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Spectral Filter Tracking
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Abstract—Visual object tracking is a challenging computer
vision task with numerous real-world applications. Here we
propose a simple but efficient Spectral Filter Tracking (SFT)
method. To characterize rotational and translation invariance
of tracking targets, the candidate image region is models as a
pixelwise grid graph. Instead of the conventional graph matching,
we convert the tracking into a plain least square regression
problem to estimate the best center coordinate of the target. But
different from the holistic regression of correlation filter based
methods, SFT can operate on localized surrounding regions of
each pixel (i.e., vertex) by using spectral graph filters, which thus
is more robust to resist local variations and cluttered background.
To bypass the eigenvalue decomposition problem of the graph
Laplacian matrix £, we parameterize spectral graph filters as the
polynomial of £ by spectral graph theory, in which £* exactly
encodes a k-hop local neighborhood of each vertex. Finally, the
filter parameters (i.e., polynomial coefficients) as well as feature
projecting functions are jointly integrated into the regression
model.

SFT can simply boil down to only a few line codes, but
surprisingly it beats the correlation filter based model with the
same feature input, and achieves the current best performance
on the dataset [36] under the same feature extraction strategy
(i.e., the existing VGG-Net model [32]). The code will be fully
released in our website soon.

I. INTRODUCTION

Visual object tracking is a fundamental task in computer
vision, due to its wide applications to video surveillance, traffic
monitoring, and augmented reality, etc. Despite significant
advance that has been achieved in visual tracking over the
past few decades, this task remains very challenging because
of unpredictable appearance variations including partial occlu-
sion, geometric deformation, illumination change, background
clutter, fast motion, etc.

The typical visual tracking starts with an initial bounding
box of an object at the first frame, and then sequentially
predicts the locations of the target in the next frames. To attain
robust tracking, numerbers of tracking methods have sprung
up. Among the existing tracking works, those part-based meth-
ods [1], [6], [26] have drawn increasing attention due to their
robustness to local occlusion or appearance variations. They
usually partition the object target (or the candidate region) into
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several parts and extract some useful cues from these parts. In
the part-based methods, the topology structures (e.g., tree or
graph) [22]], [5] are often used to characterize the relationship
of parts, and then some voting or matching strategies [1]], [38]]
are taken to find those reliable parts. In principle the part-
based model is robust to resist partial occlusions and local
appearance variations, but in practice it is difficult for accurate
part partition, even though several methods [1]], [21] have
been developed. More recently the tracking-by-segmentation
methods [29], [134]], [18], [35] attempt to accurately annotate
foreground and background regions based on the superpixel
techniques. But the segmentation is usually time-consuming,
and its results heavily influence on the tracking performance.

In contrast, the holistic tracking methods are more popular,
especially the recent correlation filter (CF) based model. Due
to high-efficiency and excellent robustness, the correlation
filter (CF) based model has aroused wide attention [4]], [9],
(121, [230, [27], [17] in the field of visual tracking. CF based
methods attempt to learn a group of discriminative correlation
filters that can produce correlation peaks for the tracking
targets while suppressing their responses on background re-
gions. To speed up the tracker, the original convolutional filters
are transformed into frequency domain, and then learnt by
scanning the candidate regions on a circular sliding window.
As a holistic model, the CF based methods identically treat
the whole candidate region, so those cluttered background
might affect the trackers and degrade the tracking performance.
To address this problem, some regularization methods of
correlation filters [[11]], [8] are proposed to spatially suppress
background regions. But the holistic CF based methods is
flexible enough not to resist local appearance variations like
those part-based methods.

In this paper, we propose a simple but efficient Spectral Fil-
ter Tracking (SFT) method. To model rotational and translation
invariance of the tracking targets, we construct a pixel-level
grid graph for a candidate image region, which thus avoids
any operations of part partition or superpixel segmentation.
Moreover, the vertexes of the graph enclose the center of the
tracking target, so we only need discover the best matching
vertex from this graph. But instead of the conventional graph
matching, we convert it into a plain least square regression
problem to estimate the best center coordinate of the target.

