arXiv:1705.02406v5 [cs.CV] 9 Apr 2019

DeepCorrect: Correcting DNN Models against
Image Distortions

Tejas Borkar, Student Member, IEEE, and Lina Karam, Fellow, IEEE

Abstract—In recent years, the widespread use of deep neural
networks (DNNs) has facilitated great improvements in perfor-
mance for computer vision tasks like image classification and
object recognition. In most realistic computer vision applications,
an input image undergoes some form of image distortion such as
blur and additive noise during image acquisition or transmission.
Deep networks trained on pristine images perform poorly when
tested on such distortions. In this paper, we evaluate the effect
of image distortions like Gaussian blur and additive noise on
the activations of pre-trained convolutional filters. We propose
a metric to identify the most noise susceptible convolutional
filters and rank them in order of the highest gain in classi-
fication accuracy upon correction. In our proposed approach
called DeepCorrect, we apply small stacks of convolutional layers
with residual connections, at the output of these ranked filters
and train them to correct the worst distortion affected filter
activations, whilst leaving the rest of the pre-trained filter
outputs in the network unchanged. Performance results show
that applying DeepCorrect models for common vision tasks like
image classification (ImageNet), object recognition (Caltech-101,
Caltech-256) and scene classification (SUN-397), significantly
improves the robustness of DNNs against distorted images and
outperforms other alternative approaches.

Index Terms—deep neural networks, image distortion, image
classification, residual learning, image denoising, image deblur-
ring.

I. INTRODUCTION

ODAY, state-of-the-art algorithms for computer vision

tasks like image classification, object recognition and
semantic segmentation employ some form of deep neural
networks (DNNs). The ease of design for such networks,
afforded by numerous open source deep learning libraries [1]],
[2], has established DNNs as the go-to solution for many
computer vision applications. Even challenging computer vi-
sion tasks like image classification [3]], [4]], [5], [6]] and object
recognition [7]], [8]], [9], which were previously considered to
be extremely difficult, have seen great improvements in their
state-of-the-art results due to the use of DNNs. An important
factor contributing to the success of such deep architectures
in computer vision tasks is the availability of large scale
annotated datasets [10]], [[11].

The visual quality of input images is an aspect very
often overlooked while designing DNN based computer vi-
sion systems. In most realistic computer vision applications,
an input image undergoes some form of image distortion
including blur and additive noise during image acquisition,
transmission or storage. However, most popular large scale

T. Borkar and L. Karam are with the Department of Electrical, Computer
and Energy Engineering, Arizona State University, Tempe, AZ, 85281 USA
e-mail: {tsborkar, karam} @asu.edu.

datasets do not have images with such artifacts. Dodge and
Karam [12]] showed that even though such image distortions
do not represent adversarial samples for a DNN, they do
cause a considerable degradation in classification performance.
Fig. [I] shows the effect of image quality on the prediction
performance of a DNN trained on high quality images devoid
of distortions.

Testing distorted images with a pre-trained DNN model for
AlexNet [6], we observe that adding even a small amount of
distortion to the original image results in a misclassification,
even though the added distortion does not hinder the human
ability to classify the same images (Fig. [I). In the cases
where the predicted label for a distorted image is correct,
the prediction confidence drops significantly as the distortion
severity increases. This indicates that features learnt from a
dataset of high quality images are not invariant to image
distortion or noise and cannot be directly used for applications
where the quality of images is different than that of the
training images. Some issues to consider while deploying
DNNSs in noise/distortion affected environments include the
following. For a network trained on undistorted images, are
all convolutional filters in the network equally susceptible
to noise or blur in the input image? Are networks able to
learn some filters that are invariant to input distortions, even
when such distortions are absent from the training set? Is
it possible to identify and rank the convolutional filters that
are most susceptible to image distortions and recover the lost
performance, by only correcting the outputs of such ranked
filters?

In our proposed approach called DeepCorrect, we try to
address these aforementioned questions through the following
novel contributions:

o Evaluating the effect of common image distortions
like Gaussian blur and Additive White Gaussian Noise
(AWGN) on the outputs of pre-trained convolutional
filters. We find that for every layer of convolutional filters
in the DNN, certain filters are more susceptible to input
distortions than others and that correcting the activations
of these filters can help recover lost performance.

o Measuring the susceptibility of convolutional filters to
input distortions and ranking filters in the order of highest
susceptibility to input distortion.

o Correcting the worst distortion-affected filter activations
by appending correction units, which are small blocks
of stacked convolutional layers trained using a target-
oriented loss, at the output of select filters, whilst leaving
the rest of the pre-trained filter outputs in a DNN un-
changed.

blur o = 2 bluro =4 bluro=6

Original

goldfish 0.977 goldfish 0.873 goldfish 0.398 goldfish 0.100

L

gila monster 0.234 rock python 0.034
(@)

velvet 0.016

velvet 0.010

AWGN o = 60 AWGN o = 100

Original

AWGN o = 20

goldfish 0.977 goldfish 0.254 starfish 0.054 starfish 0.027

Ao i
gila monster 0.234 sidewinder 0.165 prayer rug 0.032

(b)

Fig. 1. Effect of image quality on DNN predictions, with predicted label and
confidence generated by a pre-trained AlexNet [6] model. Distortion severity
increases from left to right, with the left-most image in a row having no dis-
tortion (original). Bold green text indicates correct classification, while italic
red text denotes misclassification'. (a) Examples from the ILSVRC2012
validation set distorted by Gaussian blur. (b) Examples from the ILSVRC2012
validation set distorted by Additive White Gaussian Noise (AWGN)

stole 0.019

« Representing full-rank convolutions in our DeepCorrect
models with rank-constrained approximations consisting
of a sequence of separable convolutions with rectan-
gular kernels to mitigate the additional computational
cost introduced by our correction units. This results in
pruned DeepCorrect models that have almost the same
computational cost as the respective pre-trained DNN,
during inference.

Applying our DeepCorrect models for common vision tasks
like image classification [[L0], object recognition and
scene classification significantly improves the robustness
of DNNss against distorted images and also outperforms other
alternative approaches, while training significantly lesser pa-
rameters. To ensure reproducibility of presented results, the
code for DeepCorrect is made publicly available at https:
//github.com/tsborkar/DeepCorrect.

The remainder of the paper is organized as follows. Sec-
tion [[I] provides an overview of the related work in assess-
ing and improving the robustness of DNNs to input image
perturbations. Section describes the distortions, network
architectures and datasets we use for analyzing the distortion
susceptibility of convolutional filters in a DNN. A detailed

description of our proposed approach is presented in Section
followed, in Section [V] by extensive experimental valida-
tion with different DNN architectures and multiple datasets
covering image classification, object recognition and scene
classification. Concluding remarks are given in Section [VI|

II. RELATED WORK

DNN susceptibility to specific small magnitude perturba-
tions which are imperceptible to humans but cause networks to
make erroneous predictions with high confidence (adversarial
samples) has been studied in and [[17)]. The concept of
rubbish samples proposed in [18]] studies the vulnerability
of DNNs to make arbitrary high confidence predictions for
random noise images that are completely unrecognizable to
humans, i.e., the images contain random noise and no actual
object. However, both adversarial samples and rubbish samples
are relatively less encountered in common computer vision
applications as compared to other common distortions due to
image acquisition, storage, transmission and reproduction.

Karam and Zhu present QLFW, a face matching dataset
consisting of images with five types of quality distortions.
Basu et al. I]Qljl] present the n-MNIST dataset, which adds
Gaussian noise, motion blur and reduced contrast to the
original images of the MNIST dataset. Dodge and Karam
evaluate the impact of a variety of quality distortions such
as Gaussian blur, AWGN and JPEG compression on various
state-of-the-art DNNs and report a substantial drop in classi-
fication accuracy on the ImageNet (ILSVRC2012) dataset in
the presence of blur and noise. A similar evaluation for the
task of face recognition is presented in [21]).

