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Crossbar-Net: A Novel Convolutional Neural
Network for Kidney Tumor Segmentation in CT

Images
Qian Yu, Yinghuan Shi∗, Jinquan Sun, Yang Gao∗, Jianbing Zhu, Yakang Dai

Abstract—Due to the unpredictable location, fuzzy texture and
diverse shape, accurate segmentation of the kidney tumor in CT
images is an important yet challenging task. To this end, we in this
paper present a cascaded trainable segmentation model termed
as Crossbar-Net. Our method combines two novel schemes: (1)
we originally proposed the crossbar patches, which consists of
two orthogonal non-squared patches (i.e., the vertical patch and
horizontal patch). The crossbar patches are able to capture both
the global and local appearance information of the kidney tumors
from both the vertical and horizontal directions simultaneously.
(2) With the obtained crossbar patches, we iteratively train two
sub-models (i.e., horizontal sub-model and vertical sub-model)
in a cascaded training manner. During the training, the trained
sub-models are encouraged to become more focus on the difficult
parts of the tumor automatically (i.e., mis-segmented regions).
Specifically, the vertical (horizontal) sub-model is required to help
segment the mis-segmented regions for the horizontal (vertical)
sub-model. Thus, the two sub-models could complement each
other to achieve the self-improvement until convergence. In the
experiment, we evaluate our method on a real CT kidney tumor
dataset which is collected from 94 different patients including
3,500 CT slices. Compared with the state-of-the-art segmentation
methods, the results demonstrate the superior performance of
our method on the Dice similarity coefficient, true positive
fraction, centroid distance and Hausdorff distance. Moreover,
to exploit the generalization to other segmentation tasks, we
also extend our Crossbar-Net to two related segmentation tasks:
(1) cardiac segmentation in MR images and (2) breast mass
segmentation in X-ray images, showing the promising results
for these two tasks. Our implementation is released at https:
//github.com/Qianyu1226/Crossbar-Net.

Index Terms—Deep Convolutional Neural Network, Kidney
Tumors, Crossbar-Net, Image Segmentation, CT Images.

I. INTRODUCTION

RENAL cell carcinoma is a common urologic cancer
arising from renal cortex [3]–[5]. Accurate quantification

and correct classification of tumors could largely influence
the effect of the following computer-aided treatment of renal
cell carcinoma [6]. In this meaning, for the quantification
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Fig. 1. Typical images of kidney tumors. The red, yellow and light blue
contours denote the ground truth, predictions of the energy-based method [1]
and traditional learning-based method [2], respectively. Extensive comparisons
with other state-of-the-art models are reported in Section IV.

and classification, the accurate kidney tumor segmentation
is a significant prerequisite. Traditional human-based manual
delineation for kidney tumor segmentation is not desirable in
clinical practice, due to both the subjective (e.g., incorrect
delineation) and objective (e.g., a large number of images)
factors. Thus, computer-aided automatic segmentation meth-
ods for kidney tumors (in CT images) are in high demand.

However, segmenting the kidney tumors automatically in
CT images is a very challenging task. According to the clinical
and experimental observation,

• The location of different kidney tumors in medical images
is difficult to predict since the tumors could possibly
appear in very different places between different patients.

• Different tumors between different patients usually show
very diverse shape appearance and volumetric size ac-
cording to the different growth stages.

• The tumors and their surrounding tissues are with very
similar texture information due to the low contrast of CT
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(a) (b) (c)

Fig. 2. An example of the kidney tumors and different types of patches. (a)
Ground truth. (b) Squared patches. (c) Our crossbar patches.

images.

Although several works have been proposed recently [1],
[2], [6]–[9], their segmentation performance could not be
robustly guaranteed in different cases (see Fig. 1). Both (1)
the intensity dissimilarity within different parts of tumors and
(2) the similar appearance between kidney tumors and their
surrounding tissues pose the great technical challenges for
developing robust segmentation models. In order to visually
illustrate these challenges, we have segmented several typical
kidney tumors in CT images by introducing two representative
models: the energy minimization-based model [1] and the
traditional learning-based model [2]. Please note that the
extensive comparison with other state-of-the-art models is
reported in our experimental part. As shown in Fig. 1(a) - 1(c),
the tumors with high contrast and clear boundaries could be
well segmented by traditional segmentation methods [1], [2].
However, [1], [2] will fail in more difficult cases. For example,
the tumor in Fig. 1(d) is strongly connected to its surrounding
tissue and meanwhile shows a similar intensity with that of
the tissue, which leads [1], [2] fail to segment. Similarly, all
the tumors in Fig. 1(e) - Fig. 1(f) show very similar visual
characteristics with the outside renal parenchyma. In addition,
the tumors in Fig. 1(g) - Fig. 1(i) are challenging cases because
they are with intensity dissimilarity within different parts
inside the tumor. Therefore, the advanced efforts on accurate
kidney tumor segmentation are still required to meet the clinic
requirement.

The key issue of accurate segmentation is how to well
distinguish the tumor and non-tumor boundary by extract-
ing (or learning) the informative and discriminative features.
Recent trends of deep convolutional neural network (CNN)
have demonstrated the superior performance on learning-
based segmentation tasks in different imaging modalities for
different organs, e.g., prostate [10], [11], heart [12]–[14],
brain [15]–[17]. Hence, in this paper, we present a CNN-
based model for CT kidney tumor segmentation. Previous
CNN-based segmentation methods could be roughly classified
into two categories: the image-based CNN models [18]–[22]
and the patch-based CNN models [10], [23], [24]. Both of
these previous methods treated either whole images or squared
patches as the training samples to first learn the segmentation
model and then employ the obtained models to segment the
new coming testing images.

Unlike the traditional image- or patch-based CNN models,
we originally propose the new findings for kidney tumor
segmentation in CT images. Specifically, in CT images, the

kidney tumors normally appear as the subrounded shape with
a certain degree of symmetry. This observation inspires us that
we could leverage the shape information for kidney tumor
segmentation to achieve a promising performance. Unfortu-
nately, this specific shape information is usually ignored in
previous CNN-based methods. For example, if we extract
squared patches as the existing patch-based CNN models, as
shown in Fig. 2(b), the red and yellow patches with only
captured local information cannot distinguish the tumor and
its surrounding organs obviously. Alternatively, we can enlarge
the size of the squared patches or apply the whole image-
based methods directly to cover the whole tumor and its
context. However, in this case, the irrelevant noise might be
brought in at the same time, which might cause that the local
details, especially the boundary details, might be ignored. The
following results in Fig. 9 and Table III support this point.
Basically, it is known that, in a same region area, compared
with the squared patch, the non-squared rectangular patch
could capture more information typically from one direction
(i.e., horizontal or vertical). If we sample non-squared patches
(named as crossbar patches in this paper) as Fig. 2(c) to fully
cover the whole tumor along one direction from side-to-side,
we indeed could integrate more contextual and symmetrical
information simultaneously.

