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Abstract — Effectively describing and recognizing leaf shapes under arbitrary variations, particularly from a large database, 
remains an unsolved problem. In this research, we attempted a new strategy of describing leaf shapes by walking and measuring 
along a bunch of chords that pass through the shape. A novel chord bunch walks (CBW) descriptor is developed through the 
chord walking behaviour that effectively integrates the shape image function over the walked chord to reflect both the contour 
features and the inner properties of the shape. For each contour point, the chord bunch groups multiple pairs of chords to build a 
hierarchical framework for a coarse-to-fine description that can effectively characterize not only the subtle differences among leaf 
margin patterns but also the interior part of the shape contour formed inside a self-overlapped or compound leaf. Instead of using 
optimal correspondence based matching, a Log-Min distance that encourages one-to-one correspondences is proposed for 
efficient and effective CBW matching. The proposed CBW shape analysis method is invariant to rotation, scaling, translation, and 
mirror transforms. Five experiments, including image retrieval of compound leaves, image retrieval of naturally self-overlapped 
leaves, and retrieval of mixed leaves on three large scale datasets, are conducted. The proposed method achieved large accuracy 
increases with low computational costs over the state-of-the-art benchmarks, which indicates the research potential along this 
direction.   

Index Terms — Shape description, shape matching, leaf image retrieval, compound leaf, self-overlapped leaf, leaf margin, chord 
bunch walks, Log-Min distance. 
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1. INTRODUCTION
he human vision system has the strength of recogniz-
ing objects by their shapes. Compared with various vis-

ual features, shape is regarded as one of the best features 
for object recognition [18], [19]. Automated shape analysis 
by computers is a central and challenging problem in im-
age processing and computer vision. Its main task is to cap-
ture the discriminative geometrical characteristics that is 
independent of the transformational effects such as trans-
lation, scaling, rotation, mirror, and articulation for the  ul-
timate goal of recognizing objects.   

Leaf shape based plant identification is a challenging ex-
ample application of shape analysis. Identifying plant spe-
cies is usually impossible for the general public and often 
a difficult task for farmers, wood exploiters, and even bot-
anists themselves. Describing and matching leaf shape im-
ages is considered as one of the solutions for plant identi-
fication. Leaf shapes have many morphological variants 
between different species, such as long and very narrow, 
short apex angled, heart-shaped, fan-like, sickle-shaped, 
diamond-shaped, and wave-like shapes. Moreover, leave 
shapes of different species usually have their distinctive 
leaf margin patterns. Fig. 1 shows some of them. For exam-
ple, serrate is a common margin pattern that has small 
shape teeth pointing upward, while runcinate margin is a 

pattern that the lobes are deeply cut and pointing down-
ward (see Fig. 1).  

The leaves of different plant species can appear in the 
form of either simple leaves or compound leaves. A simple 
leaf only has a single blade, which is undivided (see the top 
row in Fig. 10). However, a compound leaf [1] consists of a 
number of leaflets (see Fig. 2), and the leaflets themselves 
may be compound (see the leaf on the right in Fig. 2).  Rec-
ognizing shapes of compound leaves presents a significant 
challenge to the research community. 

Another open problem in describing and recognizing 
leaf shapes is to handle naturally self-overlapped leaves. 
(see Fig. 3). When a leaf is self-overlapped (the middle one 
in Fig. 3), a contour based shape matching approach will 
misidentify it to another species (the right one in Fig. 3) in-
stead of matching it to the sample of its own species (the 
left one in Fig. 3). Current shape analysis techniques are 
not yet designed to tackle above problems.  

 

 

Fig. 1. Examples of leaf margin patterns. 
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Fig. 2. Examples of compound leaves. 

 

 
Fig. 3. Examples of self-overlapped leaves (top row) and their con-
tours (bottom row). 

 
In this paper, we present a novel chord bunch walks 

method for leaf shape description and identification. We 
propose a new strategy of describing shapes by walking 
and observing along a group of chords trespassing the 
shape regions. The observations of the shape when walk-
ing along the chords are used to describe not only the outer 
contour features but also the interior properties of the 
shape. The small sized chord pair walks tend to capture the 
leaf margin patterns, while the large sized ones tend to 
characterize more global and interior information. An 
early conference version of this research is reported in [26]. 
In this paper, we present our complete work with new and 
improved formulations, extended experimental investiga-
tion and analysis. To our knowledge, this is believed the 
first reported attempt that particularly considers com-
pound leaf shapes, self-overlapped leaf shapes, and leaf 
margin patterns in the design of a shape analysis approach.  

The rest of this paper is organized as follows: Related 
works are briefly reviewed in Section 2. In Section 3, we 
present the detailed design of the proposed CBW method. 
Extensive experimental investigations are reported in Sec-
tion 4. Finally, conclusions are drawn in Section 5.    

2. RELATED WORK  
Shape analysis and matching methods relevant to this 

study can be categorized into global approaches and local 
approaches. The former extracts the shape region infor-
mation (usually represented as a 2-D function) or the con-
tour information (usually represented as a 1-D function) to 
form a feature vector, or a sequence of features for describ-
ing a shape. Shape dissimilarity can thus be measured by 

a metric, for example, using the 𝐿1 or 𝐿2 distance. A classi-
cal descriptor for region-based shape analysis is the Zer-
nike moments (ZM) [39] which is generated by projecting 
the shape image function on a set of orthogonal basis func-
tions defined in the interior of a unit circle. Yap et al. [12] 
proposed a novel set of 2D transforms, the polar harmonic 
transforms (PHTs), for rotation invariant feature extraction. 
The computation of the PHT kernels is significantly faster 
than that of the Zernike moments. Recently, the Radon 
transform and its generalized version, Trace transform, 
have been extensively researched for shape analysis 
[7],[11],[29], [30],[33]. These methods finely capture the in-
ner structural information via line integrals over the shape 
region. Charters et al. [45] presented a novel approach for 
modelling leaf venation structures to improve the accuracy 
of plant species recognition. More recently, Hong and 
Soatto [34] proposed a shape descriptor based on integral 
kernels. They use a series of isotropic kernels to character-
ize shapes, which results in an invariant and robust shape 
descriptor.  

Another subgroup of global methods are contour-based 
approaches, which describe a shape only by its contour 
containing sequential information. A contour based de-
scriptor that combines the features of the centroid-contour 
distance, eccentricity, and angle code histogram was pro-
posed by Wang et al. [44] and achieved good performance 
for leaf image retrieval. The spectral methods, such as Fou-
rier descriptor [8],[40] and wavelet descriptor [41], are typ-
ical examples. Recently, Hu et al. [3] proposed a novel de-
scriptor, the multiscale distance matrix (MDM), which uses 
the distances between contour points at multiple scales to 
build a matrix for reflecting the spatial relationship of the 
contour points. The distance between the contour points 
can be Euclidean distance or other metrics such as inner 
distance [9]. To provide a more efficient solution for shape 
retrieval, hierarchical string cuts [10] is proposed to extract 
a group of geometrical features, which reflect the spatial 
configuration of the curve segments relative to their strings. 
Backes et al. [46] proposed to model the shape into a small-
world complex network and took the measures of the net-
work for shape description. Leaf plant classification is used 
in their experiment to validate the effectiveness of their 
complex network based shape descriptors. Inspired by the 

work in [46], Ribas et al. [47] proposed a distance transform 
network, which incorporated the network with a Euclid-
ean distance transform, for shape analysis and applied 
their method for leaf recognition.     

