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SCAN: Self-and-Collaborative Attention Network
for Video Person Re-identification

Ruimao Zhang, Jingyu Li, Hongbin Sun, Yuying Ge, Ping Luo, Xiaogang Wang, and Liang Lin

Abstract—Video person re-identification attracts much atten-
tion in recent years. It aims to match image sequences of
pedestrians from different camera views. Previous approaches
usually improve this task from three aspects, including a)
selecting more discriminative frames, b) generating more infor-
mative temporal representations, and c) developing more effective
distance metrics. To address the above issues, we present a novel
and practical deep architecture for video person re-identification
termed Self-and-Collaborative Attention Network (SCAN), which
adopts the video pairs as the input and outputs their matching
scores. SCAN has several appealing properties. First, SCAN
adopts non-parametric attention mechanism to refine the intra-
sequence and inter-sequence feature representation of videos,
and outputs self-and-collaborative feature representation for each
video, making the discriminative frames aligned between the
probe and gallery sequences. Second, beyond existing models,
a generalized pairwise similarity measurement is proposed to
generate the similarity feature representation of video pair by
calculating the Hadamard product of their self-representation
difference and collaborative-representation difference. Thus the
matching result can be predicted by the binary classifier. Third,
a dense clip segmentation strategy is also introduced to generate
rich probe-gallery pairs to optimize the model. In the test phase,
the final matching score of two videos is determined by aver-
aging the scores of top-ranked clip-pairs. Extensive experiments
demonstrate the effectiveness of SCAN, which outperforms top-
1 accuracies of the best-performing baselines on iLIDS-VID,
PRID2011 and MARS dataset, respectively.

Index Terms—Temporal Modeling, Similarity Measurement,
Collaborative Representation, Person Re-identification, Attention
Mechanism.

I. INTRODUCTION

As one of the core problems in intelligent surveillance and
multimedia application, person re-identification attracts much
attention in literature [1], [2], [3], [4], [5], [6], [7]. It aims to
re-identify individual persons across non-overlapping cameras
distributed at different physical locations. In practice, dra-
matic appearance changes caused by illumination, occlusions,
viewpoint and background clutter increases the difficulty of
re-id task. A lot of work have been proposed to deal with
these problems in still images [1], [2], [3], [8], [9], [10],
[11]. Beyond this, there also exist several studies [4], [5],
[6], [12], [13] discussing the re-id task under image sequence
(video) setting. Since an image sequence usually contains rich
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Fig. 1: A comparison between a standard deep video
re-identification pipeline (left) and the proposed Self-and-
Collaborative Attention Network (right). For example, in the
left, the CNN adopts image sequence of two person as input
and outputs the feature representation of each frames for both
probe and gallery identity. Then frame selection and temporal
pooling are carried out in turn. Similarity measurement of
two identities are conducted at last. In contrast, our method
contains two kinds of frames selection modules. The self
attention subnetwork (SAN) is used to select frames from the
sequence itself to enhance its feature representation, and the
collaborative attention subnetwork (CAN) is used to select
frames from probe or gallery sequence based on the repre-
sentation of the other one. The sequence-level representation
is also generated in SAN and CAN. The similarity feature of
two input identities are computed in a similarity measurement
module according to the outputs of SAN and CAN.

temporal information, it is more suitable to identify a person
under complex environment and large geometric variations.

As shown in Fig.1, besides extracting the feature repre-
sentation of each frame by convolutional neural networks
(CNN), existing deep video re-identification methods usually
include following steps: a) selecting the discriminative video
frames from probe and gallery video sequences respectively,
b) generating informative temporal representation of each
video, c) using video representations and learned similarity
measurement to rank the video sequences in the gallery set.
Most previous studies only pay attention to one or two above
steps independently.

On the other hand, inspired by [14], several studies [6],
[12] introduced the attention mechanism to video re-id task
for frame selection and temporal modeling. For example, Xu
et al. [12] adopted the attention matrix to jointly extract the
discriminative frames from probe and gallery videos, and cal-
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culated the coupled probe and gallery video representations by
temporal pooling operation. Although these methods achieved
promising results, the attention networks are still not fully
and effectively explored for temporal modeling. It can be
summarized in the following aspects. First, existing methods
usually generate the sequence representations after aligning
probe and gallery frames (i.e. assigning attention weight to
each frame), thus the video representation cannot in turn
refine the frame selection. For example, if the probe video
from person-1 has some occlusion frames with the similar
appearance to the gallery video from person-2, these occlusion
frames will obtain great attention in the frame alignment,
and further affect final video representations. Second, some
combinations of similarity measurements and loss functions in
previous studies are not suitable for the attention mechanism to
discover discriminative frames. Third, the attention mechanism
in existing methods is usually parametric, making the length
of the input sequence or the feature dimension of frames need
to be fixed.

In order to address the above issues, we propose a simple
but effective architecture termed Self-and-Collaborative Atten-
tion Network (SCAN) to jointly deal with frame selection,
temporal modeling and similarity measurement for video re-
identification task. As shown in Table I, it has several benefits
that existing methods do not have. a) Compared with the re-
current neural network (RNN) based attention models, SCAN
adopts attention mechanism to refine the intra-sequence and
inter-sequence feature representation of videos. Such process
can efficiently align discriminative frames between the probe
and gallery image sequences. The output self and collaborative
feature representations leverage the global temporal informa-
tion and local discriminative information. b) We propose a
generalized pairwise similarity measurement in SCAN, which
adopts self and collaborative video representations to calculate
the similarity features of video-pairs. Thus the matching prob-
lem can be transformed into a binary classification problem,
and the label of an identity pair is used to optimize the
classifier. Such module encourages the video features from
the same identity to be similar, and enlarges the distance
between informative frames and noisy frames in the same
video. Moreover, different from pair-wise loss or triplet loss
that needs a predefined margin constraint [15], the binary
loss can reduce the cost to tune such hyperparameter. c) The
attention module in SCAN is non-parametric, thus it can deal
with image sequence with various lengths and the input feature
dimensions of each frame are also variable . d) A dense
clip segmentation strategy is introduced to generate much
more probe-gallery pairs (including the hard positive and hard
negative pairs) to optimize the model.

