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Semantic Cluster Unary Loss for Efficient Deep
Hashing

Shifeng Zhang, Jianmin Li, and Bo Zhang

Abstract—Hashing method maps similar data to binary hash-
codes with smaller hamming distance, which has received broad
attention due to its low storage cost and fast retrieval speed.
With the rapid development of deep learning, deep hashing
methods have achieved promising results in efficient information
retrieval. Most existing deep hashing methods adopt pairwise
or triplet losses to deal with similarities underlying the data,
but their training are difficult and less efficient because O(n2)
data pairs and O(n3) triplets are involved. To address these
issues, we propose a novel deep hashing algorithm with unary
loss which can be trained very efficiently. First of all, we introduce
a Unary Upper Bound of the traditional triplet loss, thus
reducing the complexity to O(n) and bridging the classification-
based unary loss and the triplet loss. Second, we propose a
novel Semantic Cluster Deep Hashing (SCDH) algorithm by
introducing a modified Unary Upper Bound loss, named Semantic
Cluster Unary Loss (SCUL). The resultant hashcodes form
several compact clusters, which means hashcodes in the same
cluster have similar semantic information. We also demonstrate
that the proposed SCDH is easy to be extended to semi-supervised
settings by incorporating the state-of-the-art semi-supervised
learning algorithms. Experiments on large-scale datasets show
that the proposed method is superior to state-of-the-art hashing
algorithms.

Index Terms—Deep Hashing, Unary Loss, Semi-supervised
Learning, Information Retrieval.

I. INTRODUCTION

DURING the past few years, hashing has become a
popular tool in solving large-scale vision and machine

learning problems [9], [12], [26], [31], [34], [47], [56]. Hash-
ing techniques encode various types of high-dimensional data
into compact hashcodes, so that similar data are mapped to
hashcodes with smaller Hamming distance. With the compact
binary codes, we are able to compress data into small storage
space, and conduct the efficient nearest neighbor search on
large-scale datasets.
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The hashing techniques are categorized into data-
independent methods and data-dependent methods. Data-
independent methods like Locality-Sensitive Hashing (LSH)
[5], [7], [9], [16], [17], [25] have theoretical guarantees that
similar data have higher probability to be mapped into the
same hashcode, but they need relatively long codes to achieve
such high precision. Data-dependent learning-to-hash methods
aim at learning hash functions with training data. A number
of methods are proposed in the literature, which can be
summarizes as: unsupervised hashing [11], [14], [18], [33],
[37], [53], supervised hashing [2], [21], [23], [29], [32], [35],
[41], [47], [63] and semi-supervised hashing [52]. Experiments
convey that hashcodes learned by (semi-)supervised hashing
methods contain more semantic information than those learned
by the unsupervised ones.

Recently, with the rapid development of deep learning [20],
[44], [48], deep hashing methods have been proposed to learn
hashcodes as well as deep networks simultaneously. The codes
generated by the deep networks contain much better semantic
information [13], [22], [27], [28], [31], [38], [56], [62]–[65],
and extensive experiments convey that deep hashing methods
achieve superior performance over traditional methods in a
variety of retrieval tasks.

Despite the advantages of the deep hashing methods, most
of them use pairwise or triplet similarities to learn hash
functions to ensure that similar data can be mapped to similar
hashcodes. But there are O(n2) data pairs or O(n3) data
triplets where n is the number of the training instances,
which are too large for large scale dataset. To overcome
this issue, most hashing methods [6], [28], [31], [64] just
consider generating data pairs/triplets within a mini-batch, but
this approach is only able to cover limited data pairs/triplets
and is hard to converge; what’s worse, similar data pairs are
scarce within a mini-batch if the number of the labels is too
large. Some approaches like CNNBH [13] directly regard the
intermediate layer of a classification model as the hash layer
to reduce the complexity to O(n) and achieve good retrieval
results. However, it lies in the assumption that the learned
binary codes are good for linear classification, which makes
is possible that the semantic gap is involved within the similar
hashcodes. Efficient deep hash learning methods with low
complexity are expected to be discovered.

It is clear that hashing is a special case of metric learning,
which aims at learning a certain similarity function. Metric
learning is widely used in many areas such as face recog-
nition [43], [46], [49], (fine-grained) image retrieval [40],
[51] and so on. Recent approaches like CenterLoss [54] and
L-Softmax [36] propose modified classification-based unary
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losses to learn a good metric, in which the intra-class distances
are minimized and inter-class distances are far apart. Empirical
experiments on metric learning problems such as face verifica-
tion show promising results. It conveys that a good metric can
be learned by optimizing a carefully designed classification-
based unary loss, which motivates us to utilize it for efficient
hash learning.

Moreover, in practical applications, the size of the database
for retrieval is dramatically increasing to provide desired
retrieval results. However, labeling all the database data is
difficult and only part of the labeled data can be obtained. For
generating efficient codes, deep semi-supervised hashing [57],
[60] has been proposed in which the hash function is trained
with the labeled data as well as abundant unlabeled data in the
database. These methods construct graphs for unlabeled data,
but graph based methods are not working well for complex
dataset. Recent perturbation based deep semi-supervised learn-
ing(SSL) algorithm such as Temporal Ensembling [24] and
Mean Teacher [50] has witnessed great success, but combining
them with pairwise/triplet losses for hashing is difficult. By
incorporating a carefully designed classification-based unary
loss for hash learning with the state-of-the-art SSL algorithm,
it is expected to achieve efficient semi-supervised hashing(or
metric learning).

A. Our Proposal
In this paper, we propose a novel (semi-)supervised hashing

algorithm with high training efficiency, in which a novel
classification-based unary loss is introduced. First of all, we
introduce a Unary Upper Bound of the traditional triplet loss,
the latter being widely used in the hash learning scheme.
The Unary Upper Bound bridges the triplet loss and the
classification-based unary loss (like hinge loss, softmax). It
shows that each semantic label corresponds to a certain cluster,
and different clusters corresponding to different labels should
be far apart. Furthermore, minimizing the Unary Upper Bound
makes the intra-class distances go smaller and the inter-class
distances go larger, thus the traditional triplet loss can be
minimized. Second, we propose a novel supervised hashing
algorithm in which we introduce a modified Unary Upper
Bound loss called Semantic Cluster Unary Loss (SCUL).
The complexity of SCUL is just O(n), making the training
procedure more efficient. Third, we introduce a novel semi-
supervised hashing algorithm by incorporating the SCUL
and the state-of-the-art Mean Teacher(MT) [50] algorithm,
where the softmax loss is replaced by the SCUL. We name
the proposed algorithm as Semantic Cluster Deep Hashing
(SCDH) algorithm and name the semi-supervised extension as
MT-SCDH.

Our main contributions are summarized as follows:
1) We introduce the Unary Upper Bound of the triplet loss,

thus bridging the classification-based unary loss and the
triplet loss.

2) We propose a novel and efficient deep supervised hash-
ing algorithm, which is trained with Semantic Cluster
Unary Loss(SCUL), a modified Unary Upper Bound.
The complexity of the SCUL is just O(n) and the
algorithm can be trained efficiently.

3) We propose a novel semi-supervised hashing algorithm
by incorporating the Unary Upper Bound with Mean
Teacher, the state-of-the-art SSL algorithm.

4) Extensive experimental results on several (semi-
)supervised hashing datasets show its superiority over
the state-of-the-art hashing methods.

The rest of the paper is organized as follows. Section II
presents the related work on deep hashing and semi-supervised
learning. Section III proposes the Unary Upper Bound of the
triplet loss and introduces a modified form called Semantic
Cluster Unary Loss (SCUL). Section IV introduces the novel
Semantic Cluster Deep Hashing (SCDH) algorithm in which
the SCUL is applied, and we propose a novel extension for
semi-supervised hashing in Section V. Experiments are shown
in Section VI, and the conclusions are summarized in Section
VII. The codes for proposed algorithms have been released at
https://github.com/zsffq999/SCDH.

II. RELATED WORK

1) Deep Supervised Hashing: Recently, deep convolutional
neural network (CNN) have received great success in image
classification [15], [20], [48], object detection [44] and so on.
Deep hashing methods simultaneously learn hash functions
as well as the network, and the hashcodes are generated
directly from the deep neural network. One of the difficulties in
hash learning is that the discrete constraints are involved. For
ease of back-propagation, some methods remove the discrete
constraints and add tanh nonlinearity [2], [6], [22], or add
some quantization penalty to reduce the gap between the
real-valued vectors and the hashcodes [28], [31], [64]. Some
methods introduce discrete hashing methods to generate codes
without relaxations [27], [63]. Both relaxation and discrete
methods succeed in dealing with discrete constraints to some
extent.

It should be noticed that different hashing methods use
different type of losses for optimization. DHN [64], DSH [31],
DPSH [28] and DH [38] use pairwise loss, which are op-
timized so that the hamming distance of codes with sim-
ilar semantic information should be small, and vice versa.
NINH [22], BOH [6] and DRSCH [62] propose triplet loss,
in which the hamming distances of similar codes should be
smaller than dissimilar ones by a margin. However, in these
methods, at least O(n2) data pairs and O(n3) data triplets
should be considered, which are too large for large-scale
datasets. DISH [63] overcomes this issue by performing the
matrix factorization of the similarity matrix, but it is not able
to be trained by direct back-propagation. CNNBH [13] directly
uses the activations of the intermediate layer as hashcodes, and
the networks are trained directly from the traditional softmax
loss to reduce the complexity to O(n), but it assumes that the
learned binary codes should be good for classification, lacking
the guarantees that similar hashcodes correspond to data with
similar semantic information.

2) Metric Learning: Metric learning aims at learning a
certain similarity function. Hashing is a special case of metric
learning in that the similarity is defined by the Hamming
distance, thus pairwise and triplet losses are also introduced to
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the metric learning scheme [43], [46], [49], but they also suffer
from high complexity and low convergence. Some recent
works introduce classification-based unary loss for optimiza-
tion like CenterLoss [54] and L-Softmax [36] to reduce the
complexity to O(n). They lie in the assumption that data with
the same label cluster around a certain center.