Leaf margin (see Fig. 1) is very useful for identifying 
plant species. Recently, some efforts have been made to ex-
tract margin patterns for leaf image analysis. Jin et al. [48] 
made a morphological analysis on the leaf margin in which 
the total number of teeth, the ratio between the number of 
teeth and the length of the margin are measured for plant 
identification. Cope and Remagnino [49] utilized the leaf’s 
insertion point and apex to generate a margin signature for 
describing the leaf pattern. Cerutti et al. [50] described the 
leaf margin by a string representation of symbols, and ap-
plied the method for mobile tree identification.   

For local approaches, a descriptor is extracted for each 
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visual primitive such as point, edge of polygon, and curve 
fragment of the shape. The local descriptors associated 
with each primitive are collected to describe the shape. 
Since each primitive of the shape is associated with a local 
descriptor, these descriptors provide cues for establishing 
correspondence between the primitives of the shapes to be 
compared. The matching cost is taken as the shape differ-
ence measure. It is a natural choice to take the contour 
points as primitives and extract their descriptors using the 
geometric information around them. The shape contexts 
method [15] builds a histogram for each contour point, 
which encodes the information of relative spatial distribu-
tion (distance and orientation) between the given contour 
point and all the other contour points. The inner-distance 
shape contexts approach [9] replaces the Euclidean dis-
tance used in the shape context with the inner-distance, 
which is defined as the length of the shortest path between 
two landmark points within the shape silhouette, to effec-
tively capture partial structures of the shape. The distance 
sets method [16] uses a rich local descriptor for points de-
termined by the spatial configuration of their surrounding 
points. The spatial arrangement is characterized by the set 
of the distances between the given point and the surround-
ing points. The height function method [36] uses the height 
values (perspective distance) from all the contour sample 
points to the tangent line across a given contour point to 
generate a local descriptor that captures the geometric re-
lationships of the contour points with respect to the given 
point.    

Some local descriptors are developed by characterizing 
the curvature property or bend potential on the shape con-
tour.  Alajlan et al. [17] use the areas of triangles formed by 
the contour points to measure the convexity/concavity of 
each point at different scales. The integral invariants 
method [13] introduces a class of functionals obtained by 
performing integral operations against the shape due to 
their robustness to high-frequency noise and small defor-
mations. The area integral invariant [13], a particularly 
useful functional that can reconstruct the curvature of a 
contour, has been effectively applied to leaf identification 
[42]. Contour flexibility [23] makes effort to represent the 
deformable potential at each point along the contour and 
shows that both local and global features can be extracted 
by this descriptor. There are also other similar methods in 
[24],[25],[35],[43].   

3. THE PROPOSED METHOD 
In this section, we introduce the concept of CBW and its 

detailed design for a coarse-to-fine shape analysis, which 
not only can effectively harvest the internal shape infor-
mation in self-overlapped leaves and compound leaves, 
but also can differentiate the subtle differences among leaf 
margin patterns.  The invariances derived from the CBW 
are presented and discussed. Finally, a novel  Log-Min dis-
tance is defined for efficiently and effectively matching 
CBWs. 

3.1 Chord Pair Walks 
Given a binary shape image 𝑓(𝑥, 𝑦),  the shape regions 

(denoted as 𝐷) are formed by a subset of pixels in the im-
age plane ℝ2. Let Ω be the outer contour of the shape en-
closing all pixels in 𝐷, which can be represented in an arc-

length parameterization form [23]: 𝑧(𝑡) = (𝑥̅(𝑡), 𝑦̅(𝑡)), 𝑡 ∈

[0,1) , where (𝑥̅, 𝑦̅) ∈ Ω . Since Ω  is a closed contour, we 
have 𝑧(𝑡 + 1) = 𝑧(𝑡) and 𝑧(𝑡 − 1) = 𝑧(𝑡). 

For a contour point 𝑝 = 𝑧(𝑡), we walk along a pair of 

chords 𝑝𝑝′⃑⃑ ⃑⃑ ⃑⃑  and 𝑝𝑝′′⃑⃑ ⃑⃑ ⃑⃑  ⃑  whose end points are 𝑝′ = 𝑧(𝑡 + 𝑠) 

and 𝑝′′ = 𝑧(𝑡 − 𝑠) respectively, where 𝑠 ∈ (0,
1

2
] is the nor-

malized length of a section of the contour generated by 
moving point 𝑝  counterclockwise along the contour to 
point 𝑝′ . The paths of walks sometimes fall inside the 
shape region 𝐷, and sometimes fall outside the shape re-
gion 𝐷 (see Figs. 4 and 5). The lengths of walking inside 𝐷 

(𝑙𝑡
𝑠 and 𝑙𝑡

−𝑠) and the lengths of walking outside D (𝑙𝑡
𝑠 and 

𝑙𝑡
−𝑠) can be mathematically expressed as 

{
 
 

 
 𝑙𝑡

𝑠 = ∫ 𝑓(𝑥̅(𝑡) + 𝜏 cos 𝜃𝑡
𝑠 , 𝑦̅(𝑡) + 𝜏 sin 𝜃𝑡

𝑠)𝑑𝜏         
𝑙𝑠

0

𝑙𝑡
−𝑠 = ∫ 𝑓(𝑥̅(𝑡) + 𝜏 cos 𝜃𝑡

−𝑠, 𝑦̅(𝑡) + 𝜏 sin 𝜃𝑡
−𝑠)𝑑𝜏

𝑙−𝑠

0

      (1) 

 
and 

{
 
 

 
 𝑙𝑡

𝑠 = ∫ (1 − 𝑓(𝑥̅(𝑡) + 𝜏 cos 𝜃𝑡
𝑠, 𝑦̅(𝑡) + 𝜏 sin 𝜃𝑡

𝑠))𝑑𝜏
𝑙𝑠

0

        

𝑙𝑡
−𝑠 = ∫ (1 − 𝑓(𝑥̅(𝑡) + 𝜏 cos 𝜃𝑡

−𝑠 , 𝑦̅(𝑡) + 𝜏 sin 𝜃𝑡
−𝑠))𝑑𝜏

𝑙−𝑠

0

, 

 (2) 
where 𝑙𝑠  and 𝑙−𝑠 , 𝜃𝑡

𝑠  and 𝜃𝑡
−𝑠  are the lengths and orienta-

tions of the chord pair 𝑝𝑝′⃑⃑ ⃑⃑ ⃑⃑  and 𝑝𝑝′′⃑⃑ ⃑⃑ ⃑⃑  ⃑, respectively. 