As shown on the right of Fig.1, in practice, we first
extract the feature representation of each frame (black and
white rectangles) from both probe and gallery videos us-
ing pre-trained CNN. Then we input the frame-level feature
representations from the probe and gallery videos into self
attention subnetwork (SAN) independently, After calculating
the correlation (the attention weight) between the sequence and
its frames, the output sequence representation is reconstructed
as a weighted sum of the frames at different temporal positions

Method Frame
Align.

P-G
Inter.

Var.
Dim.

P-G
Aug.

Mc. et al. [4] X
Zhou et al. [6] X
Xu et al. [12] X X
Liu et al. [16] X
Li et al. [13]
our method X X X X

TABLE I: The proposed SCAN integrates the benefits of the
previous work into a unique framework, and also introduces
some elaborate mechanisms to further improve the perfor-
mance of video re-id. ‘Frame Align.’, ‘P-G Inter.’, ‘Var. Dim.’
and ‘P-G Pair Aug.’ are short for frame alignment, probe-and-
gallery interaction, accepting temporal modeling with various
feature dimensions (i.e. various number of frames and feature
channels) and probe-and-gallery pair augmentation.

in the input sequence. We also introduce the collaborative
attention subnetwork (CAN) to calculate the coupled feature
representations of the input sequence pair. The calculation
process of CAN is the same as the SAN, but the meaning of
the output varies according to different inputs. For instance,
if the input sequence-level feature is from the probe video
and the frame-level features are from the gallery video, the
output of CAN will be the probe-driven gallery representation.
Otherwise, it will be the gallery-driven probe representation.
After SAN and CAN, we calculate the difference between self-
representations of probe and gallery videos, as well as the
difference between their collaborative-representations. These
two differences are merged by the Hadamard product and fed
into a fully-connected layer to calculate the final matching
score.

In general, the contribution of this work can be summarized
in three folds.

• We propose a Self-and-Collaborative Attention Network
(SCAN) to efficiently align the discriminative frames
from two videos. It includes a non-parametric attention
module to generate self and collaborative sequence repre-
sentations by refining intra-sequence and inter-sequence
features of input videos, and a generalized similarity
measurement module to calculate the similarity feature
representations of video-pairs.

• We introduce such a module into video re-identification
task, and propose a novel and practical framework to
simultaneously deal with frame selection, video temporal
representation and similarity measurement. In addition,
a dense clip segmentation strategy is also introduced to
generate much more probe-gallery pairs to optimize the
model.

• The proposed model outperforms the state-of-the-art
methods on top-1 accuracy in three standard video re-
identification benchmarks.

The rest of the paper is organized as follows. Section II
presents a brief review of related work. Section III introduces
our Self and Collaborative Attention Network. The experimen-
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Method Spatial Temporal Modeling P-G. Loss Identity Video
Info. method non-para. Inter. Func. Loss Clips

Mc. et al. [4] RNN + pooling P X cons.
Zhou et al. [6] X LSTM + attention + pooling X T, B rand.
Xu et al. [12] X RNN + attention + pooling X P X cons.
Liu et al. [16] weighted sum T X
Zhong et al. [17] max pooling X X P X
Li et al. [13] X weighted sum – X rand.
our method SCAN X X B X dense

TABLE II: Comparisons between proposed SCAN and other state-of-the-arts for video person re-id. X represents the methods or
information indicated by the column indices are adopted. ‘non-para.’ is short for non-parametrization in temporal modeling. ‘P-
G. Inter.’ denotes probe-gallery interactions during sequence representation generation. The abbreviations ‘attention’, ‘pooling’
in the third column represent attention mechanism and pooling operation. The uppercase ‘P’,‘T’ and ‘B’ in the sixth column
indicate pairwise loss, triplet loss and binary loss, respectively. In the last column, ‘cons.’ denotes the clip of each video
is extracted from consecutive frames, and ‘rand.’ means randomly extracting several frames from the video as the clip. The
‘dense’ indicates our model segment the image sequence into multiple clips for model training.

tal results, comparison and component analysis are presented
in Section IV. Section V concludes the paper.

II. RELATED WORK

Person re-identification. Person re-id in still image has been
extensively explored in the literature [1], [2], [3], [18], [8], [9],
[10], [17], [19], [20] in the past few years. Traditional methods
were mainly concentrated on the hand-craft appearance feature
design according to the human domain knowledge [21], [22],
[23], [24], [25], since ideal feature representation can be
sufficiently against camera view changes [26]. Another crucial
component for person re-identification is the distance metric
learning [27], [28], [29], [30], [31], [32], which is applied
to learn a common space for data from different domains. .
The other approaches paid much attention on view-specific
learning mechanism which learned the individual matching
weights for each camera view. Some CCA-based methods [33],
[34] belonged to this category.

With the emergence of deep learning, several distance-
driven feature learning frameworks have been proposed via
adopting Convolutional Neural Networks (CNN) to jointly
learn similarity measurement and discriminative feature repre-
sentations for person re-identification [35], [36], [15], [37],
[38], [39], [40]. Combined with these frameworks, atten-
tion mechanism has also been widely applied in the re-
identification problem. Notable models included attention to
multi-level features [41], [42], attention to discriminative pix-
els or regions [43], [20], [44]. Besides the above methods,
there also exist some studies incorporating the affinities be-
tween gallery images into the re-ranking process to further
improve the matching accuracy [45], [46], [47], [48], [17],
[19]. For example, in [17], Zhong et al. used the k-reciprocal
neighbors of probe and gallery images to calculate the Jaccard
distance to further re-rank the matching list. Motivated by this
work, Shen et al. [19] further integrated the above process
into model training, and adopted gallery-to-gallery affinities
to refine the probe-to-gallery affinity with a simple matrix
operation.