But different from the holistic regression of CF based
methods, we regress the tracking model on multiple localized
regions for each pixel (i.e., vertex). To extract the local regions
associated with each vertex, we use those spectral filters of
graph. To solve those spectral filters, we need to decom-
pose the graph Laplacian matrix. To bypass the eigenvalue
decomposition problem, the spectral filters are parameterized
as the polynomial of graph Laplacian matrix, in which the



k-th term of Laplacian matrix exactly defines a k-localized
spatial region. Consequently spectral filtering on graph is
approximately equal to the operating on graph Laplacian
matrix. By using the terms of the Laplacian polynomial as the
filter bases, we jointly learn the parameters (i.e., polynomial
coefficients) as well as feature projection by feeding responses
of filter bases into the regression model.

Finally, the proposed tracker SFT can simply boil down
to only a few line codes, but surprisingly the experimental
results on the dataset [36] show that, the SFT beats the CF
based model under the condition of the same input feature,
surpasses the recent CF methods [10], [28] on the localization
accuracy, and achieves the current best performance under the
same feature extraction strategy (i.e., the existing VGG-Net
model [32]).

II. RELATED WORK

Video object tracking has been extensively studied over the
past decades. They usually fall into two categories: generative
model [3], [25], [39], [30] and discriminative model [2],
[15], [L7]. Generative methods search for the best matching
regions of the tracked target. Discriminative methods learn a
classification model to distinguish the target from the back-
grounds. Below we briefly introduce the main related work,
including the correlation filter based methods and the part
based methods.

Recently the correlation filter based discriminative model
has aroused wide attention in the field of visual tracking. After
Minimum Output Sum of Squared Error (MOSSE) [4] filter
was proposed, numerous correlation filter methods start flow-
ing in the field of computer vision [7]. Henriques et al. [16]]
used the kernel trick, and Danelljan er al. [12] represented
the inputs with color attributes. To handle the target scale
problem, SAMF [23]], DSST [9] and an improved KCF [17]]
were proposed subsequtially and achieved state-of-the-art per-
formance. With more related methods developed [27], [26],
[24], correlation filter based trackers have demonstrated their
robustness. Especially, by employing high-level convolutional
features as the inputs, correlation filter based methods [10],
[28]] achieved the current best performance on the public visual
tracking dataset [36]. As a holistic filtering model, correlation
filter based methods easily absorb those clutter information of
background region while making full use of the background in-
formation. To reduce the influence of clutter background, some
regularization methods [11l], [8] were proposed to suppress
the response of background region by weighting correlation
filters. Although the regularization strategy has demonstrated
the initial success on suppressing the background, it is still lack
of an intrinsic revision for the holistic model. Different from
these correlation filter based methods, we directly perform
locally filtering on pixel-level graph structure.

In contrast to correlation filter based methods, the part-based
methods [1]], [30], [6], [26] seems be more silent recently. They
usually partition the object target into several parts, and then
attempt to discover some useful cues from the reliable parts.
Adam et al. [1] partitioned the object into several fragments,
and then employed the voting strategy to decide the target

position. Jia et al. [[19] selected the closest candidate patches
of the next frame by using [; sparsity. Kwon et al. [21]]
modeled local patches in topology structure in order to find
reliable parts. Zhang et al. [38] performed part matching
among multiple frames. Liu et al. [26] learned one response
function on each part, and integrated all response maps to
decide the final tracking confidence. Besides, the topology
structure is used to model the relationship of the parts, e.g., tree
structure [22] or graph structure on superpixels [5]. In principle
the part-based model is a robust solution to resist partial
occlusion and local appearance variations. But in practice it
is difficult to accurately define the partition of local parts,
even though several strategies [1l], [21] have been devel-
oped. To address this problem, the tracking-by-segmentation
methods [29], [134)], [L8], [35] attempt to accurately annotate
foreground and background regions by using the superpixel
segmentation technique. But the tracking performance heavily
depends on the segmentation results, and the superpixel seg-
mentation is rather time-consuming. Different from these part-
based methods, our proposed method performs local spectral
filtering on the pixel-grid graph structure and then convert the
target localization as a simple regression problem.