The 𝑙𝑡
𝑠  and 𝑙𝑡

−𝑠  defined above are the integrals of the 

shape image function 𝑓(𝑥, 𝑦) over the chord pairs 𝑝𝑝′⃑⃑ ⃑⃑ ⃑⃑  and 

𝑝𝑝′′⃑⃑ ⃑⃑ ⃑⃑  ⃑ while  𝑙𝑡
𝑠  and 𝑙𝑡

−𝑠 are the integrals of the complement 

shape image over the chords  𝑝𝑝′⃑⃑ ⃑⃑ ⃑⃑  and 𝑝𝑝′′⃑⃑ ⃑⃑ ⃑⃑  ⃑. By walking and 
observing the shape along the chord pair, a quintuplet of 
measurement is defined to depict the trespassed regions in 
the shape as  

𝑊𝑡
𝑠 = ( 𝑙𝑡

−𝑠, 𝑙𝑡
−𝑠, sin(𝜃𝑡

−𝑠 − 𝜃𝑡
𝑠) , 𝑙𝑡

𝑠, 𝑙𝑡
𝑠).                              (3) 

The chord pair walks measurement 𝑊𝑡
𝑠 serves as a prim-

itive descriptor to capture the local geometrical and struc-
tural features of the neighborhood around the contour 
point  𝑝 = 𝑧(𝑡). The first two elements reflect the property 
of its left chord neighborhood with size 𝑠, while the last 
two elements express the property of its right chord neigh-
borhood with the same size 𝑠 . The middle element 
sin(𝜃𝑡

−𝑠 − 𝜃𝑡
𝑠) depicts its curvature property, in which the 

value of sin(𝜃𝑡
−𝑠 − 𝜃𝑡

𝑠)  being > 0 , < 0  and = 0  indicates 
the convex, concave and flat properties respectively. Thus, 
this chord pair walk measurement 𝑊𝑡

𝑠  can capture not 
only the geometrical information of the outer shape con-
tour but also the structural information of the inner regions 
within the neighborhood of size 𝑠 around point 𝑧(𝑡). 
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Fig. 4. An example of chord pair walks trespassing the holes formed 
by self-overlapped leaf regions. The outer contour is shown in ma-
genta color and its salient points (detected by the DCE algorithm [21]) 
are shown as red dots.  

 
Fig. 5. An example of chord pair walks passing through the leaf margin. 
The outer contour is shown in magenta color and its salient points 
(detected by the DCE algorithm [21]) are shown as red dots. 
 

 

Fig. 6. An example illustrating the concept of chord bunch walks. From left to right: chord bunch walks (𝐾 = 4) for four points 𝑝 = 𝑧(𝑡) at 
different 𝑡 along the contour in a counterclockwise direction. Chord pairs for scales 𝑠 = 2−1, ⋯ , 2−𝐾 are shown in blue, red, green, and brown 
colors, respectively. The figures in the second row visualize the five elements of each quintuplet 𝑊𝑡

𝑠 in the CBW.  The outer contour is shown 
in magenta color and its salient points (detected by the DCE algorithm [21]) are shown as red dots. 

 

3.2 Chord Bunch Walks  
The parameter 𝑠 in 𝑊𝑡

𝑠 is a scale which controls the size 
of the neighborhood of point 𝑝 = 𝑧(𝑡). By varying 𝑠 to take 

values 2−1, ⋯ , 2−𝐾, we can obtain 𝐾 chord pair walks orig-
inating from the common point 𝑝 and group them to form 
a CBW defined as 

𝜃−𝑠 

𝜃𝑠 
𝑝′ 

𝑝 

𝑝′′ 𝜃−𝑠 

𝜃𝑠 
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𝑊̃𝑡 = ⋃{𝑊𝑡
𝑠, 𝑠 = 2−𝑘},                                                     (4)

𝐾

𝑘=1

 

where 𝐾 is the total number of neighborhood scales for the 
CBWs.   

For the first scale 𝑘 = 1, i.e., 𝑠 = 2−1, the whole contour 
is taken as the neighborhood of point 𝑝 , and its corre-
sponding CBW capture the coarsest global features of the 
shape. With the increase of scale index 𝑘 , the neighbor-
hood becomes smaller and the corresponding CBW cap-
ture finer local details. Hence, the CBW descriptor has a 
desirable ability of capturing the shape characteristics 
spanning the full coarse-to-fine range of information. An 
example illustrating the concept of CBW is given in Fig. 6.  

To further enhance the discriminability of the CBW de-
scriptor, the spatial relationship between chord pair walks 
is also considered in the design. For two adjacent chord 

pair walks, {𝑊𝑡
𝑠, 𝑠 = 2−𝑘}  and {𝑊𝑡

𝑠, 𝑠 = 2−(𝑘+1)} , in the 
CBWs, their spatial relationship can be represented by the 

angles 𝜗𝑡,𝑘
(𝐿)

 and 𝜗𝑡,𝑘
(𝑅)

 between the left and right chords, re-

spectively: 

𝜗𝑡,𝑘
(𝐿)

= 𝜃𝑡
−2−(𝑘+1)

− 𝜃𝑡
−2−𝑘

, 𝜗𝑡,𝑘
(𝑅)

= 𝜃𝑡
2−𝑘

− 𝜃𝑡
2−(𝑘+1)

.      (5) 

Since there are a total of 𝐾 chord pair walks in CBW, we 
have 𝐾 − 1 angle pairs. Fig. 7 gives an example illustrating 
the computation of these angle pairs. The spatial relation-
ship of the CBWs is characterized by a combination of the 
angle pairs for all chord pairs as 

𝛿𝑡 = ⋃{sin(𝜗𝑡,𝑘
(𝑅)

− 𝜗𝑡,𝑘
(𝐿)

)}

𝐾−1

𝑘=1

.                                                (6) 

Combining the geometrical and structural information (Eq. 
(4)) and the spatial information (Eq. (6)), a CBW descriptor 
for a contour point 𝑝 = 𝑧(𝑡) is defined as a vector of  5𝐾 −

3 + 𝐾 − 1 = 6𝐾 − 4  dimentions:  

𝑊̃𝑡 = (⋃{𝑊𝑡
𝑠, 𝑠 = 2−𝑘}

𝐾

𝑘=1

)⋃(⋃{sin(𝜗𝑡,𝑘
(𝑅)

− 𝜗𝑡,𝑘
(𝐿)

)}

𝐾−1

𝑘=1

). 

(7) 

A good descriptor is expected to be translation, scale, ro-
tation, and mirror invariant, which allows recognition of 
shapes disregarding their position, orientation, and dis-
tance. Eq. (7) has the intrinsic invariance to translation and 
rotation. To ensure that our shape descriptor is also invar-

iant to scale variations, 𝑙𝑡
𝑠 is normalized as  

𝑙 ̇̂𝑡
𝑠 =

 𝑙𝑡
𝑠 − min

0≤t<1
{ 𝑙𝑡

𝑠}

max
0≤t<1

{ 𝑙𝑡
𝑠} − min

0≤t<1
{𝑙𝑡

𝑠}
.                                                   (8) 

Similarly, we perform the same normalization for 

𝑙𝑡
𝑠, 𝑙𝑡

−𝑠 , 𝑙𝑡
−𝑠 before computing the chord pair walks quintu-

plets. 

 
 
 

Fig. 7. An example illustrating the computation of angle pairs for the 
leftmost CBW in Fig. 6.  

  
To make the CBW descriptor invariant to the mirror 

transform, Eq. (3) and Eq. (7) are reorganized as follows 
(see Appendix A).  

