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Inertial nonconvex alternating minimizations for the
image deblurring

Tao Sun, Roberto Barrio, Marcos Rodrı́guez, and Hao Jiang

Abstract—In image processing, Total Variation (TV) regular-
ization models are commonly used to recover blurred images.
One of the most efficient and popular methods to solve the
convex TV problem is the Alternating Direction Method of
Multipliers (ADMM) algorithm, recently extended using the
inertial proximal point method. Although all the classical studies
focus on only a convex formulation, recent articles are paying
increasing attention to the nonconvex methodology due to its
good numerical performance and properties. In this paper,
we propose to extend the classical formulation with a novel
nonconvex Alternating Direction Method of Multipliers with the
Inertial technique (IADMM). Under certain assumptions on the
parameters, we prove the convergence of the algorithm with
the help of the Kurdyka-Łojasiewicz property. We also present
numerical simulations on classical TV image reconstruction
problems to illustrate the efficiency of the new algorithm and
its behavior compared with the well established ADMM method.

Index Terms—Inertial algorithms, nonconvex method,
Kurdyka-Łojasiewicz property, image deblurring, ADMM,
inertial proximal ADMM.

I. INTRODUCTION

Denoising and deblurring have numerous applications in
communications, control, machine learning, and many other
fields of engineering and science. Restoration of distorted
images is, from the theoretical, as well as from the practical
point of view, one of the most interesting and important
problems of image processing. One special case is the blurring,
due, for instance, to incorrect focus and/or blurring due to
movement, or added Gaussian noise (a Gaussian blur).

A mathematical model for the process of blurred images can
be expressed as follows. Let Ω ≡ RN2

be a two-dimensional
index set representing the image domain, ũ ∈ Ω be the original
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image, f̃ be the observed image, and K̃ be a linear blurring
operator. Then, the blurred image can be written [1] as

f̃ = K̃(ũ) + e, (1)

where e is an unknown additive noise vector. In this paper,
the blurring operator K̃ is assumed to be known, otherwise,
one will deal with the blind image deblurring problem [2], in
which K̃ also needs to be solved.

In image processing one typically aims at recovering an
image from noisy data while still keeping edges in the image,
and this goal is the main reason of the tremendous success
of the Total Variation (TV) regularization [3] for solving the
deblurring problem (although other methods are also used).
The TV method can be presented as

min
ũ

(
1

2
‖K̃ũ− f̃‖2L2(Ω) + σ‖∇ũ‖L1(Ω∗)

)
, (2)

being σ > 0 a parameter and where ∇ is the gradient operator,
Ω∗ := ∇(Ω), and the norms ‖ṽ‖L1(Ω∗) :=

∑
i,j∈Ω∗ |ṽi,j |,

‖ũ‖L2(Ω) :=
√∑

i,j∈Ω |ũi,j |2.
In most situations, rather than directly minimizing the

support of the image, one is interested in minimizing the
support of the gradient of the recovered image. In most
references, the convex methodology is considered [4], [5],
[6], but in recent years, some nonconvex methods have been
developed [7], [8], [9]. The use of a suitable nonconvex and
nondifferentiable function allows possibly a smaller number
of measurements than the convex one in compressed sensing
[7]. In [10] the authors showed that nonconvex regularization
terms in total variation-based image restoration yields even
better edge preservation when compared to the convex-type
regularization. Moreover, they showed that it seems to be also
more robust with respect to noise. Nonconvex regularization in
image restoration poses significant challenges on the existence
of solutions of associated minimization problems and on the
development of efficient solution algorithms.

The main difference between the convex and nonconvex
methods is replacing the l1-norm of the variational term by
the nonconvex and nondifferentiable function ‖v‖ϕ(Ω∗) :=∑
i,j∈Ω∗ ϕ(vi,j) that uses the nonconvex regulation function

ϕ, and that we refer to as the `q semi-norm (0 < q < 1). There-
fore, the general nonconvex deblurring model is presented as

min
ũ

(
1

2
‖K̃ũ− f̃‖2L2(Ω) + σ‖∇ũ‖ϕ(Ω∗)

)
. (3)

Many efficient numerical algorithms have been developed
for solving the TV regularization problem. One of the most
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efficient methods for the convex problem (2) is the Alternating
Direction Method of Multipliers (ADMM) algorithm [11],
[12], [13]. In the general case (convex and nonconvex cases
depend of the function ϕ), the method is constructed by
introducing an auxiliary variable ṽ, which actually represents
∇ũ, to reformulate (3) into a composite optimization problem
with linear constraints. The augmented Lagrange dual function
is then

L̃ϕδ (ũ, ṽ, p̃) :=
1

2
‖K̃ũ− f̃‖2L2(Ω) + σ‖ṽ‖ϕ(Ω∗)

− 〈p̃,∇ũ− ṽ〉+
δ

2
‖∇ũ− ṽ‖2L2(Ω∗), (4)

where δ > 0 is a parameter, and the norm ‖X‖L2(Ω∗) :=√∑
i,j∈Ω∗ |Xi,j |2. If ϕ(·) = | · |1, we use the notation

L̃1
δ(ũ, ṽ, p̃) for representing L̃ϕδ (ũ, ṽ, p̃). Now, the standard

convex ADMM method (ϕ(·) = | · |1) for the deblurring
problem can be presented as ṽk+1 = arg minṽ L̃1

δ(ũ
k, ṽ, p̃k)