III. SPECTRAL FILTER TRACKER
A. Overview

An overview on the SFT flowchart is shown in Fig. [I] Given
a video frame, we first determine a small candidate region
around the bounding box localized from the previous frame,
considering the motions of targets in continuous video frames
are usually subtle. To enhance the discriminability, we can rep-
resent the candidate region with hand-crafted descriptors (e.g.,
HOG [13]) or convolutional features [32]]. Thereafter we can
obtain multi-channel features, where each spatial pixel position
is associated with a multi-channel feature vector. To reduce the
effect of local appearance variations in the tracking, we model
the candidate region as a pixelwise grid graph (Section [[II-B)),
which has rotation-invariant and shifting-invariant property. In
the graph,one spatial pixel is regarded as one vertex of the
graph, and the edges connect those spatial adjacent vertexes.
This problem becomes the conventional graph matching. But
generally the solution of graph matching is rather complex,
which might involve the integer programming.

To bypass graph matching, we use spectral graph theory
to analyze graph structure. Instead of the holistic filtering in
CF based trackers, we perform local filtering on the graph
structure (Section [[II-C). By using spectral graph filters, we
can derive out the responses on localized graph regions for
each vertex. But it involves eigenvalue decomposition of graph
Laplacian matrix. To avoid this operation, we parameterize
spectral graph filters as a polynomial of Laplacian matrix.
Each entry of the polynomial actually plays the role of
localized filtering on graph. It means that the polynomial
terms enclose different scale spectral graph filters. By using
the polynomial terms as the basic filters, we can obtain
the corresponding multi-scale features for each vertex, which
well-model local information of graph. For each vertex, by
concatenating its multi-scale responses to form the final rep-
resentation, finally we feed the final representation into the



Input

Multi-scale
spectral filtering

TAei

(Section 3.2)
Dense grid graph

Feature
extraction

Graph
construction

Multi-channel features

(Section 3.3) Multi-scale responses

(Section 3.4)

Filtering responses
—

—_—

Regres%

Desired output
or response map

Concatenation

Fig. 1: The flowchart of spectral filter tracking. More details can be found in Section [[II-A

regression model to jointly solving those filter parameters
(i.e., polynomial coefficients) and feature projecting functions

(Section [II-D).

B. The Representation of Graph

We model the pixelwise spatial grid structure as an undi-
rected weighted graph. The weighted graph G = {V, &, W}
consists of a set of vertices V(|[V| = N) and a set of
edges £. The adjacency matrix W assigns positive values
to those connected edges. Besides, each vertex is associated
with a signal, i.e., here a multi-channel feature vector extracted
from its coordinate position. Formally, the feature extraction
function f : V — RY defines the signals of vertexes, where d
is the feature dimension.

In spectral graph theory, a crucial operator is the graph
Laplacian operator £. The operator is defined as L =D — W,
where D € RM*N s the diagonal degree matrix with
Dy =3 ; Wij. An popular option is the normalized graph
Laplacian, where each weight W;; is multiplied by a factor
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where I is the identity matrix. Unless otherwise specified, the
Laplacian matrix used below is the normalized version.

As a real symmetric matrix, the graph Laplacian £ has a
complete set of orthonormal eigenvectors. The eigenvectors
{w;} satisfy Lu; = \u,; for [ = 1,2,--- | N, where {\;}
are nonnegative real eigenvalues. We assume all eigenvalues
are ordered as 0 = Ay < A9 < Az < ANy = Apaz. In
matrix expression, the Laplacian matrix is decomposed into
L = UAUT, where A = diag([A1, A2, , An]). Analogous
to the classic Fourier transform, the graph Fourier transform of
a signal x in spatial domain can be defined as X = UTx [31]],
where X is the produced frequency signal. The corresponding
inverse Fourier transform is x = UX.