Thus, we innovatively in this paper propose crossbar patches
which consist of the vertical patch and horizontal patch, aiming
to jointly capture (1) the local detail information and (2)
global contextual information from vertical and horizontal
directions, respectively. In addition, on the obtained crossbar
patches, we originally present a cascaded training framework
to iteratively train the sub-models (namely vertical sub-model
and horizontal sub-model) from these two directions. It is
noteworthy that our training and testing are performed on the
pixel-wise since we convert the segmentation task to a pixel-
wise classification problem as the traditional setting [10], [23],
[24].

In particular, during the training process, the trained vertical
and horizontal sub-models are encouraged to help each other
in a way of asking the other one to help segment its difficult
parts. Taking the vertical sub-model as an example, if it
cannot segment a region correctly in the vertical direction,
the horizontal sub-model could complement the unsatisfactory
segmentation in the horizontal direction. Also, the vertical
sub-model is required to help the horizontal sub-model in
the same way. Thus, the two sub-models could complement
each other to achieve the self-improvement until convergence.
Additionally, to make the training process more effective and
efficient, we propose two sampling strategies (i.e., the basic
sampling strategy and the covering re-sampling strategy).
The former samples the discriminative patches and balances
the different classes (i.e., tumor or non-tumor) to allow the
efficient model training with less patch redundancy, while the
latter guarantees the complementary help between different
sub-models. These two strategies facilitate self-improvement
for these sub-models together.

Since our proposed method involves the sampled crossbar
patches from two directions, and the cascaded training process
to iteratively train the vertical and horizontal sub-models, we
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name our method as Crossbar-Net in the following parts.
Overall, the contributions of our work can be summarized in
the following four folds:

• Our crossbar patches could capture both the local de-
tail information and global contextual information. Also,
these patches are easy to sample without introducing any
additional parameters to train.

• Our cascaded training process could help provide com-
plementary information between different sub-models to
enhance the final segmentation. In our training process,
the sub-models can perform the self-improvement itera-
tively.

• Our model is easy to implement and extend. Beyond
kidney tumor segmentation in CT images, we have eval-
uated our method on cardiac segmentation in MR images
and breast mass segmentation in X-ray images, showing
promising results and good generalization ability.

• Our method is fast to train and test, although it is
trained in a cascaded manner. Taking kidney tumor as
an example, the training time is about 1h and the testing
time is about 1.5s on a regular GPU.

The rest of this paper is organized as follows. Related works
about kidney tumor segmentation in recent years are briefly
introduced in Section II. We then describe the framework and
technical details of Crossbar-Net in Section III. Experimental
results are reported in Section IV. Finally, we conclude our
paper in Section V.

II. RELATED WORK

For kidney tumor segmentation, according to the way of
feature representation, most of the previous methods be-
long to the low-level methods. The low-level methods either
employ the energy minimization-based models or learn the
segmentation model on the extracted hand-crafted features.
For example, Skalski et al. [2] first located the kidney region
through a hybrid level set method with the ellipsoidal shape
constraint, then calculated the low-level features (e.g., mean
value, standard deviation, histogram of oriented gradients [25])
on the obtained region, and finally performed the decision
tree to distinguish the kidney tumor and arterial blood vessel
regions. Linguraru et al. [1] first extracted kidney tumors by
the region growing for initial segmentation, and then applied
geodesic active contours to refine the segmentation result.
Also, Linguraru et al. [9] described the kidney tumors using
the low-level visual features (e.g., histograms of curvature
features). Similarly, Lee et al. [7] first detected region-of-
interest by analyzing the textural and contextual information,
and then extracted the mass candidates with the region growing
and active contours. Hodgdon et al. [8] first extracted the
texture features (i.e., gray-level histogram mean and variance,
gray-level co-occurrence and run-length matrix features [26]),
and then trained a support vector machine (SVM) to segment
the fat-poor angiomyolipoma from renal cell carcinoma in CT
images. These aforementioned low-level methods perform well
in the simple case when the tumors show different appearance
with surrounding tissues. However, their performance could
not be fully guaranteed when the shape and texture of the
tumors are close to the surrounding tissues.

Recent trends of using deep features or deep models have
demonstrated the effectiveness in several segmentation tasks.
Although the attempts of developing the specific deep feature-
based methods for segmenting kidney tumor are very lim-
ited, the related deep feature-based segmentation methods
for segmenting other medical organs [23], [10], [15], [24],
[27], can be borrowed to segment the kidney tumor. For
instance, Ciresan et al. [23] employed multiple deep networks
to segment biological neuron membranes by extracting the
squared patches in multi-scales with sliding-window. Prasoon
et al. [27] designed a triplanar CNN model to segment
cartilage with multiple view patches. Moeskops et al. [15]
proposed a multi-scale CNN model to segment brain MR
images. Wang et al. [24] devised a multi-branch CNN model
to segment lung nodules. Shi et al. [10] proposed a cascaded
deep domain adaptation model to segment the prostate in CT
images. However, we notice that the squared patches used in
these above works are one of the major bottlenecks when
borrowing them to segment the kidney tumors which are
experimentally demonstrated in our experiment. To address
the limitation of the local squared patch, several attempts
about the image-level segmentation are exploited in recent
years. Mortazi et al. [12] presented a novel multi-view CNN
model to fuse the information from the axial, sagittal, and
coronal views of cardiac MRI. This model performed well
in the task of the left atrium and proximal pulmonary veins
segmentation. Ronneberger et al. [19] proposed a widely-used
model in medical image segmentation tasks, namely U-Net,
to solve the cell tracking problem. Recently, a new image-
based model, SegCaps [22] was developed which achieved a
promising result in the task of segmenting pathological lungs
from low dose CT scans. Also, He et al. [28] introduced a
fully convolutional network with distinctive curve to segment
the pelvic organ.

In summary, compared with the previous segmentation
methods, all of them employ either the image-level or squared
patch-level segmentation, while our Crossbar-Net involves the
crossbar patches (non-squared patches) to capture the both
(1) local detail information and (2) global context information
from vertical and horizontal directions.