Face recognition is a typical application of metric learning,
in which the similarity between certain two faces should be
determined. Experiments on face recognition tasks show that
CenterLoss and L-Softmax perform better than most other
algorithms, which implies the effectiveness of unary losses
over most pariwise/triplet ones in metric learning tasks. How-
ever, CenterLoss and L-Softmax lack theoretical guarantees
that pairwise/triplet losses hold. Proxy-NCA [40] proposes
”proxies” to estimate a certain triplet loss and reduce the
complexity of the metric learning, but the estimation is not
accurate as it is greatly affected by the distances between the
data and the ”proxies”.

3) Semi-supervised Learning: Semi-supervised learning
aims at learning with limited labeled data and huge amount of
unlabeled data. Most semi-supervised learning methods lie in
the smoothness assumption in which similar data are expected
to share the same label [19], [55]. These methods can be
easily extended to semi-supervised hashing [57], [60]. But
they are not working well for complex data as the smoothness
assumption is not working well. Recently, Temporal Ensem-
bling [24] proposes a perturbation based approach where a
consensus prediction of a noisy input is formed. This method
is further improved by adding more smoothness constraints
like SNTG [39], or performing ensembling on deep networks,
denoting Mean Teacher [50]. These methods achieve great
improvement on semi-supervised learning problems, and it
is expected to utilize these methods to improve the semi-
supervised hashing.

In this paper, we discover the Unary Upper Bound of
the triplet losses, thus the classification-based unary loss and
triplet losses are bridged. Moreover, we propose a novel hash-
ing algorithm called Semantic Cluster Unary Loss(SCUL),
which is based on the modified Unary Upper Bound. Then
we extend it to the semi-supervised setting by combining
the SCUL with the Mean Teacher. Experiments show its
superiority over the state-of-the-art (semi-)supervised hashing
algorithms.

III. UNARY UPPER BOUND FOR SUPERVISED HASHING

Suppose we are given n data samples x1,x2, ...,xn,
the goal of hash learning is to learn the hash function
H: x→ {−1, 1}r, where r is the code length. For supervised
hashing, the semantic similarity information is crucial for
learning the hashcodes, which is usually defined by whether
the two data samples share certain semantic labels or tags.

A. Revisiting Triplet Ranking Loss for Supervised Hashing

Triplet ranking loss is widely used in the supervised (deep)
hashing algorithms [22], [42]. Given the training triplets

(x,x+,x−) in which x,x+ are semantically similar and x,x−

are dissimilar, the most widely used triplet loss is

lt(x,x
+,x−) = [m− |H(x)−H(x−)|+ |H(x)−H(x+)|]+

(1)
where [·]+

.
= max(0, ·), | · | is the distance measure (e.g.

Hamming distance), and m is the hyperparameter. It is ex-
pected to find a hash function where H(x) is closer to H(x+)
than H(x−). Another widely used triplet loss is NCA [10].
It can be noticed that most triplet losses are monotonous,
Lipschitz continuous functions [6], [10], [22], [42]. In fact, the
Lipschitz continuity is also widely applied in many machine
learning problems like SVM, Logistic Regression, etc. As the
gradient of the loss with Lipschitz continuity is constrained,
the gradient descent procedure with these losses is expected
to be stable and achieve good results. [1]

More generally, the triplet ranking loss can be formulated
as

lt(x,x
+,x−) = g(|H(x)−H(x+)|, |H(x)−H(x−)|) (2)

and g(·, ·) is a monotonous, Lipschitz continuous function such
that

g(a, b) ≥ 0

0 ≤ g(a2, b)− g(a1, b) ≤ a2 − a1, a1 ≤ a2
0 ≤ g(a, b1)− g(a, b2) ≤ b2 − b1, b1 ≤ b2

(3)

Given n training data samples x1,x2...,xn, denote S as a
set such that (i, j) ∈ S implies xi,xj are similar, the goal of
hash learning is to optimize the following triplet loss function:

min
H
Lt =

∑
(i,j)∈S,(i,k)/∈S

g(|hi − hj |, |hi − hk|) (4)

where hi = H(xi), i = 1, 2, ..., n is the learned hashcode of
xi.

B. Unary Upper Bound for Triplet Ranking Loss

As most supervised hashing problems, consider hashing on a
dataset in which each data instance has a single semantic label.
Denote C as the number of semantic labels, and y1, ..., yn ∈
{1, 2, ..., C} are the labels of x1, ...,xn. The data pairs are
similar if they share the same semantic label.

Intuitively, the intra-class variations among binary codes
should be minimized while keeping inter-class distances far
apart. We note that for algorithms where large amount of
distance computations are involved like k-means, the com-
plexities can be reduced by introducing some ”centroids”
for fast distance estimation. [8] To what follows, suppose
there are C auxiliary vectors c1, ..., cC ∈ Rr, each of which
corresponds to a certain semantic label. Considering the data
triplet (xi,xj ,xk) such that yi = yj , yi 6= yk, we have
the following hamming distance estimation according to the
triangle inequality:

|hi − hj | ≤ |hi − cyi
|+ |hj − cyj

|, yi = yj

|hi − hk| ≥ |hi − cyk
| − |hk − cyk

|, yi 6= yk
(5)

Eq. (27) arrives at an upper bound of intra-class distances
of hashcodes and a lower bound of the inter-class distances,



IEEE TRANSACTIONS ON IMAGE PROCESSING 4

𝐡𝑖

𝐜𝑦𝑖
𝐡𝑗 𝐜𝑦𝑘

𝐡𝑘
𝐡𝑖

𝐜𝑦𝑖𝐡𝑗 𝐜𝑦𝑘

𝐡𝑘

(a) (b)

Fig. 1: Illustration on the relationships of the codes and the
cluster centers as well as on training the Unary Upper Bound.
hi,hj ,hk and their relationships are defined in Eq. (27). The
upper bound of |hi−hj | can be arrived at with auxiliary vector
cyi

and the lower bound of |hi−hk| can be obtained by cyk
.

(a) Before training: the codes of two classes are not separated
apart, so the triplet loss and the Unary Upper Bound is large.
(b) After training: two cluster centers are far apart, the intra-
class distances are small, thus the triplet loss and the Unary
Upper Bound are small.

and the illustration is shown in Figure 1. It should be noticed
that |hi − hk| ≥

∣∣|hi − cyk
| − |hk − cyk

|
∣∣ holds for any

hi,hk, cyk
according to the inverse triangle inequality, and the

second inequality of Eq. (27) holds regardless of the absolute
value. As discussed below, removing the absolute value has no
influence on the correctness of the lower bound of inter-class
distances.

With the property of g(·, ·) shown in Eq. (23), we can arrive
at an upper bound of triplet ranking loss:
g(|hi − hj |, |hi − hk|)
≤ g(|hi − cyi

|+ |hj − cyj
|, |hi − cyk

| − |hk − cyk
|)

≤ g(|hi − cyi
|, |hi − cyk

|) + (|hj − cyj
|+ |hk − cyk

|)
(yi = yj , yi 6= yk)

(6)
thus the triplet ranking loss can be represented by the distances
between the hashcodes and the C auxiliary vectors c1, ..., cC .

If the class labels are evenly distributed (for datasets with
unbalanced labels, the labels can be balanced by sampling),
the upper bound of Eq. (24) can be arrived by a simple
combination of triplet losses shown in Eq. (28) such that

Lt ≤ (
n

C
)2(C − 1)

n∑
i=1

[lc(hi, yi) + 2|hi − cyi |] (7)

where lc(hi, yi) =
1

C−1
∑C

l=1,l 6=yi
g(|hi − cyi |, |hi − cl|) can

be regarded as max-margin multiclass classification loss such
as multi-class hinge loss

lc(hi, yi) =
1

C − 1

C∑
l=1,l 6=yi

[m+ |hi − cyi
| − |hi − cl|]+ (8)

or softmax loss

lc(hi, yi) = − log
exp(−|hi − cyi

|)∑C
j=1 exp(−|hi − cj |)

=
1

C − 1

C∑
l=1,l 6=yi

[− log
exp(−|hi − cyi

|)
e−|hi−cyi

|+e−|hi−cl|+
∑C

j=1
j 6=yi
j 6=l

e−|hi−cj |
]

(9)

0 50 100 150 200 250 300
iterations
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5
(a) Loss values (r=48)

triplet loss
relaxed triplet loss
Unary Upper Bound
estimated 
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d
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Fig. 2: Illustration on the relationship between the triplet loss
and the Unary Upper Bound, as well as the estimated λ defined
in Eq. (10). Denote σ as the variance of the cluster and d as the
distance between clusters. (a) The change of different values
as σ decreases and d increases. (b) Value of λ with varied σ
and d.

The derivation of Eq (26) is shown in the supplemental
material. We name the right side of Eq. (26) as the Unary
Upper Bound of the triplet loss.

C. Unary Upper Bound and Semantic Cluster Unary Loss

From Eq. (26) we can see that the complexity of the
Unary Upper Bound is just O(n). It is clear that c1, ..., cC
in Eq. (26) can be regarded as C cluster centers, and each
cluster corresponds to a certain semantic label. If the distance
between the data instance and the corresponding cluster center
is small, the intra-class distances are expected to be small;
and if the data instance and other centers are separated far
apart and the intra-class distances are small, the inter-class
distances are expected to be large. Thus we can arrive at an
alternative way to minimize the triplet loss: (1) minimize the
distance between the data instance hi and the corresponding
cluster center cyi

by minimizing lc(hi, yi) and |hi− cyi
|; (2)

maximize the distance between hi and other cluster centers
by minimizing lc(hi, yi). The training procedure is shown in
Figure 1. After optimization, C clusters can be formed and
each cluster corresponds to a certain semantic label, and we
name each of them as the Semantic Cluster. The Semantic
Cluster centers can be regarded as c1, ..., cC .