Rodner et al. assess the sensitivity of various DNNSs to
image distortions like translation, AWGN and salt & pepper
noise, for the task of fine grained categorization on the CUB-
200-2011 [23]] and Oxford flowers [24] datasets, by proposing
a first-order Taylor series based gradient approximation that
measures the expected change in final layer outputs for small
perturbations to input image. Since a gradient approxima-
tion assumes small perturbations, Rodner er al.’s sensitivity
measure does not work well for higher levels of distortion
as shown by and does not assess susceptibility at a
filter level within a DNN. Furthermore, Rodner et al. do not
present a solution for making the network more robust to input
distortions; instead, they simply fine-tune the whole network
with the distorted images added as part of data augmentation
during training. Retraining large networks such as VGG16 [3]]
or ResNet-50 on large-scale datasets is computationally
expensive. Unlike Rodner et al.’s work, our proposed ranking
measure assesses sensitivity of individual convolutional filters
in a DNN, is not limited to differentiable distortion processes,
and holds good for both small and large perturbations.

Zheng et al. improve the general robustness of DNNs
to unseen small perturbations in the input image through the
introduction of distortion agnostic stability training, which
minimizes the KL-divergence between DNN output predic-
tions for a clean image and a noise perturbed version of the
same image. The perturbed images are generated by adding

VAl figures in this paper are best viewed in color.

https://github.com/tsborkar/DeepCorrect
https://github.com/tsborkar/DeepCorrect

uncorrelated Gaussian noise to the original image. Stability
training provides improved DNN robustness against JPEG
compression, image scaling and cropping. However, the top-1
accuracy of stability trained models is lower than the original
model, when tested on most distortions including motion
blur, defocus blur and additive noise among others [26].
Sun et al. also propose a distortion agnostic approach to
improve DNN robustness by introducing 3 feature quantization
operations, i.e., a floor function with adaptive resolution, a
power function with learnable exponents and a power function
with data dependent exponents, that act on the convolutional
filter activations before the ReLU non-linearity is applied.
However, similar to stability training, the performance of
feature quantized models is lower than the original model,
when tested on distortions like defocus blur and additive noise.
Additionally, no single feature quantization function consis-
tently outperforms the other two for all types of distortion.
Although both distortion agnostic methods [25]], [26] improve
DNN robustness, their top-1 accuracy is much lower than
the accuracy of the original DNN on distortion free images,
making it difficult to deploy these models.

A non-blind approach to improve the resilience of networks
trained on high quality images would be to retrain the network
parameters (fine-tune) on images with observed distortion
types. Vasiljevic et al. [|27] study the effect of various types
of blur on the performance of DNNs and show that DNN
performance for the task of classification and segmentation
drops in the presence of blur. Vasiljevic et al. [27]] and Zhou
et al. [28]] show that fine-tuning a DNN on a dataset comprised
of both distorted and undistorted images helps to recover part
of the lost performance when the degree of distortion is low.

Diamond et al. [29]] propose a joint denoising, deblurring
and classification pipeline. This involves an image preprocess-
ing stage that denoises and deblurs the image in a manner that
preserves image features optimal for classification rather than
aesthetic appearance. The classification stage has to be fine-
tuned using distorted and clean images, while the denoising
and deblurring stages assume a priori knowledge of camera
parameters and the blur kernel, which may not be available at
the time of testing.

III. EXPERIMENTAL SETUP

Here, we describe the various image distortions and network
architectures used to evaluate the susceptibility of individual
convolutional filters to input distortions. We use the ILSVRC-
2012 validation set [[10] for our experiments.

A. Distortions

We first focus on evaluating two important and conflicting
types of image distortions: Gaussian blur and AWGN over 6
levels of distortion severity. Gaussian blur, often encountered
during image acquisition and compression [30]], represents a
distortion that eliminates high frequency discriminative object
features like edges and contours, whereas AWGN is commonly
used to model additive noise encountered during image acqui-
sition and transmission. We use a noise standard deviation
o, € {10, 20, 40, 60, 80, 100} for AWGN and blur standard

224x224 RGDB Image 224x224 RGB Image

11x11-conv-96-4 EECTNA]

1]

112x112x64
56x56x64
3x3-maxpool-2 3x3-conv-64-1
27x27x96 3x3-conv-64-1
Y
5x5-conv-256-1 3x3-conv-64-1
Y 3x3-conv-64-1
3x3-maxpool-2 iiteb S
3x3-conv-128-2 AN
13x13x256 Y
h 4 3x3-conv-128-1 P
3x3-conv-384-1 === 28x28% 128
<]
13x13x384
Y
3x3-conv-128-1
3x3-conv-384-1
3x3-conv-256-2 s N
A4 /Y
3x3-conv-256-1 3x3-conv-256-1 -
o) " 14x14x256
13x13%x256 3x3-conv-256-
A4
7xTx256
3x3-conv-512-2 AN
Y
Y
4096-fc L/
e | :
1x4096 = 7xT7x512
Y 3x3-conv-512-1
4096-fc
3x3-conv-512-1
Y global avg.
1000-fc pool 7x7
1x1x512
1x1000
A 4 1x1000
1000-softmax 1000-softmax

—~
o
=

(b)

Fig. 2. Network architectures for our baseline models. Convolutional layers
are parameterized by kxk-conv-d-s, where kxk is the spatial extent of the filter,
d is the number of output filters in a layer and s represents the filter stride.
Maxpooling layers are parameterized as kxk-maxpool-s, where s is the spatial
stride. (a) AlexNet DNN [[6]? (b) ResNet18 [5]*.

deviation o), € {I, 2, 3, 4, 5, 6} for Gaussian blur. The size
of the blur kernel is set to 4 times the value of o},.

B. Network Architectures

We use two different network architectures as shown in
Fig. specifically: a shallow 8-layered DNN (AlexNet)?
and a deeper 18-layered network with residual connections
(ResNet18) [S]]. We use the term ’pre-trained” or “baseline”

2We use the code and weights for the AlexNet DNN available online at
https://github.com/heuritech/convnets-keras

SEvery convolutional layer is followed by a ReLU non-linearity for the
AlexNet DNN. In addition to the ReLU non-linearity, the first and second
convolutional layers of the AlexNet DNN are also followed by a local response
normalization operation [6].

4Every convolutional layer is followed by a batch normalization operation
and ReLU non-linearity for the ResNet18 model. Skip connections and resid-
ual feature maps are combined through an element-wise addition. Dashed-line
skip connections perform an identity mapping using a stride of 2 to reduce
feature map size and pad zero entries along the channel axis to increase
dimensionality [5].

https://github.com/heuritech/convnets-keras

TABLE I
TOP-1 ACCURACY OF PRE-TRAINED NETWORKS FOR DISTORTION
AFFECTED IMAGES AS WELL AS UNDISTORTED IMAGES (ORIGINAL). FOR
GAUSSIAN BLUR AND AWGN, ACCURACY IS REPORTED BY AVERAGING
OVER ALL LEVELS OF DISTORTION.

Models Original Gaussian blur AWGN
AlexNet 0.5694 0.2305 0.2375
ResNet18 0.6912 0.3841 0.3255

network to refer to any network that is trained on undistorted
images.

IV. DEEPCORRECT

Although pre-trained networks perform poorly on test im-
ages with significantly different image statistics than those
used to train these networks (Table [I), it is not obvious
if only some convolutional filters in a network layer are
responsible for most of the observed performance gap or if
all convolutional filters in a layer contribute more or less
equally to the performance degradation. If only a subset of
the filters in a layer are responsible for most of the lost
performance, we can focus on restoring only the most severely
affected activations and avoid modifying all the remaining
filter activations in a DNN.