Recently, training deep models in a cascaded or boosting-
like manner for better performance have aroused considerable
interests [29]–[33]. For example, Shwartz et al. [32] proposed
a SelfieBoost model, which boosted the performance of a
single network based on minimizing the maximal loss. Kar-
ianakis et al. [30] proposed an object detection framework
according to the boosted hierarchical features. Walach et al.
[29] introduced a boosted-CNN model where the latter CNN
was added according to the error of the former CNN, and
finally all CNNs were joined via a sum layer. Similarly, Havaei
et al. [33] presented a cascaded architecture consisting of two
CNNs to segment glioblastomas in MR images, where the
output probabilities of the first CNN was added to the layers of
the second CNN. For these above methods, multi-modal fusion
and enhancement in a boosting-like manner are the common
choices. Also, our Crossbar-Net consists of the fusion from
vertical and horizontal sub-models. As for what to enhance,
in addition to hierarchical features [30], [33], the misclassified
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Fig. 3. Framework of the proposed method. Vi and Hi are vertical sub-model and horizontal sub-model of the i-th round, respectively, i = 1, · · · , T .

samples are enhanced in the next rounds to raise the concerns
from the classifier. Adaboost [34] and co-training models [35]–
[39] are the typical misclassified-samples-enhancing methods.
Inspired by this, we train a cascaded model composed of
vertical and horizontal sub-models by enhancing the region
around misclassified pixels.

Compared with the previous cascaded methods, the major
distinctions of Crossbar-Net are (1) our model learns both
local detail features and global context features from two
directions simultaneously, and (2) our model is composed of
the sub-models from two directions, in which the sub-models
can perform the self-improvement during different rounds to
complement each other iteratively.

III. METHOD

In this section, we first introduce our methodology and
sampling strategy of crossbar patch, then present the sub-
model setup and illustrate the training process, and finally
discuss the testing process.

A. Our Methodology

The framework of Crossbar-Net is schematized in Fig. 3,
which includes the training and testing stages. Note that, we
convert our segmentation task to a pixel-wise classification
problem, which intends to predict a patch to be a tumor or
non-tumor class.

In the training stage, firstly, the crossbar patches are ini-
tially extracted from the training CT images under the basic
sampling strategy (detailed in Section III-B) with the manual
segmentation available as the ground truth. Also, the vertical
and horizontal sub-models are initially trained in the 1-st
round, denoted as V1 and H1, respectively. Then, regarding
the cascaded training process, at the t-th round, we evaluate
the segmentation performance of the current trained vertical

and horizontal sub-models, and select the mis-segmented re-
gions of each sub-model. Formally, the mis-segmented region
indicates the vertical or horizontal patch whose central pixel
is misclassified, i.e., if a central pixel along with its located
vertical patch is misclassified by a vertical sub-model, then
its corresponding vertical patch is a mis-segmented region.
And then, we re-sample the mis-segmented regions using
the covering re-sampling strategy (detailed in Section III-B)
to obtain the corresponding re-sampling patches. Then, we
feed these re-sampling patches to another sub-model for its
model training. Meanwhile, beyond the aforementioned re-
sampling patches, in each round, the patches sampled under
the basic sampling strategy are also feed to the same sub-
model. We keep repeating the above process until the training
error converges or the maximum round number reaches.

In the testing stage for segmenting a new coming CT image,
the trained sub-models in each round are gathered together to
perform a majority voting on this image to obtain the final
segmentation.

Central pixel of tumor patch
Central pixel of non - tumor patch

(a)

Different contours on which the non-tumor pixels 
being sampled in different training rounds.

(b)

Fig. 4. The typical example of basic sampling strategy.

B. Crossbar Patch Sampling Strategy

1) Basic Sampling Strategy: We develop the basic sampling
strategy with the goal of making the segmentation model more
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The misclassified pixel
The center of re-sampled patch The re-sampled patch The mis-segmented region

Fig. 5. Illustration of covering re-sampling strategy. The blue patch is the
mis-segmented region with the red central pixel, and the magenta rectangles
are the re-sampling patches with central pixels being located at the left, middle
and right line of the blue patch.

focus on the region surrounding the tumor boundary which is
considered to be hard to segment in practice [40]. Therefore,
the principle we adhere to is to increase the patches close to
the tumor and reduce the redundant patches that are far from
the tumor. This sampling strategy is used in each round of the
cascaded training with different sampling intervals.

By using this strategy, we select a part of total pixels
according to the distance between the current pixel and the
center of the tumor. We first extract crossbar patches uniformly
in the tumor region as the training samples belonging to the
tumor class (i.e., tumor patch), and then sample non-tumor
patches densely near the tumor and sparsely in the far region
as the training samples belonging to the non-tumor class (i.e.,
non-tumor patch). As shown in Fig. 4(a), the red pixels are the
center of the tumor patches with certain intervals and the blue
pixels are the center of the non-tumor patches. More details
are described in Section III-D.

2) Covering Re-sampling Strategy: As shown in Fig. 5, we
assume that the vertical patch is a mis-segmented region in
vertical sub-model Vt at the t-th round. Our purpose is to
borrow the horizontal sub-model to well segment this region
using the horizontal patches. In particular, we extract the
horizontal patches by fully covering the mis-segmented region,
according to the location of the misclassified central pixel
in the vertical sub-model. In order to cover this region, we
sample the horizontal patches with the central pixel being
located at three columns: the center, right and left column
of the vertical patch. To avoid sampling redundant horizontal
patches, we perform re-sampling by every three pixels on each
column. Normally, for a vertical patch, we can roughly obtain
∼ 40 horizontal patches. Thus, the horizontal sub-models can
provide a complement to the vertical sub-models. Moreover,
in this way, if both sub-models, i.e., Vt and Ht, fail on a same
pixel, the role of the region around this pixel will definitely be
enhanced in the next round. Thus, with the combination of the
re-sampling patches and the aforementioned basic-sampling
patches as the training samples, the performance of Vt+1 is
expected to be superior to Vt, and Ht+1 is also expected to
outperform Ht.

C. Sub-Model Architecture

The architecture of sub-models is designed according to
a preliminary study on our CT kidney tumor dataset. The
number of layers, kernel size and the amount of feature maps
are all experimentally determined by inner cross-validation.