          𝑊𝑡
𝑠 = (max(𝑙̇̂𝑡

−𝑠, 𝑙 ̇̂𝑡
𝑠) ,max(𝑙̇̌𝑡

−𝑠, 𝑙 ̇̌𝑡
𝑠), sin(𝜃𝑡

−𝑠 − 𝜃𝑡
𝑠) ,

min(𝑙̇̂𝑡
−𝑠 , 𝑙 ̇̂𝑡

𝑠),min(𝑙̇̌𝑡
−𝑠 , 𝑙 ̇̌𝑡

𝑠))                        (9) 

           𝑊𝑡̃ = (⋃{𝑊𝑡
𝑠, 𝑠 = 2−𝑘}

𝐾

𝑘=1

) 

⋃(⋃{|sin(𝜗𝑡,𝑘
(𝑅)

− 𝜗𝑡,𝑘
(𝐿)

)|}

𝐾−1

𝑘=1

).                (10) 

Hence, the proposed CBW {𝑊𝑡̃ , 0 ≤ 𝑡 < 1}  is completely 

translation, rotation, scale, and mirror invariant. 

3.3 Log-Min Distance Matching between CBWs of 
Salient Points 

Many shape matching methods [9],[15],[36] employ dy-
namic programing to find an optimal correspondence [17] 
between the contour points. A limitation of this scheme is 
its high computational cost. Secondly, it does not always 
work well for matching self-overlapped shapes or com-
pound leaf shapes whose local details are hard to be 
matched in pairs. Thirdly, it is not mirror invariant. On the 
other hand, the Hausdorff distance [14],[20] has the ad-
vantage of being computationally efficient by employing a 
many-to-one matching scheme. However, a CBW in one 
image is desired to be matched to a single CBW in another 
image. In this study, we proposed a Log-Min distance, that 
not only has the advantage of enabling fast calculation but 
also encourages one-to-one matching, for efficient CBW 
set-to-set dissimilarity measurement.  

We first sample the leaf contour into 𝑇 = 2𝐾+1 uniformly 
spaced points, where 𝑇 is sufficiently large for showing de-
tails of the leaf contour. 𝐾 is the number of the scales in the 

𝜃2−1
 

𝜃2−2
 

𝜃2−3
 

𝜃2−4
 

𝜃−2−4
 

𝜃−2−3
 

𝜃−2−2
 

𝜃−2−1
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CBW calculation. Then the salient points on the contour 
that contribute more discriminative information for shape 
recognition than the other ones are extracted using the ap-

proach in [21]. A leaf image is thus represented by a set of  

CBWs on salient points.    

Given two CBW sets 𝑃 = {𝑊̃1
(𝑃)

, 𝑊̃2
(𝑃)

, ⋯ , 𝑊̃𝑀
(𝑃)

} and 𝑄 =

{𝑊̃1
(𝑄)

, 𝑊̃2
(𝑄)

, ⋯ , 𝑊̃𝑁
(𝑄)

}  representing the probe and gallery 
shapes, respectively. 𝑀 and 𝑁 are the numbers of salient 
points on the contours of the probe and gallery shapes re-
spectively. Note that we do not require 𝑀 = 𝑁 which is dif-
ferent from those dynamic programing based methods 
[9],[15],[17],[36].  

For each CBW 𝑊̃𝑖
(𝑃)

in 𝑃, we find its nearest correspond-

ence, 𝜋(𝑊̃𝑖
(𝑃)

) , among all CBWs in 𝑄  using 𝜋(𝑊̃𝑖
(𝑃)

) =

arg min
𝑊̃

𝑗
(𝑄)

∈𝑄

(𝑑(𝑊̃𝑖
(𝑃)

, 𝑊̃𝑗
(𝑄)

)) , where 𝑑(∙)  denotes an 𝐿1  dis-

tance. Let 𝑢(𝑊̃𝑗
(𝑄)

) = {𝑊̃𝑖
(𝑃)

|𝜋(𝑊̃𝑖
(𝑃)

) = 𝑊̃𝑗
(𝑄)

, 𝑖 = 1,… ,𝑀} 

be the subset of 𝑃 whose elements are matched to the same 

nearest correspondence 𝑊̃𝑗
(𝑄)

 in 𝑄. Assume that there are C 

subsets 𝑢1, 𝑢2, ⋯ ,𝑢𝐶  in 𝑃, we have  

𝑃 = ⋃𝑢𝑝

C

𝑝=1

, 𝑢𝑚 ∩ 𝑢𝑛 = ∅  for  𝑚 ≠ 𝑛, 

where ∅ is a null set, and 𝑚, 𝑛 ∈ {1,2,… , 𝐶}. Because all the 
elements in a subset 𝑢𝑝 are matched to the same CBW in 𝑄, 

𝐶 is not greater than the number of CBWs in 𝑄 (i.e., 𝐶 ≤ 𝑁). 
The Log-Min distance between the two CBW sets 𝑃 and 𝑄 
is defined as  

𝐻(𝑃, 𝑄) = max(ℎ(𝑃, 𝑄), ℎ(𝑄, 𝑃)),                                 (11) 

ℎ(𝑃, 𝑄) =
1

|𝑃|
∑ log2(|𝑢𝑝| + 1)𝐷(𝑢𝑝 , 𝑄)

𝐶

𝑝=1

,                (12) 

where |𝑃| is the cardinality of the set 𝑃, |𝑢𝑝| is the cardinal-

ity of subset 𝑢𝑝 . 𝐷(𝑢𝑝, 𝑄)  is the sum of 𝐿1  distances be-

tween the CBWs in the subset 𝑢𝑝 and the single matched 

CBW in 𝑄 which is defined as 

𝐷(𝑢𝑝, 𝑄) = ∑ ( min
𝑊̃

𝑗
(𝑄)

∈𝑄

𝑑(𝑊̃𝑖
(𝑃)

, 𝑊̃𝑗
(𝑄)

))) .

𝑊̃
𝑖
(𝑃)

∈𝑢𝑝

              (13) 

When |𝑢𝑝| = 1 , the subset 𝑢𝑝 ⊆ 𝑃  only contains one ele-

ment which indicates a one-to-one correspondence. When 

|𝑢𝑝| = 2, the subset 𝑢𝑝 ⊆ 𝑃 contains two elements that in-

dicate a two-to-one correspondence. Similarly, |𝑢𝑝| = 𝑘 in-

dicates a 𝑘 -to-one correspondence. Because one-to-one 

correspondences are desirable, log2(|𝑢𝑝| + 1)  in Eq. (12) 

plays a role as a penalty factor to discourage matching 
multiple CBWs in 𝑃 to a single CBW in 𝑄. Thus, the pro-
posed Log-Min distance can enforce the desirable one-to-
one correspondence that the Hausdorff distance cannot, 
while preserving the advantage of fast computation.  

4. EXPERIMENTAL RESULTS 
To evaluate the effectiveness of the proposed CBW ap-

proach, an extensive experimental investigation has been 
conducted on compound leaves, self-occluded leaves, and 
mixed leaves on three publicly available datasets: ICL, 
MEW2012, and CVIP100 leaf datasets. The performance 
(both accuracy and speed) of the proposed CBW is com-
pared against six state-of-the-art methods. Among them, 
the Shape Context [15] and Inner Distance Shape Context 
[9] are the most well-known shape analysis approaches, 
which are widely used as benchmarks for performance 
comparison. The Height Function [36], MDM [3], Complex 
Network [46], and HSC [10] are the recent contour shape 
analysis methods with state-of-the-art performances. In all 
the experiments, the number of scales 𝐾 for the proposed 
method is set to 7 and the threshold 𝜏 of the algorithm DCE 
[21] used for salient point extraction is set to 2.5 × 10−2.  

