT

Ωi
seg + Ωi

GT , (17)

where VGT and V i
GT are the volume (number of voxel) of the whole brain and the ith brain 

ROI in the ground truth, respectively. Ωi
seg and Ωi

GT are the segmented ith brain ROI and its 

corresponding ground truth, respectively. Fig. 5 (b) shows the average of 40 whole-brain 

Dice indices of segmented synthetic tumor brain images using ORI+MAS, CFM+MAS, 

LRSD+MAS, SCOLOR+MAS, and our method after each iteration. Moreover, original 

tumor-free images of LPBA40 are also tested using the same MAS method as ORI+MAS, 

which is denoted as TF+MAS in Fig. 5 (b). Obviously, TF+MAS achieves the highest 

average whole-brain Dice index of all methods under comparison. Because of distorted 

normal brain regions in recovered images using LRSD, the average whole-brain Dice index 

after the first iteration of LRSD+MAS is even lower than ORI+MAS. But as the iteration 

goes in LRSD+MAS, atlases get aligned with input tumor brain images, which improve both 
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the recovered images and the registration results, eventually outperforming ORI+MAS after 

the second iteration. The averages and standard deviations of the 40 whole-brain Dice 

indices after the final iteration of all methods under comparison are ORI+MAS 

(0.821±0.015), CFM+MAS (0.828±0.017), LRSD+MAS (0.83±0.018), SCOLOR+MAS 

(0.834±0.017), our method (0.847±0.012) and TF+MAS (0.853±0.01). The Wilcoxon signed 

rank test [40] is adopted to do statistical significance test over the 40 whole-brain Dice 

indices after the final iteration of ORI+MAS, CFM+MAS, LRSD+MAS, SCOLOR+MAS 

and our method. The p values between our method and other four methods are all 

3.569×10−8, indicating that our method is better than the other four methods with statistical 

significance.

C. Evaluation of real tumor brain images

Totally, 50 real multimodal tumor brain images of different subjects are randomly selected 

from BRATS2015 as testing images. Details of the 50 real multimodal tumor brain images 

are listed in the supplement. 40 T1-weighted MR normal brain images from LPBA40 are 

used as brain atlases in all methods under comparison. For each testing image, LRSD+MAS 

requires no more than 6 iterations to reach to convergence, whereas SCOLOR+MAS and our 

method need no more than 4 iterations. Due to the lack of tumor-free images, recovery error 

ratio cannot be calculated, and the recovery quality is evaluated by visual inspection. 

Benefiting from multimodal SCOLOR, the recovered images in our method have better 

visual quality than LRSD+MAS and SCOLOR+MAS. Fig. 6 shows an example of a real 

multimodal tumor brain image and its corresponding recovered T1-weighted MR images 

using LRSD+MAS, SCOLOR+MAS and our method after the final iteration. It is clear that, 

in the square residual error using multimodal SCOLOR, high value elements cover most of 

the tumor regions than the square residual error of each modality using SCOLOR (see Fig. 6 

(b)). Therefore, as Fig. 6 (c) shows, the tumor mask calculated by multimodal SCOLOR in 

our method (based on the square residual error of multi-modality) is much closer to the 

ground truth than SCOLOR in SCOLOR+MAS (based on the square residual error of T1 

modality). As a result, the recovered image of our method contains more effectively 

recovered tumor regions and better preserved normal brain regions than LRSD+MAS and 

SCOLOR+MAS, especially in the regions marked by red circles in Fig. 6 (d).

Segmentation results are evaluated by calculating Dice indices of grey matter (GM), whiter 

matter (WM), and cerebrospinal fluid (CSF) between the segmented result of each method 

and the ground truth. Specifically, we use SPM12 [41] to coarsely segment GM, WM and 

CSF from the 50 tumor brain images and the 40 brain atlases. Then these segmented results 

are further revised by an expert and regarded as the ground truth. Fig. 7 shows the Dice 

indices of GM, WM and CSF of the segmentation results using ORI+MAS, CFM+MAS, 

LRSD+MAS, SCOLOR+MAS and our method after each iteration. It is worth noting that 

tumor regions are ignored in the calculation of Dice index. Our method outperforms other 

methods in GM, WM and CSF after each iteration. LRSD+MAS gets the lowest Dice 

indices of GM, WM, and CSF after the beginning iterations because of distorted normal 

brain regions in the recovered images.
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Table II shows average Dice indices and standard deviations of GM, WM, and CSF of the 

final segmentation results using ORI+MAS, CFM+MAS, LRSD+MAS, SCOLOR+MAS, 

and our method. Statistical significance test is perform over these evaluation results (50 Dice 

indices of GM, WM, and CSF for each method) using Wilcoxon signed rank test. Our 

method outperforms all the other methods in GM, WM and CSF with statistical significance 

(p < 0.05).