Basically, both vertical and horizontal sub-models consist
of eight convolutional layers, two max-pooling layers, and
one softmax layer. Details of sub-model are illustrated in
Table I. For the vertical sub-model, the input is a 100 × 20
vertical patch. Regarding the patch is non-square, the sizes
of convolutional kernels in the first four convolutional layers
are all set to 5 × 3, while that in the last four convolutional
layers are set to 6 × 1, 6 × 1, 7 × 1 and 1 × 1, respectively.
Each convolutional layer is followed by the rectified linear
unit (ReLU) [41] activation and performed with 1 stride and
0 padding. The kernel size of each pooling layer is 2×2 with
2 strides and 0 padding. In addition, the dropout [42] after
the last convolutional layer is applied to avoid the possible
over-fitting. For each sub-model, we minimize the following
softmax loss L:

L = −
N∑
i=1

yilogŷi (1)

where N is the number of training patches (vertical or horizon-
tal patches) in the current sub-model, yi and ŷi are the ground
truth and the predicated label of the central pixel in the i-th
patch, respectively. The weights of the filters are initialized
randomly with the Gaussian distribution [43] and updated by
the stochastic gradient descent (SGD) algorithm.

Similarly, we can also obtain the architecture of the hori-
zontal sub-model as illustrated in Table I, with the input of
the sub-model as a 20×100 horizontal patch. Please note that
the architecture could be adjusted according to different seg-
mentation scenarios. Typically, we use the same architecture
in the cardiac segmentation and different architecture in the
breast mass segmentation.

D. Training Sub-Models

We now discuss how to train our Crossbar-Net in a cascaded
manner, as a boosting-like training style. Formally, we denote
the vertical and horizontal sub-models in the i-th round as Vi

and Hi, respectively. The training process can be detailed as
follows:

Firstly, extracting crossbar patches with the basic sampling
strategy and training the initial vertical and horizontal sub-
models, i.e., V1 and H1, respectively. We use an example
to illustrate the detailed implementation process of basic
sampling strategy:

As shown in Fig. 4(b), in this round, we first sample pixels
on the green contours as the centers of non-tumor patches.
Then, we select the red points as the centers of tumor patches
on the odd rows inside the tumor. The sampling interval on the
contours near the tumor is smaller than that on the contours
which are far away from the tumor, with the goal of sampling
more patches near the tumor boundary. Here, we denote the
sets of these pixels (i.e., the location of these pixels) and
their ground truth labels as X and Y , and the corresponding
vertical and horizontal training patches as PV 1

basic and PH1

basic,
respectively.

Secondly, we continuously update our Crossbar-Net based
on the currently obtained sub-models. Specifically, in the i-th
round (i > 1),
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TABLE I
DETAILS OF SUB-MODEL ARCHITECTURES. CONV AND POOLING DENOTE CONVOLUTIONAL LAYER AND POOLING LAYER, RESPECTIVELY.

Layer # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11

Vertical sub-model
Layer type Conv Conv Pooling Conv Pooling Conv Conv Conv Conv Conv Softmax
Feature maps 16 36 36 64 64 64 64 64 500 2 2
Kernel size 5 × 3 5 × 3 2 × 2 5 × 3 2 × 2 5 × 3 6 × 1 6 × 1 7 × 1 1 × 1 -

Horizontal sub-model
Layer type Conv Conv Pooling Conv Pooling Conv Conv Conv Conv Conv Softmax
Feature maps 16 36 36 64 64 64 64 64 500 2 2
Kernel size 3 × 5 3 × 5 2 × 2 3 × 5 2 × 2 3 × 5 1 × 6 1 × 6 1 × 7 1 × 1 -

• Performing the evaluation on Hi−1. In particular, we in-
put the PH1

basic to Hi−1 for the evaluation at the i-th round,
by predicting the label of central pixel in each patch
from PH1

basic. In this meaning, the mis-segmented regions in
Hi−1 are determined according to the predicated labels.
Formally, assuming that all these predicted labels as ŶH ,
we define the misclassified pixels as:

Ci−1
H =

{
xj |xj ∈ X ∧ I(ŷj 6= yj), j = 1, ..., N

}
(2)

where xj is the central pixel of the j-th patch, ŷj and
yj are the predicted and ground truth label of xj , ŷj ∈
ŶH and yj ∈ Y . N is the number of horizontal training
patches. I(s) is an indicator function. I(s) = 1 if and
only if the statement s is true and I(s) = 0 otherwise.

• Performing both covering re-sampling strategy (on the
mis-segmented regions in Hi−1) and the basic sampling
strategy, to obtain the newly generated vertical patches.
Firstly, the covering re-sampling is performed. We also
record the position of the patches obtained by covering
re-sampling strategy in the current round, denoted as
PV i

re . Then, the basic sampling strategy is sequentially
performed. Specifically, as i varies, as shown in Fig.
4(b), we sample central pixels for non-tumor patches on
different contours which are labeled by different colors.
For the tumor patches, we sample the red points on
different rows or columns as the central pixels. The
sampling intervals for these two types of patches are
different from that in the previous rounds. Meanwhile,
if a patch has already been extracted in the covering
re-sampling, it cannot be sampled in the basic sampling
in the same round. The advantage of the above way is
to avoid redundant sampling which might cause over-
fitting. Here, the covering re-sampling strategy aims to
enhance the role of mis-segmented regions, while the
basic sampling strategy wishes to control the amount
and distribution of training samples and prevent the sub-
model from over-emphasizing the misclassified pixels.

• Employing these newly generated patches to train Vi−1

to obtain Vi.
• Updating the Hi from Hi−1, similarly.
Finally, we repeat the aforementioned steps by updating Hi

and Vi from Hi−1 and Vi−1 iteratively, until (1) maximum
training round number reaches or (2) the training error of each
sub-model could not be reduced significantly anymore.

Overall, the advantages of our cascaded training can be
summarized as: The vertical and horizontal sub-models could

complement each other during the cascaded training. When
the features in one direction are not very discriminative for
segmentation, the features in another direction could make
up for the current direction. For example, if the boundaries
are blurred in the vertical direction, they might be sharp in
the horizontal direction. In the remaining rounds, the vertical
(horizontal) sub-model iteratively feeds the generated crossbar
patches using covering re-sampling strategy to the horizontal
(vertical) sub-model in the same round, until the convergence.
This can emphasize the learning on the mis-segmented regions
and guarantee the sub-models to complement each other.

As a boosting-like algorithm, both the horizontal and verti-
cal sub-model can perform self-improvement with both basic
sampling patches and covering re-sampling patches as the
training samples. Here, the self-improvement means that the
performance of sub-model in one direction can be improved
along with the increase of rounds. We claimed that the basic
sampling patches in the current round are sampled at different
intervals with the previous rounds, which is equivalent to
adding new training data to the sub-model. This might be a
major cause of the self-improvement. In addition, if both sub-
models in the same round fail on a same pixel, the correspond-
ing mis-segmented region of this pixel in the current round
will be definitely enhanced in both vertical and horizontal
sub-models in the next round. In this meaning, the region
around this misclassified pixel could have a larger chance to
be emphasized in the next round compared with the current
round, which causes the segmentation model in the next round
more cares about the segmentation error on this region. Thus,
a better segmentation performance on this region is expected
as the similar weight-updating way in AdaBoost.