However, the Unary Upper Bound in Eq. (26) is too loose,
and the direct minimization of the Unary Upper Bound may
suffer from collapse. As the |hi − cyi

| term takes an crucial
part in the Unary Upper Bound, it is possible that cyi

,hi will
converge to zero to ensure that |hi−cyi | = 0, then the Unary
Upper Bound is relatively small, but the original triplet loss
is large. The loose of the Unary Upper Bound is caused in
two aspects: (1) In the beginning, the bounds in Eq. (27) is
too loose and the lower bound in the second inequality may
be smaller than zero, thus the first inequality of Eq. (28) is
loose; (2) at the end of optimization, the triplet loss will goes
to zero, thus g(·, ·) → 0, g′a(a, ·) → 0, g′b(·, b) → 0, and it is
clear that the second inequality of Eq. (28) will be loose.

To address this issue, we want to find a tighter bound such
that

Lt ≤MtLu Lu =

n∑
i=1

[lc(hi, yi) + λ|hi − cyi
|] (10)
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where Mt = ( n
C )2(C − 1) and λ > 0. The analytic form

of λ is intractable due to the unknown type of g and the
distribution of hi. We propose a toy example to show that
λ can be quite small. Denote hi ∈ Rr, r = 48 in this
example. Suppose there are C = 2 clusters. Each cluster
corresponds to a Gaussian distribution with covariance σIr,
and the distance between cluster centers (the means of Gaus-
sian distributions) is d. The triplet ranking loss is defined as
g(a, b) = [a − b + 1]+. During the training process, it is
expected that σ gradually decreases and d gradually increases.
Figure 2(a) shows the change of the original triplet loss, the
Unary Upper Bound, and the triplet loss defined by the second
term of Eq. (28) (denote relaxed triplet loss). An estimation
of λ .

= (Lt/Mt −
∑n

i=1 lc(hi, yi))/
∑n

i=1 |hi − yi| is also
computed. It can be seen clearly that all losses are gradually
decreasing and λ is small during the whole process. Figure
2(b) illustrates the estimated λ with varied σ and d, which
implies that λ is relatively small under almost all conditions.
Thus it is expected that a tighter Unary Upper Bound as Eq.
(10) exists with a relatively small λ.

To conclude, the modified form of the Unary Upper Bound
of the triplet loss can be written as Eq. (10), and we name
it as Semantic Cluster Unary Loss(SCUL). By optimizing the
SCUL in Eq. (10), not only a smaller |hi − cyi

| but also a
larger |hi−cyk

|, yi 6= yk can be achieved, so that the original
triplet loss is able to be minimized. Moreover, optimizing Eq.
(10) is expected to be efficient as the complexity is just O(n).

D. Multilabel Extension

In the previous section, we have just considered hashing on
data with single semantic label. In practical applications, lots
of data have more than one semantic label, and the similarity is
defined by whether two data instances share certain amount of
labels. Hashing on data with multilabel should be considered.

Consider a case where semantic labels are evenly dis-
tributed. In particular, the probability of each xi, i = 1, ..., n
has a certain label l ∈ {1, ..., C} is p. Denote that the similarity
is defined by whether two data instances share at least one
semantic label, and the triplet ranking loss is defined by

Lmt =
∑

(i,j)∈S,(i,k)/∈S

rijg(|hi − hj |, |hi − hk|) (11)

where rij ≥ 1 denotes the number of labels xi and xj share.
Note that we attach greater importance to similar data pairs
with more shared semantic labels. Then we can arrive at an
Unary Upper Bound of the above triplet ranking loss, which
is concluded in the following proposition:

Proposition 1. Denote Yi ⊆ {1, 2, ..., C} as the labels of
data instance xi, and P(l ∈ Yi) = p for all l = 1, 2, ..., C.
The Unary Upper Bound of the expectation value of the triplet
loss defined by Eq. (25) is

E[Lmt] ≤(C − 1)p2n2
n∑

i=1

[q(|Yi|)lmc(hi, Yi)

+ (Q+ q(|Yi|))
∑
s∈Yi

|hi − cs|]
(12)

where q(x) = C−x
C−1 (1 − p)

x, Q = (1 − p)2(1 − p2)C−2, |Yi|
denotes the number of labels xi contains, and

lmc(hi, Yi) =
1

C − |Yi|
∑
s∈Yi

∑
t/∈Yi

g(|hi − cs|, |hi − ct|) (13)

can be regarded as a multilabel softmax loss such that

lmc(hi, Yi) =
∑
s∈Yi

[− log
exp(−|hi − cs|)∑C
j=1 exp(−|hi − cj |)

] (14)

The proof of this proposition is shown in the supplemental
material. Similar as Section III-C, we can arrive at a more
general form such that

E[Lmt] ≤MmtLmu

Lmu =

n∑
i=1

[q(|Yi|)lmc(hi, Yi) + u(|Yi|)
∑
s∈Yi

|hi − cs|]
(15)

where Mmt is a constant and the value of u(x) is relatively
small. Eq. (37) can be regraded as the multilabel version of
SCUL and the complexity is also reduced to O(n).

IV. SEMANTIC CLUSTER DEEP HASHING

In this section, we propose a novel deep supervised hashing
algorithm called Semantic Cluster Deep Hashing (SCDH), in
which the Semantic Cluster Unary Loss(SCUL) in Eq. (10) is
adopted as the loss to optimize. The term ”Semantic Cluster”
is defined in Sec III-C. The proposed algorithm is expected to
be efficient, as the classification-based SCUL is introduced.

A. Overall Architecture

The overall network architecture is shown in Figure 3.
Denote fc7 as the last but one layer of a classification network
(eg. AlexNet, VGGNet, etc.), there are two ways after fc7. One
way consists of two fully connected layers without non-linear
activations. The first layer is the hashing layer with r outputs,
and the second layer has C outputs. C = [c1, ..., cC ] ∈ Rr×C

is the parameters of the second layer, which can be regarded
as C cluster centers. The other way is a fully-connected
layer(denote fc8) with the softmax classification loss.

Denote F (x) as the activations of the hashing layer, and
H(x) = sgn(F (x)) as the hash function, where sgn is the
element-wise sign function and F (x) ∈ Rr. The objective is
learning F and C by optimizing the SCUL to obtain a good
hash function.

After training the network, the binary codes of data x are
easily obtained with h = sgn(F (x)).

B. Loss Function

Denote hi = sgn(F (xi)), i = 1, 2, ..., n, we should opti-
mize the SCUL such that

min
F,C
Lu =

n∑
i=1

[lc(hi, yi) + λ|hi − cyi
|] (16)

We regard | · | as the euclidean distance in Eq. (16). As
discussed before, the complexity of the proposed loss is just
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𝑙𝑐 𝐹 𝐱𝑖 , 𝑦𝑖 + 𝐹 𝐱𝑖 − 𝐜𝑦𝑖

Hashing layer: the 

output is 𝐹 𝐱 ∈ 𝐑𝑟

fc: the weight 

is 𝐂 ∈ 𝐑𝑟×𝐶

fc7

Quantization Loss: 

force 𝐹 𝐱 to binary-

like output

Binary Output: 

𝐡 = sgn 𝐹 𝐱

Input data 𝐱

Fig. 3: Overview of the Semantic Cluster Deep Hashing algorithm. Given input data x, the hash value can be obtained from
the hashing layer (green rectangle) with h = sgn(F (x)), where F (x) is the activation of the hashing layer. C ∈ Rr×C is the
parameter of the last fully-connected layer before the SCUL, and the columns of C can be regarded as C cluster centers. This
network is jointly trained by the SCUL, the quantization loss and the softmax loss, defined in Eq. (18).

O(n) and the loss has theoretical relationship with the triplet
ranking loss. Similar as [13], [56], For faster convergence, we
add another classification loss L1 =

∑n
i=1 l1(xi, yi) to train

the deep neural network:

min
F,C
L = Lu+µL1 =

n∑
i=1

[lc(hi, yi)+µl1(xi, yi)+λ|hi−cyi |]

(17)
Inspired by deep methods for classification problems,

for hashing on data with single label, lc(hi, yi) has a
similar form with softmax loss such that lc(hi, yi) =

− log
exp(−|hi−cyi

|)∑C
j=1 exp(−|hi−cj |)

.

For datasets with multilabels, lc(hi, yi) + λ|hi − cyi
| can

be replaced by q(|Yi|)lmc(hi, Yi) + λ
∑

s∈Yi
|hi − cs|, where

lmc(hi, Yi) is defined in Eq. (14) and we simply use q(x) =
1/x. l1(xi, yi) is the multilabel softmax loss.

Note that Lu has a similar formulation with CenterLoss [54]
to some extent, but the differences between two losses are ob-
vious. First, CenterLoss just use softmax loss after the feature
embedding layer, and the centers in the CenterLoss have no
relationship with the last fully-connected layer. Second, our
proposed Lu has the theoretical relationship with the triplet
ranking loss. Furthermore, SCDH has a simple but novel
extension of the multilabel case.

C. Relaxation

The main difficulty in optimizing Eq. (17) is the existence
of the discrete constraints, making it intractable to train the
network with back-propagation. Recent researches convey
that removing the discrete constraints as well as adding the
quantization loss is a good approach [4], [28], [64] in which
the activation of the hashing layer F (x) is not only continuous
but also around +1/−1. However, optimizing these losses has
to make the norm of F (x) constrained. In fact, we just need
to push the elements of the learned F (x) away from zero so
that less discrepancy is involved after generating the codes
with the sgn function. For a well-learned F (x) with relatively
small or large norm, we may not necessarily optimize with
the traditional quantization loss. [3]

In this paper, we introduce a new quantization loss such
that lq(f) = 1 − 1Tabs(f)

‖1‖q‖f‖p and arrive at the following relaxed

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

|x|3 + |y|3 = 1

x2 + y2 = 1

Fig. 4: Illustration on the effect of optimizing with the pro-
posed quantization loss defined in Eq. (18). The blue circle
denotes a set of 3-normed points. The red arrows denote the
gradients of the proposed quantization loss. It can be seen
clearly that each element of the vector F (x) will be almost
the same during training, so F (x) and sgn(F (x)) are expected
to be close to each other. A unit circle (2-norm) is shown in
this figure for comparison.

problem:

min
F,C
L =

n∑
i=1

[lc(F (xi), yi) + µl1(xi, yi)

+λ|F (xi)− cyi |+ αlq(F (xi))]

(18)

where abs(·) is the element-wise absolute function, ‖·‖p, ‖·‖q
form a pair of dual norms such that 1/p + 1/q = 1, and
therefore abs(x)Tabs(y) ≤ ‖x‖p‖y‖q for any x,y according
to the Holder’s inequality. As shown in Figure 4, by optimizing
the proposed quantization loss, each element of F (x) is
expected to be almost the same, thus less discrepancy between
F (x) and sgn(F (x)) will be involved. Moreover, unlike the
quantization losses proposed in [4], [64], ours do not need to
constrain the norm of F (x) during optimization.