A. Ranking Filters through Correction Priority

We define the output of a single convolutional filter ¢; ;
to the input x; by ¢;;(x;), where i and j correspond to
layer number and filter number, respectively. If g;(-) is a
transformation that models the distortion acting on filter input
X;, then the output of a convolutional filter ¢; ; to the distortion
affected input is given by (i)lvj(x,) = ¢;,j(gi(x;)). It should be
noted that ¢; ;(x;) represents the filter activations generated by
distorted inputs and ¢; ;(x;) represents the filter activations for
undistorted inputs. Assuming we have access to ¢;, j(x;) for a
given set of input images, replacing ¢; j(x;) with ¢; ;(x;) in
a deep network is akin to perfectly correcting the activations
of the convolutional filter ¢; ; against input image distortions.
Computing the output predictions by swapping a distortion
affected filter output with its corresponding clean output
for each of the ranked filters would improve classification
performance. The extent of improvement in performance is
indicative of the susceptibility of a particular convolutional
filter to input distortion and its contribution to the associated
performance degradation.

We now define the correction priority of a convolutional
filter ¢;; as the improvement in DNN performance on a
validation set, generated by replacing d;,/,(x,) with ¢; ;(x;) fora
pre-trained network. Let the baseline performance (computed
over distorted images) for a network be pj, which can be
obtained by computing the average top-1 accuracy of the net-
work over a set of images or another task-specific performance
measure. Let py,,(i, j) denote the new improved performance
of the network after swapping q/fj(x,) with ¢; j(x;). As our
implementation focuses on classification tasks, the average
top-1 accuracy over a set of distorted images is used to
measure p, and py,,(i, /). The correction priority for filter
¢; j is then given by:

T(la]) :wap(i,j)*l?b (1)

Algorithm 1 Computing Correction Priority

Input: (X ;,8i(X14),91),---, (Xm0, & (Xmi),ym) are given triplets
with 1 <i <L, where i represents the layer number, Xy, ; is the
m'™ undistorted input for layer i and gi(Xmi) is the corresponding
distorted version, M is the total number of images in the
validation set and y,, is the ground-truth label for the m”* input
image.

Output: Correction priority T

I: pp:=0

2: for m=1to M do

3 Predict class label ypred,, for distorted image g;(x,, ;)
4 Compute pj = ppy+ a5 h(ym,ypredm).

5. where h(yp,ypredy) = 1, if y, = ypred,, and 0 otherwise.
6: end for

7: for i=1to L do

8 N; < number of filters in layer i

9: 0ij j™ convolutional filter in the i layer
10: for j=1 to N; do

11: Pswp(j) =0

12: for m=1to M do

13: i, (8i(Xm,i)) < 9i,j(Xm,i)

14: Predict class label ypred,,

15: pswp(j) = Pswp(j) + %h(ym,ypredm),

16: where h(y,,,ypredy) = 1, if y,, = ypred,, and 0 otherwise.
17: end for

18: end for

19: (i, J) pswp(j) —Pb

20: end for

21: return 7

A higher (i, j) indicates higher susceptibility of the convolu-
tional filter ¢; ; to input distortion. Using the proposed ranking
measure in Equation (T) and 5000 images (i.e., 5 images per
class) randomly sampled from the ILSVRC-2012 training set,
we compute correction priorities for every convolutional filter
in the network and rank the filters in descending order of
correction priority. The detailed overview and pseudo-code for
computing correction priorities is summarized in Algorithm [I]
We evaluate in Fig. 3] the effect of correcting different
percentages, f3;, of the ranked filter activations in the "
DNN layer of AlexNet for distortion affected images. For the
AlexNet model, it is possible to recover a significant amount
of the lost performance, by correcting only 50% of the filter
activations in any one layer, which indicates that a select
subset of convolutional filters in each layer are indeed more
susceptible to distortions than the rest. Although we show
graphs for the AlexNet model, form our experiments, we make
similar observations for the ResNet18 model as well.
Convolutional filter visualizations from the first layer of the
pre-trained AlexNet model (Fig. [da) reveal two types of filter
kernels: 1) mostly color agnostic, frequency- and orientation-
selective filters that capture edges and object contours and 2)
color specific blob shaped filters that are sensitive to specific
color combinations. Figs. b and [Ac| visualize the top 50%
filters in the first convolutional layer of AlexNet, that are
most susceptible to Gaussian blur and AWGN, respectively, as
identified by our proposed ranking metric. The identified filters
most susceptible to Gaussian blur are mainly frequency- and
orientation-selective filters, most of which are color agnostic,
while filters most susceptible to AWGN are a mix of both color
specific blobs and frequency- and orientation-selective filters.

—a— top 10% —o— top 25% —v— top 50% —e— top 75% o— top 90%
0.6 AWGN: Alexnet, conv 1 AWGN: Alexnet, conv 2 AWGN: Alexnet, conv 3 AWGN: Alexnet, conv4 AWGN: Alexnet, conv 5
. N o o 00 o ° o o O 0o
>
@
5 0.4
[}
[}
©
—
s 0.2
o
|_
0.0
25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100
On Op On Op On
0.6 Blur: Alexnet, conv 1 Blur: Alexnet, conv 2 Blur: Alexnet, conv 3 Blur: Alexnet, conv 4 Blur: Alexnet, conv 5
. —0 “\Ls o e} % [} o o o o o o
>
®
5 04
(9]
1)
©
~
s 0.2
o
|_
0.0
2 4 6 2 4 6 2 4 6 2 4 6 2 4 6
Op Op Op Op Op

Fig. 3. Effect of varying the percentage of corrected filter activations f; € {10%, 25%, 50%, 75%, 90%}, in the i’ convolutional layer (conv i) of pre-trained

AlexNet, for AWGN and Gaussian blur affected images, respectively.

Fig. 4. (a) 96 convolutional filter kernels of size 11x11x3 in the first
convolutional layer of pre-trained AlexNet. (b) Convolutional filter kernels
most susceptible to Gaussian blur (top 50%), as identified by our proposed
ranking metric. (c) Convolutional filter kernels most susceptible to AWGN
(top 50%), as identified by our proposed ranking metric. In (b) and (c), the
filters are sorted in descending order of susceptibility going row-wise from
top left to bottom right.

This is in line with our intuitive understanding that Gaussian
blur majorly affects edges and object contours and not object
color, while AWGN affects color as well as object contours.

B. Correcting Ranked Filter Outputs

Here, we propose a novel approach, which we refer to as
DeepCorrect, where we learn a task-driven corrective trans-
form that acts as a distortion masker for convolutional filters

that are most susceptible to input distortion, while leaving all
the other pre-trained filter outputs in the layer unchanged. Let
R; represent a set consisting of the N; ranked filter indices in
the ' layer of the network, computed using the procedure in
Section@ Also let R; g, represent a subset of R; consisting
of the top [;V; ranked filter indices in network layer i, where
N; is the total number of convolutional filters in layer i and J3;
is the percentage of filters corrected in layer i, as defined in
Section [IV-A] If ®; represents the set of convolutional filters
in the " layer, the objective is to learn a transform Fg,.,(:)
such that:

Feory, ((I’R,-,;gi (gi(x))) = q’R,;gi (xi) 2
where x; is the undistorted input to the i layer of convo-
lutional filters and g;(-) is a transformation that models the
distortion acting on x;. Since we do not assume any specific
form for the image distortion process, we let the corrective
transform Fe,-,(:) take the form of a shallow residual block,
which is a small stack of convolutional layers (4 layers)
with a single skip connection [3], such as the one shown
in Fig. [5] We refer to such a residual block as a correction
unit. chi(:) can now be estimated using a target-oriented
loss such as the one used to train the original network,
through backpropogation [31]], but with much less number of
parameters.

Consider an L layered DNN & that has been pre-trained
for an image classification task using clean images. ® can
be interpreted as a function that maps network input x to an
output vector ®(x) € RY, such that:

P=P 0P, _j0..Py0d 3)

where ®; is the mapping function (set of convolutional filters)
representing the i DNN layer and d is the dimensionality of
the network output.