Recently, the studies about video-based person re-
identification adopted image sequence to further improve the
matching accuracy [4], [49], [5], [6], [50], [51], [12]. For
example, McLaughlin et al. [4] proposed a basic pipeline
for deep video re-id. It uses CNN to extract the feature of
each frame. Then the RNN layer is applied to incorporate
temporal context information into each frame, and the tempo-
ral pooling operation is adopted to obtain the final sequence
representation. Both the identity loss and siamese loss are used
to optimize parameters. In [5], Wu et al. proposed a similar
architecture to jointly optimize CNN and RNN to extract the
spatial-temporal feature representation for similarity measure-
ment. Same as the still image, one of the remarkable property
in recent video-based studies is applying the attention mech-
anism to discover the discriminative frames from probe and
gallery videos. As shown in Table II, Zhou et al. [6] proposed
a temporal attention mechanism to pick out the discriminative
frames for video representation. Moreover, the spatial RNN is
adopted to integrate the context information from six directions
to enhance the representation of each location in the feature
maps. Li et al. [13] proposed a spatiotemporal attention model
and diversity regularization to discover a set of distinctive
body parts for the final video representation. In [12], Xu et al.
introduced the shared attention matrix for temporal modeling,
realizing the information exchange between probe and gallery
sequence in the process of frame selection. In such case,
the discriminative frames can be aligned according to their
attention weights.

The proposed SCAN is partially related to the above
methods [4], [5], [6], [13], [12], which adopt the attention
mechanism to extract the rich spatial-temporal information for
feature representation. But the technical details of these work
are different from our method. Since the proposed SCAN
outputs the attention weights by leveraging global temporal
information and local discriminative information, it is more
robust to deal with the noise frames during alignment. On the
other hand, it is a non-parametric module, thus can be more
flexible to deal with various sequence lengthes and feature
dimensions. In [52], Si et al. also applied the non-parametric
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Fig. 2: Architecture of proposed Self-and-Collaborative Attention Network for video-based person re-identification. This
architecture is comprised of four parts: shared convolution neural networks, self attention subnetwork (SAN), collaborative
attention subnetwork (CAN) and similarity measurement module. For each person in probe and gallery set, the video clips
extracted from their image sequences are first fed into CNN to obtain frame-level features. Then SAN and CAN are adopted to
generate sequence-level representations according to the non-parametric attention mechanism. At last, the binary cross-entropy
loss and identity loss are used to optimize the parameters of SCAN. Zoom in four times for best view.

attention module for feature refinement and feature-pair align-
ment. The different between this method and our SCAN are
three folds. First, their method applied frame-level feature
refinement and the temporal modeling was omitted. Second,
they adopted Euclidean distance to measure the similarity
between the inter-sequence refined features and intra-sequence
refined features, but we proposed a novel similarity feature to
represent the difference between probe and gallery sequences.
At last, we replace the triplet loss in their method with cross-
entropy loss to optimize the model.

Self-attention and interaction network. Recent developed
self-attention [14] mechanism for machine translation is also
related to our work. It calculated the response at one position
as a weighted sum of all positions in the sentence. The
similarity idea was also introduced in Interaction Networks
(IN) [53], [54], [55] for modeling the pairwise interactions in
physical systems. Recently, Wang et al. [56] extended these
methods into computer vision area, and proposed the Non-
Local Network to model the long-range spatial and temporal
dependencies in a single block. In [57], Zhou et al. proposed
the Temporal Relation Network (TRN) to learn temporal
dependencies between video frames at multiple time scales.
The proposed SCAN is inspired by above two works, but we
further introduce the collaborative representation mechanism
to deal with the matching problem.

Collaborative representation. Learning collaborative repre-
sentation aims to represent a sample as a weighted linear
combination of all training samples. It has been success-
fully applied in many computer vision tasks, such as face
recognition [58], [59], super-resolution [60], and image de-
noising [61]. In this paper, we introduce a collaborative

representation into temporal modeling, and combine it with
deep neural networks for end-to-end training. Specially, self
and collaborative attention network are proposed to represent
the video as a weighted combination of multiple frames. It
is a non-parametric method that can effectively align the
discriminative frames in probe and gallery videos.

III. METHODOLOGY

A. Deep Architecture

Given a query video I = {It}Tt=1 (i.e. an image sequence)
of a person, where T is the number of frames in the video,
the target of video-based person re-identification is to find the
correct matching result among a large number of candidate
videos extracted from the different camera views. In other
words, for the video IA of person A, we wish to learn a
sequence-based re-identification model to distinguish whether
or not another video IA∗ captures the same person from other
space or time. In the following, we firstly give the framework
of proposed SCAN, and then describe technique details of its
modules.

Feature extraction. Same as previous work [1], [4], [49],
all of the image sequences are divided into a gallery set and
a probe set. The gallery set is usually consisted of one image
sequence for each person captured from a special camera view,
and the other image sequences are employed as the probe
set. The performance of a video re-identification model is
evaluated according to the locations of the correctly matched
probe videos in the ranking list of corresponding gallery
videos. The deep architecture of proposed method is illustrated
in Fig. 2. Supposing the probe image sequence is represented
as Ip = {Itp}Tt=1 and the gallery sequence is as Ig = {Irg}Rr=1.
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T and R indicate the length of the image sequences. The probe
and gallery sequences are at first fed into CNN to extract the
feature representation of each frame. The parameters of CNN
are shared for both sequences. Let the feature representation
of the probe and gallery person be X = {xt|xt ∈ Rd}Tt=1 and
Y = {yr|yr ∈ Rd}Rr=1, where d is the dimension of the feature
vector and is set as 2048 in practice. We further apply the fc-0
layer to reduce the feature dimension to 128 and denote them
as Xf = {xtf}Tt=1 and Yf = {yrf}Rr=1, respectively.

