Abstract:
In this paper, we focus on restoring high-resolution facial images under noisy low-resolution scenarios. This problem is a challenging problem as the most important struc...Show MoreMetadata
Abstract:
In this paper, we focus on restoring high-resolution facial images under noisy low-resolution scenarios. This problem is a challenging problem as the most important structures and details of captured facial images are missing. To address this problem, we propose a novel local patch-based face super-resolution (FSR) method via the joint learning of the contextual model. The contextual model is based on the topology consisting of contextual sub-patches, which provide more useful structural information than the commonly used local contextual structures due to the finer patch size. In this way, the contextual models are able to recover the missing local structures in target patches. In order to further strengthen the structural compensation function of contextual topology, we introduce the recognition feature as additional regularity. Based on the contextual model, we formulate the super-resolved procedure as a contextual joint representation with respect to the target patch and its adjacent patches. The high-resolution image is obtained by weighting contextual estimations. Both quantitative and qualitative validations show that the proposed method performs favorably against state-of-the-art algorithms.
Published in: IEEE Transactions on Image Processing ( Volume: 28, Issue: 12, December 2019)