ũk+1 = arg minũ L̃1
δ(ũ, ṽ

k+1, p̃k)
p̃k+1 = p̃k − δ(∇ũk+1 − ṽk+1)

(5)

The earlier analyses of convergence and performance of
the ADMM algorithms directly depended on the existing
results of ADMM framework [14], [15], [16], [17], [18]. More
recently, motivated by acceleration techniques proposed in
[19], inertial algorithms have been proposed for many areas
such as (distributed) optimization and imaging sciences in
references [20], [21], [22], [23], [24]. The ideas of the inertial
strategy have been also applied to ADMM in [4], [25]; and
under several assumptions in convex case, some convergence
results are proved in those articles. As the nonconvex penalty
functions perform more efficiently in some applications, as
above commented, nonconvex ADMM has been also devel-
oped and studied [26], [27], [28], [29], [30], [31], [32], [33],
[34]. The main goal of this paper is to propose a new algorithm
that combines the nonconvex methods and the inertial strategy
organically.

In this paper, when ϕ is nonconvex, we consider a new
inertial scheme for the image deblurring model (3). One of
the main differences (and new difficulties) with the convex
ADMM, is that in order to properly define the nonconvex
ADMM some extra assumptions are needed to prove the
convergence. First, at least one of the objective functions
has to be smooth. And more, matrix corresponding to the
smooth function is required to be injective, i.e., reversible.
Thus, a direct application of the ADMM scheme to the image
deblurring model cannot guarantee the convergence because
the operator ∇ fails to be injective (although the numerical
performance may be good in some cases). Considering this,
we first modify the model (3), and then we develop the new
nonconvex inertial ADMM. By using the Kurdyka-Łojasiewicz
property, we prove the convergence of the new algorithm under
several requirements on the parameters. In opposite to the
convex case, selecting a suitable parameter δ is crucial to
obtain the convergence of the new algorithm. In order to make
the method more useful, we provide a probabilistic strategy for
selecting a suitable δ.

‖ · ‖ stands for ‖ · ‖L2(Ω) or ‖ · ‖L2(Ω∗) (L2 norm)
dist(x,C) := miny∈C ‖x− y‖ ‖A‖2 := max‖x‖=1 ‖Ax‖

‖ · ‖ϕ := ‖ · ‖ϕ(Ω∗) ⊗ stands for the Kronecker product
C1 stands for the function class whose derivatives are continuous

for a matrix A, rank(A) stands for its rank, Null(A) := {x | Ax = 0}
λmin(A) stands for the minimum eigenvalue of A

TABLE I: Basic notations, where x, y stand for points, C
stands for a set, A stands for matrix

The rest of the paper is organized as follows. In Section II
we collect some mathematical preliminaries needed for the
convergence analysis. Section III presents the details for the
new algorithm (inertial alternating minimization algorithm,
IADMM) including the schemes and parameters. In Sec-
tion IV, we prove the convergence of the new algorithm.
Section V reports the numerical results and compares the
algorithm with convex and nonconvex ADMM. Section VI
gives some conclusions. Finally, we provide in the Appendixes
all the detailed proofs of the proposed results.

II. MATHEMATICAL TOOLS

In this section we present the definitions and basic properties
of the subdifferentials and the Kurdyka-Łojasiewicz functions
used later in the convergence analysis. The basic notations
used in this paper are detailed in Table I.

A. Subdifferentials

We collect several definitions as well as some useful prop-
erties in variational and convex analysis (see the monographes
[35], [36], [37], [38]). For any matrix A, we define A∗ to be
the adjoint of A.

Definition 1 (subdifferentials [35], [37]): Let J : RN →
(−∞,+∞] be a proper and lower semicontinuous function.

1) For a given x ∈ dom(J), the Fréchet subdifferential of
J at x, written as ∂̂J(x), is the set of all vectors u ∈ RN
which satisfy

lim
y 6=x

inf
y→x

J(y)− J(x)− 〈u, y − x〉
‖y − x‖2

≥ 0.

When x /∈ dom(J), we set ∂̂J(x) = ∅.
2) The (limiting) subdifferential, or simply the subdiffer-

ential, of J at x ∈ RN , written as ∂J(x), is defined
through the following closure process

∂J(x) := {u ∈ RN : ∃xk → x, J(xk)→ J(x)

and uk ∈ ∂̂J(xk)→ u as k →∞}. (6)

It is easy to verify that the Fréchet subdifferential is convex
and closed while the subdifferential is closed. When J is
convex, the definition agrees with the subgradient in convex
analysis [38] as

∂J(x) := {v : J(y) ≥ J(x) + 〈v, y − x〉 for any y ∈ RN}.

We call J is strongly convex with constant a ∈ R+ if for any
x, y ∈ dom(J) and any v ∈ ∂J(x), it holds that

J(y) ≥ J(x) + 〈v, y − x〉+
a

2
‖y − x‖22.
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And J is called as L-gradient continuous (Lipschitz) with
constant L > 0 if

‖∇J(x)−∇J(y)‖2 ≤ L‖x− y‖2.

Noting the closedness of the subdifferential, we have the
following simple proposition.

Proposition 1: If vk ∈ ∂J(xk), limk v
k = v and limk x

k =
x, then we have

v ∈ ∂J(x). (7)

Definition 2: A necessary condition for x ∈ RN to be a
minimizer of J(x) is

0 ∈ ∂J(x), (8)

which is also sufficient when J is convex. A point that satisfies
(8) is called (limiting) critical point. The set of critical points
of J(x) is denoted by crit(J).