BiNi
pre-trained
filters’ outputs

1x1-conv-D;-1

Batch Norm
kxk-conv-D;-1
Batch Norm

kxk-conv-D;-1

[ot Narm]

1x1-conv-f3N;-1

ReLU

ReLU

ReLU

ﬂiNi
corrected
filters’ outputs

Fig. 5. Correction unit based on a residual function [5], acting on the outputs
of BiN; (0 < B; < 1) filters out of N; total filters in the i/ convolutional layer of
a pre-trained DNN. All convolutional layers in the residual block, except the
first and last layer, are parameterized by kxk-conv-D;-s, where kxk is spatial
extent of the filter, D; (correction unit kernel depth) is the number of output
filters in a layer, s represents the filter stride and i represents the layer number
of the convolutional layer being corrected in the pre-trained DNN.

Without loss of generality, if we add a correction unit that
acts on the top BiN; ranked filters in the first network layer,
then the resultant network &, is given by:

CI)corr = cI:'L o (I)L,1 o... CI)2 © q)lcurr (4)

where @ represents the new mapping function for the first
layer, in which the corrective transform Fe,., (:) acts on the
activations of the filter subset (I)Rl‘/s and all the remaining
filter activations are left unchangécf. If W, represents the
trainable parameters in Fg,,,, then F¢,,, can be estimated by
minimizing :
| M
E(W1) =AZ(W1)+ 3.) 2 0m Peon(xm)))
m=1

where A is a constant, & is a regularizer such as /; norm
or [, norm, % is a standard cross-entropy classification loss,
yn is the target output label for the m' input image X,,,
M represents the total number of images in the training set
and, since we train on a collection of both distorted and
clean images, X, represents a clean or a distorted image. The
trainable parameters in Equation (5) are Wy, while all other
network parameters are fixed and kept the same as those in the
pre-trained models. Although Equation (5) shows correction
unit estimation for only the first layer, it is possible to add
such units at the output of distortion susceptible filters in any
layer and in one or more layers. Fig. [f] shows an example of
a DeepCorrect model for the pre-trained AlexNet model in

Fig. 2a

SThe correction unit is applied before the ReLU non-linearity acting upon
the distortion-susceptible convolutional filter outputs. Max pooling layers
following convolutional layers 1, 2 and 5 in the pre-trained AlexNet have
not been shown in the ImageNet DeepCorrect model for uniformity.

224x224 RGB Image

________ too
h 11x11-conv-96-4 ﬁ

‘1x1-conv-24-1}

L

Fig. 6. DeepCorrect model for AlexNet, with 75% filter outputs corrected in

the first two layers and 50% filter outputs corrected in the next three layers>.

Convolution layers from the original architecture in Fig. 2] shown in gray
with dashed outlines, are non-trainable layers and their weights are kept the
same as those of the pre-trained model.

C. Rank-constrained DeepCorrect models

The inference time of our DeepCorrect models (Section
IV-B) can be slower than the respective baseline models due to
the additional computational cost introduced by the correction
units. To mitigate the impact of these additional computations,
we propose the use of a rank-constrained approximation to the
full-rank DeepCorrect model, which not only has the same
computational cost as the corresponding baseline DNN but
also retains almost 99% of the performance of our full-rank
DeepCorrect models.

Consider the n'" full-rank 3-D convolutional filter with
weights W,, € R&¥XC in a DNN convolutional layer with
N filters, where k X k represents the filter’s spatial extent
and C is the number of input channels for the filter; then a
rank constrained convolution is implemented by factorizing the
convolution of W, with input z into a sequence of separable
convolutions (i.e., horizontal and vertical filters) as in [32]:

P P c
W, xz~ Zhﬁ,’*(vl,*z):Zhl’;*Zv;*z" 6)
p=1 p=1 c=1

where the first convolutional filter bank consists of P vertical
filters {v, € R¥1*C: p € [1...P]} and the second convolution

consists of a horizontal filter that operates on P input feature
maps {h, € R***P1 The number of intermediate filter maps,
P, controls the rank of the low-rank approximation. The
computational cost of the original full-rank convolutional layer
for N output feature maps with width W’ and height H’ is
O(NK*CH'W’), whereas the rank-constrained approximation
has a computational cost of O((N+C)kPH'W’) and a speedup
can be achieved when NkC > (N + C)P. For the special case
of convolutional layers in our correction units, where N =C
(Fig. , if P=N/2, the computational cost of a convolutional
layer can be reduced k times (typically, k = 3).

Our rank-constrained DeepCorrect model is thus generated
by replacing each full-rank convolutional layer (except 1 x 1
layers) with its respective rank-constrained approximation with
P for each approximation chosen such that the total compu-
tational cost of our model is the same as the baseline DNN.
Instead of using iterative methods or training the separable
filters from random weights, we use the simple yet fast, matrix
decomposition approach of Tai et. al. [33]] to get the exact
global optimizer of the rank-constrained approximation from
its respective trained full-rank DeepCorrect model.

V. EXPERIMENTAL RESULTS

We evaluate DeepCorrect models against the alternative
approaches of network fine-tuning and stability training [25]],
for the DNN architectures mentioned in Section The DNN
models are trained and tested using a single Nvidia Titan-
X GPU. Unlike common image denoising and deblurring
methods like BM3D [34] and NCSR [35]] which expect the
distortion level to be known during both train and test phases
or learning-based methods that train separate models for each
distortion level, DeepCorrect trains a single model for all
distortion levels at once and, consequently, there is no need to
know the distortion level at test time.

A. AlexNet Analysis

1) Finetune model: We fine-tune the AlexNet model in
Fig.[2alon a mix of distortion affected images and clean images
to generate a single fine-tuned model and refer to this model as
Finetune in our results. Starting with an initial learning rate (=
0.001) that is 10 times lower than that used to generate the pre-
trained model in Fig. [2a] a fixed number of iterations (62500
iterations ~ 10 epochs), with the learning rate reduced by a
factor of 10 after every 18750 iterations (roughly 3 epochs).
We use a data augmentation method as proposed by [5].

2) Stability trained model: Following the stability training
method outlined in [25]] that considers that unseen distortions
can be modelled by adding AWGN to the input image, we
fine-tune all the fully connected layers of the pre-trained
AlexNet model by minimizing the KL-divergence between the
classification scores for a pair of images (I,1'), where I' = [+1
and ~ 4 (0,6%). We use the same hyper-parameters used
for the classification task in [25]: 62 = 0.04 and regularization
coefficient o = 0.01.

TABLE II
TOP-1 ACCURACY OF ALEXNET-BASED DNN MODELS FOR DISTORTION
AFFECTED IMAGES OF THE IMAGENET VALIDATION SET (ILSVRC2012),
AVERAGED OVER ALL LEVELS OF DISTORTION AND CLEAN IMAGES. BOLD
NUMBERS SHOW BEST ACCURACY AND UNDERLINED NUMBERS SHOW
NEXT BEST ACCURACY.

Method Gaussian blur | AWGN
Baseline 0.2305 0.2375
Finetune 0.4596 0.4894
Finetune-rc 0.4549 0.4821
Deepcorr 0.5071 0.5092
Deepcorr-b 0.5022 0.5063
Deepcorr-rc 0.4992 0.5052
Stability [25] 0.2163 0.2305
NCSR [35]+AlexNet [6] 0.2193 -
BM3D [34]+AlexNet [6] - 0.5032
TABLE III

COMPUTATIONAL PERFORMANCE OF ALEXNET-BASED DNN MODELS.

Metric Baseline/ Finetune Deepcorr | Deepcorr-b | Deepcorr-rc

FLOPs 7.4x108 23.9x 108 11.8x10% 7.8x 108
Trainable 6

params 60.96M 2.81M 1.03M 1.03M

3) DeepCorrect models: Our main DeepCorrect model for
AlexNet shown in Fig. and referred to as Deepcorr in
Table [[I] is generated by correcting 75% ranked filter outputs
in the first two layers (81,8, = 0.75) and 50% ranked filter
outputs in the next three layers (Bs,B4,8s = 0.5) of the
pre-trained AlexNet shown in Fig. The correction units
(Fig.[5) in each convolutional layer are trained using an initial
learning rate of 0.1 and the same learning rate schedule,
data augmentation and total iterations used for generating
the Finetune model in Section [V-AT] We also generate two
additional variants based on our Deepcorr model, Deepcorr-
b, a computationally lighter model than Deepcorr based on a
bottleneck architecture for its correction units as described
later in this section, and Deepcorr-rc, which is a rank-
constrained model (Section derived from the full-rank
Deepcorr-b model such that its test-time computational cost
is almost the same as the Finetune model. For comparison, a
rank-constrained model is also derived for the Finetune model
using similar decomposition parameters as Deepcorr-rc and
the resulting model is denoted by Finetune-rc.