It is easier to optimize the quantization loss with greater p.
We use p = 3, q = 1.5 in this algorithm.

D. Optimization

It it clear that the proposed SCDH can be trained end-to-
end with back-propagation, in which Eq. (18) can be optimized
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Fig. 5: Overview of the MT-MCDH algorithm. The structure
of teacher/student network are the same as SCDH. Different
colors denote different types of layers, which are the same
with that in Figure 3.

with gradient descent. The crucial term in Eq. (18) for gradient
descent is the SCUL term, denoting lu(xi) = lc(F (xi), yi) +
λ|F (xi)− cyi

|, and the gradient is computed as

∇cyi
lu =(1− pyi

+ λ)∇cyi
|F (xi)− cyi

|
∇cj lu =− pj∇cj |F (xi)− cj | j 6= yi

∇F (xi)lu =(1 + λ)∇F (xi)|F (xi)− cyi |

−
C∑

j=1

pj∇F (xi)|F (xi)− cj |

(19)

where pk = exp(−|hi−ck|)∑C
j=1 exp(−|hi−cj |)

can be regarded as the prob-
ability, and ∇|F (xi) − cj | = (F (xi) − cj)/|F (xi) − cj | is
the gradient of the distance. By using Eq. (19), the network
is able to be optimized end-to-end with back-propagation.

However, when training the dataset with a large number of
classes like Imagenet, we find that the optimization of Eq.
(18) may be hard to converge. We find that pk, k = 1, ..., C
will be relatively small in the beginning, especially on large
number of classes, thus∇cyi

|F (xi)−cyi
|,∇F (xi)|F (xi)−cyi

|
will take the crucial part in computing the gradients. In this
case, F (xi), cyi

may be encouraged to go to zero to make
|F (xi)− cyi | = 0, and we pay less attention to enlarging the
inter-class distances, making the optimization hard to converge
or even collapse.

To overcome the above issue, we propose a warm-up pro-
cedure before training directly with back-propagation. In the
beginning epochs, we simply constrain the Semantic Cluster
centers C to a certain norm s to avoid the centers and F (xi)
to go zero. After the warm-up procedure, pyi goes larger, then
the importance of ∇|F (xi)−cyi | is diminished and F (xi), cyi

is hard to go zero. Moreover, a larger F (xi) makes it easier to
enlarge the inter-class distances. For relatively small datasets,
we do not need to use the warm-up procedure, but for faster
convergence, the centers should be randomly initialized such
that the norms of the centers should be large enough to prevent
them going zero.

V. MEAN TEACHER BASED SEMI-SUPERVISED HASHING

In this section, we extend the proposed SCDH algorithm for
semi-supervised hashing by combining the proposed SCUL

with Mean Teacher(MT) [50]. We name the proposed algo-
rithm as MT-SCDH.

A. Mean Teacher Recap
Mean Teacher [50] is the current state-of-the-art algorithm

for semi-supervised learning. It assumes that the data predic-
tions should be consistent under different perturbations, so
that it can satisfy the smoothness assumption. In this case,
Mean Teacher proposes a dual role, i.e., the teacher and the
student. The student is learned as before; the teacher is the
average of consecutive student models in which the weights
are updated as an exponential moving average(EMA) of the
student weights. In addition, the outputs of the teacher are
regarded as targets for the training the student, so we can
introduce the following consistency loss as regularization for
training:

Rc =
∑

i∈S∪U
d(f(x̃

(1)
i ), fT (x̃

(2)
i )) (20)

where S,U are the labeled and unlabeled datasets respectively,
x̃(1), x̃(2) are two random perturbations of the original data
point x, f(·), fT (·) are the outputs of student or teacher
network respectively, and d(·, ·) is the distance between two
features. In particular, the teacher can be regarded as the
average ensemble of the student, thus fT (·) can be regarded
as the mean of the student’s outputs, making the training of
the consistency loss more stable.

B. The MT-SCDH Model
As the proposed SCUL is a classification-based unary loss,

it can be easily incorporated with the Mean Teacher for semi-
supervised hashing in MT-SCDH. MT-SCDH is also a teacher-
student model which is shown in Figure 5. The student is
learned in the same manner as SCDH with the labeled dataset.
The teacher is updated in the same way as the Mean Teacher.
For all training data, we apply the consistency loss among the
outputs of the networks.

Denote S = {(x1, y1), ..., (xn, yn)} as the labeled data and
U = xn+1, ...,xm as the unlabeled data. The learning problem
of MT-SCDH is shown as follows:

min
F,C
Ls = L+ w

∑
i∈S∪U

[µd(ai,a
T
i ) + d(di,d

T
i )]

+ α
∑
j∈U

lq(F (xj))
(21)

where d(·, ·) = ‖softmax(·) − softmax(·)‖2, L is the super-
vised term defined in Eq. (18), lq(·) is the quantization loss
proposed in Sec. IV-C, w is the weight of the consistency
loss, ai,a

T
i are the outputs of fc8 for xi in the student

and teacher network respectively, di,d
T
i denote the negative

distances between F (xi) and the semantic clusters in the
student and teacher network respectively. In other words,
di = −[|F (xi)− c1|, ..., |F (xi)− cC |]T, and so as dT

i . Note
that the input xi is the random perturbations.

The basic configurations and training procedure are almost
the same as SCDH. And we follow the suggested configura-
tions (e.g. the value of w) in [50] for semi-supervised learning.

After training the network. we can extract the codes from
either the teacher network or the student network.
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VI. EXPERIMENTS

In this section, we conduct various large-scale retrieval
experiments to show the efficiency of the proposed SCDH
methods. We compare our SCDH method with recent state-
of-the-art (semi)-supervised deep hashing methods on the
retrieval performance and the training time. Some ablation
study on various classification-based unary losses is performed
to show the effectiveness of the Semantic Cluster Unary
Loss(SCUL). Sensitivity of parameters is also discussed in
this section.

A. Datasets and Evaluation Metrics

In this section, we run large-scale retrieval experiments
on three image benchmarks: CIFAR-101, Nuswide2 and Im-
ageNet3. CIFAR-10 consists of 60,000 32 × 32 color images
from 10 object categories. ImageNet dataset is obtained from
ILSVRC2012 dataset, which contains more than 1.2 million
training images of 1,000 categories in total, together with
50,000 validation images. Nuswide dataset contains about
270K images collected from Flickr, and about 220K images
are available from the Internet now. It associates with 81
ground truth concept labels, and each image contains multiple
semantic labels. Following [35], we only use the images
associated with the 21 most frequent concept tags, where the
total number of images is about 190K, and the number of
images associated with each tag is at least 5,000.

The experimental protocols are similar to [56]. In CIFAR-
10 dataset, we randomly select 1,000 images (100 images per
class) as the query set, and the rest 59,000 images as the
retrieval database. In ImageNet dataset, the provided training
set are used for retrieval database, and 50,000 validation
images for the query set. In Nuswide dataset, we randomly
select 2,100 images (100 images per class) as the query set.
For CIFAR-10 and ImageNet, similar data pairs share the same
semantic label. For Nuswide dataset, similar images share at
least one semantic label.

Our method is implemented with PyTorch4 framework. We
use pre-trained network parameters before fc7 if necessary,
and the parameters after fc7 is initialized by ”Gaussian”
initializer with zero mean and standard deviation 0.01, except
the Semantic Clusters C which are initialized with standard
deviation 0.5 to make the norms of clusters larger. The images
are resized to the proper input sizes to train the network
(e.g. 224 × 224 for AlexNet and VGGNet). SGD is used for
optimization, the momentum is 0.9 and the initial learning rate
is set to 0.001 before fc7 and 0.01 for the rest of layers.

For training the deep hashing network, we randomly select
5,000 images (500 per class) in CIFAR-10 and 10,500 images
(500 per class) in Nuswide to train the network, and use all
database images in the ImageNet dataset for training. For semi-
supervised hashing methods, the remaining database data are
regraded as unlabeled samples. The hyper-parameters λ, µ, α
is different according to datasets, which are selected with the

1http://www.cs.toronto.edu/˜kriz/cifar.html
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3http://image-net.org
4http://pytorch.org/

MAP
Method Net 12 bits 24 bits 32 bits 48 bits

Fine-tuning from AlexNet or VGG-F Net
DHN [64] AlexNet 0.555 0.594 0.603 0.621
DQN [4] AlexNet 0.554 0.558 0.564 0.580

DPSH [28] VGG-F 0.682 0.686 0.725 0.733
DSH [58]* VGG-F 0.604 0.746 0.781 0.810
DISH [63] AlexNet 0.758 0.784 0.799 0.791
DSDH [27] VGG-F 0.740 0.786 0.801 0.820
CNNBH* AlexNet 0.794 0.809 0.808 0.814
SSDH* AlexNet 0.789 0.808 0.813 0.822