4.1 ICL Leaf Dataset for Compound Leaves, Self-
overlapped Leaves and Mixture of Leaves 

Automatic plant leaf identification is an important appli-
cation of computer vision and has received much attention 
[2],[3],[5],[6],[9],[10],[38],[37] in recent years. The ICL leaf 
dataset [3] is a publicly available leaf database, which con-
tains 16,846 samples from 220 species with 26 to 1,078 sam-
ples per species (see Fig. 8). This dataset is the largest da-
taset currently available to the public, which presents sig-
nificant challenges to the research community due to com-
pound leaves, naturally self-overlapped leaves, and their 
very large intra-class variations (see examples in Fig. 9).  

In the ICL dataset, there are 654 compound leave images 
from 11 species (see examples in the first row of Table  I). 
The numbers of images from each species are 63, 97, 49, 69, 
90, 41, 48, 54, 26, 62, and 55 respectively. Also, there are 8 
species whose leaves are naturally self-overlapped (see ex-
amples in the first row of Table II). The numbers of images 
from each species are 96, 53, 37, 46, 41, 36, 58, 52, respec-
tively, which form a self-overlapped leave subset with 419 
images. 

Some experiments [3],[24],[38] have been conducted on 
the ICL dataset. However, they only chose part of the leaf 
samples (less than 6,000) for testing and some of them pre-
process the images by cutting off the footstalks from all the 
leaf samples before applying their methods. To have a rig-
orous and honest evaluation that reflects the real world 
conditions, we use the original leave images as is without 
any preprocessing and use all the 16,846 images without 
selection in our experiment. Three datasets are created for 
our experiments: the compound leaf subset (654 images), 
the self-overlapped leaf subset (419 images), and the mix-
ture of leaves of the complete ICL dataset (16,846 images). 
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Fig. 8. Two hundred and twenty sample images (one sample per species) from the ICL leaf dataset [3],[37].  

 

Fig. 9. Example leaf shapes from the ICL leaf dataset that show large intra-class variations including natural deformations, naturally self-
overlapped leaves, and compound leaves. 

Table I. The MAP scores (%) obtained using images in the compound leaf subset (654 images) as queries to retrieve 
images from the complete ICL dataset (16,846 images). 

Method 

 

          AVG. 

IDSC+DP [9] 62.1 66.9 96.4 51.8 39.2 95.2 71.2 75.2 57.5 40.5 59.7 65.0 

SC+DP [9][15] 50.2 87.2 100.0 65.1 33.6 96.1 75.5 82.0 75.7 43.7 69.2 70.8 

MDM-CD-RM [3] 48.6 46.0 88.8 30.3 29.9 98.5 33.2 65.2 40.8 84.2 39.4 55.0 

MDM-ID-RA [3] 46.4 37.5 66.2 23.2 29.9 72.9 26.7 52.9 43.3 49.1 28.1 43.3 

Height Function [36] 67.0 81.6 100.0 57.1 35.4 92.9 76.2 79.4 65.2 42.0 61.6 68.9 

HSC [10] 55.2 75.4 100.0 53.4 34.6 96.3 62.7 77.4 69.3 73.9 66.6 69.5 

Complex Network [46] 38.5  43.7 55.4 28.6 25.5 63.5 46.9 66.7 45.8 35.3 33.1 43.9 

Proposed CBW+Hausdorff 74.6 73.4 100.0 72.7 40.6 99.4 70.6 81.0 87.4 92.2 69.0 78.3 

Proposed CBW+DP 58.2 73.9 100.0 58.5 34.0 98.6 69.8 83.5 66.5 79.2 64.9 71.6 

Proposed CBW+LogMin 76.5 78.4 100.0 79.0 41.8 98.5 68.5 82.2 94.3 90.6 67.0 79.7 
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Table II. The MAP scores (%) obtained using images in the self-overlapped leaf subset (419 images) as queries to retrieve 
images from the complete ICL dataset (16,846 images). 

Method 

 

       AVG. 

IDSC+DP [9] 90.1 89.9 91.8 44.3 75.3 63.5 85.7 89.4 78.8 

SC+DP [9][15] 81.9 97.9 95.5 63.3 85.8 87.9 90.4 97.9 87.6 

MDM-CD-RM [3] 58.7 67.2 51.1 36.7 42.5 60.6 70.6 91.2 59.8 

MDM-ID-RA [3] 57.3 65.2 36.5 30.7 50.7 56.3 59.7 83.6 55.0 

Height Function [36] 70.2 93.6 88.5 60.7 75.0 86.5 89.7 97.0 82.6 

HSC [10] 66.8 92.4 74.7 55.0 82.2 92.9 81.2 97.3 80.3 

Complex Network [46] 52.9 53.8 26.8 19.3 36.7 41.0 37.4 72.0 42.5 

Proposed CBW+Hausdorff 82.7 98.4 99.2 62.5 83.3 97.1 90.4 99.7 89.2 

Proposed CBW+DP 83.6 98.0 97.1 48.6 76.0 93.0 90.0 99.6 85.8 

Proposed CBW+LogMin 90.1 98.5 99.3 59.0 85.6 96.7 90.8 99.8 90.0 

Mean average precision (MAP) 1 [4] is a standard meas-
ure for evaluating the performance of information retrieval 
systems, which is widely used in evaluating systems for 
image retrieval [5],[6],[31],[32], speech index [28], and 
video retrieval [27],[22]. Each sample in the dataset is taken 
as a query to retrieve the similar ones from all the samples 
in the dataset. The MAP scores obtained by the proposed 
method and the seven state-of-the-art approaches are sum-
marized in Table I for compound leaf retrieval, in Table II 
for self-overlapped leaf retrieval, and in Table III for mixed 
leaf retrieval.  

From Table I, it is observed that the average MAP score 
obtained by the proposed CBW+LogMin method for the 
compound leaf species are higher than those of the bench-
mark methods with large margins. On average, the 
CBW+LogMin achieves a MAP score of 79.7%, which is 8.9% 
higher than the second best method of Shape Context us-
ing dynamic programming (SC+DP). The performance in-
creases (by 8.9% up to 36.4%) over the seven state-of-the-
art benchmarks (whose MAP scores ranges from 43.3% to 
70.8%) are very encouraging in handling the challenging 
compound leaves.   

Table III. The MAP scores (%) obtained using images in the 

complete ICL leaf dataset as queries to retrieve images 

from the complete ICL dataset (16,846 images). “~” indi-

cates that the program did not finish in 20 days. 

Algorithm MAP score (%) 
IDSC+DP [9] ~ 

SC+DP [9][15] ~ 

MDM-CD-RM [3] 37.5 

MDM-ID-RA [3] 34.2 

Height Function [36] ~ 

HSC [10] 51.7 

Complex Network [46] 28.5 

Proposed CBW+Hausdorff 55.2 

Proposed CBW+DP ~ 

Proposed CBW+LogMin 56.7 

 
 

1 https://en.wikipedia.org/wiki/Information_retrieval. 

Table II reports the results of the second experiment on 
the self-overlapped leaves. It can be seen that the proposed 
method achieves an average MAP score of 90.0%, which is 
higher than those of benchmarks by 2.4% up to 47.5%. 
Again, the CBW+LogMin obtained the highest score on 
every species compared to the seven benchmarks.  