Self Attention Subnetwork. After feature extraction, the
Self Attention Network (SAN) is adopted to select the infor-
mative frames to further enhance the representation of image
sequence for each person. We first feed {X,Xf} and {Y,Yf}
into SAN. Then the dimension of X and Y is reduced from
2048 to 128 using fc-1 layer and denoted as Xs = {xts}Tt=1 and
Ys = {yrs}Rr=1. After that, the sequence-level representation
of Xs and Ys are produced through average pooling over
the temporal dimension. Let x̂s and ŷs be the sequence-level
feature vector of probe and gallery video in SAN, we further
enhance these feature representations by,

x̂xx =

T∑
t=1

f(xt
s, x̂s) ◦ xtf ŷyy =

R∑
r=1

f(yr
s, ŷs) ◦ yr

f (1)

where f(., .) is a parameter-free correlation function, which
outputs the normalized correlation weight (i.e. attention
weight) of input features. It may have various forms [56]. In
this paper, f(., .) includes two operations that are Hadamard
product and the softmax operation along the temporal dimen-
sion (t and r). The former is used to calculate the correlation
weights, and the latter is adopted to normalize the weight
vectors in each dimension. Such operation is inspired by the
recent proposed self-attention module [62] and non-local op-
eration [56] in deep neural network. Different from non-local
operation [56] which is used to aggregate the representation of
each site on the feature maps to refine the feature of a certain
location, the output of SAN is the refined feature represen-
tation of the entire video clip, thus the features in different
dimensions may capture the different spatial information for
a certain identity. Through replacing the dot product in [56]
by the Hadamard product to calculate the correlation weights,
our method can reduce the impact of dramatic spatial changes
on the calculation of the correlation weight. ◦ indicates the
element-wise product. The subscript xx indicates the probe-
driven probe representation, while yy indicates the gallery-
driven gallery representation. The output x̂xx and ŷyy are then
passed into collaborative attention subnetwork.

Collaborative Attention Subnetwork. The input of CAN
is from two branches. One is the sequence-level representation
x̂xx and ŷyy from SAN, and the other is the frame-level
representations {X,Xf} and {Y,Yf} from CNN. Same as
SAN, we reduce the dimension of X and Y from 2048 to 128
using fc-2 layer in CAN. The outputs are Xc = {xtc}Tt=1 and
Yc = {yrc}Rr=1. Then the cross-camera feature representation
can be computed as,

x̂yx =

T∑
t=1

f(xtc, ŷyy) ◦ xtf ŷxy =

R∑
r=1

f(yrc , x̂xx) ◦ yrf (2)

The subscript xy indicates the probe driven gallery repre-
sentation, and yx is the gallery driven probe representation.
The operation in Eqn.(2) enables probe and gallery video
to effectively select frames and corresponding discriminative
features from each other.

Similarity measurement. We use the output of SAN and
CAN to calculate the similarity feature representation of probe
sequence and gallery sequence as follows,

s = (x̂xx − ŷyy) ◦ (x̂yx − ŷxy)
= (x̂xx ◦ x̂yx − ŷyy ◦ x̂yx) + (ŷyy ◦ ŷxy − x̂xx ◦ ŷxy)
= (Xf · ĉxx ◦ Xf · ĉyx − Yf · ĉyy ◦ Xf · ĉyx)
+ (Yf · ĉyy ◦ Yf · ĉxy − Xf · ĉxx ◦ Yf · ĉxy)

(3)

where ĉxx, ĉyy , ĉxy , ĉyx denote the combination coefficient
matrices calculated by the non-parameter correlation function
f(., .). The meaning of subscripts are consistent with that
in the sequence-level representation. The operation · indi-
cates weighted combination along each feature dimension (i.e.
Hadamard product followed by column summation), and ◦
denotes the Hadamard product. According to Eqn. 3, the self
enhanced features can be thought as gating the collaborative
enhanced features. In other words, the self representations
of video-pair modulate their collaborative representations to
refine the corresponding discriminative frames and features to
calculate the final pair-wise similarity. Note that s is a vector
but not a scalar, which indicates the sequence-level similarity
after frame-oriented feature selection.

The above feature representation is then transformed by
a fully-connected layer, i.e. fc-3 layer, to obtain the final
matching score. At last, we adopt identity-pair annotations and
binary cross-entropy loss to optimize the matching scores. If
the probe video and gallery video present the same person
identity, the value of the label is 1, else it will be 0. The same
operation is also used in textual-visual matching problem [63].

B. Compared with Traditional Metric Learning

According to [31], the generalized linear similarity of two
feature vectors can be written as,

s̃ =
[
xT yT

] [ A −C
−D B

] [
x
y

]
= (xT Ax− yT Dx) + (yT By− xT Cy)

= [(Ãx)T Ãx− (D̃yy)T D̃xx]︸ ︷︷ ︸
Part A

+ [(B̃y)T B̃y− (C̃xx)T C̃yy]︸ ︷︷ ︸
Part B

(4)

where A,B,C and D are the parameters to be optimized, and
A = Ã

T
Ã, B = B̃

T
B̃, C = C̃

T

x C̃y and D = D̃
T

y D̃x. When A =

B = C = M and D = MT , it degenerates into Mahalanobis
distance with the form s̃ = (x− y)T M(x− y).

Intuitively, Eqn.(3) has a very similar form with Eqn.(4).
The differences are three folds: First, we replace Ã, D̃ and B̃,
C̃ in Part A and Part B with two sets of frame-level feature
representations Xf and Yf , respectively. Second, the feature
vector x and y in Eqn.(4) is replaced by the combination
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coefficients ĉ in Eqn.(3), which are computed by correlation
function f(·, ·). For simplicity, we omit the subscript of ĉ.
Each column of ĉ is corresponding to the attention weights
for each frames. At last, some dot product operations are
replaced by element-wise product. The output of the Eqn.(4) is
the matching score, while the Eqn.(3) generates the similarity
feature representation which is further fed into binary classifier
for prediction.

By making an analogy with the form of proposed similarity
measurement and generalized linear similarity, we provide
insight by relating the attention-based similarity module to
the previous deep metric learning approach (i.e. parameterized
similarity module). Eqn.(3) and Eqn.(4) have the similar forms,
but their meanings are different. For the generalized linear
similarity in Eqn.(4), it projects the feature representation x
and y into a common feature space by using linear transfor-
mations. Ã, D̃ and B̃, C̃ are the parameters that need to be
optimized. In contrast to this, our method uses the temporal
attention weights ĉ to select the discriminative frames in
the probe and gallery videos to generate the final similarity
feature of the video pair. Such operation can be regarded
as projecting two image sequences into a common ‘frame
space’ to align the discriminative frames. Such a scheme
is significant in the temporal-based matching problem, and
can also be adopted as a common technique in a series of
video-based applications. In this sense, our work bridges the
generalized deep metric learning with the temporal frame
selection strategy. In addition, it provides a more intuitive
perspective to understand the meaning of proposed similarity
measurement.