D. Impact of λ on the segmentation result

The 40 synthetic and 50 real tumor brain images are used to evaluate the impact of the 

parameter λ in SCOLOR and multimodal SCOLOR on the segmentation result of SCOLOR

+MAS and our method. Specifically, we test SCOLOR+MAS and our method using λ from 

10 to 100 with step size of 10. For each λ, we calculate the Dice indices of the 

corresponding segmentation results of SCOLOR+MAS and our method. Fig. 8 shows the 

evaluation result. It is clear to see that as the λ increases, the Dice indices of segmentation 

results using both SCOLOR+MAS and our method are first increased because of the 

recovered tumor regions and then decreased because of the distorted normal brain regions 

using large λ, i.e., over strength low-rank constraint. The segmentation results of both 

SCOLOR+MAS and our method are good and stable using λ from 30 to 60. Furthermore, 

since multimodal SCOLOR and multi-channel registration are used in our method, the 

segmentation result of our method is more stable than SCOLOR+MAS. For example, the 

largest differences of the average whole-brain Dice index of segmented 40 synthetic tumor 

brain images using λ within the range of 30–60 are 0.004 (SCOLOR+MAS) and 0.001 (our 

method), and the largest differences of the average Dice indices of GM, WM, and CSF of 

segmented 50 real tumor brain images using λ within the range of 30–60 are 0.01, 0.013, 

and 0.005 (SCOLOR+MAS), and 0.002, 0.003, and 0.002 (our method). Therefore, we set λ 
to 40 for SCOLOR+MAS and our method in the experiment as mentioned before.

E. Impact of α and β on tumor mask

For both SCOLOR used in SCOLOR+MAS and multimodal SCOLOR used in our method, 

the tumor mask C, which is used to discriminate tumor regions and normal brain regions, 

plays an important role. For tumor regions defined in C (values of corresponding elements in 

C are 1), strong recovery is performed, while relatively weak recovery is used for normal 

brain region defined by C (values of corresponding elements in C are 0). Therefore, with 

accurate tumor mask, recovered images of effectively recovered tumor regions and well 

preserved normal brain regions can be produced. According to the objective functions of C, 

i.e., (10) (SCOLOR) and (13) (multimodal SCOLOR), the result of tumor mask C is 

influenced by parameters α and β which control the strength of the constraint and 

regularization terms imposed on C. In our experiment, we evaluate the impact of α and β on 

the resulting tumor mask C after the final iteration of SCOLOR+MAS and our method. 

Particularly, we evaluate the resulting tumor masks for the 90 tumor brain images (40 

synthetic and 50 real tumor brain images) using different value of α and β. For each tumor 

brain image, its corresponding manually segmented tumor regions are available and used as 

the ground truth. We change α and β separately and calculate the average Recall and 

Precision [42] of the resulting tumor masks according to the ground truth. Evaluation result 

is shown in Fig. 9. High Recall means most of tumor regions are correctly defined in the 
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tumor mask, and tumor regions can be effectively recovered. High Precision means most 

tumor regions defined by the tumor mask are correct, and normal brain regions can be well 

preserved in the recovered image. As shown in Fig. 9 left, when α becomes bigger, Recall is 

decreased and Precision is increased. Similar results can be observed when β becomes 

bigger as shown in Fig. 9 right, except that Recall and Precision are relatively more stable 

within a large range of β than that of α. It is clear that high Recall and Precision of the 

resulting tumor masks could produce good recovered images, which could enhance the 

subsequent image registration as well as the final segmentation result. Therefore, a trade-off 

between Recall and Precision has to be made. In our experiment, we found that for 

recovered images, ineffectively recovered tumor regions could degrades the registration 

quality and the final segmentation result more than low-rank distorted normal brain regions 

of comparable region size. So as α or β increase, the registration quality and the final 

segmentation result would be first improved as the shrunken low-rank distorted normal brain 

regions, which are much larger than the real tumor regions at the beginning (i.e., high Recall 

and low Precision). Then as the low-rank distorted normal brain regions shrink to a 

comparable size as the ineffectively recovered tumor regions (i.e., similar Recall and 

Precision), the registration quality and the final segmentation result would be degraded. So 

as aforementioned, in the experiment, α is set to 0.08 (SCOLOR+MAS) and 0.1 (our 

method), and β is set to 1 for both SCOLOR+MAS and our method. The corresponding 

average Recall and Precision of the 90 tumor images after the final iteration of SCOLOR

+MAS and our method are (0.701, 0.670) and (0.833, 0.785), respectively. It is clear that, the 

average Recall and Precision of our method are higher than SCOLOR+MAS. This is 

because tumor regions are more discriminative using information from multimodal images 

than monomodal images. Table III shows the average Recall, Precision and Dice index of the 

tumor masks of 40 synthetic and 50 real brain images after the final iteration of SCOLOR

+MAS and our method in detail.

IV. Conclusion

We proposed a new multi-atlas registration (MAR) framework for input multimodal 

pathological images using conventional monomodal normal atlases. Our framework 

systematically solved two challenging problems in existing MAR methods: one is the 

missing modality in monomodal normal atlases, and the other is the registration of normal 

atlases to pathological images. Specifically, by using deep learning (CycleGAN) based 

image synthesizers, desired modalities can be produced from available monomodal normal 

atlases. With the proposed multimodal SCOLOR based image recovery, influence of 

pathological regions in registration can be effectively reduced. Finally, information of 

multimodal atlases and recovered images is fully utilized by multi-channel image 

registration. In our experiment, synthetic and real tumor brain images were used to evaluate 

our method. Our method showed better performance than state-of-the-art methods in terms 

of both image recovery quality and segmentation accuracy (i.e., registration accuracy 

between atlases and input images).