The third experiment is to evaluate the performance of 
the proposed method on mixed leaves using the whole ICL 
database. To the best of our knowledge, this is believed to 
be the first report on performance comparison using the 
complete ICL dataset (i.e. all 16,846 leaves). The experi-
mental results are summarized in Table III. We also rec-
orded the average number of the salient points on leaves 
extracted by [21], which is 132 in this experiment. Note that 
three benchmark methods are not able to finish the com-
putation, because the computational costs of IDSC [9], 
SC+DP [9][15] and Height Function [36] are too high (see 
average retrieval time reported in Table IV). In this chal-
lenging situation, the proposed CBW+LogMin method 
achieves a MAP score of 56.7% which is 5.0%, 19.2%, 22.5%, 
and 28.2% higher than the scores of HSC [10], MDM-CD-
RM [3], MDM-CD-RA [3], and Complex Network [46] 
methods respectively.  

Note that the performance improvement of the pro-
posed CBW+LogMin over HSC [10], MDM-CD-RA [3], 
MDM-CD-RM [3], and Complex Network [46] methods on 
the compound leaves are 10.2%, 36.4%, 24.7%, 35.8% re-
spectively. The performance improvement of the proposed 
CBW+LogMin over HSC [10], MDM-CD-RA [3], MDM-
CD-RM [3], Complex Network [46] methods on the self-
overlapped leaves are 9.7%, 35.0%, 30.2%, 47.5% respec-
tively. However, the performance improvement of the pro-
posed CBW+LogMin over HSC [10], MDM-CD-RA [3], 
and MDM-CD-RM [3], Complex Network [46] methods on 
mixed leaves of the whole ICL database are 5.0%, 22.5%, 
19.2%, and 28.2% respectively. The larger accuracy in-
creases of the proposed CBW+LogMin (e.g., over HSC) on 
the compound leaves (10.2% vs 5.0%) and self-overlapped 
leaves (9.7% vs 5.0%) demonstrate the effectiveness of our 
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CBW design as presented in Section 3. 
We also conducted another group of experiments to 

evaluate the proposed CBW descriptor and the proposed 
Log-Min distance matching separately. In the experiments, 
the proposed CBW descriptor is integrated with the DP 
matching as used by IDSC+DP [9], SC+DP [15][9], and 
Height Function [36], as well as the Hausdorff distance 
matching, respectively. The results are reported in Tables 
I-III. It can been seen that when using the DP distance, the 
proposed CBW descriptor still achieves the highest MAP 
score of 71.6% on the compound leaves compared to all the 
benchmarks including the three DP based methods, 
IDSC+DP [9], SC+DP [9][15] and Height Function [36]. 
While for the self-overlapped leaf test, the proposed CBW 
with DP achieves a MAP score of 85.8% which is better 
than almost all the benchmarks except for SC+DP [9][15]. 
These results further demonstrate the stronger discrimina-
tive ability of the proposed CBW descriptor. It is also ob-
served that when using the proposed Log-Min distance 
matching, the proposed CBW consistently achieved higher 
scores than using Hausforff and DP matching strategies, 
which validates the effectiveness and superiority of the 
proposed Log-Min distance.  

 

4.2  MEW2012 Leaf Dataset  
The Middle European Woody plants (MEW2012) [37] is 

a publicly available leaf dataset, which contains native or 
frequently cultivated trees and shrubs of the central Eu-
rope region. There are a total of 9,745 leaf images which 
belong to 153 species with at least 50 samples in each one. 
One  sample image per species is shown in Fig. 10. It can 
be seen that among the many species in the dataset, the 
very minor differences of leaf margin patterns (as ex-
plained in Fig. 1) between them make retrieving similar 
leaf shapes become very challenging. 

In our fourth experiment, each sample in the MEW2012 
dataset is taken as a query to retrieve the similar ones from 
all the samples in the dataset. The MAP scores obtained by 
the proposed method and the seven state-of-the-art ap-
proaches are summarized in Table IV. We also record the 
average computation time of matching one query with all 
the 9,745 leaf shapes including the feature extraction time 
of the query shape and the matching time for all the com-
parative methods. The average number of the salient 
points on leaves extracted by [21] in this experiment is 127. 

 

 

Fig.10. One hundred and fifty three sample images (one sample per species) from the MEW2012 leaf dataset [37]. 

 

 
Fig. 11. One hundred sample images (one sample per species) from the CVIP100 dataset [10].



10 IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT ID  

 

It can be seen that on this challenging leaf margin pat-
tern dataset, the proposed method achieves the best MAP 
score of 68.25% which is 13.27% higher than the second 
best method HSC and is more than 18% over the other 
benchmark methods. These attractive results demonstrate 
that the proposed CBW+LogMin method also has superior 
ability to distinguish the subtle differences of leaf margin 
patterns.  

The retrieval time listed in Table IV is obtained by run-
ning all the competing algorithms on a workstation with 
Intel Core(TM) i7-4910MQ 2.9 GHz CPU and 32 GB RAM 
under MATLAB r2012a programming environment. It can 
be seen that the proposed CBW+LogMin method achieves 
an average 4.66 seconds for a single retrieval which is 18.3, 
19.6, and 21.0 times faster than IDSC [9], SC+DP [15], and 
Height Function [36] respectively. The proposed method 
has a slightly slower retrieval speed than the MDM-CD-
RM, MDM-ID-RA, and Complex Network methods. The 
HSC method is 27.4 times faster than the proposed method, 
with a tradeoff of 13.27% drop in accuracy.  

Table IV. MAP score (%) on the MEW2012 leaf dataset. 

Algorithm 
MAP score 

(%) 
Average           

retrieval time (s) 

IDSC+DP  [9] 45.36 85.23 

SC+DP [9][15] 47.94 91.47 

MDM-CD-RM [3] 39.14 1.56 

MDM-ID-RA [3] 33.71 1.89 

Height Function  [36] 49.76 97.81 

HSC [10] 54.98 0.17 

Complex Network [46] 28.59 1.45 

Proposed CBW+Hausdorff 64.79 4.57 

Proposed CBW+DP 62.05 75.64 

Proposed CBW+LogMin 68.25 4.66 

 
In Table IV, the MAP scores for the proposed CBW with 

Hausdorff distance and the proposed CBW with DP 
matching are also reported. It can be seen that using the DP 
matching, the proposed CBW achieves a MAP score of 
62.05% which is more than 7.07% higher than all the bench-
marks and is more than 12.29% higher than the three DP 
based methods. It is also noticed that when using the pro-
posed Log-Min distance, the MAP score of the proposed 
CBW is 3.46% and 6.20% higher than that of 
CBW+Hausdorff and CBW+DP, which indicates again su-
periority of the proposed Log-Min distance over the 
Hausdorff distance and DP matching for leaf image re-
trieval.  

4.3 CVIP100 Leaf Dataset 
The CVIP100 leaf database [10] contains 1,200 leaf im-

ages from 100 plant species with 12 samples in each class. 
Fig. 11 shows example leaves of the 100 species with one 
sample for each species. The MAP scores of the proposed 
method compared with the other six benchmark methods 
are tabulated in Table V. It is observed that the proposed 
CBW+LogMin method achieves a 90.72% MAP score 
which is more than 4.64% higher than the other compared 
methods. Consistent with the previous four experiments, 

the proposed CBW+LogMin again demonstrates its supe-
rior performance over all the benchmarks. In this experi-
ment, the average number of the salient points extracted 
by the algorithm is 127. Comparing the MAP score of the 
proposed CBW+DP with that of all the benchmarks, we 
can see that the proposed CBW still consistently performs 
better than all the benchmark methods including the three 
DP based methods. While comparing the MAP score of the 
proposed CBW+Log-Min with that of the proposed 
CBW+Hausdorff and CBW+DP, the results again indicate 
the effectiveness and superiority of the proposed Log-Min 
distance.  