Table [lI] shows the superior performance of our proposed
method as compared to the alternative approaches and Table |[T|
summarizes the computational performance in terms of train-
able parameters and floating point operations (FLOPs) of these
DNN models during training and testing, respectively. We
evaluate the training computational cost in terms of the number
of trainable parameters that are updated during training. The
test-time computational cost is evaluated in terms of the total
FLOPs, i.e., total multiply-add operations needed for a single
image inference, as outlined by He et. al. in [3]). In particular,
a k x k convolutional layer operating on C input maps and
producing N output feature maps of width W’ and height H’

6Since Deepcorr-rc is derived from the Deepcorr-b model through a low-
rank approximation, the number of trainable parameters and subsequently its
effect on model convergence is the same as Deepcorr-b.

TABLE IV
CORRECTION UNIT ARCHITECTURES FOR ALEXNET-BASED DEEPCORRECT MODELS. THE NUMBER FOLLOWING CORR-UNIT SPECIFIES THE LAYER AT
WHICH CORRECTION UNITS ARE APPLIED. CORRECTION UNIT CONVOLUTIONAL LAYERS ARE REPRESENTED AS kXk, d, WHERE kXk IS THE SPATIAL
EXTENT OF A FILTER AND d IS THE NUMBER OF FILTERS IN A LAYER. STACKED CONVOLUTIONAL LAYERS ARE ENCLOSED IN BRACKETS, FOLLOWED BY

THE NUMBER OF LAYERS STACKED.

Corr-unit 1 Corr-unit 2 Corr-unit 3 Corr-unit 4 Corr-unit 5
Modl BNy =72 BNy = 192 BsN; = 192 BuNy = 192 BsNs = 128
Output size Output size Output size Output size Output size
55 %55 27 x 27 13x13 13x 13 13x 13
1x1, 72 1x1, 192 1x1, 192 1x1, 192 1x1, 128
Deepcorr [5x5, 72}x2 [3x3, 192]xz [3x3, 192}><2 [3x3, 192}><2 [3><3, 128}><2
1x1, 72 1x1, 192 1x1, 192 1x1, 192 1x1, 128
Total FLOPs: 16.5x 108 FLOPs: 8.1x10% FLOPs: 5.3x10% FLOPs: 1.2x10% FLOPs: 1.2x10% FLOPs: 5.5x107
1x1, 36 1x1, 96 1x1, 96 1x1, 96 1x1, 64
Deepcorr-b [3><3, 36 } x3 [3><3, 96 } x3 [3><3, 96 } x3 [3><3, 9%] x3 [3><3, 64]><3
1x1, 72 1x1, 192 1x1, 192 1x1, 192 1x1, 128
Total FLOPs: 4.4x 108 FLOPs: 1.2x10% FLOPs: 2.0x 10% FLOPs: 4.8x 107 FLOPs: 4.8x107 FLOPs: 2.1x107
1x1, 36 1x1, 96 1x1, 96 1x1, 96 1x1, 64
Deepeorrtc 3x1, 27 } 3x1, 72] 3x1, 72] 3x1,72 } 3x1, 48 }
1x3, 36 1x3, 96 1x3, 96 1x3, 96 1x3, 64
1x1, 72 1x1, 192 1x1, 192 1x1, 192 1x1, 128
Total FLOPs: 2.5x 108 FLOPs: 6.8x107 FLOPs: 1.1x10% FLOPs: 2.7x107 FLOPs: 2.7x107 FLOPs: 1.2x107

requires Nk>CH'W' FLOPs [5]). The detailed architecture and
corresponding FLOPs for each correction unit in our different
DeepCorrect models for AlexNet are summarized in Table
Design choices for various correction unit architectures
and their impact on inference-time computational cost are also
discussed later in this section.

As it can be seen from Table I} the Deepcorr model, which
is our best performing model in terms of top-1 classification
accuracy, outperforms the Finetune model with ~ 10% and
~ 4% relative average improvement for Gaussian blur and
AWGN, respectively, by just training ~ 2.81M parameters
(Table as compared to 61M parameters for the Finetune
model (i.e., 95.4% lesser parameters). Deepcorr significantly
improves the robustness of a pre-trained DNN achieving an
average top-1 accuracy of 0.5071 and 0.5092 for Gaussian
blur and AWGN affected images, respectively, as compared
to the corresponding top-1 accuracy of 0.2305 and 0.2375 for
the pre-trained AlexNet DNN.

All our DeepCorrect model variants consistently outperform
the Finetune and Stability models for both distortion types
(Table [). We also observe that fine-tuning DNN models
on distortion specific data significantly outperforms DNN
models trained through distortion agnostic stability training.
For completeness, we also compare classification performance
with AlexNet when combined with a commonly used non-
blind image denoising method (BM3D) proposed by [34]]
and a deblurring method (NCSR) proposed by [35], where
BM3D and NCSR are applied prior to the baseline AlexNet,
for AWGN and Gaussian blur, respectively. Table [[I] shows
top-1 accuracy for these two methods with the Deepcorr
model outperforming each for AWGN and Gaussian blur,
respectively.

4) Correction unit architectures: Increasing the correction
unit kernel depth (D; in Fig. [5)) makes our proposed correction
unit fatter, whereas decreasing D; makes the correction unit
thinner. A natural choice for D; would be to make it equal to
the number of distortion susceptible filters that need correction
(B:N;), in a DNN layer i; this is also the default parame-
ter setting used in the correction units for Deepcorr. Since

D; is always equal to the number of distortion susceptible
filters that need correction (i.e., D; = B;N;), the number of
trainable parameters in the correction units of Deepcorr scale
linearly with the number of corrected filters (f;N;) in each
convolutional layer, even though Deepcorr trains significantly
lesser parameters than Finetune and still achieves a better
classification accuracy (Tables [[I] and [ITI).

As shown in Table during the testing phase, the cor-
rection units in Deepcorr add almost 2 times more FLOPs
relative to the baseline DNN, for evaluating a single image.
As discussed in more detail later in this section, one way
to limit the number of trainable parameters and FLOPs is
to explore a bottleneck architecture for our correction units,
where the convolutional kernel depth D; (Fig. [3) is set to
50% of the distortion susceptible filters that need correction
in a DNN layer i (i.e., D; = %) as compared to D; being
set to the number of filters to correct (i.e., D; = B;N;) in
Deepcorr. Replacing each correction unit in Deepcorr with
such a bottleneck correction unit, which we refer to as
Deepcorr-b, results in a DeepCorrect model that has signifi-
cantly less trainable parameters and FLOPs than the original
Deepcorr model (Table [IV). Compared to the correction
units in Deepcorr, bottleneck correction units provide a 60%
reduction in FLOPs on average, with a 85% reduction in
FLOPs for Corr-unit 1 as shown in Table From Tables
and it can be seen that Deepcorr-b achieves ~ 99%
of the average accuracy achieved by Deepcorr, with a 63%
reduction in trainable parameters and a 73% reduction in
FLOPs, relative to Deepcorr. As shown in Table the
Deepcorr-b model still requires 58% more FLOPs relative
to the baseline DNN, for evaluating a single image at test
time. A further reduction in the computational cost at test-time
can be achieved by deriving a rank-constrained DeepCorrect
model (Deepcorr-rc) from the Deepcorr-b model using the
approach outlined in Section By replacing each full rank
convolutional layer in a Deepcorr-b correction unit with a
pair of separable convolutions (Section [[V-C), we can reduce
the FLOPs for each correction unit by an additional 46% as
shown in Table Replacing the pre-trained convolutional