C. The Construction of Local Spectral Filters

Suppose ¢g(-) is a filter function of the graph £, we can
define the frequency filtering on the input signal x as Z(\;) =
Z(A;)g(N), or the inverse graph Fourier transform,

N
2(6) = > B)F) (), 2)

=1

where Z(\;),Z(\;),g()\;) are the Fourier coefficients corre-
sponding to the spectrum )\;. By using matrix notation, the
signal x is filtered as

: . : U'x. 3
0 - g0)
Given the input x and the output z, we need to solve the filter
function ¢(-) in Eqn. (3), which requires eigenvalue decom-
position. To reduce computation cost, a low order polynomial
may be used to approximate g(-) in the frequency domain.
Here we use the Chebyshev expansion of K order [14], which
is defined by the recurrent relation Ty(xz) = 22T)_1(z) —
Ti—2(x) with Ty = 1 and T} = z. In the appropriate Sobolev
space, the set of Chebyshev polynomials form an orthonormal
basis, so any one function in the space z € [—1,1] may be
expressed via the expansion: f(z) = > po arTk(z).

To make the eigenvalues {);} of the Laplacian matrix £ fall
in [—1, 1], we may scale and shift them as \; = ﬁ)\l -1,
and then employ the Chebyshev polynomials on {\;}. If we
consider a linear combination of the polynomial components,
the K-order filter can be written as,

0k Ti(\1), (4)

where # € RX is a parameter vector of the polynomial
coefficients, and K is the order of the polynomial. By putting



Eqn. @) into Eqn. (@), we can have
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From Eqn. (6) to Eqn. (7), we use the spectral decomposition
of Laplacian matrix, £ = Udiag([A1, -+, An])UT. From
Eqn. () to Eqn. (6), we utilize the basic calculation on the
filter function, i.e.,

LF = Udiag([Ay,- -+, AR])UT
= (Udiag([A1,--- , An]))UT)". (8)

According to graph theory, £* encodes a k-hop local neigh-
borhood of each vertex. Consequently, the K -order polynomial
in Eqn. is a exactly K-localized filter function on the
Laplacian graph. To obtain the local filtering responses on
graph, thus we only need operate the Laplacian matrix £. That
means, each entry of the polynomial can be regarded as the
filter bases, and 6 is the parameters to be solved.

D. The Prediction of the Tracking Target

In the visual tracking, we need predict the centers of the
tracking target. Similar to those CF based methods, we regress
a peak map y € RM*! from the multi-channel features
X € RVX4 where N is the number of pixels (i.e., vertexes)
within the candidate region, each row of X corresponds to
a signal of one vertex. Now we denote £ = ﬁﬁ - L
Then the filter bases defined in the polynomial of Eqn.
become {To(L), T1(L), -+ ,Tr—1(L)}, where the k-th filter
basis only relates to the k-hop neighbor vertexes. Given a
signal x and the filter parameter 6 = [0y, 02, -+ , 0K _1], we
can obtain the local filtering response z if employing a linear
combination of K filter bases. We use the k filter bases to
filtering the graph, and then combine the learning of filter
parameters and feature projecting function into a least square
regression model,

argmin  [F(X)w — y|* + [ w]?, ©)

w
where ~ is the balance parameter, and F(X) concatenates the
responses of K filter bases in feature dimensionality,

F(X) =T L)X, T (L)X, -, Tk-1(L)X]. (10)
Thus the tracking model can be easily solved as
w = (F(X)TF(X)) " F(X)Ty. (10

Algorithm 1 Spectral Filter Tracking Algorithm

Input: A video sequence with initial target position at the fist
frame; The regression map y (Gaussian-shape).
Output: The coordinates of the tracking target.
1: Initialize the Laplacian matrix L.
2: repeat
3:  if ¢ > 1 then

4 Extract feature X from the candidate region.

5 Compute K-order responses (X) in Eqn. (10).
6: Compute detection score y = F(X)w Eqn. (11).
7 Find the target center with maximum score.

8: end if

9:  Extract feature X at the current target location.

10:  Compute K-order responses F(X) in Eqn. (10).
11:  Derive the regression model w; in Eqn. (TI).

12:  if (t = 1) then w = wy;

13: else w = (1 —a)*w+a*w;.

14: until All frames are traversed.