Table V. MAP score (%) on the CVIP100 leaf dataset. 

Algorithm MAP score (%) 
IDSC+DP [9] 80.53 

SC+DP [9][15] 81.05 

MDM-CD-RM [3] 71.50 

MDM-ID-RA [3] 68.03 

Height Function  [36] 84.25 

HSC [10] 86.08 

Complex Network [46] 60.84 

Proposed CBW+Hausdorff 89.87 

Proposed CBW+DP 86.86 

Proposed CBW+LogMin  90.72 

4.4 Effect of Parameters 
Two parameters are involved in the proposed algorithm. 

One is the number of scales 𝐾 which also determines 𝑇 =
2𝐾+1. The other is the threshold 𝜏 used in the DCE algo-
rithm [21] for salient point detection. The smaller the pa-
rameter 𝜏 is, the larger the number of the salient points will 
be extracted. When 𝜏=0, all the sample points are taken as 
the salient points. To analyze the effects of the parameters  
𝐾 and 𝜏 on the performance of the proposed CBW+Log-
Min, we conducted a group of experiments on the CVIP100 
leaf dataset.   

Firstly, we analyze the effect of varying 𝜏 on the perfor-
mance of the proposed method by setting 𝐾=7. In our ex-
periment, the MAP scores of the proposed CBW+LogMin 
are computed by varying the parameter 𝜏  from 0 to 0.1 
with step size of 5 × 10−3 and the results are plotted as a 
curve in Fig. 12. Since the parameter 𝜏 controls the number 
of the salient points used in the proposed CBW+LogMin, 
the curve for the number of salient points versus the pa-
rameter 𝜏 is also plotted in Fig. 12.  

From Fig. 12, it can be seen that when 𝜏 = 0, i.e., all 256 
sample points on the contour are used as salient points, the 
MAP score of the proposed CBW+LogMin is 91.01%. 
When 𝜏 increases to 0.005, 0.010 and 0.015 (the number of 
salient points decreases to 201, 179 and 159), the MAP score 
increases to be greater than 91.01%. It means that by only 
choosing 159 salient points for chord bunch walks, we can 
achieve a better MAP score than that of using all the 256 
sample points for chord bunch walks. Even when 𝜏  in-
creases to 0.1 which largely reduces the number of salient 
points to around 50 (less than 20% of the total sample 
points), we still achieved a high MAP score of 86.91% 
which is only 4.1% lower than the score obtained by using 
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all the sample points. These experimental results indicate 
that in the proposed CBW+LogMin, using the salient 
points instead of using all the sample points can make the 
algorithm more effective and efficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To study the effect of the parameter 𝐾  on the perfor-

mance of the proposed CBW+LogMin, we fix the parame-
ter 𝜏=0.025 and vary 𝐾 from 2 to 11 with a step size of 1. 
The experimental results are plotted as a curve of MAP 
score versus the parameter 𝐾 (see Fig. 13). As can be seen, 
the increase of the parameter K from 2 to 6 greatly im-
proves the ability of the proposed CBW+LogMin to cap-
ture finer details of the shape. Then, the MAP score reaches 
its peak and remains stable at around 90% when 𝐾 ranges 
from 6 to 8. Further increase of K from 8 to 11 will cause 
the performance drop of the proposed method because of 
the interference of noise it captures. Using a large number 
of scales will increase the computational cost for the pro-
posed algorithm and degrade its efficiency.  

   

 

 

 

 

 

 
 

 

 

4.5 General Shape Recognition 
Although the proposed CBW+LogMin is designed for 

recognizing naturally self-overlapped and compound 
leaves, we also tested its performance for general shape 
recognition using the MPEG-7 shape databases. The 
MPEG-7 CE-1 database [9][10][36] is a contour shape da-
taset in which each shape is enclosed by an outer contour 
without interior contents. This database has a total of 70 
classes of images with each one containing 20 samples. 
However, each shape in this CE-1 dataset does not contain 
any interior content inside its contour that the proposed 
CBW+LogMin can use. The MPEG-7 CE-2 shape database 
is a region shape dataset suitable for evaluating 
CBW+LogMin, in which each shape contains interior con-
tent. However, some images contain multiple shape re-
gions that are not connected each other, which cannot be 
used by the proposed method. We select all the images 
from the groups (i.e. classes) that contains 21 images and 
the shape regions are enclosed in one outer contour as a 
testing dataset for our experiment. It contains 336 images 
of 16 groups (see Fig. 14) and each group has 21 similar 
shapes including one original shape, five scaled versions, 
five rotated versions, and ten perspective transformed ver-
sions (see Fig. 15).  

We conducted shape retrieval experiments on these two 
datasets respectively using the same evaluation protocol as 
used before. The MAP scores of the proposed CBW+Log-
Min together with the seven benchmark methods are dis-
played in Table VI. The proposed method achieves the 
highest score (88.20%) on the region shape dataset. On the 
contour shape dataset, the proposed method is ranked the 
fourth in accuracy (82.78%). 

 

 

Fig.14. Example region shape images of sixteen groups selected from 
the MPEG-7 CE-2 database. One sample is shown for each group.  

 

Fig.15. An example illustrating all 21 samples from a group shown in 
Fig. 14. They are: one original shape (the leftmost one), five scaled 
versions (the first row), five rotated versions (the second row), and ten 
perspective transformed versions (the last two rows). 
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Fig. 12. The curves of the MAP score versus the threshold 𝜏 
(above) and the number of salient points versus the threshold 𝜏 
(below).  

 

Fig. 13. The curve of the MAP score versus the number of the 
scales, 𝐾. 
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Table VI. MAP score (%) on the MPEG-7 CE-1 dataset and 

the subset of the MPEG-7 CE-2 dataset. 

Algorithm MPEG-7 CE-1 The subset of 

MPEG-7 CE-2 

IDSC+DP [9] 81.48% 84.31% 

SC+DP [9][15] 83.80% 84.29% 

MDM-CD-RM [3] 71.50% 77.34% 

MDM-ID-RA [3] 68.03% 78.85% 

Height Function [36] 86.52% 82.96% 

HSC [10] 83.35% 85.94% 

Complex Network [46] 63.21% 74.82% 

Proposed CBW+LogMin  82.78% 88.20% 

5. CONCLUSION 
This paper presented a novel chord bunch walks ap-

proach for describing and matching shapes with self-over-
laps. By walking and measuring along the chord bunch 
originated from each contour point, both the contour fea-
tures and the inner properties are characterized. Each 
chord walk integrates the shape image function over the 
walked chord to capture the inner and outer distributions 
of the shape region. This can particularly handle the prob-
lem of describing compound leaves and self-overlapped 
leaves. 