Cls-LSH* AlexNet 0.749 0.766 0.778 0.780
Cls-onehot* AlexNet 0.715

SCDH(Ours) AlexNet 0.801 0.822 0.828 0.836
Fine-tuning from VGG-16 Net

NINH [65]* VGG-16 N/A 0.677 0.688 0.699
FTDE [65] VGG-16 N/A 0.760 0.768 0.769
BOH [6] VGG-16 0.620 0.633 0.644 0.657

DSH* VGG-16 0.818 0.825 0.847 0.849
DISH [63] VGG-16 0.841 0.854 0.859 0.857

DRLIH [61] VGG-16 0.816 0.843 0.855 0.853
SSDH* VGG-16 0.845 0.856 0.863 0.865

CNNBH* VGG-16 0.833 0.847 0.855 0.855
SCDH(Ours) VGG-16 0.841 0.860 0.865 0.870

Fine-tuning from ResNet-50 Net
DSH* ResNet-50 0.886 0.900 0.896 0.895

CNNBH* ResNet-50 0.895 0.902 0.910 0.905
SSDH* ResNet-50 0.894 0.910 0.911 0.915

SCDH(Ours) ResNet-50 0.894 0.910 0.913 0.918

TABLE I: Results of deep hashing methods in MAP on
CIFAR-10. For this dataset, 5,000 data are randomly sampled
as training set. The classification performance of AlexNet is
slightly worse than VGG-F. * denotes re-running the code in
the corresponding papers or our reimplementation. The results
of the proposed SCDH are the average of 5 trails.

validation set. We first of all randomly select part of training
data as the validation set to determine the parameters. For
CIFAR-10, we choose {λ = 0.005, µ = 0.2, α = 0.05}
and the learning rate decreases by 80% after 100,140 epochs
and stops at 160 epochs. For Nuswide, we select {λ =
0.001, µ = 0.1, α = 1.0} and the learning rate decreases by
80% after 40 epochs and stops at 60 epochs. For ImageNet
we select {λ = 0.001, µ = 0.1, α = 4.0} and the learning rate
decreases by 80% after 12, 17 epochs and stops at 20 epochs.
Detailed parameter selection strategies are discussed in Sec.
VI-E. Unless specified, we just use the warm-up procedure
for training ImageNet in which the norms of Semantic Cluster
centers C are constrained to s = 8 in the first 5 epochs. The
training is done on a server with two Intel(R) Xeon(R) E5-
2683 v3@2.0GHz CPUs, 256GB RAM and a Geforce GTX
TITAN Pascal with 12GB memory.

Similar to [34], [56], for each retrieval dataset, we report the
compared results in terms of mean average precision(MAP),
precision at Hamming distance within 2, and precision of top
returned candidates. For Nuswide, we calculate the MAP value
within the top 5000 returned neighbors, and we report the
MAP of all retrieved samples on CIFAR-10. Groundtruths are
defined by whether two candidates are similar. We run each
experiment for 5 times and get the average result.

B. Comparison on Supervised Hashing

We compare our SCDH method with recent state-of-the-art
deep hashing methods, including pairwise based methods such
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MAP
Method Net 12 bits 24 bits 32 bits 48 bits

Fine-tuning from AlexNet or VGG-F Net
DHN [64] AlexNet 0.708 0.735 0.748 0.758
DQN [4] AlexNet 0.768 0.776 0.783 0.792

DPSH [28] VGG-F 0.794 0.822 0.833 0.851
DSH [58]* VGG-F 0.751 0.765 0.767 0.773
DISH [63] AlexNet 0.787 0.810 0.810 0.813
DSDH [27] VGG-F 0.776 0.808 0.820 0.829

SSDH* AlexNet 0.775 0.796 0.800 0.807
SCDH(Ours) AlexNet 0.804 0.834 0.842 0.850

Fine-tuning from VGG-16 Net
NINH [65]* VGG-16 N/A 0.718 0.720 0.723
FTDE [65] VGG-16 N/A 0.750 0.756 0.760
BOH [6] VGG-16 0.786 0.834 0.837 0.855

DISH [27] VGG-16 0.833 0.850 0.850 0.856
DRLIH [61] VGG-16 0.823 0.846 0.845 0.853

SSDH* VGG-16 0.820 0.840 0.845 0.848
SCDH(Ours) VGG-16 0.836 0.857 0.860 0.868

Fine-tuning from ResNet-50 Net
SSDH* ResNet-50 0.794 0.815 0.810 0.816

SCDH(Ours) ResNet-50 0.836 0.868 0.872 0.878

TABLE II: Results of deep hashing methods in MAP on
Nuswide dataset. * denotes re-running the code in the cor-
responding papers or our own implementation. The results of
the proposed SCDH are the average of 5 trails.

Method Net MAP(128 bits)
SDH [47]* VGG-19 0.313
DISH [63] VGG-19 0.452

SCDH(Ours) AlexNet 0.441
SCDH(Ours) VGG-19 0.603
SCDH(Ours) ResNet-152 0.694

TABLE III: Results of various hashing methods in MAP
on ImageNet dataset. * denotes re-running the code in the
corresponding papers. We use fc7 features in VGG-19 net for
training SDH [30].

as DSH [31], DHN [64], DPSH [28], DQN [4], DISH [63],
DSDH [27], triplet based methods like NINH [22], FTDE [65],
BOH [6], DRLIH [61], and unary loss based methods like
CNNBH [13], SSDH [59]. They follow similar experimental
settings, but different methods may use different deep net-
works, thus we train on several types of network (AlexNet,
VGGNet, ResNet, etc.) for fair comparison.

Retrieval results of different methods are shown in Table
I,II,III and Figure 6. Note that the results with citations are
copied from the corresponding papers, and some results are
our own implementation with suggested parameters of the
original paper. With the network structure fixed, our SCDH
algorithm achieves better performance than methods with
pairwise or triplet losses like NINH, DHN, DPSH, DSH
and BOH, especially on CIFAR-10, showing the effectiveness
of the proposed SCUL. As the discrete hashing methods
like DISH and DSDH cannot be trained directly by back-
propagation due to the special consideration of the discrete
constraints, our SCDH method performs better than those
methods. Moreover, our method performs better than the
unary loss based methods like CNNBH and SSDH on most
settings, showing that the proposed SCUL is friendly with the
distance learning. It should be noticed that the classification
performance of VGG-F net is slightly better than AlexNet,
thus the hashing performance is expected not to decrease and

Training time(hours)
Method Net CIFAR-10 Nuswide

NINH [65]* VGG-16 174 365
FTDE [65] VGG-16 15 32

DISH VGG-16 4 9
DSH VGG-16 3 5

SCDH(Ours) VGG-16 0.9 0.7

TABLE IV: Training time(in hours) of various deep hashing
methods. VGG-16 net is used for evaluation. The codes of
NINH is re-runned by [65].
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Fig. 6: Precision at Hamming distance within 2 value and top-k
precision curve of different deep hashing methods on CIFAR-
10 and Nuswide dataset. AlexNet is used for pre-training in
these algorithms.

may even get better if replacing AlexNet with VGG-F.
As the similarity information is defined by the semantic

labels, it seems more simple to directly convert the predicted
label to binary codes. As discussed in [45], we can encode
the predicted label with one-hot binary codes, or convert the
class probability to binary codes using LSH. We name these
two methods as Cls-onehot and Cls-LSH respectively. Results
on CIFAR-10 dataset are shown in Table I and Figure 6. The
performances are lower than many hashing methods. Similar
conclusion is arrived at [51], which shows that latent features
extracted from fc6/fc7 contain more semantic information than
the class probability features. Moreover, one-hot encodings
lose more information than the class probabilities, thus Cls-
onehot performs inferior than Cls-LSH.

Table IV summarizes the training time of some state-of-the-
art methods. VGG-16 net is used for evaluation. As expected,
the training speed of the proposed method is much faster than
most deep hashing methods with pairwise losses or triplet
losses. It takes less than 1 hour to generate good binary codes
by the VGG-16 net, thus we can also train binary codes
efficiently with deep neural nets.

C. Comparison on Semi-Supervised Hashing

We compare our MT-SCDH method with recent state-
of-the-art semi-supervised deep hashing methods including
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MAP
Method Net 12 bits 24 bits 32 bits 48 bits

Hashing on CIFAR-10 Dataset
SemiSDH [60] VGG-F 0.801 0.813 0.812 0.814

BGDH [57] VGG-F 0.805 0.824 0.826 0.833
MT-SCDH(Ours) AlexNet 0.828 0.844 0.849 0.855

Hashing on Nuswide Dataset
SemiSDH [60] VGG-F 0.773 0.779 0.778 0.778

BGDH [57] VGG-F 0.803 0.818 0.822 0.828
MT-SCDH(Ours) AlexNet 0.811 0.838 0.843 0.853

TABLE V: Results of the semi-supervised hashing methods
on CIFAR-10 and Nuswide dataset. AlexNet is used for pre-
training. Note that we use 5,000 labeled images in CIFAR-10
and 10,500 labeled images in the Nuswide dataset, and regard
the rest as unlabeled images.

MAP Precision
Method 12 bits 24 bits 32 bits 48 bits 32 bits 48 bits

Hashing on CIFAR-10 Dataset
SCDH-S 0.753 0.788 0.797 0.810 0.806 0.786
SCDH-C 0.789 0.810 0.822 0.829 0.819 0.799

SCDH 0.801 0.822 0.828 0.836 0.826 0.820
Hashing on Nuswide Dataset

SCDH-S 0.739 0.779 0.788 0.804 0.800 0.736
SCDH-C 0.744 0.778 0.790 0.803 0.798 0.791

SCDH 0.804 0.834 0.842 0.850 0.832 0.796
Hashing on ImageNet Dataset (48 bits)

SCDH-S 0.337 0.282
SCDH-C 0.334 0.298

SCDH 0.421 0.344
TABLE VI: Results of the variants of the proposed SCDH
algorithm on CIFAR-10, Nuswide and ImageNet dataset.
AlexNet is used for pre-training. Precision denotes the pre-
cision at Hamming distance within 2 value.

SemiSDH [60], BGDH [57]. AlexNet is used for fair compari-
son. As suggested in [50], we use w = 50 in the experiments.
Retrieval results are shown in Table V. It is clear that the
MT-SCDH algorithm performs much better than others by
over 2 percents. Compared with the results of SCDH shown
in Table I and II, the semi-supervised setting achieves better
MAP value by about 0.3-2 percents, showing that the Mean
Teacher based semi-supervised hashing approach is able to
capture more semantic information with the unlabeled data.