C. Implementation Details

Clip Segmentation. In practice, we segment every image
sequence into several video clips. The length of each clip
is 10 and the segmentation stride is set as 5 in training and
test procedure. When the frames at the end of the video are
not sufficient to generate the clip, we discard the rest frames
directly. The advantages of such pre-processing strategy are
as follows: (a) It can generate a large amount of probe-gallery
pairs to optimize network parameters, which is critical for
the deep model training. Specially, it is beneficial to produce
much more hard positive/negative training pairs to promote
the training effiency. (b) It avoids loading the entire image
sequence into the model for temporal modeling. In such case,
when the batch size is fixed, it can increase the diversity of
minibatch effectively. This ensures the training process more
stable and BatchNorm (BN) [64] more efficient to accelerate
the model convergence. In the test phase, we select 10% clip
pairs with the highest matching score from coupled image
sequences and average their matching scores as the final
confidence score. We rank all of the confidence scores and
return the final ranking list to calculate the matching accuracy.
It is worth noting that the re-ranking technique, such as [17],
is omitted in this paper.

Training process. All of the CNN models in this work are
pre-trained on ImageNet [65]. We fine-tune the models using
16 identities in each batch. For each identity, we randomly

load 2 video clips for training. Thus, there are 32 clips with
320 video frames as the input for each iteration. The input
frames are resized into 256 × 128 pixels. Horizontal flipping
is also used for data augmentation. We adopt Online Instance
Matching (OIM) [66] loss as the identity loss function. We
train our models on 4-GPU machine. Each model is opti-
mized 30 epoches in total, and the initial learning rate is
set as 0.001. The learning rate is updated with the form,
lr = lr0 × 0.001(epoch/10), where lr0 denotes the initial
learning rate. We use a momentum of 0.9 and a weight decay
of 0.0001. The parameters in BN layers are also updated in
the training phase.

IV. EXPERIMENTS

A. Experimental Setting

Datasets: We evaluate the performance of proposed method
on three well known video re-identification benchmarks: the
iLIDS-VID dataset [76], the PRID 2011 dataset [77] and
the MARS dataset [49]. (a) iLIDS-VID contains 600 image
sequences of 300 pedestrians under two cameras. Each image
sequence has 23 to 192 frames. Both of the training and test
set have 150 identities. (b) PRID is another standard bench-
mark for video re-identification. It consists of 300 identities
and each has 2 image sequences. The length of sequences
varies from 5 to 675. (c) MARS is one of the largest video
person re-identification dataset which contains 1, 261 different
pedestrians and 20, 715 tracklets captured from 6 cameras. In
this dataset, each person has one probe under each camera,
resulting in 2, 009 probes in total. The dataset is divided
into training and test sets that contains 631 and 630 persons
respectively.

Evaluation Metric: Two widely used evaluation metrics are
employed for comparison. The first is the cumulative matching
characteristic (CMC) [78], which shows the probability of that
a query identity appearing in different locations of the returned
list [79]. In such case, re-id task is considered as a ranking
problem and usually there is only one ground truth matching
result for a given query. Since the videos in MARS dataset are
captured from 6 camera, the ranking list may contain multiple
matching results. Thus, we also adopt mean average precision
(mAP) [79] to evaluate the performance in this dataset. In this
case, the re-id problem is regarded as the retrieval problem.
For each query, we first calculate average precision (AP) [80]
as follows,

AP =
1∑n

i=1 ri

n∑
i=1

ri

(∑i
j=1

i

)
, (5)

where ri is 1 if the person in returned video i has the same
identity with the query, and 0 otherwise. n is the total number
of returned videos. Then, the mean value of APs of all queries
is calculated as the mAP, which considers both precision and
recall of the method.

Optical Flow: For further improving the performance of
video re-id, we use the optical flow [81], [82] to extract
the motion information from image sequence. In practice, the
dimension of input optical flow for each frame is 2 ∗H ∗W ,
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Methods Reference Deep Backbone Optical iLIDS-VID
model Network Flow top-1 top-5 top-10 top-20

1. LFDA [3] cvpr13 no – no 32.9 68.5 82.2 92.6
2. LADF [2] cvpr13 no – no 39.0 76.8 89.0 96.8
3. STFV3D [67] iccv15 no – no 44.3 71.7 83.7 91.7
4. TDL [68] cvpr16 no – no 56.3 87.6 95.6 98.3
5. CNN-RNN [4] cvpr16 yes SiameseNet [69] yes 58.0 84.0 91.0 96.0
6. CNN+XQDA [49] eccv16 yes CaffeNet no 53.0 81.4 – 95.1
7. TAM+SRM [6] cvpr17 yes CaffeNet no 55.2 86.5 – 97.0
8. ASTPN [12] iccv17 yes SiameseNet [12] yes 62.0 86.0 94.0 98.0
9. QAN [16] cvpr17 yes RPN [70] no 68.0 86.8 95.4 97.4
10. RQEN [71] aaai18 yes GoogLeNet no 77.1 93.2 97.7 99.4
11. STAN [13] cvpr18 yes ResNet50 no 80.2 – – –
12. ST-Tubes [72]. arxiv19 yes ResNet50 no 67.0 84.0 91.0 96.0
12. ours w/o optical – yes ResNet50 no 81.3 93.3 96.0 98.0
13. ours w/ optical – yes ResNet50 yes 88.0 96.7 98.0 100.0

TABLE III: Performance comparison on the iLIDS-VID by state-of-the-art methods. Our model is based on ResNet50. Top-1,
-5, -10, -20 accuracies(%) are reported.