E. The Algorithm

We summarize the whole tracking algorithm in Alg. [I]
There are two crucial steps, including the computation of
the filtering responses and the regressor. As the spectral
filter bases can be pre-computed before detecting targets,
the computation cost mainly spends on the matrix inverse
operation in Eqn. (II). The computation complexity is about
O(d®K?®), where d is the feature dimension and K is the
filter order. To speed up SFT, we can project features into
low-dimension space by using Principal Components Analysis
(PCA) or random projecting (Section [[V-B)). Besides, the order
K may be downscaled by designing the skipping neighborship
(Section [IV-A). For other strategies of accelerating matrix
inverse calculation, we leave them as the future work.

IV. IMPLEMENTAL DETAILS

In this section, we introduce more details of SFT, including
how to construct graph, how to reduce feature dimensions, and
how to process the scale problem, etc.

A. Graph Construction

As shown in Fig. 2] we define the neighborship based on
spatial layout. As analyzed in Section the filter basis
Tk (L) is an exactly k-localized filter, where the neighborship
is propagated in £F. Thus we only need to define the spatial
nearest neighbors of each reference point as shown in the
first two cases of Fig. 2} and employ the k order filters to
evolve neighborship. Considering the high-degree similarity of
image textures in adjacent pixels, we may skip several pixels
to connect edges as shown in the last two cases of Fig. [J
Thus, when filtering on the same size region, the skipping
mode need less filters (i.e., a smaller K'). Consequently, the
tracker speeds up if the smaller K is employed, because the
complexity of matrix inverse is related to K.

After choosing neighbourship, we may assign Gaussian
weights or {0, 1} weights to those connected edges. To sim-
plify the weighting step, here we use the {0,1} weighting
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Fig. 2: Some exemplars of adjacency relationship. As image
textures of adjacent pixels are high-degree similar, we can skip
several pixels to connect edges as shown in the right two cases.
The advantage is that the filter order K can be decreased in
proportion for the same size filtering region.

strategy, i.e., the adjacency matrix W of the weighted graph
G is defined as
{ 1, if e € € connects vertices ¢ and 7,

Wij = 0

otherwise. (12)

B. Multi-channel Features

The deep VGG-Net [32] is used to extract high-level
features. We crop an image patch with 2.4 times the size
of target bounding box and then resize it to 224 x 224
pixels for the VGG-Net with 19 layers. Similar to the liter-
ature [28]], we use the outputs from six convolutional layers
({10,11,12, 14,15, 16 }-th layers) as six types of feature maps.
All feature maps are resize to 57 x 57 pixel size, which is
about quadruple to the smallest size (14 x 14) of feature maps.
The odd size can uniquely define the target center. As the
number of feature maps in each layer is 512, SFT will spend
high computation cost on the matrix inverse as analyzed in
Section [[II-E} if all feature maps are concatenated together
(512 x 6 = 3072 dimensions). To speed up the tracking, two
strategies are taken for the convolutional features: (i) We learn
six trackers respectively corresponding to six layer features,
and average the six tracking target centers as the final target
center. (ii) We employ PCA to project each layer features into
100 dimensions.

C. Other Details

For the scale estimation, we employ the same strategy to
[9]. The filters at multiple resolutions are used to estimated
scale changes in the target size. We extract the samples with
sizes in scaled factors a”(r € {[352], -, [251]}) at the
previous target location. The scales a” is relative to the current
target scale, and S is the number of scales and a is the
scale increment factor. In our experiment, we follow the same
parameter settings to [9]], where S = 33,a = 1.02.

For tlle filter order K, we make the largest filter basis (i.e.,
Tk_1(L)) cover the whole target region. Suppose the target
size is h x w, the filter order K is set to max(h, w) if choosing
the nearest spatial neighborship (e.g., the first two cases in
Fig.[2). For the skipping modes in the last two cases of Fig.[2]
K is assigned to (%}Lw)], where s is the skipping step.

The default neighbor relationship uses the third case in
Fig. 2| The balance parameter ~ is set to 1.

V. EXPERIMENT
A. Dataset and Setting

In order to verify our proposed tracker, we conduct extensive
experiments on OTB-2015 dataset [36]]. The dataset consists
of 100 video sequences with 11 different attributes including
illumination changes, scale variation, motion blur, fast motion,
etc. Two widely used evaluation criteria, i.e., precision plot and
success plot, are used in the following experiments.