Blur: Alexnet, conv 1

Blur: Alexnet, conv 2

Blur: Alexnet, conv 5

0.6

Top-1 accuracy

ranked
bottom 50%

ranked

top 50%
ranked
bottom 75%

ranked
top 75%

AWGN: Alexnet, conv 1

AWGN: Alexnet, conv 2

0.6
0.5
0.4
0.3
0.2

Top-1 accuracy

ranked
bottom 50%

ranked

top 50%
ranked
bottom 75%

ranked
top 75%

0.1
0 25 50 75 100 O 25 50

On On

75 100 O 25 50 75

On

Fig. 7. Effect of DeepCorrect ranking metric on correction unit performance when integerated with AlexNet [6]. Dashed lines represent correction units
trained on the least susceptible filters in a DNN layer and solid lines represent correction units trained on the most susceptible filters, as identified by our

ranking metric (Section [[V-A).

layers of the baseline AlexNet (which are left unchanged in
the DeepCorrect models and shown in gray in Fig. [f) by their
equivalent low-rank approximations provides an additional
29% reduction in FLOPs, relative to the baseline AlexNet
model, such that the resultant Deepcorr-rc model now has
almost the same FLOPs as Finetune (Table [[TI) and still retains
almost 99% of the accuracy achieved by Deepcorr.

5) Effect of ranking on correction unit performance: If the
superior performance of our DeepCorrect model is only due to
the additional network parameters provided by the correction
unit, then re-training the correction unit on the least susceptible
BiN; filter outputs in a DNN layer should also achieve the
same performance as that achieved by applying a correction
unit on the B;N; most susceptible filter outputs identified by
our ranking metric (Section [V-A). f; and N;, as defined in
Section [[V-A] represent the percentage of filters corrected in
the /" layer and the total number of filters in the i’ layer,
respectively. To this end, we evaluate the performance of
training correction units on: 1) B;N; filters most susceptible
to distortion, and 2) 3;N; filters least susceptible to distortion,
as identified by our ranking metric. For this analysis, f; €
{50%, 75%}.

As shown in Fig.[7| correction units trained on the §;N; most
distortion susceptible filters (solid lines) outperform those
trained on the least susceptible filters (dashed lines) of conv 1,
conv 2 and conv 5 layers of the AlexNet model, for Gaussian
blur and AWGN, respectively. Although we observe a similar
trend for the conv 3 and conv 4 layers, we plot results for
only conv 1, conv 2 and conv 5 as these show the largest
difference in performance due to ranking distortion susceptible
filters. Correcting the top 75% distortion susceptible filters
(solid orange), as identified by our ranking measure, achieves
the best performance in all layers. Similarly, for all layers and
distortions, correction units trained on the top 50% susceptible

—=— Deepcorr == Finetune Deepcorr-b
GB AWGN
0.65
0.621
_ 0.60] | ‘
< R 3
@ 0.581 % e 1A
- Wax ‘-\ .,
Eo.ss- ”\a&w \ja : x,,y,_‘\v.
A
0.531 waa L -
050 -] ‘x* D =
0 2 4 0 2 4
iterations x10% iterations x104

Fig. 8. Top-1 error on the ILSVRC-2012 validation set, for DeepCorrect
model variants and fine-tuning.

filters (solid green) not only significantly outperform correc-
tion units trained on the 50% least susceptible filters (dashed
blue) but also outperform correction units trained on the 75%
least susceptible filters (dashed red), where 25% filters are
shared among both approaches.

6) Accelerating training: We analyze the evolution of the
validation set error over training iterations for Deepcorr,
Deepcorr-b as well as the Finetune model and stop training
for the Deepcorr models when their respective validation
error is lesser than or equal to the minimum validation error
achieved by the Finetune model. For any particular value of
validation error achieved by the Finetune model in Fig. []
both the Deepcorr model variants are able to achieve the same
validation error in much lesser number of training iterations.
Thus, we conclude that just learning corrective transforms
for activations of a subset of convolutional filters in a layer
accelerates training through reduced number of training epochs
needed for convergence.

7) Generalization of DeepCorrect Features to other
Datasets: To analyze the ability of distortion invariant features

TABLE V
MEAN ACCURACY PER CATEGORY OF PRE-TRAINED ALEXNET DEEP
FEATURE EXTRACTOR FOR CLEAN IMAGES.

Caltech-101 Caltech-256 SUN-397
0.8500 0.6200 0.3100
TABLE VI

MEAN ACCURACY PER CATEGORY FOR GAUSSIAN BLUR AFFECTED
IMAGES, AVERAGED OVER ALL DISTORTION LEVELS. BOLD NUMBERS
SHOW BEST ACCURACY.

Dataset Baseline Finetune Deepcorr
Caltech-101 0.4980 0.7710 0.8371
Caltech-256 0.2971 0.5167 0.5883

SUN-397 0.1393 0.2369 0.3049
TABLE VII

MEAN ACCURACY PER CATEGORY FOR AWGN AFFECTED IMAGES,
AVERAGED OVER ALL DISTORTION LEVELS. BOLD NUMBERS SHOW BEST

ACCURACY.

Dataset Baseline Finetune Deepcorr
Caltech-101 0.3423 0.7705 0.8034
Caltech-256 0.1756 0.4995 0.5482

SUN-397 0.0859 0.1617 0.2936

learnt for image classification to generalize to related tasks
like object recognition and scene recognition, we evaluate
the Deepcorr and Finetune models trained on the ImageNet
dataset (Section as discriminative deep feature extractors
on the Caltech-101 [13]], Caltech-256 [[14] and SUN-397 [15]
datasets. Unlike object recognition datasets like Caltech-101
and Caltech-256, which bear some similarity to an image
classification/object recognition dataset like ImageNet, a scene
recognition dataset like SUN-397 bears no similarity to the
ImageNet dataset and is expected to be challenging for features
extracted using models learnt on ImageNet [36]. Following the
experimental procedure proposed by [36], we use the output
of the first (Caltech-101 and Caltech-256) or second (SUN-
397) fully-connected layer in these models as a deep feature
extractor for images affected by distortion.

Since the above deep feature models have not been trained
on any one of these datasets (Caltech-101, Caltech-256 and
SUN-397), for each dataset, we train linear SVMs on top
of the deep features, which are extracted from a random
set of training data, and evaluate the performance in terms
of mean accuracy per category averaged over 5 data splits,
following the training procedure adopted by [36]. The train-
ing data for each split consists of 25 training images and
5 validation images per class, sampled randomly from the
considered dataset and all remaining images are used for
testing. A baseline accuracy for undistorted images is first
established by training linear SVMs on features extracted only
from undistorted images using the AlexNet DNN shown in
Fig. 2a| and results are reported in Table [V] Similar to
the evaluation in Section [V-A] we now independently add
Gaussian blur and AWGN to train and test images using
the same distortion levels as reported in Section and
report performance averaged over all distortion levels in Ta-
bleVIHVTI| for deep features extracted using baseline AlexNet,
Finetune and Deepcorr models trained on ImageNe Both

TFor each of the three models, a single set of linear SVMs is trained for
images affected by different levels of distortion and also clean images.

TABLE VIII
TOP-1 ACCURACY OF RESNET18-BASED DNN MODELS FOR DISTORTION
AFFECTED IMAGES OF THE IMAGENET VALIDATION SET (ILSVRC2012),
AVERAGED OVER ALL LEVELS OF DISTORTION AND CLEAN IMAGES. BOLD
NUMBERS SHOW BEST ACCURACY AND UNDERLINED NUMBERS SHOW
NEXT BEST ACCURACY.

Method G.Blur | AWGN | M.Blur | D.Blur | Cam.Blur
Baseline 0.3841 0.3255 0.4436 | 0.3582 0.4749
Finetune 0.5617 0.5970 0.6197 | 0.5615 0.6041
Finetune-rc 0.5548 0.5898 0.6113 | 0.5537 0.5973
Deepcorr 0.5808 0.6058 0.6498 | 0.6005 0.6346
Deepcorr-b 0.5839 0.6087 0.6474 0.5831 0.6365
Deepcorr-rc 0.5821 0.6033 0.6411 0.5785 0.6276
Stability [25] | 0.3412 | 0.3454 0.4265 | 0.3182 0.4720
TABLE IX

COMPUTATIONAL PERFORMANCE OF RESNET18-BASED DNN MODELS.