Methods Reference Deep Backbone Optical PRID2011
model Network Flow top-1 top-5 top-10 top-20

1. LFDA [3] cvpr13 no – no 43.7 72.8 81.7 90.9
2. LADF [2] cvpr13 no – no 47.3 75.5 82.7 91.1
3. STFV3D [67] iccv15 no – no 64.7 87.3 89.9 92.0
4. TDL [68] cvpr16 no – no 56.7 80.0 87.6 93.6
5. CNN-RNN [4] cvpr16 yes SiameseNet [69] yes 70.0 90.0 95.0 97.0
6. CNN+XQDA [49] eccv16 yes CaffeNet no 77.3 93.5 – 99.3
7. TAM+SRM [6] cvpr17 yes CaffeNet no 79.4 94.4 – 99.3
8. ASTPN [12] iccv17 yes SiameseNet [12] yes 77.0 95.0 99.0 99.0
9. QAN [16] cvpr17 yes RPN [70] no 90.3 98.2 99.3 100.0
10. RQEN [71] aaai18 yes GoogLeNet no 91.8 98.4 99.3 99.8
11. STAN [13] cvpr18 yes ResNet50 no 93.2 – – –
12. ST-Tubes [72]. arxiv19 yes ResNet50 no 78.0 89.0 92.0 91.0
12. ours w/o optical – yes ResNet50 no 92.0 98.0 100.0 100.0
13. ours w/ optical – yes ResNet50 yes 95.3 99.0 100.0 100.0

TABLE IV: Performance comparison on the PRID2011 by state-of-the-art methods. Our model is based on ResNet50. Top-1,
-5, -10, -20 accuracies(%) are reported.

where 2 denotes the number of vertical and horizontal chan-
nels. H and W indicate the height and width of the map. The
value range of optical flow is scaled to 0 to 255. Through
one convolution layer (with BN and ReLU operation) and
one pooling layer, the dimension of feature maps in optical
branch becomes 64∗ 1

4H ∗
1
4W , which is same as RGB branch.

Then an element-wise addition is applied to merge these two
modalities, and the outputs are fed into the rest layers. Fig. 3
illustrates the operation.

B. Comparison with State-of-the-arts

We firstly report the comparison of proposed method with
existing eleven state-of-the-art video person re-identification
methods on iLIDS-VID dataset and PRID2011 dataset, includ-
ing LFDA [3], LADF [2], STFV3D [67], TDL [68], CNN-
RNN [4], CNN+XQDA [49], TAM+SRM [6], ASTPN [12],

conv1_bn
conv1

conv1_relu

RGB image
3*H*W

pooling

conv1_bn
conv1

conv1_relu

optical flow
2*H*W

pooling

Fig. 3: Merging strategy of the RGB and optical flow branch.

QAN [16], RQEN [71], STAN [13] ST-Tubes [72]. The first
four methods are traditional methods without using deep mod-
els, while the others adopt deep neural networks to extract the
feature representation of each frame. We use ResNet50 [83]
as the basic model of proposed SCAN. Following [12], each
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Methods Reference Deep Backbone Optical MARS
Model Network Flow top-1 top-5 top-20 mAP

1. CNN+Kiss.+MQ [49] eccv16 yes CaffeNet no 68.3 82.6 89.4 49.3
2. Latent Parts [10] cvpr17 yes MSCAN [10] no 71.8 86.6 93.0 56.1
3. TAM+SRM [6] cvpr17 yes CaffeNet no 70.6 90.0 97.6 50.7
4. QAN [16] cvpr17 yes RPN [70] no 73.7 84.9 91.6 51.7
5. K-reciprocal [17] cvpr17 yes ResNet50 no 73.9 – – 68.5
6. TriNet [73] arxiv17 yes ResNet50 no 79.8 91.4 – 67.7
7. RQEN [71] aaai18 yes GoogLeNet no 77.8 88.8 94.3 71.1
8. DuATM [52] cvpr18 yes DenseNet121 no 78.7 90.9 95.8 62.3
9. STAN [13] cvpr18 yes ResNet50 no 82.3 – – 65.8
10. Part-Aligned [74] eccv18 yes InceptionV1 no 84.7 94.4 97.5 75.9
11. STA [75] arxiv19 yes ResNet50 no 86.3 95.7 98.1 80.8
12. ours w/o optical – yes ResNet50 no 86.6 94.8 97.1 76.7
13. ours w/ optical – yes ResNet50 yes 87.2 95.2 98.1 77.2

TABLE V: Performance comparison on the MARS by state-of-the-art methods. Our model is based on ResNet50. Top-1, -5,
-20 accuracies(%) and mAP(%) are reported.

dataset is randomly split into 50% of identities for training
and others for testing. All experiments are repeated 10 times
with different train/test splits, and the averaged results are
reported [12]. As shown in Table III and Table IV, our method
achieves state of the art 88.0% and 95.3% top-1 accuracy on
iLIDS-VID and PRID2011, outperforming the existing best
method STAN [13] with 7.8% and 2.1%, respectively.

For the iLIDS-VID and PRID2011 dataset, only CNN-
RNN [4] and ASTPN [12] adopt optical flow to capture
the motion information. According to Table III, Table IV
and Fig.5, when we use AlexNet as the backbone network
whose depth is close to their SiameseNet (3 ∼ 5 convolution
layers), our method (i.e. with optical flow), which achieves
top-1 accuracy 69.8% and 85% on iLIDS-VID and PRID2011
dataset, still outperforms the above two approaches.

To further demonstrate the effectiveness of SCAN on
the data captured from multiple camera views, we com-
pare it with state-of-the-arts on MARS dataset, including
CNN+Kissme+MQ [49], Latent Parts [10], TAM+SRM [6],
QAN [16], K-Recip. [17], TriNet [73], RQEN [71], Du-
ATM [52], STAN [13], Part-Aligned [74] and STA [75].
Table V reports the retrieval results. Our method achieves
87.2% and 86.6% top-1 accuracy with and without using
optical flow, which surpasses all existing work. For the mAP,
top-5 and top-20 accuracy, our method achieves competitive
results compared to the most recent work in Table V, implying
that the proposed SCAN is also suitable for large-scale video
re-identification task. It is noteworthy that the STA [75] is
the only method that goes beyond the performance of ours.
However, it need to calculate the spatial and temporal attention
scores simultaneously, which brings in more computational
cost in the training and test phase.