Precision plot measures center location error (CLE) which
computes the difference between prediction positions and
ground truth. It shows how many percentage of frames whose
center location error is within a previously given threshold.
Here the threshold score is set to 20 pixels. Success plot
denotes bounding box overlap ratio which is based on area
under the curve (AUC). The overlap ratio is defined as
S = |re Nrgl|/|re U rg|, where U and N are the union and
intersection operators, 7 is the predicted bounding box and
r¢ is the ground truth . More details can be found in [36].

B. Selection of Adjacent Vertexes

As discussed in Section we only need to connect those
nearest neighbors, as spectral graph filters can propagate the
neighbor relationship to distant vertexes. Here we test four
cases of Fig. 2] whose results are reported in Tab. [l From
this table, we can observe that, (i) more neighbors (Case
2) slightly degrade the performance, which may be attribute
to feature confusion after averaging features of all neighbors
during compute £*X; (ii) the skipping mode with one pixel
interval (Case 3) reaches the best performance. The skipping
strategy can be regarded as the downsampling for feature
maps. Thus the increase of skipping step (Case 4) degrades
the performance because some useful information can not be
encoded in the filtering process. Thus, we use the third case
as the default setting in the following experiments.

TABLE I: The performance of different neighborhood strate-
gies as shown in Fig. |2} Case 1~4 are respectively correspond
to the sequential subfigures. Note that here we don’t perform
scale estimation.

Case 1 Case 2 Case 3 Case 4
CLE | AUC | CLE | AUC | CLE | AUC | CLE | AUC
0.855 | 0.572 | 0.847 | 0.565 | 0.866 | 0.576 | 0.862 | 0.574

C. Comparisons with CF Based Trackers

To fairly compare the CF based model, the same features
of VGG-Net are feed into the CF based model, which is
our standard baseline, called VGG_CF. Besides, we compare
the classic CF based methods, CSK [16] and KCF [17].
Fig. 3| shows the results under the precision plots of One-Pass
Evaluation(OPE) and the success plots based on area under
curve(AUC). The performances of the three CF based methods
are quite different. As the CSK trackers only use raw feature
and CSK use HOG feature while the robust deep CNN feature
is employed for VGG_CF tracker, which makes it outperform
the other two CF based methods obviously. Compared to
the baseline VGG_CF, our proposed SFT achieves a gain



of 3.4% in CLE. Meanwhile we obtains an AUC scores of
57.6% which also outperforms VGG_CF tracker. The reason
may be two folds: (i) local filtering on spatial regions, (ii)
rotation-invariance and shifting-invariance for graph structure.
To implement an intrinsic comparison, here we don’t process
the scale.

Precision plots of OPE Success plots of OPE

—SFT[0.576]
VGG_CF [0.557]

---KCF [0.475]

—CSK [0.385]

—SFT [0.866]
VGG_CF [0.832]

---KCF [0.692]

—CSK [0.519]

Precision
Success rate

OveriaD threshold

(@) (b)

Location error threshold

Fig. 3: The precision and success plot of comparisons with
CF based methods. Note that here we don’t perform scale
estimation for an intrinsic comparison.

D. Comparisons with State-of-the-art

We compare our proposed SFT with nine state-of-the-
art trackers: DeepSRDCF [10], MEEM [37], HDT [28]],
CSK [16], KCF [17], DSST [9], SCM [39]], STRUCK [15],
TLD [20]. The DeepSRDCF and HDT are two recent repre-
sentative deep learning based trackers. Others employ HOG
feature mostly. Only the top-10 trackers are reported in the
experiments.

Quantitative Evaluation. Fig. [ plots the precision curves
and success curves among all trackers. The top-10 trackers
ranked by CLE and AUC scores are shown with different
colors. From these figures, we have three observations: (i)
In the precision plot, SFT outperforms all state-of-the-art
trackers, which demonstrates its effectiveness. (ii) In success
plot, SFT achieves a comparable result with the current best
method DeepSDCF. Actually here we only use the parameters
used in [9] without any tuning for scale estimation. (iii) In
fine localization, SFT is slightly inferior to DeepSRDCEF, but
SFT is more robust to those large appearance variations. The
main reason is that, the spectral filtering averages all features
of neighbors when all edges are assigned to equal weights,
thus in the filtering some subtle textures may be lost while
most invariant information is preserved.