With these basics, we can easily obtain the following
proposition.

Proposition 2: If (ū, v̄, p̄) is a critical point of Lϕδ whose
definition given in (18), it must hold that −p̄ ∈ σ∂‖v̄‖ϕ,

∇∗p̄ = K∗(Kū− f),
∇ū = v̄.

(9)

Finally, the proximal map of J is defined as

SJ(x) ∈ arg min
y

{
J(y) +

1

2
‖x− y‖22

}
. (10)

Note that J can be nonconvex. If J is convex, SJ is a point-
to-point operator; otherwise, it may be point-to-set.

B. Kurdyka-Łojasiewicz property

In this paper the convergence analysis is based on the
Kurdyka-Łojasiewicz functions, originated in the seminal
works of Łojasiewicz [39] and Kurdyka [40]. This kind of
functions has played a key role in several recent convergence
results on nonconvex minimization problems and they are
ubiquitous in applications.

Definition 3 ([41], [42]): (a) The function J : RN →
(−∞,+∞] is said to have the Kurdyka-Łojasiewicz property
at x̂ ∈ dom(∂J) if there exist η ∈ (0,+∞], a neighborhood
U of x̂ and a continuous concave function ρ : [0, η) → R+

such that
1) ρ(0) = 0.
2) ρ is C1 on (0, η).
3) For all s ∈ (0, η), ρ′(s) > 0.
4) For all x in U

⋂
{x|J(x̂) < J(x) < J(x̂) + η}, the

Kurdyka-Łojasiewicz inequality holds

ρ′(J(x)− J(x̂)) · dist(0, ∂J(x)) ≥ 1. (11)

(b) Proper lower semicontinuous functions which satisfy the
Kurdyka-Łojasiewicz inequality at each point of dom(∂J) are
called KŁ functions.

Remark 1: There are large sets of functions that are KŁ
functions [41].

Lemma 1 ([42]): Let J : RN → R be a proper lower semi-
continuous function and Π be a compact set. If J is a constant
on Π and J satisfies the KŁ property at each point on Π, then
there exists a concave function ρ satisfying the four properties
given in Definition 3, and constants η, ε > 0 such that for any
x̂ ∈ Π and any x satisfying that dist(x,Π) < ε and f(x̂) <
f(x) < f(x̂) + η, it holds that

ρ′(J(x)− J(x̂)) · dist(0, ∂J(x)) ≥ 1. (12)

III. NONCONVEX IADMM ALGORITHM

In this section we introduce the new extended Inertial Al-
ternating Direction Method of Multipliers (ADMM) algorithm
for nonconvex functions.

In this paper, we consider Ω = [1, 2, . . . , N ]× [1, 2, . . . , N ]
(equivalent to space RN2

) as the two-dimensional index set
representing the image domain. In this case, the image variable
constrained on Ω is actually a N × N matrix. We use the
symbol ũ to present its vectorization (a vector of all the
columns of the image variable). And then the original total
variation operator then enjoys the following form

∇(ũ) =

(
IN ⊗D
D ⊗ IN

)
· ũ, (13)

where IN the identity matrix and D the banded matrix

D =


1 −1

1
. . .
. . . −1

1 −1


(N−1)×N

.

If we directly apply the inertial ADMM, the convergence is
hard to be proved as ∇ fails to be injective. Therefore, we
need to modify the image deblurring model (3). To that goal,
we define

T :=

(
IN ⊗D

D ⊗ IN

)
, u :=

(
u1 ∈ RN2

u2 ∈ RN2

)
.

Obviously, we have T ∈ R2N(N−1)×2N2

. Noting that

rank(T ) = rank(IN ⊗D) + rank(D ⊗ IN )
= rank(IN ) · rank(D) + rank(D) · rank(IN )
= 2N(N − 1),

and thus, T is injective. The following technical lemma
focuses on giving a lower bound for the operator T ∗.

Lemma 2: For any x ∈ R2N(N−1), it holds that

‖T ∗x‖ ≥ ‖x‖
θ
, (14)

where θ = 1/(2 sin( π
2N )

)
.

Then, the image deblurring model (3) is equivalent to

min
u1=u2

(
1

2
‖K̃u1 − f̃‖2 + σ‖T u‖ϕ

)
. (15)

Instead, we consider its extended penalty form

min
u

(
1

2
‖K̃u1 − f̃‖2 + σ‖T u‖ϕ +

β2

2
‖u1 − u2‖2

)
, (16)
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where β > 0 is a large weight parameter. Therefore, we apply
the nonconvex inertial ADMM to

min
u∈R2N2

(
1

2
‖Ku− f‖2 + σ‖T u‖ϕ

)
, (17)

where K =

(
K̃ 0
βI −βI

)
and f =

(
f̃
0

)
. This leads us

to define the function

Lϕδ (u, v, p) :=
1

2
‖Ku− f‖2

+ σ‖v‖ϕ − 〈p, T u− v〉+
δ

2
‖T u− v‖2. (18)

Inertial methods have witnessed great success in convex
ADMM and nonconvex first-order algorithms. In the non-
convex optimization community, the inertial style ADMM
has never been proposed and analyzed. The convex inertial
ADMM has been proposed in [4], in which one first uses
the “inertial method” to refresh the current sequence with
last iteration, and then performs the ADMM scheme with the
updated variables. However, the direct extension of convex
ADMM is not allowed in the nonconvex settings. This is
because without convexity, several descents are heavily de-
pendent on the continuities of the functions, which ϕ may
fail to obey. And the difference of function values at two
different points is hard to estimate, which leads to troubles in
the convergence proof. Thus, in the updating of vk+1, we used
uk rather than the updated one. And the nonconvex IADMM
scheme proposed in this paper is defined as follows