D. Ablation Study

Variants of SCDH In order to verify the effectiveness of
our method, several variants of the proposed method are also
considered. First, we regard Lu as just softmax loss such that

λ = 0, lc(hi, yi) = − log
exp cT

yi
hi∑C

l=1 exp cT
l hi

. It is very similar with
CNNBH [13] and we name it as SCDH-S. Second, we apply
CenterLoss [54] for hashing, denote SCDH-C, in which µ = 0
and we replace Lu with the softmax loss and centerloss defined
in [54]. Inspired by the SCUL in multilabel case, we extend
the CenterLoss to the multilabel case for SCDH-C such that

L =

n∑
i=1

1

|Yi|
[
∑
s∈Yi

[− log
exp cTs hi∑C
j=1 exp c

T
j hi

]+λ
∑
s∈Yi

‖hi−ws‖2]

(22)
Retrieval results are shown in Table VI. It is clear that

SCDH and its variants perform better than most deep hashing
algorithms. In particular, the proposed SCDH algorithm per-
forms better than the variants, especially on the precision at
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Fig. 7: Visualization on the real-value representations F (x)
and hashcodes sgn(F (x)) learned by SCDH and its variants.
the code length is 48.

Initialization MAP Precision Ave. Norm of SCC.
Random (σ = 0.5) 0.385 0.338 5.41
warm-up (s = 8) 0.419 0.348 5.75
warm-up (s = 4) 0.421 0.344 5.69

TABLE VII: Results of whether to use warm-up initialization
for training SCDH on ImageNet dataset. AlexNet is used
for pre-training. Precision denotes the precision at Hamming
distance within 2 value. Random denotes use gaussian initial-
ization with standard deviation 0.5. Warm-up denotes using
warm-up procedure where the norm of centers s is constrained
to 4 and 8 respectively. The average norm of SCC (Semantic
Cluster centers) after optimization is also provided. The code
length is 48.

Hamming distance within 2 value. Moreover, SCDH performs
much better on Nuswide dataset, showing the effectiveness of
the SCUL over the modified CenterLoss and the softmax loss
on the multilabel version.

To address the above issue, Figure 7(a) shows the average
intra-class distances of the normalized real-value representa-
tions F (x) and hashcodes sgn(F (x)) of the training set. It
is clear that the intra-class distances of the representations
learned by SCDH is much smaller than those learned by the
variants, thus SCDH is more likely to hash more similar data
to the same hashcode, improving the precision at Hamming
distance within 2 value. Figure 7(b-d) are t-SNE visualizations
of the normalized F (x) trained by SCDH and its variants.
The clusters learned by SCDH is more compact than the
variants, and there are less outliers in SCDH. Furthermore,
some outliers in SCDH-S and SCDH-C goes to other clusters
(like label 0 in SCDH-S and label 3 in SCDH-C). To conclude,
the proposed SCUL have close relationship with the triplet
ranking loss and get better results than CenterLoss and softmax
loss, especially on the multilabel case.

The warm-up training procedure Another important issue
is whether to use the warm-up procedure to optimize C for
training datasets with large amount of labels. Table VII shows
results on ImageNet dataset, which implies that the warm-
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Fig. 8: Comparative results of different hyper-parameters on
CIFAR-10 and Nuswide dataset. The code length is 48.
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Fig. 9: Detailed analysis on α and µ. The light green back-
ground in (a) denotes the proper region for setting α.

up procedure performs better than the random initialization
procedure. The performance of the warm-up procedure with
different norms of clusters s performs almost the same, in-
cluding the average norm of the Semantic cluster centers after
optimization, which implies that the results is not sensitive to
s in the warm-up procedure, thus we can set this parameter
freely for training large datasets.

E. Sensitivity to Parameters

In this section, influence on different settings of the pro-
posed SCDH algorithm is evaluated. We use AlexNet for pre-
training, and the code length is 48.

Influence of α Figure 8(a)(b) shows the performance on
different values of α. It can be seen clearly that setting
a certain α achieves better performance on either MAP or
precision at Hamming distance within 2 value than setting
α = 0. It means that adding the quantization loss improves
the performance of hashing.

To get better hashcodes, a proper value of α should be set.
Figure 9(a) shows the quantization loss at the end of training

with different α. Compared with 8(a)(b), α should be set to
get the best performance in that the training quantization loss
should be around 0.1 ∼ 0.2.

Influence of λ Figure 8(c)(d) shows the performance on
different values of λ. It shows that a relatively small λ leads to
better performance on MAP. In fact, only optimizing lc(hi, yi)
is able to minimize the intra-class distances. Although λ is
not effective to get better MAP, greater value of precision at
Hamming distance with 2 may be achieved when λ goes larger,
especially on the Nuswide dataset. It implies that the term
|hi−cyi

| is an auxiliary term to make intra-class smaller, thus
more similar data is expected to map to the same hashcode.

Influence of µ Figure 8(e)(f) shows the performance on
different values of µ. It is shown that the algorithm is not too
sensitive to µ over a wide range, but the performance is slightly
better when µ ∼ 0.1, thus we recommend to set µ ∼ 0.1.

Figure 9(b) shows the MAP value with different training
epochs on CIFAR-10 dataset. It can be seen clearly that a
larger µ makes the training procedure faster, showing that
setting proper µ is helpful for faster convergence.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel and efficient supervised
hashing algorithm. We first of all introduce a Unary Upper
Bound of the traditional triplet loss, thus bridging the triplet
loss and the classification-based unary loss. The Unary Upper
Bound shows that each semantic label corresponds to a certain
cluster in the Hamming space, and minimizing the Unary
Upper Bound is expected to minimize the intra-class distances
and separate different clusters far apart, thus the traditional
triplet loss are minimized. Second, we propose a novel super-
vised hashing algorithm named Semantic Cluster Deep Hash-
ing (SCDH), in which the loss is the modified Unary Upper
Bound, named Semantic Cluster Unary Loss(SCUL). Third,
we extend the SCDH algorithm to semi-supervised hashing
by combining the state-of-the-art Mean Teacher algorithm with
the SCUL. Experimental results on several supervised hashing
datasets demonstrate the effectiveness of the proposed hashing
algorithm.

Despite the success of the proposed SCDH algorithm, it
should be noticed that our method is based on the semantic
labels or tags. A certain unary loss for hashing with only
pairwise similarity information should be discovered.

REFERENCES

[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative
adversarial networks. In International Conference on Machine Learning,
pages 214–223, 2017.

[2] F. Cakir, K. He, S. A. Bargal, and S. Sclaroff. Mihash: Online hashing
with mutual information. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 437–445. IEEE, 2017.

[3] Y. Cao, M. Long, and J. Wang. Correlation hashing network for efficient
cross-modal retrieval. CoRR, abs/1602.06697, 2016.

[4] Y. Cao, M. Long, J. Wang, H. Zhu, and Q. Wen. Deep quantization
network for efficient image retrieval. In AAAI, pages 3457–3463, 2016.

[5] M. S. Charikar. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 380–388. ACM, 2002.

[6] Q. Dai, J. Li, J. Wang, and Y.-G. Jiang. Binary optimized hashing. In
Proceedings of the 2016 ACM on Multimedia Conference, pages 1247–
1256. ACM, 2016.



IEEE TRANSACTIONS ON IMAGE PROCESSING 12

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry, pages 253–
262. ACM, 2004.

[8] C. Elkan. Using the triangle inequality to accelerate k-means. In
Proceedings of the 20th International Conference on Machine Learning
(ICML-03), pages 147–153, 2003.

[9] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high
dimensions via hashing. In VLDB, volume 99, pages 518–529, 1999.

[10] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhutdinov.
Neighbourhood components analysis. In Advances in neural information
processing systems, pages 513–520, 2005.

[11] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization:
A procrustean approach to learning binary codes for large-scale image
retrieval. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 35(12):2916–2929, 2013.

[12] Y. Gu, C. Ma, and J. Yang. Supervised recurrent hashing for large
scale video retrieval. In Proceedings of the 2016 ACM on Multimedia
Conference, pages 272–276. ACM, 2016.

[13] J. Guo, S. Zhang, and J. Li. Hash learning with convolutional neural
networks for semantic based image retrieval. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 227–238. Springer,
2016.

[14] Y. Hao, T. Mu, J. Y. Goulermas, J. Jiang, R. Hong, and M. Wang.
Unsupervised t-distributed video hashing and its deep hashing extension.
IEEE Transactions on Image Processing, 26(11):5531–5544, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[16] J. Ji, J. Li, Q. Tian, S. Yan, and B. Zhang. Angular-similarity-preserving
binary signatures for linear subspaces. IEEE Transactions on Image
Processing, 24(11):4372–4380, 2015.

[17] J. Ji, J. Li, S. Yan, Q. Tian, and B. Zhang. Min-max hash for jaccard
similarity. In 2013 IEEE 13th International Conference on Data Mining,
pages 301–309. IEEE, 2013.

[18] W. Kong and W.-J. Li. Isotropic hashing. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2012.

[19] A. Krause, P. Perona, and R. G. Gomes. Discriminative clustering
by regularized information maximization. In Advances in neural
information processing systems, pages 775–783, 2010.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[21] B. Kulis and T. Darrell. Learning to hash with binary reconstructive
embeddings. In Advances in neural information processing systems,
pages 1042–1050, 2009.

[22] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature learning and
hash coding with deep neural networks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2015.

[23] H. Lai, P. Yan, X. Shu, Y. Wei, and S. Yan. Instance-aware hashing for
multi-label image retrieval. IEEE Transactions on Image Processing,
25(6):2469–2479, 2016.

[24] S. Laine and T. Aila. Temporal ensembling for semi-supervised learning.
arXiv preprint arXiv:1610.02242, 2016.

[25] P. Li and C. König. b-bit minwise hashing. In Proceedings of the 19th
international conference on World wide web, pages 671–680. ACM,
2010.