E. Testing

In the testing phase, for a new coming image, we first extract
the crossbar patches for each pixel. Then, we input these
extracted patches to the trained vertical and horizontal sub-
models in each round, to predict the central pixel of each patch
belongs to the tumor region or not. Each sub-model outputs
a segmentation result, and the final result is generated by a
majority voting on all obtained results. Formally, assuming
T as the number of maximum round, we can obtain 2T
sub-models as V1, · · · ,VT and H1, · · · ,HT . The result is
determined by these 2T sub-models.

IV. EXPERIMENTAL RESULTS

Now we validate the advantages of Crossbar-Net qualita-
tively and quantitatively. After the introduction of datasets,
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evaluation criteria, and implementation details, we first inves-
tigate the characteristics of Crossbar-Net. Then, we present
comparisons between Crossbar-Net and baseline methods on
kidney tumor dataset. Finally, we apply Crossbar-Net to the
cardiac and breast mass segmentation task to show that our
model could be extended to other organ segmentation.

A. Data

Kidney tumor dataset. This dataset is independently col-
lected from Suzhou Science and Technology Town Hospital.
3,500 CT slices of 94 subjects in total are used for performance
evaluation, with one tumor per slice. The resolution of the
image is 512 × 512 with 1 × 1 mm2/pixel, and the spacing
between slices is 1 mm. For each image, the diameter of
tumors ranges from 7 pixels to 90 pixels, and the tumor is
manually annotated by the physician as the ground truth for
training. We randomly partitioned the dataset into three subsets
including the training, validation and testing sets which consist
of 50, 8 and 36 subjects respectively. The sub-models in the 1-
st round is trained using about 580,000 patches being extracted
by the basic sampling strategy. The epoch number of each
sub-model is automatically determined by the validation set,
and the performance of each sub-model in each round is still
evaluated by the training set.

Breast masses dataset. A subset of DDSM [44], [45] is
introduced to investigate the performance of our method. The
image in this dataset is LJPEG format and we convert them
into PNG format as [46]. There are 1,923 malignant and
benign cases in DDSM, and each case includes two images
of each breast. The Regions of Interesting (ROI) are given in
images containing the suspicious areas. Since the ROIs are not
the accurate boundary of a tumor, the boundary of each tumor
is annotated again as the ground truth by the experienced
radiologists. There are in total 1,000 selected images, among
which 600 and 100 images are training and validation set
and the remaining 300 images are testing set. In most of
the breast mass segmentation methods, the image is cropped
to the bounding box of ROI [47], [48] or 1.2 times of the
bounding box [49]. We follow the cropping manner in [49].
An example is shown in Fig. 6(a). According to the basic
sampling strategy, some patches might be extracted outside
the image (Fig. 6(b)). For these patches, the parts outside the
image are filled with black. When implementing the covering
re-sampling strategy, the black part of mis-segmented regions
would not be re-sampled. Most tumors in these images are
smaller than 450 pixels in diameter with very few of them
whose diameter is about 600 pixels.

Cardiac dataset. This dataset is available from [50] and
comprised of cardiac MRI sequences for 33 subjects with
total 7,980 MR slices. The image resolution is 256 × 256
with the in-plane pixel size as 0.9-1.6 mm2, and the inter-
slice thickness as 6-13 mm. In each image, endocardial and
epicardial contours of the left ventricle (LV) are provided as
the ground truth. We randomly select 20 and 3 subjects as the
training and validation set to train sub-models. The images of
the remaining 10 subjects form a testing set for evaluation.
The amount of training patches is about 350,000 in the 1-st

round, and about 100,000 and 50,000 samples are sampled in
the 2-nd and 3-rd round respectively.

Ground truth

Bounding box

ROI

(a)

Center pixel of crossbar patch

Ver�cal
patch

Horizontal
patch

(b)

Fig. 6. Example of the cropped breast mass image and the extracted crossbar
patch. (a) is the cropped image. (b) shows the crossbar patch extracted outside
the image.

B. Evaluation Criteria

We employ the Dice similarity coefficient (DSC) and the
true positive fraction (TPF) as the primary evaluation criteria
for assessing the segmentation performance. DSC is usually
employed to measure the overlap between the prediction and
manual segmentation. A large DSC indicates a high segmen-
tation accuracy. TPF indicates the percentage of correctly
predicted tumor pixels in the manually segmented region.
The higher the TPF is, the larger the coverage of the true
tumor region is. We also introduce the centroid distance (CD)
and the Hausdorff distance (HD) to evaluate the segmentation
accuracy. CD indicates the distance between the central pixels
of the final segmentation and manual segmentation which is
used to indicate the Euclidean distance between two central
points in a 3-D space. Similar to CD, a smaller HD indicates
higher proximity between the final segmentation and manual
segmentation, which is introduced in quite a bit of detail in
Zhang et al. [51]. More details about DSC, TPF, and CD are
introduced in [52].

C. Implementation Details

For the scale of crossbar patch on all datasets, we set the
size of the horizontal patch as 20 × 100 and vertical patch
as 100 × 20 on kidney data and cardiac data, and 50 × 500
and 500 × 50 on DDSM, respectively. We implement our
networks on MatConvnet toolbox [53]. In order to improve the
credibility of segmentation, the training and testing procedure
are repeated 3 times in all experiments. In each time, the
training, validation, and testing subsets are selected randomly,
and we report the final average performance. Each sub-model
reaches convergence within 20, 25 and 25 epoches on kidney
tumor, cardiac and DDSM, respectively. We run all deep
models on NVIDIA GTX 1080 Ti.

D. Characteristics of Crossbar-Net

We analyze four aspects about the characteristics of the
proposed Crossbar-Net, which including: (1) the sub-model
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Fig. 7. Illustration of training error of each sub-model. The sub-models are
trained separately.

Fig. 8. Performance of each sub-model on kidney tumor. The left column
indicates the ground truth image, the second to forth columns indicate the
results of three vertical sub-models, and the last three columns indicate the
results of three horizontal sub-models, respectively.

can perform self-improvement, (2) the sub-models in the same
training iteration can complement and benefit each other,
(3) the advantage of combining all the sub-models for final
segmentation, and (4) the effectiveness of crossbar patches.