(ûk, v̂k, p̂k) = (uk, vk, pk)
+α(uk − uk−1, vk − vk−1, pk − pk−1),

vk+1 = arg minv Lϕδ (uk, v, p̂k),
uk+1 = arg minu Lϕδ (u, vk+1, p̂k),
pk+1 = p̂k − δ(T uk+1 − vk+1),

(19)

where α > 0 is a free parameter chosen by the user. Actually,
if α = 0, the algorithm then will reduce to basic ADMM.

Now we can focus on rewriting the inertial scheme for
the image deblurring model (19). First, we rearrange the
minimization for vk+1,

vk+1 = Sσ
δ ‖·‖ϕ(Ω∗)

(
T uk − p̂k

δ

)
, (20)

being SJ the proximal map of J (10). For a matrix v, and
indices (i, j) ∈ Ω∗,

[Sσ
δ ‖·‖ϕ(v)]i,j = Sσ

δ ϕ
(vi,j). (21)

The scheme for updating uk+1 can be rewritten as

K∗(Kuk+1 − f)− T ∗p̂k + δT ∗(T uk+1 − vk+1) = 0. (22)

That is also

uk+1 = (K∗K + δT ∗T )−1(K∗f + δT ∗vk+1 + T ∗p̂k). (23)

Taking into account (19), (20) and (23) we propose a
nonconvex inertial version of the IADMM algorithm (Algo-
rithm 1).

Assumption 1: We assume that Null(K0)
⋂

Null(T ) =

{0}, where K0 :=

(
K̃ 0
I −I

)
. And the minimum single

Algorithm 1 Nonconvex Inertial Alternating Minimization
(IADMM) for Image Deblurring

Require: parameters α > 0, δ > 0,
Initialization: u0 = u1, v0 = v1, p0 = p1

for k = 1, 2, . . .
(ûk, v̂k, p̂k) = (uk, vk, pk)

+α(uk − uk−1, vk − vk−1, pk − pk−1)

vk+1 = Sσ
δ ‖·‖ϕ

(
T uk − p̂k

δ

)
uk+1 = (K∗K + δT ∗T )−1(K∗f + δT ∗vk+1 + T ∗p̂k)

pk+1 = p̂k − δ(T uk+1 − vk+1)
end for

value is given as ν.

This hypothesis also indicates that the matrix
(
T
K0

)
is

reversible. Note that the rank of T is 2N(N − 1). Then, the
assumed hypothesis is easy to be satisfied.

We remark that uk+1 is the minimizer of Lϕδ (u, vk+1, p̂k),
which is strongly convex with λmin(K∗K+δT ∗T ). If we set
δ, ρ > 1, then we have

Lϕδ (u
k, vk+1, p̂k)− Lϕδ (u

k+1, vk+1, p̂k)

≥ λmin(K
∗K + δT ∗T )
2

‖uk+1 − uk‖2 ≥ ν

2
‖uk+1 − uk‖2, (24)

where we used the fact λmin(K∗K+δT ∗T ) ≥ λmin(K∗0K0+
T ∗T ) when δ, β ≥ 1.

The following problem is what ν exactly is. In a real
situation, the dimensions of T are large, and so, a direct
calculation leads to a large computational cost. Therefore, we
provide a probabilistic method to estimate a suitable value
of θ. If K∗K + T ∗T is reversible, it is easy to see that
1/ν = ‖(K∗K + T ∗T )−1‖2. Then, if we obtain a bound
‖(K∗K + T ∗T )−1‖2 ≤ c, we then have ν ≥ 1/c. To that
goal we employ a Lemma proposed in [43]:

Lemma 3 (Lemma 4.1, [43]): For a fixed positive integer
M and a real number b > 1, and given an independent family
{wi}i=1,2,...,M of standard Gaussian vectors, we have that

‖(K∗K + T ∗T )−1‖2

≤ b
√

2

π
max

i=1,2,...,M
‖(K∗K + T ∗T )−1wi‖2 (25)

with probability at least 1− b−M .
Note that for computing (K∗K + T ∗T )−1wi we just need

several FFT and inverse FFT. Therefore, its computational cost
is low (O(N logN ), and the estimation of ν is very fast.

IV. CONVERGENCE ANALYSIS

This section consists of two parts and provides a com-
plete analysis of the convergence problem of the nonconvex
IADMM algorithm. The first subsection contains the main
convergence results, the proof sketch, the difficulties in the
proof and theoretical contributions. While the second subsec-
tion introduces the necessary technical lemmas. Assumption 1
holds through this section.
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A. Main results

Theorem 1 (Stationary point convergence): Assume that
the free parameter δ satisfies the condition

δ > max

{
1,

6θ2‖K‖42
ν

+
7α2θ2‖K‖42

ν

}
(26)

with θ = 1/(2 sin( π
2N )

)
, then any cluster point (u∗, v∗, p∗) is

also a critical point of Lϕδ .
Theorem 1 describes the stationary point convergence result

for the IADMM method, which is free of using the KŁ prop-
erty of the functions. If the KŁ property is further assumed, the
sequence convergence can be proved giving us the Theorem
2.