The reason that the proposed method outperforming most
of the state-of-the-arts can be summarized into three aspects.
Firstly, compared with recent proposed temporal modeling
methods [4], [12], which usually adopt RNN or LSTM to
generate video representations, the self-attention mechanism
reweights the frames in each video and refines the intra-

video representations according to the updated weights. Such
scheme reduces the impact of noise frames with variant
appearance on intra-person feature representations. Secondly,
the collaborative-attention mechanism effectively captures the
discriminative frames to learn inter-video representations,
achieving more accurate similarity between probe and gallery
image sequences. In addition, transforming such matching
problem into a binary classification problem makes the opti-
mization of such problem easier than previous pair-wise loss or
triplet loss based schemes, which need to predefine a suitable
margin threshold to leverage convergence speed and over-
fitting problem. At last, a dense clip segmentation strategy
produces many hard positive and hard negative pairs to learn
the similarity between two videos, making the proposed model
more robust in the test phase.

C. Ablation Study

To investigate the efficacy of proposed SCAN, we conduct
ablation experiments on iLIDS-VID, PRID2011 and MARS
dataset. The average pooling over temporal dimension is used
to be our baseline model and ResNet50 [83] is adopted as the
bottom Convolutional Neural Networks if not specified. The
overall results are shown on Table VI. We also consider the
impact of the cutting length of video clips. The comparison
results are shown in Table VII.

Instantiations. We compare our full model with seven
simplified settings, including

• using the average pooling over temporal dimension to
calculate the feature representation of both the probe and
gallery sequences;

• using max pooling to replace average pooling in above;
• using Self Attention Network (SAN) to compute probe

and gallery video features separately;
• using average pooling to obtain the video-level feature

representation firstly, and using Collaborative Attention
Network (CAN) to reconstruct probe and gallery video
representations;
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Seetings iLIDS-VID PRID2011 MARS
top-1 top-5 mAP top-1 top-5 mAP top-1 top-5 mAP

1. ave. pooling 81.3 95.3 84.5 92.0 100.0 93.6 83.4 93.2 75.1
2. max pooling 82.0 96.0 85.2 92.0 100.0 93.6 83.6 93.1 75.0
3. SAN only 82.7 97.3 85.7 92.0 99.0 93.8 84.2 94.7 75.4
4. CAN only 83.3 96.0 84.3 92.0 100.0 93.5 85.4 95.1 75.7
5. SCAN single path 86.7 96.7 88.5 93.4 99.0 94.6 86.1 95.1 76.3
6. SCAN same fc layer 86.6 96.0 90.6 93.4 98.6 95.6 85.8 94.9 75.6
7. SCAN dot product 86.0 97.0 90.7 93.6 98.2 95.7 86.5 94.8 76.7
8. our full model 88.0 96.7 89.9 95.3 99.0 95.8 87.2 95.2 77.2

TABLE VI: Comparison of different temporal modeling methods. Top-1, -5 accuracies(%) and mAP(%) are reported.

Seetings iLIDS-VID PRID2011 MARS
top-1 top-5 mAP top-1 top-5 mAP top-1 top-5 mAP

a. 10-frames 3-stride 87.6 96.6 89.9 93.4 98.4 95.7 86.0 94.3 76.1
b. 10-frames 5-stride 88.0 96.7 89.9 95.3 99.0 95.8 87.2 95.2 77.2
c. 16-frames 8-stride 85.3 95.3 87.8 94.0 99.0 94.5 86.3 95.1 75.8
d. 20-frames 10-stride 78.0 96.0 81.4 89.0 100.0 91.3 85.5 94.8 75.4

TABLE VII: Setting the length of video clips is critical. The ‘stride’ denotes the overlap of two consecutive clips. Top-1, -5
accuracies(%) and mAP(%) are reported.

• using SAN to calculate probe video feature, followed
by employing such feature representation to reconstruct
gallery video representation by CAN, and setting can be
viewed as a single-path variant of the proposed SCAN;

• using the same FC layer in SAN and CAN, i.e. the fc1
and fc2 share the parameters, and such setting is named
as same fc layer in the rest article.

• using dot product to instead Hadamard product to calcu-
late the correlation weight in Eqn.(1) and Eqn.(2), and
this setting is denoted as dot product for comparison.

According to Table VI, we have several important findings.
First, the baseline model (i.e. ave. pooling) has already out-
performed several state-of-the-art methods with a margin. It
demonstrates the effectiveness of proposed pipeline, including
clip segmentation and binary cross-entropy loss. Second, the
matching accuracy achieves a slightly improvement when
only using SAN or CAN for temporal modeling, but sin-
gle path SCAN outperforms the baseline with a margin. It
suggests that the SAN and CAN modules are coupled when
aligning the discriminative frames in the probe and gallery
image sequences. Third, the performance of the single-path
SCAN is less than our full model, reflecting the importance
of generalized similarity representation between probe and
gallery sequences in the matching problem. At last, when
sharing the parameters in the fc1 and fc2 layer or replacing
Hadamard product with dot product in Eqn.(1) and Eqn.(2),
the accuracy of SCAN decreases on all of three datasets, but
still outperforms the most of state-of-the-arts. It demonstrates
the robustness of proposed framework. Meanwhile, we suggest
using different FC layers and Hadamard product to further
promote the performance of our method in practice.

Video clip with different length. Using clip segmentation
strategy can well improve the performance of video recogni-

tion [84]. In this paper, we also investigate the performance
of the SCAN model using different length of video clips.
We cut the input image sequence into several clips with
10 frames, 16 frames and 20 frames, and the number of
overlapped frames (i.e., the stride of the sliding window over
the temporal dimension) is set as 3, 5, 8 and 10, respectively .
In Table VII, the setting with (10 frames, 5 stride) achieves the
best performance over all of the evaluation metrics. We can
also observe that as the clip length grows, the accuracy drops
gradually. It demonstrates the cutting strategy can provide
more diverse pairs in the minibatch, which increases the model
capacity effectively.

The depth of neural networks. Deeper neural networks
have been beneficial to image classification task. To further
analyze proposed SCAN, we also conduct experiments for
different depths of pre-trained CNN. We test AlexNet [85] and
ResNet [83] with three different depths, i.e., 50, 101 and 152
layers. As shown in Fig. 5, ResNet has an obvious advantage
in re-id task. With the same setting, increasing the depth of
ResNet can only achieve slight improvement when optical flow
is ignored. It means when the depth is larger than 50, our
method is not very sensitive to the depth of the network. On the
other hand, when we take the optical flow into consideration,
the accuracies of deeper ResNets have declined a little. This
may be caused by the suboptimal optical flow merging strategy
in the bottom layer of the network.