Self-improvement. The purpose of this experiment is to
show that if the vertical sub-model can self-improve without
the involvement of the horizontal sub-model, and vice versa.
We first train the vertical sub-model separately to obtain
V1. Then, we re-sample the mis-segmented regions with the
covering re-sampling strategy, where the re-sampling patches
are the vertical patches instead of the horizontal patches. Then,
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Fig. 9. DSC and TPF of Crossbar-Net.

TABLE II
AVERAGE METRICS FOR EACH SUB-MODEL ON TESTING SET

V1 V2 V3 H1 H2 H3

DSC 0.853 0.871 0.882 0.847 0.871 0.881
TPF 0.844 0.876 0.883 0.834 0.869 0.884
HD (mm) 10.200 9.586 9.223 11.315 10.001 9.890
CD (mm) 4.346 3.424 2.790 4.403 3.560 2.909

we train V1 with these patches together with those gotten
from the basic sampling strategy to get V2. Similarly, we
can obtain the following V3, V4, · · · in a same way. We
repeat training the sub-model (10 times here) until the training
segmentation error converges. The horizontal sub-model is
excluded throughout the process. The same process is also
employed on horizontal sub-model. As illustrated in Fig. 7, the
training error of each sub-model decreases with the increase
of rounds. This experiment also shows that although each
sub-model can self-improve, it takes 10 rounds for vertical
(horizontal) sub-model to its convergence. In fact, only 3
rounds are needed if we train the sub-models in our manner
shown in Fig. 3 instead of using this separate manner.

Complement between Sub-models. In this experiment, we
train sub-models in the manner as illustrated in Fig. 3. After
3 rounds, the training error of the vertical and horizontal sub-
models reaches its convergence. Thus, the sub-models in these
3 rounds, which are V1, V2, V3 and H1, H2, H3, will
be used in all the following kidney tumor experiments. As
shown in Fig. 8, we illustrate a typical case for visualization
in the first row. In this case, we can observe V1 fails to
properly segment the upper and lower parts of the tumor
from vertical direction while H1 performs well from the
horizontal direction. Similarly, H1 cannot segment the tumor
with its left and right background correctly while V1 is better.
At the same time, the degree of disagreement is reduced
between V2 and H2. V3 and H3 both achieve the promising
results eventually. For other tumors in the remaining rows,
in addition to complementary regions, there are more or less
common misclassified pixels. For example, in the second
tumor, the upper right boundary and the lower right boundary
are incorrectly segmented by both sub-models in the first two
rounds. In this case, V2 and H2 are obviously superior to
their former sub-models. Also, H3 and V3 achieves the best
performance. This observation verifies that sub-models can
benefit and complement each other. Basically, in all cases, the
performances of later sub-models are superior to the former
sub-models.

The Way of Combination. Table II is the corresponding
quantitative result of Fig. 8, which confirms that the latter sub-
model works better than the previous sub-model. However, we
cannot simply combine the results of the two last sub-models.
Intuitively, the latter sub model pays more attention to the
difficult regions (i.e., hard to be segmented by the former
sub-models). If we directly use the last sub-models as the
segmentation model, we might have a strong attention-bias
on the original data. Therefore, the majority voting of all sub-
models is adopted, in which the weights of the last sub-models
are greater than that of others. Experimentally, we indeed find
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(a) The test image (b) Cluster of squared patches (c) Cluster of vertical patches (d) Cluster of horizontal patches

Fig. 10. t-SNE visualization of the high level representations in Crossbar-Net.
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Fig. 11. Distribution of DSC on 600 kidney tumors.

the effectiveness of the majority voting. As shown in Fig. 9(b),
the DSC and TPF of V3 and H3 combination are lower than
the majority voting result of all sub-models in the 3 rounds
around 2%. Theoretically, our covering re-sampling strategy
is to some extent to being similar to the sampling strategy
in AdaBoost. Also, in AdaBoost, the final strong ensemble
classifier is obtained by a combination of all the previous
weak classifiers since the latter weak classifier also assigns
the higher weight to the difficult samples. We empirically set
the weights of the last two models (V3 and H3) to 1.5 and
the remaining to 1.

Although the training error of both vertical and horizontal
sub-models converges after 3 rounds, to further show the
benefit of combining all the sub-models with the majority
voting, we continue the training process until reaching 10
rounds. The DSC and TPF of the 4, 6 and 10 rounds are listed
in Fig. 9(b) together with that of the 3 rounds. Obviously, as
the number of training rounds increasing, the majority voting
still remains superior to the simple combination of the last two
sub-models.

Effectiveness of Crossbar Patches. We illustrate the ad-
vantages of crossbar patch by additionally comparing the
crossbar patch with the squared patch (i.e., 28 × 28 and
56 × 56). For the experiment setting about these two types
of patches, both their training strategy and network structure
are maintained to be consistent for a fair comparison. For the
training strategy, both of them adopt the cascaded training to
make the network more focus on the mis-segmented regions,
and their final segmentation models are the corresponding
combination of their respective sub-models. For the network
structure, it is impossible to make their networks be identical

due to the different input sizes. However, for fair comparison,
we tried our best to make their network structures to be
almost same with only the difference on 1 − 3 convolutional
layers. Specifically, the structure in each path of the 28 × 28
and 56× 56 patch is CCCPCCCCCS and CCPCCPCCCCCS
respectively. Here C denotes convolutional layer, P is pooling
layer and S is softmax layer. Since the filter is set to be
rectangular for the rectangular patch, it is natural to set the
filter to be square if the patch is square. Therefore, for the
kernel size in squared patches, the 3 × 3 filter is adopted in
all convolutional layers of all sub-models. The training data
of both vertical and horizontal sub-models are sampled on the
same images, while sampling intervals are different.

The results are shown in Fig. 9(a). The DSC and TPF of the
model using squared patches are much lower than that using
crossbar patches. In order to verify the unappealing result is
not caused by the small size of the input patch, we turn the
size of patches into 100× 100. The structure of sub-model in
each path under 100 × 100 patches is CCPCCPCCPCCCCS.
The results are shown in Fig. 9(a), without any significant
improvement. This observation indicates that, compared with
non-squared crossbar patch, the large squared patches may
include more information, while they might also bring in
irrelevant noise to distinguish boundary.