Theorem 2 (Sequence convergence): Let condition (36)
hold, and the auxiliary function F (30) be a KŁ function.
Then the sequence {(uk, vk, pk)}k=0,1,2,..., generated by
Algorithm 1, converges to a critical point of Lϕδ .

The proof can be divided into two parts, and in order to
help the reader we first give a brief sketch of the proof :

I. In the first part we introduce an auxiliary se-
quence {wk}k=0,1,2,..., where wk are composite points from
{(uk, vk, pk)}k=0,1,2,.... An auxiliary function F is also pro-
posed. In Lemma 5, we prove a “sufficient descent condition”
of the values of F at {wk}k=0,1,2,..., i.e.,

F (wk)− F (wk+1) ≥ ĥ‖uk+1 − uk‖2, (27)

where ĥ > 0 is a positive constant.
II. We prove a “relative error condition” of {wk}k=0,1,2,...,

i.e., there exists vk+1 ∈ ∂F (wk+1) such that

‖vk+1‖ ≤ γ(‖uk+1 − uk‖+ ‖uk − uk−1‖), (28)

where γ > 0 is a positive constant. Note that this condition is
different from the “real” relative error condition proposed in
[41].

The major difficulty in deriving these two conditions is
the use of inertial terms, with which the descent values are
lower bounded by ‖vk+1− v̂k‖2 and ‖pk+1− p̂k‖2 rather than
‖vk+1−vk‖2 and ‖pk+1−pk‖2. Similarly, the relative error is
bounded by ‖vk+1− v̂k‖ and ‖pk+1− p̂k‖. The relative error
can be expanded by triangle inequalities, which is relatively
proved. However, for the sufficient descent, the use of the
triangle inequalities is much more difficult and technical for
the lower boundedness.

The theoretical contributions in this paper are two-fold. The
first one is, of course, dealing with the difference caused by the
inertial terms. This part also includes how to design the scheme
of the algorithm, whose details have been presented in previous
section. The second one is to determine the parameters for
IADMM applied to the image deblurring.

The main results can be proved with the following lemmas.

B. Technical lemmas

Lemma 4: Let the sequence {(uk, vk, pk)}k=0,1,2,... be gen-
erated by Algorithm 1 to solve problem (3), then

‖pk − pk+1‖ ≤ θ‖K‖22 ‖uk+1 − uk‖, (29)

where θ is given in Lemma 2 and ‖K‖2 denotes the spectral
radius of K.

Now we provide the main technical lemma that states the
descent condition for a suitable function of the sequences of
the Algorithm 1.

Lemma 5: Let the sequence {(uk, vk, pk)}k=0,1,2,... be gen-
erated by Algorithm 1 and conditions of Theorem 1 hold. By
defining the auxiliary function F

F (u, v, p, x) := Lϕδ (u, v, p) +
7α2θ2‖K‖42

2δ
‖u− x‖2, (30)

and
wk := (uk, vk, pk, uk−1), (31)

we have that

F (wk)− F (wk+1) ≥ ĥ‖uk+1 − uk‖2, (32)

where

ĥ :=
ν

2
−
(

3θ2‖K‖42
δ

+
7α2θ2‖K‖42

2δ

)
> 0. (33)

If the sequence {(uk, vk, pk)}k=0,1,2,... is bounded, then, it
holds that

lim
k
‖uk+1−uk‖ = lim

k
‖vk+1−vk‖ = lim

k
‖pk+1−pk‖ = 0. (34)

Remark 2: Based on Lemma 5, it is important to guarantee
that the condition (26) can be satisfied. This fact can be
reached if δ is large enough. Fortunately, in the Algorithm 1
the parameter δ can be fixed by the user. Thus, the parameter
δ shall be chosen large enough to guarantee the convergence
considering condition (26).

Lemma 6: If the nonconvex regulation function ϕ is coer-
cive and

δ > θ2‖K‖42, (35)

the sequence {wk}k=0,1,2,... is bounded.
Remark 3: By combining the conditions (26) and (35), we

just need that

δ > max

{
1,

6θ2‖K‖42
ν

+
7α2θ2‖K‖42

ν
, θ2‖K‖42

}
. (36)

Lemma 7: Let the sequence {(uk, vk, pk)}k=0,1,2,... be gen-
erated by Algorithm 1. Then, for any k, there exists γ > 0
and sk+1 ∈ ∂F (wk+1) such that

‖sk+1‖ ≤ γ(‖uk+1 − uk‖+ ‖uk − uk−1‖). (37)

Now, we recall a definition about the limit point set M
introduced in [42], which denotes the set of all the stationary
points generated by the nonconvex IADMM. The specific
mathematical definition of M is given as follows.

Definition 4: Let {wk}k=0,1,2,... be generated by the non-
convex IADMM . We define the set M by

M :=
{
x ∈ RN : ∃ an increasing sequence of integers

{kj}j∈N such that xkj → x as j →∞
}
. (38)

Lemma 8: Let the sequence {(uk, vk, pk)}k=0,1,2,... be gen-
erated by Algorithm 1, F the auxiliary function defined in
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(30) and suppose that condition (36) holds. Then, we have the
following results.

(1) M is nonempty and M⊆ crit(F ).
(2) limk dist(wk,M) = 0.
(3) The objective function F is finite and constant on M.

V. NUMERICS

In this section, we illustrate the effectiveness of the proposed
algorithm on different numerical blurred images with Gaussian
blur.