According to Fig. 5, we also find that the improvement by
using optical flow on MARS is little, e.g. the top-1 accuracy by
using ResNet50 is 87.2% vs. 86.6% with and without optical
flow, and the mAP is 77.2% vs. 76.7%. Such experiment
result is consistent with the opinion in [49] that motion
features (e.g. optical flow, HOG3D, GEI and so on) have poor
performance on MARS. The reason can be summarized in two-
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Fig. 4: Top-1 and top-5 accuracies(%) on iLIDS-VID and
PRID2011 dataset by using varying ensemble rates.

fold. Firstly, as one of the largest datasets for video-based re-
id, MARS contains many pedestrians sharing similar motion
feature, thus it is more difficult than the other two datasets to
distinguish different persons based on motions. Secondly, since
the samples are captured by six cameras in MARS, motion
of the same identity may undergo significant variations due
to pedestrian pose change, so the motion-based feature can
provide less information to discriminate the same person with
various motion views.

Different ensemble rates. In the test phase, the proposed
model averages the k% probe-gallery clip-pairs with the
highest matching scores to estimate the final matching results.
k% indicates the ensemble rate. Such ensemble strategy can
effectively inhibit the effects of clip-pairs with very low
matching confidences. To investigate the effect of ensemble
rate on matching accuracies, we adopt different ensemble
rates to evaluate the performance. Fig. 4 reports the top-1
and top-5 accuracies on iLIDS-VID and PRID2011 dataset
by using 7 ensemble rates. It shows that different datasets
have their own appropriate ensemble rate. According to a
comprehensive analysis of the results on these two datasets,
we set the ensemble rate as 10% for all of the experiments in
this paper.

D. Cross-dataset Generalization

Due to the variety conditions in the process of data collec-
tion, the data distributions of different datasets may have great
bias. The performance of the model trained on one dataset may
drop a lot on another one. To evaluate the generalization ability
of proposed model, as well as to understand the difference
of standard benchmarks, we conduct cross-dataset validation
with two settings. Following [86], for the first setting, the re-id
model is trained on the large-scale MARS dataset and tested
on the iLIDS-VID and PRID2011. The second one is training
on iLIDS-VID or PRID2011, and testing on the other dataset.
Table VIII shows the top-1,-5,-10,-20 accuracies.

According to Table VIII, models trained on MARS dataset
achieve better generalization performance on both iLIDS-VID
and PRID2011. It shows the benefits of large-scale datasets in
training the models with better generalization ability. However,
the accuracies of all methods still decline sharply, which
demonstrates the disparities of the data distributions between
MARS and the other two datasets. When trained on MARS
dataset, our model achieves 19.3% and 46% of top-1 accu-
racies on iLIDS-VID and PRID2011, exceeding all compared

(a)  iLIDS-VID w/o opt. (b)  iLIDS-VID w/ opt.

(c)  PRID2011 w/o opt. (d)  PRID2011 w/ opt.

(e)  MARS w/o opt. (f)  MARS w/ opt.

Fig. 5: The performance of the models using different depth
on iLIDS-VID, PRID2011 and MARS dataset. w/o and w/
indicate with and without the optical flow, respectively. Top-
1, -5 and -10 accuracies(%) and mAP(%) are reported.

methods and outperforming [86] with 1.2% and 9.8%, which
proves certain generality of proposed SCAN by using large-
scale dataset.

For the second setting, when the model is trained on one
of the two small datasets, the matching accuracies drop a lot
on another dataset compared with Table III and IV. Specially,
when training on PRID2011 dataset, our model achieves best
cross-dataset performance on iLIDS-VID with 9.7% top-1
accuracy. If we adopt iLIDS-VID as the training set, the top-1
accuracy of SCAN on PRID2011 is 42.8%, outperforming the
other baselines. But it declines more than half of the accuracy
compared with our best model in Table IV. The above results
suggest that the proposed SCAN has certain generalization for
the small dataset cross testing compared with other baselines,
but still need to be further improved. They also demonstrate
that iLIDS-VID dataset is more diverse and challenging than
PRID2011 dataset.

V. CONCLUSIONS

In this paper, we propose a temporal oriented similarity
measurement to further promote the performance of video-
based person re-identification. A novel module named Self-
and-Collaborative Attention Network (SCAN), which inte-
grates frame selection, temporal pooling and similarity mea-
surement into a simple but effective module, is introduced to
pursuit this goal. Different from previous deep metric learning
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Method Training Set iLIDS-VID PRID2011
top-1 top-5 top-10 top-20 top1 top-5 top-10 top-20

CNN-RNN [4] iLIDS-VID - - - - 28.0 57.0 69.0 81.0
ASTPN [12] - - - - 30.0 58.0 71.0 85.0

iLIDS-VID - - - - 29.5 59.4 - 82.2
TRL [86] PRID2011 8.9 22.8 - 48.8 - - - -

MARS 18.1 30.8 - 59.3 35.2 69.6 - 89.3
iLIDS-VID - - - - 42.8 71.6 80.2 88.9

our full model PRID2011 9.7 27.5 36.9 48.6 - - - -
MARS 19.3 46.7 56.2 66.0 46.0 69.0 82.0 92.0

TABLE VIII: Cross dataset matching results. The first row indicates the name of test dataset. The fist and second column
indicate the method and the training set, respectively. Top-1, -5 -10 and -20 accuracies(%) are reported.

methods that project the video-level representations into a
common feature space for similarity measurement, SCAN is
a well designed non-parametric module which can align the
discriminative frames between probe and gallery videos in the
‘frame space’. Such a scheme is significant in the temporal-
based matching problem, as well as other video-based vision
problem. Extensive experiments demonstrate that the proposed
SCAN outperforms the state-of-the-arts on top-1 accuracy.

Several directions can be considered to further improve
our model. First, extending SCAN into the spatial-temporal
dimension is an intuitive idea. Second, how to efficiently in-
tegrate the multi-modality information, e.g., RGB and optical
flow, into a single framework is still an open issue. Third,
combining proposed method with other visual tasks, such as
video object detection or video-based instance segmentation,
is also an exciting research direction. At last, combining our
model with unsupervised methods is also a potential direction.
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