Metric Baseline/ Finetune | Deepcorr | Deepcorr-b | Deepcorr-rc

FLOPs 1.8x10° 3.5x10° 2.9x10° 1.8x10°
Trainable

params 11.7M 8.41M 5.5M 5.5M

Gaussian blur and AWGN significantly affect the accuracy of
the baseline feature extractor for all three datasets, with a 41%
and 60% drop in respective accuracies for Caltech-101, a 52%
and 71% drop in respective accuracies for Caltech-256, and
a 55% and 72% drop in respective mean accuracy for SUN-
397, relative to the benchmark performance for clean images.
For Caltech-101, the Deepcorr feature extractor outperforms
the Finetune feature extractor with a 8.5% and 4.2% relative
improvement in mean accuracy for Gaussian blur and AWGN
affected images, respectively. For Caltech-256, the Deepcorr
feature extractor outperforms the Finetune feature extractor
with a 13.8% and 9.7% relative improvement for Gaussian blur
and AWGN, respectively. Similarly, features extracted using
the Deepcorr model significantly outperform those extracted
using the Finetune model for SUN-397, with a 28.7% and
81.5% relative improvement in mean accuracy for Gaussian
blur and AWGN, respectively. The large performance gap
between Deepcorr and Finetune feature extractors highlights
the generic nature of distortion invariant features learnt by our
DeepCorrect models.

B. ResNetl8 Analysis

Similar to the AlexNet analysis in Section [V-A] for
ResNetl8, we evaluate the performance of our proposed
DeepCorrect models against DNN models trained through
fine-tuning and stability training. In addition to Gaussian blur
(GB) and AWGN, we also evaluate 3 additional distortion
types used by Vasiljevic et. al. [27], namely 1) Motion blur
(M.Blur), 2) Defocus blur (D.Blur) and 3) Camera shake
blur (Cam.Blur). Spatially uniform disk kernels of varying
radii are used to simulate defocus blur while horizontal and
vertical box kernels of single pixel width and varying length
are used to simulate motion blur (uniform linear motion) [27]].
For simulating camera shake blur, we use the code in [37]]
to generate 100 random blur kernels and report performance
averaged over all camera shake blur kernels.

Using the training procedures outlined in Sections
and we generate fine-tuned and stability trained models
from the baseline ResNet18 DNN by training all layers (11.7M

TABLE X
CORRECTION UNIT ARCHITECTURES FOR RESNET18-BASED DEEPCORRECT MODELS. THE NUMBER FOLLOWING CORR-UNIT SPECIFIES THE LAYER AT
WHICH CORRECTION UNITS ARE APPLIED. CORRECTION UNIT CONVOLUTIONAL LAYERS ARE REPRESENTED AS kXk, d, WHERE kXk IS THE SPATIAL
EXTENT OF A FILTER AND d IS THE NUMBER OF FILTERS IN A LAYER. STACKED CONVOLUTIONAL LAYERS ARE ENCLOSED IN BRACKETS, FOLLOWED BY

THE NUMBER OF LAYERS STACKED.

Corr-unit 1 Corr-unit 3, 5 Corr-unit 5, 7 Corr-unit 9, 11 Corr-unit 13, 15
Model BiN; =48 BN, =48 BiN; =96 BaNy = 192 BsNs = 384
Output size Output size Output size Output size Output size
112x 112 56 x 56 28 % 28 14x 14 Tx7
1x1, 48 1x1, 48 1x1, 96 1x1, 192 1x1, 384
Deepcorr [3><3, 48 } x2 [2x3 48 } x2 [xx% 9% } x2 [3x3, 192 } x2 [3><3, 384]xz
1x1, 48 1x1, 48 1x1, 96 1x1, 192 1x1, 384
Total FLOPs: 1.7x10° FLOPs: 5.7x10% FLOPs: 1.4x108 FLOPs: 1.4x108 FLOPs: 1.4x10% FLOPs: 1.4x10%
1x1, 31 1x1, 31 1x1, 62 1x1, 124 1x1, 248
Deepcorr-b [3><3, 31 }x3 {3x3, 31 }xz [3><3, 62}x3 [3><3,]24}><3 [3x3, 248]><3
1x1, 48 1x1, 48 1x1, 96 1x1, 192 1x1, 384
Total FLOPs: 1.1x10° FLOPs: 3.6x10% FLOPs: 9.2x107 FLOPs: 9.2x107 FLOPs: 9.2x107 FLOPs: 9.2x107
1x1, 31 1x1, 31 1x1, 62 1x1, 124 1x1, 248
Deepcorrre 3><1,24} 3><l,24] 3x1, 48]X [3x1, 96 :|><3 {3“, 192}3
1x3, 31 1x3, 31 1x3, 62 1x3, 124 1x3, 248
1x1, 48 1x1, 48 1x1, 96 1x1, 192 1x1, 384
Total FLOPs: 0.6x 10° FLOPs: 2.0x10% FLOPs: 5.1x107 FLOPs: 5.1x107 FLOPs: 5.1x107 FLOPs: 5.1x107

parameters) of the DNN on a mix of distorted and clean im-
ages. Similarly, using the training procedure of Section [V-A3]
our competing DeepCorrect model is generated by training
correction units that are appended at the output of the most
susceptible filters in the odd-numbered convolutional layers (1
to 17) of the baseline ResNet18 model right after each skip
connection merge (Fig. [2b). Similar to the AlexNet analysis
presented earlier (Section [V-A), we generate three DeepCor-
rect models (i.e., Deepcorr, Deepcorr-b and Deepcorr-rc).
For comparison, a rank-constrained model is derived for the
Finetune model using similar decomposition parameters as
Deepcorr-rc and the resulting model is denoted by Finetune-
rc. Table summarizes the accuracy of ResNetl8-based
DNN models against various distortions, while Tableshows
the computational performance of the same DNN models,
measured in terms of FLOPs and trainable parameters. Similar
to the AlexNet analysis, the detailed architecture and cor-
responding FLOPs for each correction unit in our different
DeepCorrect models for ResNet18 are shown in Table

From Table [VITI, we observe that our DeepCorrect models
not only significantly improve the robustness of the baseline
DNN model to input distortions but also outperform the alter-
native approaches of model fine-tuning and stability training in
terms of classification accuracy. Deepcorr, which trains almost
28% lesser parameters (Table than Finetune, outperforms
Finetune by 3.2% for Gaussian blur, 1.47% for AWGN, 4.86%
for motion blur, 6.95% for defocus blur and 5% for camera
shake blur. Deepcorr-b, which trains 50% lesser parameters
(Table than Finetune, outperforms Finetune by 3.95%
for Gaussian blur, 1.9% for AWGN, 4.46% for motion blur,
3.84% for defocus blur and 5.36% for camera shake blur. Sim-
ilarly our rank constrained model (Deepcorr-rc), which trains
50% parameters less than Finetune (Table [[X]), outperforms
Finetune by 3.63% for Gaussian blur, 1% for AWGN, 3.45%
for motion blur, 3% for defocus blur and 3.89% for camera
shake blur. As shown in Tables [[X] and [X| during the testing
phase, Deepcorr-b requires 60% more FLOPs relative to the
baseline DNN, for evaluating a single image. On the other
hand, for Deepcorr-rc, just using rank-constrained correction

units results in a 50% reduction in FLOPs as compared to
Deepcorr-b (Table @, with a 30% additional reduction in
FLOPs relative to baseline ResNetl18 achieved by replacing
the pre-trained convolutional layers of baseline ResNet18 with
their low-rank approximations. From Tables and[[X] it can
be seen that Deepcorr-rc requires almost the same number of
FLOPs as Finetune but achieves a superior performance than
the Finetune and Stability models without sacrificing inference
speed.