All the programs have been written entirely in C++, and
all the experiments are implemented under Linux running
on a desktop computer with an Intel Core i5-2400S CPU
(2.5 GHz) and 4 GB Memory. The FFT subroutines used
in the algorithms are taken from the fftw-31 library. As
test problems we have selected twelve images (see Figure 1),
which include seven images from USC-SIPI image database2,
two classical test images (Lena and cameraman), one text
image from “El Quijote” book and two medical images. In
order to obtain the blurred images, we use, as it is common in
literature, the blurring operator generated using a convolution
with Gaussian kernel (KernelSize = 17× 17, KernelMu
= 0, KernelSigma = 7) and circular mapping on the edges
of the image.

The proposed algorithm IADMM (Algorithm 1) is com-
pared with the widely used augmented Lagrangian methods
(ADMM [22]) for image deblurring. We mainly consider two
models, i.e., ϕ(·) = | · | and ϕ(·) = | · | 12 . We call them as
TV1 and TV(1/2) methods, respectively. Note that TV1 is a
convex method, while TV(1/2) is nonconvex. In the tests we
have considered (unless so indicated) for all the methods the
value of the penalty parameter δ = 0.001 (a small one) and/or
δ = 10 (a large one) just to see the behaviour of the IADMM
algorithm.

The performance of the deblurring algorithms is quantita-
tively measured by means of the objective function (Equations
2 or 3), the Real Error as ‖ · ‖2 of the difference between the
original and deblurred images, the signal-to-noise ratio (SNR)
[22]

SNR(u, u∗) = 10× log10(
‖u− ū‖2

‖u− u∗‖2
), (39)

where u and u∗ denote the original image and the restored
image, respectively, and ū represents the mean of the original
image u, and the residual (res(k, k+ 1) and resi(k, k+ 1)
in the standard and inertial versions, respectively) as described
in [22]:

res(k, k + 1) :=
‖(uk+1, pk+1)− (uk, pk)‖

1 + ‖(uk, pk)‖
,

resi(k, k + 1) :=
‖(uk+1, pk+1)− (ûk, p̂k)‖

1 + ‖(ûk, p̂k)‖
.

(40)

In the tests we do not provide CPU tests as all the algorithms
have a very similar computation cost per iteration (mainly from
the FFT routines). Therefore, there is almost no difference

1http://www.fftw.org/
2http://sipi.usc.edu/database/

between pictures showing iterations or CPU cost, and the
consumed CPU is basically proportional to the respective
number of iterations.

On our first test we use the brain M0 image with a low value
of δ = 0.001 and we show in Figure 2 that the performances
of the ADMM TV1 and TV(1/2) are quite similar in error
and SNR. Therefore, in the rest of comparisons we will just
consider the TV1 method. For the IADMM method the inertial
parameter α in Algorithm 1 is investigated firstly by using
two different values (α = 0.2 and 0.5). The main difference
observed in these tests is that the nonconvex method is more
unstable once reached the maximum precision (at this point the
ADMM TV1 convex method seems to be the more stable with
a quite smooth behaviour). The fastest convergence is observed
using the IADMM (with the largest stepsize value α = 0.5)
method, but when the maximum precision is obtained unstable
behaviour appears. Therefore, using mainly the information
provided by the residual (Eq. (40)), we provide a stop
control criterion (in the same spirit as [22]) that stops the
iterative process at the black points of Figure 2 (d) in the
tests. That is, we stop when the following condition is hold

res(k, k+1) < ε or res(k−1, k) < res(k, k+1). (41)

In the first case the convergence till the desired tolerance
error is obtained, while in the second case the algorithm has
reached its stability limit and the residual grows, behaving
later in an unstable way. Note that the residual is used in the
stop criterion, as it uses known data from the iterations (and
which does not depend on the original image that is unknown).
We remark that the use of stop control techniques avoids the
use of unnecessary iterations, and also to stop at the limit
accuracy of the method. Also, from the pictures we observe
that the IADMM algorithm provides enough precision in a
lower number of iterations. The larger α means faster method,
but at the price of a more unstable method as it can be seen on
Fig. 2(d). On that picture we observe that when the residual
begins to behave chaotically, with sudden increases, it means
that it is advisable to stop the iterative process as considered
in the stop criterion (41) (black dot points on Fig. 2(d)). With
that criterion, the IADMM method seems to be an interesting
option for fast deblurring problems.

To observe more clearly the influence of the parameter α in
Algorithm 1 we perform several tests on the brain M0 image
on Figure 3 for values α = 0.1, 0.2, 0.5, 0.8, 1.0 and 2.0. Note
that this parameter plays a role similar to the stepsize (as it
also occurs to the parameter δ), as it controls the perturbation
at each step. A large value will provide, when the method
works, a quite fast method, but on the other hand it makes the
method more unstable. In fact, from the plot 3(b) we observe
that in this case it would be optimal to use the parameter
value α = 0.8 in combination with the stop criterion, giving
the maximum precision in just 28 iterations. Besides, it is
shown that after the values selected by the stop criterion
the residual begins to oscillate among values that provides
similar error but that generates an unstable behaviour giving
rise to an increment of the error in subsequent iterations (this
instability is delayed when the parameter α decreases, what
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lena (256x256)cameraman (256x256)

5.3.01 (1024x1024) 5.3.02 (1024x1024)

brain (512x512) heart (512x512)

L0

(a)