[26] P. Li, A. Shrivastava, J. L. Moore, and A. C. König. Hashing algorithms
for large-scale learning. In Advances in neural information processing
systems, pages 2672–2680, 2011.

[27] Q. Li, Z. Sun, R. He, and T. Tan. Deep supervised discrete hashing.
arXiv preprint arXiv:1705.10999, 2017.

[28] W.-J. Li, S. Wang, and W.-C. Kang. Feature learning based deep
supervised hashing with pairwise labels. In IJCAI, pages 1711–1717,
2016.

[29] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter. Fast
supervised hashing with decision trees for high-dimensional data. In
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Confer-
ence on, pages 1971–1978. IEEE, 2014.

[30] G. Lin, C. Shen, and A. van den Hengel. Supervised hashing using
graph cuts and boosted decision trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2015.

[31] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised hashing for fast
image retrieval. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2064–2072, 2016.

[32] L. Liu, Z. Lin, L. Shao, F. Shen, G. Ding, and J. Han. Sequential
discrete hashing for scalable cross-modality similarity retrieval. IEEE
Transactions on Image Processing, 26(1):107–118, 2017.

[33] W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph hashing. In

Advances in Neural Information Processing Systems, pages 3419–3427,
2014.

[34] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing
with kernels. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 2074–2081. IEEE, 2012.

[35] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In
Proceedings of the 28th international conference on machine learning
(ICML-11), pages 1–8, 2011.

[36] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface:
Deep hypersphere embedding for face recognition. arXiv preprint
arXiv:1704.08063, 2017.

[37] X. Liu, J. He, and S.-F. Chang. Hash bit selection for nearest neighbor
search. IEEE Transactions on Image Processing, 26(11):5367–5380,
2017.

[38] J. Lu, V. Erin Liong, and J. Zhou. Deep hashing for scalable image
search. IEEE Transactions on Image Processing, 26(5):2352–2367,
2017.

[39] Y. Luo, J. Zhu, M. Li, Y. Ren, and B. Zhang. Smooth neigh-
bors on teacher graphs for semi-supervised learning. arXiv preprint
arXiv:1711.00258, 2017.

[40] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh. No
fuss distance metric learning using proxies. In The IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[41] M. Norouzi and D. M. Blei. Minimal loss hashing for compact binary
codes. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 353–360, 2011.

[42] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov. Hamming distance
metric learning. In Advances in neural information processing systems,
pages 1061–1069, 2012.

[43] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face recognition.
In BMVC, volume 1, page 6, 2015.

[44] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in Neural
Information Processing Systems, pages 91–99, 2015.

[45] A. Sablayrolles, M. Douze, N. Usunier, and H. Jégou. How should we
evaluate supervised hashing? In Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on, pages 1732–1736.
IEEE, 2017.

[46] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
815–823, 2015.

[47] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised discrete hashing.
In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

[48] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[49] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face rep-
resentation by joint identification-verification. In Advances in neural
information processing systems, pages 1988–1996, 2014.

[50] A. Tarvainen and H. Valpola. Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised deep
learning results. In Advances in neural information processing systems,
pages 1195–1204, 2017.

[51] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li. Deep
learning for content-based image retrieval: A comprehensive study. In
Proceedings of the ACM International Conference on Multimedia, pages
157–166. ACM, 2014.

[52] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for
large-scale search. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 34(12):2393–2406, 2012.

[53] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in
neural information processing systems, pages 1753–1760, 2009.

[54] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature
learning approach for deep face recognition. In European Conference
on Computer Vision, pages 499–515. Springer, 2016.

[55] J. Weston, F. Ratle, H. Mobahi, and R. Collobert. Deep learning via
semi-supervised embedding. In Neural Networks: Tricks of the Trade,
pages 639–655. Springer, 2012.

[56] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hashing for
image retrieval via image representation learning. In Proceedings of the
AAAI Conference on Artificial Intellignece, pages 2156–2162, 2014.

[57] X. Yan, L. Zhang, and W.-J. Li. Semi-supervised deep hashing with
a bipartite graph. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pages 3238–3244. AAAI Press,
2017.

[58] X. Yan, L. Zhang, and W.-J. Li. Semi-supervised deep hashing with
a bipartite graph. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pages 3238–3244. AAAI Press,



IEEE TRANSACTIONS ON IMAGE PROCESSING 13

2017.
[59] H.-F. Yang, K. Lin, and C.-S. Chen. Supervised learning of semantics-

preserving hash via deep convolutional neural networks. IEEE trans-
actions on pattern analysis and machine intelligence, 40(2):437–451,
2018.

[60] J. Zhang and Y. Peng. Ssdh: semi-supervised deep hashing for large
scale image retrieval. IEEE Transactions on Circuits and Systems for
Video Technology, 2017.

[61] J. Zhang, Y. Peng, and Z. Ye. Deep reinforcement learning for image
hashing. arXiv preprint arXiv:1802.02904, 2018.

[62] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-scalable
deep hashing with regularized similarity learning for image retrieval
and person re-identification. IEEE Transactions on Image Processing,
24(12):4766–4779, 2015.

[63] S. Zhang, J. Li, M. Jiang, and B. Zhang. Scalable discrete supervised
multimedia hash learning with clustering. IEEE Transactions on Circuits
and Systems for Video Technology, 2017.

[64] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing network for
efficient similarity retrieval. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[65] B. Zhuang, G. Lin, C. Shen, and I. Reid. Fast training of triplet-
based deep binary embedding networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5955–
5964, 2016.

Shifeng Zhang received the B.E. degree from the
Department of Computer Science and Technology,
Tsinghua University, in 2015. Now he is a Ph.D.
student in the State Key Laboratory of Intelligent
Technology and Systems, Beijing National Research
Center for Information Science and Technology,
Department of Computer Science and Technology,
Tsinghua University. His supervisor is Prof. Bo
Zhang. His current research interests include hashing
method and deep metric learning.

Jianmin Li received the Ph.D. degree in com-
puter application from the Department of Computer
Science and Technology, Tsinghua University in
2003. Currently, he is an Associate Professor in the
Department of Computer Science and Technology,
Tsinghua University. His main research interests
include image and video analysis, image and video
retrieval and machine learning. He has published
more than fifty journal and conference papers. He
received the second class Technology Innovation
Award by State Administration of Radio Film and

Television in 2009.

Bo Zhang graduated from Dept. of Automatic
Control, Tsinghua University in 1958. He is now
a professor of Computer Science and Technology
Department, Tsinghua University, Beijing, China,
the fellow of Chinese Academy of Sciences. His
main research interests include artificial intelligence,
robotics, intelligent control and pattern recognition.
He has published about 150 papers and 3 mono-
graphs in these fields.



IEEE TRANSACTIONS ON IMAGE PROCESSING 14

APPENDIX A
NOTATIONS AND DEFINITIONS

The notations in the supplemental material are the same as that in the original paper, some of which are emphasized below.
Denote there are n data instances x1, ...,xn, each data instance xi has a semantic label yi ∈ {1, 2, ..., C}, and the hashcode

of xi is hi. Denote S as the a set such that (i, j) ∈ S implies xi,xj are similar, and (i, k) /∈ S implies xi,xk are dissimilar.
Denote g(·, ·) as a monotonous, Lipschitz continuous function such that

g(a, b) ≥ 0

0 ≤ g(a2, b)− g(a1, b) ≤ a2 − a1, a1 ≤ a2
0 ≤ g(a, b1)− g(a, b2) ≤ b2 − b1, b1 ≤ b2

(23)

For the multiclass case, denote yi ∈ {1, 2, ..., C}, i = 1, 2, .., n as the semantic label of the data instance xi. The data pairs
are similar if they share the same semantic label, namely yi = yj ⇔ (i, j) ∈ S. The triplet ranking loss is defined as

Lt =
∑

(i,j)∈S,(i,k)/∈S

g(|hi − hj |, |hi − hk|) (24)

where g(·, ·) has the property defined in Eq. (23).
For the multilabel case, denote Yi ⊆ {1, 2, ..., C} as the labels of the data instance xi. The similarity is defined by whether

xi,xj share certain amount of semantic labels. The triplet ranking loss is defined as

Lmt =
∑

(i,j)∈S,(i,k)/∈S

rijg(|hi − hj |, |hi − hk|) (25)

where rij = |Yi ∩ Yj | ≥ 1 denotes the number of labels xi,xj share.

APPENDIX B
DERIVATION OF THE UNARY UPPER BOUND

A. Multiclass Case (Detailed Derivation of Section 3.2)

Considering that the class labels are evenly distributed, thus each label corresponds to n
C data instances. Denote c1, ..., cC

as C auxiliary vectors. We should prove that the Unary Upper Bound of the triplet loss defined in Eq. (24) is

Lt ≤ (
n

C
)2(C − 1)

n∑
i=1

[lc(hi, yi) + 2|hi − cyi
|]

lc(hi, yi) =
1

C − 1

C∑
l=1,l 6=yi

g(|hi − cyi
|, |hi − cl|)

(26)

In fact, we first of all address the triangle inequalities:

|hi − hj | ≤ |hi − cyi
|+ |hj − cyj

|, yi = yj

|hi − hk| ≥ |hi − cyk
| − |hk − cyk

|, yi 6= yk
(27)

Making use of the triangle inequalities above and the properties of function g(·, ·) shown in Eq. (23), we can arrive at the
following inequality:

g(|hi − hj |, |hi − hk|) ≤ g(|hi − cyi
|+ |hj − cyj

|, |hi − hk|)
≤ g(|hi − cyi

|+ |hj − cyj
|, |hi − cyk

| − |hk − cyk
|)

≤ g(|hi − cyi
|, |hi − cyk

| − |hk − cyk
|) + |hj − cyj

|
≤ g(|hi − cyi

|, |hi − cyk
|) + (|hj − cyj

|+ |hk − cyk
|)

(yi = yj , yi 6= yk)

(28)

where the first two inequalities in Eq. (6) holds according to the monotonous of g(·, ·) and the derivation of the last two
inequalities are based on the Lipschitz continuity of g(·, ·).