The chord bunch walks employ a hierarchical frame-
work to provide a coarse-to-fine shape description for ef-
fectively differentiating subtle differences among leaf mar-
gin patterns of plant species. It is invariant to translation, 
rotation, scaling, and mirror transforms. The proposed 
Log-Min matching scheme provides significantly faster 
CBW matching than the widely used dynamic program-
ming technique, making it suitable for large database re-
trieval tasks. Five experiments are conducted on three 
challenging leaf image datasets containing 16,846, 9,745, 
and 1,200 images respectively. The proposed CBW+Log-
Min approach consistently outperforms the state-of-the-art 
methods in all the experiments, in particular, with larger 
accuracy increases on compound leaves and self-over-
lapped leaves. The idea presented in this paper may also 
be used in other similar applications. 

 
APPENDIX A 
 
Lemma 1: Let 𝑊𝑡

𝑠 = ( 𝑙𝑡
−𝑠, 𝑙𝑡

−𝑠, sin(𝜃𝑡
−𝑠 − 𝜃𝑡

𝑠) , 𝑙𝑡
𝑠, 𝑙𝑡

𝑠)  be a 

quintuplet measurement for a chord pair walks. By rede-
fining the measurement as 

𝑊̅𝑡
𝑠 = (max(𝑙𝑡

−𝑠, 𝑙𝑡
𝑠) , max(𝑙𝑡

−𝑠, 𝑙𝑡
𝑠), sin(𝜃𝑡

−𝑠 − 𝜃𝑡
𝑠) ,

min(𝑙𝑡
−𝑠 , 𝑙𝑡

𝑠) ,min(𝑙𝑡
−𝑠 , 𝑙𝑡

𝑠)), 

the set {𝑊̅𝑡
𝑠, 0 ≤ 𝑡 < 1} becomes invariant to mirror trans-

form.  
 
Proof: 

 Without losing generality, here we assume that the 
shape is reflected over the 𝑦-axis. Given a shape image 
function 𝑓(𝑥, 𝑦) together with its contour parameter equa-

tion 𝑧̇(𝑡) = (𝑥̅(𝑡), 𝑦̅(𝑡)), 𝑡 ∈ [0,1) , the mirrored version of 

the shape can be expressed as  

𝑓(̇𝑥, 𝑦) = 𝑓(−𝑥, 𝑦)                                                (A-1) 
and 

𝑧̇(𝑡) = (−𝑥̅(1 − 𝑡), 𝑦̅(1 − 𝑡)), 𝑡 ∈ [0,1).              (A-2) 

The redefined chord pair walks measurement for the 
mirrored version of the shape is   

𝑊̅̇𝑡
𝑠 = (max(𝑙1−𝑡

−𝑠 , 𝑙1−𝑡
𝑠 ) , max(𝑙1−𝑡

−𝑠 , 𝑙1−𝑡
𝑠 ), sin((𝜋 − 𝜃1−𝑡

−𝑠 ) − (𝜋

− 𝜃1−𝑡
𝑠 )) , min(𝑙1−𝑡

−𝑠 , 𝑙1−𝑡
𝑠 ) ,min(𝑙1−𝑡

−𝑠 , 𝑙1−𝑡
𝑠 )). 

(A-3) 

Because the redefined chord pair walks measurement for 
the shape is 

𝑊̅𝑡
𝑠 = (max(𝑙𝑡

−𝑠, 𝑙𝑡
𝑠) ,max(𝑙𝑡

−𝑠 , 𝑙𝑡
𝑠) , sin(𝜃𝑡

−𝑠

− 𝜃𝑡
𝑠) ,min(𝑙𝑡

−𝑠 , 𝑙𝑡
𝑠) ,min(𝑙𝑡

−𝑠, 𝑙𝑡
𝑠)), 

              (A-4) 
we have 

𝑊̅̇𝑡
𝑠 = (max(𝑙1−𝑡

−𝑠 , 𝑙1−𝑡
𝑠 ) ,max(𝑙1−𝑡

−𝑠 , 𝑙1−𝑡
𝑠 ), sin(𝜃1−𝑡

−𝑠 − 𝜃1−𝑡
𝑠 ) ,

min(𝑙1−𝑡
−𝑠 , 𝑙1−𝑡

𝑠 ) ,min(𝑙1−𝑡
−𝑠 , 𝑙1−𝑡

𝑠 )) = 𝑊̅1−𝑡
𝑠 . 

              (A-5) 

Because a shape is described by a whole set of quintuplet 
measurements, we have  

   {𝑊̅̇𝑡
𝑠, 0 ≤ 𝑡 < 1} = {𝑊̅1−𝑡

𝑠 , 0 ≤ 𝑡 < 1} = {𝑊̅𝑡
𝑠, 0 ≤ 𝑡 < 1}, 

(A-6) 

Thus, the set {𝑊̅𝑡
𝑠, 0 ≤ 𝑡 < 1} is invariant to mirror trans-

form.  

  ■ 

 

Lemma 2: Given 𝜗𝑡,𝑘
(𝐿)

 and 𝜗𝑡,𝑘
(𝑅)

 that are defined in Eq. (5), 

the set  {|sin(𝜗𝑡,𝑘
(𝑅)

− 𝜗𝑡,𝑘
(𝐿)

)|, 0 ≤ 𝑡 < 1} is invariant to mirror 

transform.  
 
Proof: 

 From Eq. (5), the 𝜗𝑡,𝑘
(𝐿)

 and 𝜗𝑡,𝑘
(𝑅)

 for the mirrored version 

of the shape can be calculated as 

𝜗̇𝑡,𝑘
(𝑅)

= (𝜋 − 𝜃1−𝑡
−2−𝑘

) − (𝜋 − 𝜃1−𝑡
−2−(𝑘+1)

) 

      = 𝜃1−𝑡
−2−(𝑘+1)

− 𝜃1−𝑡
−2−𝑘

= 𝜗1−𝑡,𝑘
(𝐿)

                  (A-7) 

and  

𝜗̇𝑡,𝑘
(𝐿)

= (𝜋 − 𝜃1−𝑡
2−(𝑘+1)

) − (𝜋 − 𝜃1−𝑡
2−𝑘

) 

= 𝜃1−𝑡
2−𝑘

− 𝜃1−𝑡
2−(𝑘+1)

=𝜗1−𝑡,𝑘
(𝑅)

.                      (A-8) 

Thus we have  

|sin(𝜗̇𝑡,𝑘
(𝑅)

− 𝜗̇𝑡,𝑘
(𝐿)

)| = |sin(𝜗1−𝑡,𝑘
(𝐿)

− 𝜗1−𝑡,𝑘
(𝑅)

)|.             (A-9) 

Because a shape is described by a whole set of measure-
ments, we have 

{|sin(𝜗̇𝑡,𝑘
(𝑅)

− 𝜗̇𝑡,𝑘
(𝐿)

)|, 0 ≤ 𝑡 < 1}

= {|sin(𝜗1−𝑡,𝑘
(𝐿)

− 𝜗1−𝑡,𝑘
(𝑅)

)|, 0 ≤ 𝑡 < 1}

= {|sin(𝜗𝑡,𝑘
(𝑅)

− 𝜗𝑡,𝑘
(𝐿)

)|, 0 ≤ 𝑡 < 1}. 

(A-10) 
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Thus, the set  {|sin(𝜗𝑡,𝑘
(𝑅)

− 𝜗𝑡,𝑘
(𝐿)

)|, 0 ≤ 𝑡 < 1} is invariant to 

mirror transform. 

  ■ 
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