Furthermore, in order to highlight the effectiveness of the
non-squared patch, we also compare the features learned
from crossbar patch and squared patch. We use t-SNE (t-
distributed Stochastic Neighbour Embedding) [54] to evaluate
the features. We take the 500-dimensional features in V3 from
the vertical patch and the 56 × 56 patch, in H3 from the
horizontal patch, respectively. As shown in Fig. 10, each point
represents a patch projected from 500 dimensions into two
dimensions, where the purple one is tumor case and the red
one is non-tumor. The positive and negative cases represented
by squared patch features are almost indivisible in Fig. 10(b),
while the cases in Fig. 10(c) and Fig. 10(d) could be separated
well, which are represented by our vertical and horizontal
patches.

E. Comparison to Other Methods on Kidney Tumor

We extensively compare Crossbar-Net with the low-level
methods of kidney tumor segmentation, the multi-scale 2D-
CNN model with squared patches, the 3D patch-based CNN
model and the image-based CNN models.
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TABLE III
COMPARISON AMONG DIFFERENT METHODS ON KIDNEY TUMORS.

DSC TPF HD (mm) CD (mm)

HCM 0.686 0.788 25.991 11.231
FCN-G [21] 0.736 0.752 20.153 9.372
U-Net [19] 0.838 0.832 13.1 4.510
V-Net [20] 0.887 0.891 10.341 3.895

SegCaps [22] 0.879 0.882 10.451 4.132
2D-CNN [15] 0.718 0.709 20.982 9.853
3D-CNN [55] 0.812 0.820 14.225 6.039
Crossbar-Net 0.913 0.915 8.891 2.624

As mentioned in Section II, the low-level feature methods
[1], [2], [7]–[9] have their own specific goals and are difficult
to be applied directly here, so we apply their basic operations
to our data set: first extracting the whole kidney area with tu-
mors being included firstly, then calculating features manually,
and finally classifying or segmenting tumors with non-CNN
methods. These methods are termed as hand-crafted based
methods (HCM). Besides, our Crossbar-Net is essentially a
patch-based multi-scale CNN model with local and contextual
information being considered. Hence, the second and third
compared methods are the multi-scale 2D-CNN and multi-
scale 3D-CNN. The 2D-CNN model was modified from [15],
in which all parameters are kept except for the nodes of the
output layer are changed from 9 to 2. The basic 3D-CNN
in [55] is adopted as the 3D model, in which the input 3D
patches are 50 × 50 × 5 and 100 × 100 × 10 and the size
of the convolutional kernels is 3 × 3 × 3. The patches are
extracted with basic sampling strategy in 2D-CNN and 3D-
CNN models.

As for the image-based CNN methods, we investigate four
models which are representative in medical image segmenta-
tion: the FCN-G [21], the U-Net [19], the V-Net [20] and
the SegCaps [22]. The FCN-G is a combination of FCN
model and graph model, and the later is a post-process of the
former segmentation results. Similar to the original literature
[21], we also adopt VGGnet [56] as basic architecture of the
FCN and apply transfer learning on it. The U-Net, a popular
image-based CNN model, is a promising model in medical
image segmentation. We implement it with Python 3.6.8 [57]
and PyTorch 0.4.0 [58]. The best test results are obtained
after 28 epoches in this model. The V-net is another typical
image-based model, which is also a 3D segmentation model.
The SegCaps is also a representative segmentation model and
we get the code from Github [59]. We implemented this
model with Tensorflow 1.11.0 [60] on 4 GPUs. The segcaps3
is chosen as network and other parameters are kept to be
consistent with the original code. To adjust our dataset to this
framework, we modified the code that is relevant to reading
and converting images. We fed the original images to U-Net
and SegCaps, and fed the cropped images to the FCN-G and
V-Net to fit the respective input sizes of the two models.

We sampled testing images from one testing set which
consists of 30 subjects with totally 600 images being randomly
sampled. To fully observe all these 600 tumors, we depicted

TABLE IV
AVERAGE DSC OF EACH SUB-MODEL IN LV SEGMENTATION AND BREAST

MASS SEGMENTATION.

V1 V2 V3 H1 H2 H3

Breast mass 0.853 0.875 0.902 0.849 0.872 0.897
LV 0.875 0.881 0.903 0.869 0.883 0.908

TABLE V
DSC OF EACH METHOD IN BREAST MASS SEGMENTATION.

Method
[47]

Cross-sensor
[49]

AM-FCN
[48]

Method
[61]

Crossbar-
Net

0.8700 0.9000 0.9130 0.9118 0.9122

the kernel density estimation of DSC of all compared methods
in Fig. 11. It can be observed that Crossbar-Net achieves
promising DSC (larger than 0.9) on most tumors. Many low
DSC distributed in the multi-scale 2D-CNN and the HCM. The
U-Net performs better than these two methods and multi-scale
3D-CNN. SegCaps achieves the second best performance.
There are some cases of 0 DSC in the results of U-Net and
SegCaps, which indicates that some tumors are missed by
these two models.

In Table III, we list average values of DSC, TPF, HD
and CD of all test sets of different methods. It is obvious
that Crossbar-Net outperforms other methods in terms of the
higher DSC and TPF. Moreover, as shown in Table III, it
is predominant that Crossbar-Net obtains the smallest value
of HD and CD measurements which reflect high quality
segmentation. The multi-scale 3D-CNN obtains a higher DSC
than the 2D-CNN model since it takes the spatial information
into account. Performance of U-Net is slightly better than
that of the multi-scale 3D-CNN. In the FCN-G case, the
graph model depends on the result of the FCN model [18]
and the performance is not very competitive. Although the
SegCaps is a 2D model, it performs competitively with V-
Net, both significantly superior to other methods except to our
Crossbar-Net. The FCN-G, U-Net and SegCaps and V-Net are
all developed from FCN model. In order to explore the reasons
why these methods are not very effective, we have also applied
FCN directly in our task. The result is not desirable (the DSC
is even < 0.6) which ignores the local details especially on
the boundary of the small tumors. This may be the reason of
0 DSC cases occurring in the U-Net and SegCaps in Fig. 11.

As shown in Fig. 12, we illustrate several typical segmen-
tation examples of Crossbar-Net, image-based method and 3D
patch-based model. Obviously, Crossbar-Net segmentation is
similar to the ground truth in most cases. SegCaps performs
well in big tumors while fails in small cases, even though the
tumor has a distinctive texture. The first and second image
in the first row of Fig. 12 are the unsatisfactory cases of
the SegCaps. The multi-scale 3D-CNN is competitive with
SegCaps especially on small tumors, which may be related to
its 3× 3× 3 small convolutional kernels.