L1

M0 M1

H1H0

5.1.13 (256x256)Quijote (256x256)

3.2.25 (1024x1024) 1.3.11 (1024x1024)

ruler.512 (512x512) texmos1.p512 (512x512)

L2 L3

M2 M3

H3H2

Fig. 1: Original images (some of them from USC-SIPI image database) in low (L), medium (M) and hight-resolution (H).
(L0) Cameraman (256 × 256); (L1) Lena (256 × 256); (L2) “El Quijote” (256 × 256); (L3) 5.1.09 (256 × 256); (M0) Brain
(512×512); (M1) Heart (512×512); (M2) ruler.512 (512×512); (M3) texmos1.p512 (512×512); (H0) 5.3.01 (1024×1024);
(H1) 5.3.02 (1024× 1024); (H2) 3.2.25 (1024× 1024); (H3) 1.3.11 (1024× 1024).

is expected because the increment is smaller, as the vertical
lines connecting the error and residual plots show).

The influence of the penalty parameter δ is also quite
relevant, but a detailed analysis is out of the scope of this
paper. On the Figure 4 we show the evolution of the residual
using two values of α = 0.2, 0.5 and several values of the
parameter δ = 0.001, 0.01, 0.1, 1 and 10. We observe that low
values of the penalty parameter δ gives a lower residual, but
the error is lower for large δ providing a faster convergence,
and it has a big effect on the empirical performance of the
methods as shown in [33], but it remains to study optimal
combinations of the parameters δ and α and suitable criteria
for an automatic selection (this will be part of the next steps
in our study of these methods).

On Figure 5, we present the original medium resolution
brain M0 image, the blurred one using, as indicated, a con-
volution with Gaussian kernel, and the results of the IADMM
deblurring images using two error tolerances (ε = 5 × 103,
5 × 104) in the stop criterion (41). We can see that in both
cases the quality of the recovered image is visually good.

A more detailed analysis is shown on Table II, where we
present for the IADMM (α = 0.5 and 0.2) and the ADMM

(TV1) methods (we do not show results for the TV(1/2) as
they are quite similar to those of the TV1 ones), the iteration
number, real error (ERROR), SNR, the residual (RES) and the
efficiency rates of the IADMM (α = 0.5) method over the
two other ones, I2/I1 and I3/I1, for different values of
the tolerance ε and using a small value of δ = 0.001. In all
the methods we have used the same values of the parameters
and a similar stop criterion (41) with the respective definition
of the residual (Eqn. (40)). From the tests, the inertial IADMM
nonconvex methods are the fastest, as expected, but also
with a more unstable behaviour, also as expected due to the
nonconvex version of the methods. Note that from Figure 2 the
ADMM TV1 and TV(1/2) perform similarly for low δ, but if
we make simulations small differences appear in medium-high
resolution, obtaining for the M1 image the TV1 method 113
iterations and a ratio 2.26, but the TV(1/2) 99 iterations and a
ratio 1.98; and for the H0 image the TV1 uses 110 iterations
and a ratio 2.75, but the TV(1/2) 81 iterations and a ratio 2.03.
That is, the nonconvex TV(1/2) may perform better in some
circumstances, but the instability may also appear. In case of
using larger values of the parameter δ, as the convergence
theorems suggest, all the methods are much faster, giving a
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deblurring results for δ = 0.001, ε = 0.005

IADMM (α = 0.5) IADMM (α = 0.2) ADMM(TV1)
IMG I1 ERROR SNR RES I2 ERROR SNR RES I2/I1 I3 ERROR SNR RES I3/I1
L0 4 17.4 11.1 4.59e-03 6 17.4 11.1 4.62e-03 1.50 7 17.6 11.0 4.80e-03 1.75
L1 5 16.7 10.0 4.67e-03 8 16.5 10.1 4.60e-03 1.60 9 16.8 9.9 4.95e-03 1.80
L2 2 19.4 8.7 4.36e-03 2 19.9 8.5 4.69e-03 1.00 2 20.2 8.3 4.88e-03 1.00
L3 2 16.6 13.2 3.01e-03 2 17.1 13.0 3.25e-03 1.00 2 17.9 12.6 3.67e-03 1.00
M0 8 30.6 13.8 4.50e-03 13 30.4 13.8 4.67e-03 1.62 16 30.6 13.8 4.88e-03 2.00
M1 9 28.5 13.7 4.33e-03 14 28.7 13.6 4.86e-03 1.56 18 28.5 13.7 4.78e-03 2.00
M2 6 36.6 12.8 3.48e-03 7 40.1 12.0 4.82e-03 1.17 9 39.9 12.1 4.86e-03 1.50
M3 7 35.5 12.5 4.34e-03 11 35.6 12.4 4.50e-03 1.57 13 36.3 12.3 4.97e-03 1.86
H0 8 71.4 10.3 4.50e-03 13 71.0 10.3 4.65e-03 1.62 16 71.4 10.3 4.84e-03 2.00
H1 9 69.2 6.3 4.47e-03 14 69.7 6.2 4.96e-03 1.56 18 69.2 6.3 4.89e-03 2.00
H2 7 74.2 3.3 4.16e-03 10 76.2 3.0 4.87e-03 1.43 13 75.5 3.1 4.77e-03 1.86
H3 6 77.4 1.5 4.08e-03 8 80.8 1.1 4.87e-03 1.33 11 78.9 1.3 4.48e-03 1.83