VI. CONCLUSION

Deep networks trained on pristine images perform poorly
when tested on distorted images affected by image blur or
additive noise. Evaluating the effect of Gaussian blur and
AWGN on the activations of convolutional filters trained on
undistorted images, we observe that select filters in each DNN
convolutional layer are more susceptible to input distortions
than the rest. We propose a novel objective metric to assess the
susceptibility of convolutional filters to distortion and use this
metric to identify the filters that maximize DNN robustness to
input distortions, upon correction of their activations.

We design correction units, which are residual blocks that
are comprised of a small stack of trainable convolutional layers
and a single skip connection per stack. These correction units
are added at the output of the most distortion susceptible filters
in each convolutional layer, whilst leaving the rest of the pre-
trained (on undistorted images) filter outputs in the network
unchanged. The resultant DNN models which we refer to
as DeepCorrect models, significantly improve the robustness
of DNNs against image distortions and also outperform the
alternative approach of network fine-tuning on common vision
tasks like image classification, object recognition and scene
classification, whilst training significantly less parameters and
achieving a faster convergence in training. Fine-tuning limits
the ability of the network to learn invariance to severe levels
of distortion, and re-training an entire network can be compu-
tationally expensive for very deep networks. By correcting the
most distortion-susceptible convolutional filter outputs, we are
not only able to make a DNN robust to severe distortions, but

are also able to maintain a very good performance on clean
images.

Although we focus on image classification and object recog-
nition, our proposed approach is not only generic enough to
apply to a wide selection of tasks that use DNN models such
as object detection [7]], [38]] or semantic segmentation [[11[] but
also other less commonly occurring noise types like adversarial
noise.

[1]

[2]
[3]
[4]

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097-1105.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 580-587.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
Neural Information Processing Systems, 2015, pp. 91-99.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 779—
788.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2009,
pp. 248-255.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in European Conference on Computer Vision. Springer, 2014,
pp. 740-755.

S. Dodge and L. Karam, “Understanding how image quality affects
deep neural networks,” in Eighth International Conference on Quality
of Multimedia Experience (QoMEX), 2016, pp. 1-6.

L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual
models from few training examples: An incremental bayesian approach
tested on 101 object categories,” in Computer Vision and Image
Understanding, vol. 106, no. 1. Elsevier, 2007, pp. 59-70. [Online].
Available: http://www.vision.caltech.edu/Image_Datasets/Caltech101/
G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007. [Online]. Available: http://www.vision.caltech.edu/
Image_Datasets/Caltech256/

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 1EEE, 2010, pp. 3485-3492.

C. Szegedy, W. Zaremba, L. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 427-436.

L. J. Karam and T. Zhu, “Quality labeled faces in the wild (QLFW):
a database for studying face recognition in real-world environments,”
in Proc. SPIE 9394, Human Vision and Electronic Imaging, vol. XX,
2015.

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

(38]

S. Basu, M. Karki, S. Ganguly, R. DiBiano, S. Mukhopadhyay,
S. Gayaka, R. Kannan, and R. Nemani, “Learning sparse feature
representations using probabilistic quadtrees and deep belief nets,” in
Neural Processing Letters. Springer, 2015, pp. 1-13.

S. Karahan, M. K. Yildirum, K. Kirtac, F. S. Rende, G. Butun, and
H. K. Ekenel, “How image degradations affect deep CNN-based face
recognition?” in International Conference of the Biometrics Special
Interest Group (BIOSIG). IEEE, 2016, pp. 1-5.

E. Rodner, M. Simon, R. B. Fisher, and J. Denzler, “Fine-grained
recognition in the noisy wild: Sensitivity analysis of convolutional neural
networks approaches,” arXiv preprint arXiv:1610.06756, 2016.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie,
“The caltech-ucsd birds-200-2011 dataset,” Tech. Rep., 2011. [Online].
Available: http://www.vision.caltech.edu/visipedia/CUB-200.html
M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Proceedings of the Indian Conference on
Computer Vision, Graphics and Image Processing, Dec 2008, pp. 722—
729.

S. Zheng, Y. Song, T. Leung, and I. J. Goodfellow, “Improving the
robustness of deep neural networks via stability training,” CoRR, vol.
abs/1604.04326, 2016. [Online]. Available: http:/arxiv.org/abs/1604.
04326

Z. Sun, M. Ozay, Y. Zhang, X. Liu, and T. Okatani, “Feature quantization
for defending against distortion of images,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

I. Vasiljevic, A. Chakrabarti, and G. Shakhnarovich, “Examining the
impact of blur on recognition by convolutional networks,” CoRR, vol.
abs/1611.05760, 2016. [Online]. Available: |http://arxiv.org/abs/1611.
05760

Y. Zhou, S. Song, and N.-M. Cheung, “On classification of dis-
torted images with deep convolutional neural networks,” arXiv preprint
arXiv:1701.01924, 2017.

S. Diamond, V. Sitzmann, S. P. Boyd, G. Wetzstein, and F. Heide,
“Dirty pixels: Optimizing image classification architectures for raw
sensor data,” CoRR, vol. abs/1701.06487, 2017. [Online]. Available:
http://arxiv.org/abs/1701.06487

N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and
F. Battisti, “TID2008-A database for evaluation of full-reference visual
quality assessment metrics,” in Advances of Modern Radioelectronics,
vol. 10, no. 4, 2009, pp. 30-45.

D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Backpropa-
gation,” Y. Chauvin and D. E. Rumelhart, Eds. Hillsdale, NJ, USA: L.
Erlbaum Associates Inc., 1995, ch. Backpropagation: The Basic Theory,
pp. 1-34.

M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” CoRR, vol. abs/1405.3866,
2014. [Online]. Available: http://arxiv.org/abs/1405.3866

C. Tai, T. Xiao, X. Wang, and W. E, “Convolutional neural networks
with low-rank regularization,” CoRR, vol. abs/1511.06067, 2015.
[Online]. Available: http://arxiv.org/abs/1511.06067

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “BM3D image
denoising with shape-adaptive principal component analysis,” in Proc.
‘Workshop on Signal Processing with Adaptive Sparse Structured Rep-
resentations (SPARS09), 2009.

W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse
representation for image restoration,” in IEEE Trans. on Image Process-
ing, vol. 22, no. 4, 2013, pp. 1620-1630.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “DeCAF: A deep convolutional activation feature for generic
visual recognition,” in International Conference on Machine Learning,
2014, pp. 647-655.

A. Chakrabarti, “A neural approach to blind motion deblurring,” CoRR,
vol. abs/1603.04771, 2016. [Online]. Available: http://arxiv.org/abs/
1603.04771

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal visual object classes (VOC) challenge,” in
International Journal of Computer Vision, vol. 88, no. 2, Jun. 2010, pp.
303-338.

https://github.com/fchollet/keras
http://arxiv.org/abs/1409.1556
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/visipedia/CUB-200.html
http://arxiv.org/abs/1604.04326
http://arxiv.org/abs/1604.04326
http://arxiv.org/abs/1611.05760
http://arxiv.org/abs/1611.05760
http://arxiv.org/abs/1701.06487
http://arxiv.org/abs/1405.3866
http://arxiv.org/abs/1511.06067
http://arxiv.org/abs/1603.04771
http://arxiv.org/abs/1603.04771

	I Introduction
	II Related Work
	III Experimental Setup
	III-A Distortions
	III-B Network Architectures

	IV DeepCorrect
	IV-A Ranking Filters through Correction Priority
	IV-B Correcting Ranked Filter Outputs
	IV-C Rank-constrained DeepCorrect models

	V Experimental Results
	V-A AlexNet Analysis
	V-A1 Finetune model
	V-A2 Stability trained model
	V-A3 DeepCorrect models
	V-A4 Correction unit architectures
	V-A5 Effect of ranking on correction unit performance
	V-A6 Accelerating training
	V-A7 Generalization of DeepCorrect Features to other Datasets

	V-B ResNet18 Analysis

	VI Conclusion
	References