Theoretically, input images of any possible number and types of modalities can be handled 

by our framework using conventional monomodal normal atlases. Moreover, images 

containing pathological regions which have similar properties as the brain tumor (e.g., 
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relatively large region, inconsistent location across subjects and different image appearance 

from normal regions) can be proceeded by our framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of our multi-atlas registration framework for multimodal pathological brain 

images.
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Fig. 2. 
Example of a multimodal brain atlas of T1, T1c, T2 and FLAIR modalities. The T1 modality 

is real, and other modalities are produced by the CycleGAN based image synthesizers. A 2D 

slice at the same level is used to represent the brain atlas of each modality.
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Fig. 3. 
An example of a synthetic multimodal tumor brain image.

Tang et al. Page 22

IEEE Trans Image Process. Author manuscript; available in PMC 2020 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
(a) Example of input synthetic multimodal tumor brain image; (b) The square residual errors 

of each modality using SCOLOR and multi-modality using multimodal SCOLOR; (c) The 

tumor masks calculated by SCOLOR in SCOLOR+MAS and multimodal SCOLOR in our 

method. Since the multimodal SCOLOR utilizes multimodal information, the tumor mask is 

much closer to the ground truth than SCOLOR which is based on T1-weighted MR images 

only; (d) The recovered image of our method contains more effectively recovered tumor 

regions and better preserved normal brain regions than LRSD+MAS and SCOLOR+MAS, 

especially in the regions marked by red circles.
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Fig. 5. 
(a) Recovery error ratios of 40 synthetic tumor brain images after each iteration of LRSD

+MAS, SCOLOR+MAS and our method; (b) Average of 40 whole-brain Dice indices of 

segmented synthetic tumor brain images after each iteration using ORI+MAS, CFM+MAS, 

LRSD+MAS, SCOLOR+MAS, our method and TF+MAS. TF+MAS applies the same MAS 

method as ORI+MAS to segment original tumor-free images in LPBA40. ORI+MAS, CFM

+MAS and TF+MAS have no iterative process, so their average Dice indices after each 

iteration are constant.
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Fig. 6. 
(a) Example of input real multimodal tumor brain image; (b) The square residual errors of 

each modality using SCOLOR and multi-modality using multimodal SCOLOR; (c) The 

tumor masks calculated by SCOLOR in SCOLOR+MAS (based on the square residual error 

of T1 modality) and multimodal SCOLOR in our method (based on the square residual error 

of multi-modality); (d) The recovered image of our method contains more effectively 

recovered tumor regions and better preserved normal brain regions than LRSD+MAS and 

SCOLOR+MAS, especially in the regions marked by red circles.
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Fig. 7. 
Average Dice indices of segmented GM, WM, and CSF of 50 real MR tumor brain images 

using ORI+MAS, CFM+MAS, LRSD+MAS, SCOLOR+MAS, and our method after each 

iteration.
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Fig. 8. 
Average whole-brain Dice indices of 40 segmented synthetic tumor brain images (left) and 

average Dice indices of GM, WM and CSF of 50 real tumor brain images (right) using 

different λ in SCOLOR+MAS (top) and our method (bottom).

Tang et al. Page 27

IEEE Trans Image Process. Author manuscript; available in PMC 2020 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Average Recall (left) and Precision (right) of resulting tumor masks after the final iteration 

of SCOLOR+MAS (top) and our method (bottom) using different α and β.
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Table II

Average Dice index and standard deviation of the final sigmentation result obtained by each method under 

comparision.

GM WM CSF

ORI+MAS 0.639±0.050 0.698±0.040 0.566±0.053

CFM+MAS 0.657±0.045 0.712±0.034 0.571±0.047

LRSD+MAS 0.657±0.038 0.711±0.036 0.573±0.038

SCOLOR+MAS 0.669±0.044 0.719±0.036 0.580±0.046

Our method 0.701±0.035* 0.748±0.030* 0.593±0.041*

Asterisk indicates the evaluation result is better than the other four methods with statistical significance (P<0.05 in Wilcoxon signed rank test).
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Table III

Evaluation result of tumor masks calculated by SCOLOR in SCOLOR+MAS (S) and multimodal SCOLOR in 

our method (O).

Recall Precision Dice

Synthetic tumor brain images
0.73±0.07 (S) 0.70±0.17 (S) 0.70±0.10 (S)

0.90±0.05* (O) 0.83±0.12* (O) 0.86±0.08* (O)

Real tumor brain images
0.68±0.12 (S) 0.65±0.18 (S) 0.64±0.10 (S)

0.78±0.10* (O) 0.75±0.13* (O) 0.76±0.10* (O)

Asterisk means statistical significance (P<0.05 in Wilcoxon signed rank test).
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