In addition, we have recorded the computation cost of



11

Ground truth 3D-CNN SegCaps Crossbar-Net

Fig. 12. Examples of segmentation results with ground truth on kidney tumor dataset. The red, blue, yellow and green curves are manual annotation,
Crossbar-net, multi-scale 3D-CNN [55], and SegCaps [22] contour, respectively.
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Ground truth V1 V2 V3 H1 H2 H3

Fig. 13. Performance of each sub-model on DDSM. The left column is ground
truth image, the second to forth columns are three vertical sub-models, and
the last three columns are horizontal sub-models, respectively.

Ground truth Crossbar-Net

Fig. 14. Typical segmentation results on DDSM dataset.

Crossbar-Net, U-Net, and SegCaps: with the implementation
on one GPU, our model (including six sub-models) takes ∼
1h for training and less than 1.5s for segmenting a new patient
(about 35 slices). The U-Net is very close to our method in
training and testing time. The SegCaps running on 4 GPUs
takes about 110 minutes for training one epoch and reaches
to convergence after 24 epoches. Thanks to our sampling
and boosting-like-training, many correctly segmented patches
will not feed into the later rounds, which helps reduce the
training patches and training time. Specifically, about 580,000
crossbar patches (i.e., 580,000 vertical patches and 580,000
horizontal patches) are input to the vertical and horizontal
sub-model respectively in the 1-st training round, to obtain the
corresponding H1 and V 1. In the 2-nd round, about 150,000
patches are fed to H1 and V 1 respectively, including ∼ 90,000
re-sampling patches and 60,000 basic sampling patches. In the
3-rd round, about 70,000 patches are totally sampled.

F. Crossbar-Net for Breast Mass Segmentation

We segment the breast mass in mammograph for evaluating
the generalization to the related tasks. We illustrate the perfor-
mance of each sub-models on DDSM in Fig. 13 and Table IV,
confirming the characteristics of self-improvement and mutual
help again. In Table V, we list the DSC of Crossbar-Net and
several state-of-the-art methods which are implemented on
DDSM dataset. In this table, we report the best records of
[47]–[49], [61] as reported in the original manuscripts. The

Fig. 15. Performance of each sub-model in LV cave segmentation on
the cardiac dataset. The left column is ground truth image, the second to
forth columns are three vertical sub-models, and the last three columns are
horizontal sub-models, respectively.

TABLE VI
PREDICTION PERFORMANCE COMPARISON IN CARDIAC SEGMENTATION.

Method LV MYO

DSC AD (mm) HD (mm) DSC HD (mm)

DMWDP [62] 0.859 2.10 - - -
ASAMM [63] 0.856 2.30 - - -
DC-FCN [13] 0.915 - 12.08 0.855 14.98
3D-CNN [14] 0.925 - 14.65 0.855 38.12
GridNet [64] 0.955 - 5.85 0.885 8.01
Crossbar-Net 0.925 1.82 3.60 0.892 4.63

results in Table V demonstrate that Crossbar-Net is slightly
superior to others. As shown in Fig. 6(b), it is possible that the
black filled in some crossbar patches (especially the non-tumor
patches) contributes to improving the discrimination of the
patches. We also show several segmented visualization results
of Crossbar-Net (Fig. 14).

Noted that the cost of training and testing on this dataset is
larger than that on the kidney and cardiac datasets for the large
patch of mammography. This is because that under the 500×
50 and 50 × 500 patch size, the structure of the vertical and
horizontal sub-models consists of 11 layers of convolution, 4
layers of pooling and 1 softmax layer, respectively. Also, about
500,000 patches are extracted to train V1 and H1. Meanwhile,
about 120,000 and 50,000 patches are fed to the sub-models
in the 2-nd and 3-rd round, respectively. Thus, regarding the
more parameters in the segmentation model compared with
the kidney tumor datasets, all six sub-models take about 6h
for training and about 15s for segmenting a new subject.

G. Crossbar-Net for Cardiac Segmentation

In this experiment, the LV and myocardium (MYO) in
cardiac MRI dataset are segmented. MYO is determined by
endocardia and epicardium together, while LV is determined
by the endocardia. The performances of sub-models in LV
segmentation are visualized in Fig. 15 and quantified in
Table IV. Both the figure and the table indicate a gradual
improvement in performance among sub-models in the same
direction of different rounds.
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Fig. 16. Examples of resulting segmentations for subjects 24-33 of the cardiac dataset [50].

Also, we report the DSC and distance metrics of our method
and the other five methods proposed in [13], [14], [62]–[64]
in Table VI. The deformable model (DMWDP) in [62] and
Active Shape and Motion Model (ASAMM) in [63] are non-
CNN models, both of which are applied on the same dataset
with Crossbar-Net. The remaining three methods are CNN-
based models applied on other dataset. All results are directly
reported from their original articles for comparison. The
average perpendicular distance (AD) in Table VI corresponds
to the average distance between each pixel in the predicted
boundary and the closest ground truth pixel. It is observed that
DSC of Crossbar-Net in LV segmentation stands the second
best overall result, with GridNet [64] being the most accurate.
However, our HD and AD are superior to that of other
methods. For the MYO segmentation, our method outperforms
all other methods. The highest DSC of MYO and slightly
low DSC of LV means that Crossbar-Net is superior to other
methods in epicardium segmentation. Therefore, our method
is competitive compared with the state-of-the-art methods in
cardiac segmentation.

We also show some of the segmented visualization results
of our method. As shown in Fig. 16, several representative
samples from each sequence of subject 24-33 are illustrated.
Note that the performance of Crossbar-Net is better in cardiac

segmentation than on kidney tumors because the shape of the
LV cavity and the myocardium are more regular.

V. CONCLUSION

In this paper, we propose a novel segmentation model
named as Crossbar-Net, in which the innovations focus on
the shape of patches, the way of patch sampling and the
style of cascaded training. For the shape of patches, the
crossbar patches cover the kidney tumor in both horizontal
and vertical directions and capture the local and contextual
information simultaneously. For the way of sampling patches,
the basic sampling strategy and covering re-sampling strat-
egy are proposed. The combination of these two strategies
not only enhances the role of mis-segmented regions but
also prevents sub-models from being over-emphasized on the
mis-segmented regions. For the cascaded training style, the
segmentation result of sub-models in one direction can be
complemented by sub-models in the other direction, and each
sub-model can perform self-improvement with re-sampling the
mis-segmented region. Our model can simultaneously learn
a variety of information and achieve promising segmentation
results on different size, shape, contrast and appearance of
kidney tumors. Moreover, the successful application on cardiac
and breast mass segmentation shows that Crossbar-Net has
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a wide range of application. The future work is to extend
the direction of symmetric information from horizontal and
vertical axes to the other axes.
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