It is clear that the data triplets can be generated by the following procedure:
• sample semantic label s;
• sample semantic label t 6= s;
• sample data instances xi,xj such that yi = yj = s;
• sample xk such that yk = t;
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According to the sampling strategy above, Eq. (24) can be reformulated as follows:

Lt ≤
∑

(i,j)∈S,(i,k)/∈S

[g(|hi − cyi |, |hi − cyk
|) + (|hj − cyj |+ |hk − cyk

|)]

=

C∑
s=1

C∑
t=1,t6=s

∑
i:yi=s

∑
j:yj=s

∑
k:yk=t

[g(|hi − cs|, |hi − ct|) + (|hj − cs|+ |hk − ct|)]
(29)

As yj , yk is irrelevant with hi, we have
∑

j:yj=s

∑
k:yk=t g(|hi − cs|, |hi − ct|) = ( n

C )2g(|hi − cs|, |hi − ct|).
And similar conclusions can be arrived such that

∑
i:yi=s

∑
j:yj=s

∑
k:yk=t |hj − cs| = ( n

C )2
∑

j:yj=s |hj − cs| and∑
i:yi=s

∑
j:yj=s

∑
k:yk=t |hk − ct| = ( n

C )2
∑

k:yk=t |hk − ct|. Thus the Unary Upper Bound of Lt is

Lt ≤ (
n

C
)2[

C∑
s=1

C∑
t=1,t6=s

∑
i:yi=s

g(|hi − cs|, |hi − ct|) +
C∑

s=1

C∑
t=1,t6=s

∑
j:yj=s

|hj − cs|+
C∑
t=1

C∑
s=1,s6=t

∑
k:yk=t

|hk − ct|]

= (
n

C
)2[

n∑
i=1

C∑
t=1,t6=yi

g(|hi − cyi
|, |hi − ct|) +

n∑
j=1

C∑
t=1,t6=yj

|hj − cyj
|+

n∑
k=1

C∑
s=1,s6=yk

|hk − cyk
|]

= (
n

C
)2

n∑
i=1

[

C∑
t=1,t6=yi

g(|hi − cyi
|, |hi − ct|) + 2(C − 1)|hi − cyi

|]

(30)

The last equality can be arrived with
∑C

t=1,t6=yi
|hi−cyi

| = (C−1)|hi−cyi
| as t is irrelevant with yi. Denote lc(hi, yi) =

1
C−1

∑C
t=1,t6=yi

g(|hi − cyi
|, |hi − ct|), then Unary Upper Bound of the triplet ranking loss is

Lt ≤ (
n

C
)2(C − 1)

n∑
i=1

[lc(hi, yi) + 2|hi − cyi
|] (31)

which has the same formulation as Eq. (26).

B. Multilabel Case (Proof of Proposition 1)

Similar with the triangle inequalities in Eq. (27), the triangle inequalities for the mutlilabel dataset can be arrived such that:

|hi − hj | ≤ |hi − cs|+ |hj − cs|, s ∈ Yi ∩ Yj
|hi − hk| ≥ |hi − ct| − |hk − ct|, s ∈ Yi, t ∈ Yk, Yi ∩ Yk = ∅

(32)

thus we have

g(|hi − hj |, |hi − hk|) ≤ g(|hi − cs|, |hi − ct|) + (|hj − cs|+ |hk − ct|)
(s ∈ Yi, s ∈ Yj , t ∈ Yk, Yi ∩ Yk = ∅)

(33)

Suppose the data triplets are generated by the following procedure:
• sample semantic label s;
• sample semantic label t 6= s;
• sample data instance xi such that s ∈ Yi, t /∈ Yi. Yi is defined in the Proposition 1;
• sample xj such that s ∈ Yj ;
• sample xk such that t ∈ Yk, Yi ∩ Yk = ∅.
Thus Eq. (25) can be reformulated by the above sampling strategy:

Lmt ≤
∑

(i,j)∈S,(i,k)/∈S

∑
s:s∈Yi∩Yj

[g(|hi − cs|, |hi − ct|) + (|hj − cs|+ |hk − ct|)] (t /∈ Yi, t ∈ Yk)

≤
C∑

s=1

C∑
t=1,t6=s

∑
i,j,k:s∈Yi,s∈Yj

t∈Yk

Yi∩Yk=∅

[g(|hi − cs|, |hi − ct|) + |hj − cs|+ |hk − ct|]

=

C∑
s=1

C∑
t=1,t6=s

[
∑

j:s∈Yj

∑
i:s∈Yi,
t/∈Yi

∑
k:t∈Yk,
Yi∩Yk=∅

g(|hi − cs|, |hi − ct|) +
∑

i,k:s∈Yi,
t∈Yk,

Yi∩Yk=∅

∑
j:s∈Yj

|hj − cs|+
∑

j:s∈Yj

∑
k:t∈Yk

s/∈Yk

∑
i:s∈Yi,

Yi∩Yk=∅

|hk − ct|]

(34)
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The second inequality holds in the fact that xk is sampled for multiple times if xk has multiple labels. Note that the
probability P(s ∈ Yi) = p satisfies for any s = {1, ..., C}, i = {1, ..., n}, thus we can arrive at the following conclusions:
• for certain s ∈ {1, ..., C}, the expected number of j ∈ {1, ..., n} such that {j : s ∈ Yj} is pn.
• for certain s ∈ {1, ..., C} and Yi(i = 1, ..., n), the expected number of k ∈ {1, ..., n} such that {k : t ∈ Yk, Yi ∩ Yk = ∅}

is p(1− p)|Yi|n, where |Yi| is the number of elements of set Yi.
• for certain s, t ∈ {1, ..., C}, the expected number of pairs (i, k) ∈ {1, ..., n} × {1, ..., n} such that {(i, k) : s ∈ Yi, t ∈
Yk, Yi ∩ Yk = ∅} is p2(1− p)2(1− p2)C−2n2.

Then the upper bound of the expectation of Lmt is

E[Lmt] ≤
C∑

s=1

C∑
t=1,t6=s

[pn
∑

i:s∈Yi,
t/∈Yi

p(1− p)|Yi|n · g(|hi − cs|, |hi − ct|) + p2(1− p)2(1− p2)C−2n2
∑

j:s∈Yj

|hj − cs|

+ pn
∑

k:t∈Yk

s/∈Yk

p(1− p)|Yk|n|hk − ct|]

=p2n2
n∑

i=1

[(1− p)|Yi|
∑

s:s∈Yi

∑
t:t/∈Yi

g(|hi − cs|, |hi − ct|)

+ ((C − 1)(1− p)2(1− p2)C−2 + (C − |Yi|)(1− p)|Yi|)
∑

s:s∈Yi

|hi − cs|]

(35)

where the last equality is derived by

C∑
s=1

C∑
t=1,t6=s

∑
i:s∈Yi,t/∈Yi

g(|hi − cs|, |hi − ct|) =
n∑

i=1

∑
s∈Yi

∑
t/∈Yi

g(|hi − cs|, |hi − ct|)

C∑
s=1

C∑
t=1,t6=s

∑
j:s∈Yj

|hj − cs| = (C − 1)

C∑
s=1

∑
j:s∈Yj

|hj − cs| = (C − 1)

n∑
j=1

∑
s∈Yj

|hj − cs|

C∑
s=1

C∑
t=1,t6=s

∑
k:t∈Yk,s/∈Yk

|hk − ct| =
C∑
t=1

∑
k:t∈Yk

(C − |Yk|)|hk − ct| =
n∑

k=1

∑
t∈Yk

(C − |Yk|)|hk − ct|

(36)

Denote lmc(hi, Yi) =
1

C−|Yi|
∑

s∈Yi

∑
t/∈Yi

g(|hi−cs|, |hi−ct|), q(x) = C−x
C−1 (1−p)

x, Q = (1−p)2(1−p2)C−2, the Unary
Upper Bound of the expectation value of Lmt is

E[Lmt] ≤ (C − 1)p2n2
n∑

i=1

[q(|Yi|)lmc(hi, Yi) + (Q+ q(|Yi|))
∑
s∈Yi

|hi − cs|] (37)

and it is clear that lmc(hi, Yi) can be defined as the multilabel softmax loss in which

g(|hi − cs|, |hi − ct|) = − log
exp(−|hi − cs|)∑C
j=1 exp(−|hi − cj |)

i ∈ {1, ..., n}, t ∈ {1, ..., C} (38)

satisfies the condition in Eq. (23) and then

lmc(hi, Yi) =
1

C − |Yi|
∑
s∈Yi

∑
t/∈Yi

[− log
exp(−|hi − cs|)∑C
j=1 exp(−|hi − cj |)

]

=
1

C − |Yi|
∑
s∈Yi

(C − |Yi|)[− log
exp(−|hi − cs|)∑C
j=1 exp(−|hi − cj |)

]

=
∑
s∈Yi

[− log
exp(−|hi − cs|)∑C
j=1 exp(−|hi − cj |)

]

(39)

Thus the proof of the proposition is completed.

C. Discussions

It is clear that the Unary Upper Bound defined above is established under the assumption that the data labels form a certain
distribution. More specifically, the semantic labels should be evenly distributed in the multiclass case, and in the multilabel
case, the number of labels should be almost the same and there are little relevance between labels. In practical applications,
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the labels in the dataset is unbalanced. In these cases, we can upsample certain data instances to make the labels balanced,
which satisfies the assumptions shown above.

Moreover, motivated by Eq. (37), similar as Section 3.3, we can arrive at a more general form of the Unary Upper Bound
such that

E[Lmt] ≤MmtLmu

Lmu =

n∑
i=1

[s(|Yi|)lmc(hi, Yi) + u(|Yi|)
∑
s∈Yi

|hi − cs|]
(40)

where s(x), u(x) are non-negative. Although we just arrive at the bound of the expected triplet loss value, this form of Unary
Upper Bound defined in Eq. (40) is able to be adopted in many practical applications. In Section 4, we just incorporate Lmu

with s(x) = 1/x, u(x) = constant in the proposed SCDH algorithm and achieves the state-of-the-art hashing results on the
multilabel dataset.
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