Attribute-based evaluation. For comprehensive analysis of
our proposed SFT, we provide each attribute plot in Fig. [3
As observed from these figures, SFT achieves more excellent
performance compared to state-of-the-art in almost all cases.
Particularly, SFT is rather effective in handling low resolution,
background cluster and illumination variation challenges. In
the case of low resolution the CLE score of our tracker is
99.8% which surpasses DeepSRDCF by 11.1%. However, our
tracker seems lost target easily in the case of fast motion
and motion blur, which might be attribute to the small search
window of SFT or boundary effect.

Precision plots of OPE Success plots of OPE
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DeepSRDCF [0.851]
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- - ~MEEM [0.781]
———DSST [0.695]
KCF [0.692]
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——TLD (0595
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DeepSRDCF [0.635]

Precision
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——VGG_CF [0.557]
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——DSST [0.475)

Success rate

——TLD [0.426]
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Fig. 4: The precision and success plots of quantitative compar-
ison for the 100 sequences on OTB-2015 dataset. The center
location error (CLE) and area under curve (AUC) scores of
the top 10 trackers are reported. Best viewed with Zooming

up.

Qualitative evaluation. Fig. [ shows some visual results of
the top ranked trackers (including our proposed SFT, Deep-
SRDCF, KCF, MEEM, DSST, DLT [33]]) on the eight most
challenging image sequences, Ironman, Matrix, MotorRolling,
Skiing, Tigerl, Box, Human3, Human6. AS shown in Fig @
the prediction position and bounding box of our proposed
method are more precise than others trackers in various scenes.

VI. CONCLUSION

In this paper, we propose a simple but efficient Spectral
Filter Tracking (SFT) method. In SFT, the candidate image
region is model as a pixel-level grid graph. To estimate
the best-matching vertex, we borrow spectral graph filters to
encode the local graph structure. Considering the computation
cost of eigenvalue decomposition on the Laplacian matrix, we
approximate spectral filtering as the polynomial of a series
of filter bases. For the filter bases, we employ the Chebyshev
expansion terms, where each term encodes a localized filtering
region of graph. Thus all filter bases span a multi-scale filtering
space. Finally the filtering parameters and feature projecting
function are jointly reduced into a simple regression model.
The proposed SFT simply boils down to only a few line codes,
but the experimental results on the dataset [36] demonstrate
that the SFT is more effective and achieves state-of-the-art
performance. In future, we will consider to speed up the
tracker.

REFERENCES

[11 A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking
using the integral histogram. In IEEE Computer Society Conference
on Computer vision and pattern recognition, volume 1, pages 798-805,
2006.

[2] S. Avidan. Support vector tracking. IEEE transactions on pattern
analysis and machine intelligence, 26(8):1064—-1072, 2004.

[3] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online
multiple instance learning. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 983-990, 2009.

[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual
object tracking using adaptive correlation filters. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2544-2550, 2010.

[5] Z. Cai, L. Wen, J. Yang, Z. Lei, and S. Z. Li. Structured visual tracking
with dynamic graph. In Asian Conference on Computer Vision. 2013.



Fig.

Precision plots of OPE - low resolution (9)

Precision plots of OPE - i

ion variation (38)

Precision plots of OPE - fast motion (39)

1
09 09 08 ___4—""
08 08 o
o7 o7
05
cos cos c
S SFT[0.996] S Sos
@ . - - =HDT (0.887] 3 05 o
omen, 110§ 8.
& o4 ~+-~ DeepSRDCF [0.847) T o & ; pensRocr oot
- = ~MEEM [0.808] My [0.806)
B . Yy g
03 Zf:\'l SL 7[3&274] 03 DSST [0.723] by KCF (0.620]
KCF [0.708) ozt 4 STRUCK [0.620]
02 KCF [0.671] 02 - [0.620]
SCM [0.597] —_—
Lo p827] DSST [0.584]
TLD (0.559] ——TLD[0558]
o o1 STRUCK [0.549] L ——CsK [0.402]
o o 3
o s 1 S o s 1 1 R o s 1 1 2 m . 3 4 45 s
Location error threshold Location error threshol Location error threshol
Precision plots of OPE - scale variation (64) Precision plots of OPE - occlusiol Precision plots of OPE - background clutter (31)
1 09
09 08 09 -
08 = T N
o7 B
07 o7 =
0s =
=06 = = o6 -
3 g sTioesn 7" = DoepSROCF [0825] 7
2os T DeepSROCF [0.81] 2 / Deensne .
o 4 HOT [0.808] ..l A @
a VGG_CF [0.796] & W - = ~HDT [0.774] g
- - - MEEM [0.736] Y % T TMEEm[0.741)
——DsST [0.662] st/ Tyee criora i KCF [0.712]
KCF [0.633] iy KCF [0.622] o3 ik ——DSST[0.702]
STRUCK [0.507] / DSST [0.615] CSK [0.585]
- - - ScM[0559) /4 —— TSy STRUCKI0555)]
01 oir ¥ 01
o o
o s 10 1 2 s w  m 4 4 0 o s 10 1w EEEEEE o s 1 15 2z W ® 4 5 0
Location error threshold Location error threshold Location error threshold
Precision plots of OPE - out of view (14) Precision plots of OPE - in-plane rotation (51) Precision plots of OPE - deformation (44)
09 )
os 09 09
08 08
o7
o7 o7
06
< cos cos
S os <] S
k] @, oftad SFT (0.860] @
S ~DeepSRDCF [0.781] g é - - -HOT [0.844] 3 o/ SFT [0.870]
O o4 o / ~+-+~ DeepSRDCF [0.616] £ / ~HDT [0.821]
a [ 4 ——VGG_CF [0813] O os 2 VGG_CF [0.785]
s [y - = = MEEM [0.794] 4 -~ DeepSRDCF [0.783]
7 4 ——VGG_CF [0.663] 03 4/ ———DSST [0.724] 03 &, - - - MEEM [0.754]
. KCF [0.498] KCF [0.693] 2 KCF [0617]
oz fu ——DSST (0.487] 02 STRUCK [0.633] ool Y ——DSST (0:568]
J STRUCK [0.487] TLD [0.609] ) = = =SCM[0.545]
01 TLD [0.474] e - = =SCM [0.544] o STRUCK [0.527]
- - - ScM [0.429] ——TLD[0.484)
o o 13
o s 1 S o s 1 1 R o s 1 1 2 m . 3 4 45 s
Location error threshold Location error threshol Location error threshol
Precision plots of OPE - out-of-plane rotation (63) Precision plots of OPE - motion blur (29) Precision plots of OPE
09 1
09 08 09
08 07 .| 08
o7 07
0s y
=06 = = 06 7
S S os <]
2, 2 2, 7 /. ——SFT[0875]
] =] =] W/
L D o4 -~ DeepSRDCF [0.823] o i » -+~ DeepSRDCF [0.851]
N / o a i - - -HDT [0.848]
04 4 - - - MEEM [0.704) osr My ——VGG_CF [0832)
% ——VGG_CF [0.780] e - - - MEEM[0.78:
03 i/ KCF [0.670] 03 i, ——VGG_CF [0.734] ol I 7&5:\[& E7g 51]]
b —osstienl i ) o i et
0 STRUCK [0.593] oz il KO [0.600] oz| W/ STRUCK [0.638]
~__Iofesmo) p/ STRUCK [0.587) / LD (0.595]
= = =SCM[0.569] o. F) [ g = = =SCM[0.573]
01 - ~———TLD [0.535] 01
~———CSK [0.370]
nb 5 10 15 20 2 0 3 a0 a5 50 au 5 10 15 20 0 3 40 a5 50 0 s 10 15 20 2 £ 35 40 a5 50

Location error threshold

5: The precisions of plots of 11 attributes.

Location error threshold

Location error threshold

Our tracker achieves is superior to other methods in most cases except motion

blur and fast motion. The reasons of failures might be the small search window (2.4x) and boundary effects for our method.
Best viewed with Zooming up.
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