deblurring results for δ = 0.001, ε = 0.001

IADMM (α = 0.5) IADMM (α = 0.2) ADMM(TV1)
IMG I1 ERROR SNR RES I2 ERROR SNR RES I2/I1 I3 ERROR SNR RES I3/I1
L0 19 12.3 14.1 9.96e-04 32 12.2 14.2 9.75e-04 1.68 40 12.2 14.2 9.82e-04 2.11
L1 22 12.0 12.9 9.92e-04 37 11.8 13.0 9.69e-04 1.68 46 11.8 13.0 9.82e-04 2.09
L2 14 13.2 12.0 9.86e-04 23 13.1 12.1 1.00e-03 1.64 29 13.1 12.1 9.99e-04 2.07
L3 11 12.2 15.9 9.10e-04 17 12.2 15.9 9.76e-04 1.55 21 12.3 15.8 9.96e-04 1.91
M0 26 21.7 16.8 9.84e-04 43 21.5 16.8 9.78e-04 1.65 54 21.4 16.9 9.79e-04 2.08
M1 29 20.3 16.6 9.91e-04 48 20.1 16.7 9.80e-04 1.66 60 20.1 16.7 9.86e-04 2.07
M2 16 27.2 15.4 9.52e-04 26 27.1 15.4 9.84e-04 1.62 33 27.0 15.5 9.79e-04 2.06
M3 24 25.1 15.5 9.66e-04 39 25.0 15.5 9.80e-04 1.62 48 25.1 15.5 1.00e-03 2.00
H0 28 50.7 13.2 9.92e-04 46 50.3 13.3 9.89e-04 1.64 58 50.2 13.3 9.85e-04 2.07
H1 33 48.5 9.4 9.82e-04 53 48.5 9.4 9.99e-04 1.61 67 48.3 9.4 9.91e-04 2.03
H2 22 54.3 6.0 9.88e-04 36 53.9 6.0 9.98e-04 1.64 46 53.6 6.1 9.80e-04 2.09
H3 18 57.3 4.1 9.43e-04 29 57.2 4.1 9.81e-04 1.61 36 57.4 4.1 9.99e-04 2.00

deblurring results for δ = 0.001, ε = 0.0005

IADMM (α = 0.5) IADMM (α = 0.2) ADMM(TV1)
IMG I1 ERROR SNR RES I2 ERROR SNR RES I2/I1 I3 ERROR SNR RES I3/I1
L0 36 10.8 15.2 4.94e-04 59 10.8 15.3 4.92e-04 1.64 73 10.8 15.3 4.99e-04 2.03
L1 42 10.5 14.0 4.96e-04 68 10.5 14.1 4.99e-04 1.62 86 10.5 14.1 4.95e-04 2.05
L2 27 11.5 13.2 4.91e-04 44 11.4 13.3 4.95e-04 1.63 55 11.4 13.3 4.97e-04 2.04
L3 21 10.6 17.2 4.80e-04 34 10.5 17.2 4.88e-04 1.62 42 10.6 17.1 4.97e-04 2.00
M0 49 18.2 18.3 4.99e-04 80 18.1 18.3 4.96e-04 1.63 100 18.1 18.3 4.97e-04 2.04
M1 50 17.4 17.9 5.50e-04 79 17.5 17.9 5.64e-04 1.58 113 16.8 18.2 4.96e-04 2.26
M2 34 22.1 17.2 5.83e-04 54 22.1 17.2 5.90e-04 1.59 158 17.8 19.1 5.00e-04 4.65
M3 41 22.0 16.6 6.65e-04 65 22.0 16.6 6.74e-04 1.59 401 16.3 19.2 5.00e-04 9.78
H0 40 45.8 14.1 6.73e-04 64 45.8 14.1 6.85e-04 1.60 110 41.8 14.9 4.96e-04 2.75
H1 68 39.5 11.1 4.99e-04 108 39.6 11.1 5.05e-04 1.59 138 39.3 11.2 4.97e-04 2.03
H2 42 45.3 7.6 4.90e-04 67 45.3 7.6 4.99e-04 1.60 84 45.3 7.6 4.99e-04 2.00
H3 32 48.8 5.5 4.91e-04 52 48.6 5.5 4.94e-04 1.62 65 48.7 5.5 4.96e-04 2.03

TABLE II: Deblurring results for a small value of δ (δ = 0.001) using different values of the tolerance ε. Iteration number (I1,
I2, I3), Real error (ERROR), SNR, Residual (RES) and efficiency rates I2/I1 and I3/I1 using the IADMM (α = 0.5
and 0.2) and the ADMM (TV1) methods applied to all the 12 test images (IMG).

better performance as shown on Table III for δ = 10. Finally,
we present on Table IV some results obtained by changing
the value of the parameter δ and with the fixed value of the
tolerance ε = 0.01. Again, the IADMM (α = 0.5) method
presents the best performance. Therefore, globally, the inertial
IADMM version seems to be an interesting option, being the
fastest one.

As above commented, how to select optimal combinations
of the parameters δ and α, the use on other types of blur,
development of suitable criteria for automatic selection of all
the parameters and so on, remains a research issue, but these

goals are out of the scope of this article.

VI. CONCLUSION

In this paper, a more efficient nonconvex inertial alternating
minimization algorithm (IADMM) is developed for solving
the Total Variation model for image deblurring. The proposed
scheme is based on using the inertial proximal strategy on
nonconvex ADMM methods. By the using the Kurdyka-
Łojasiewicz property, we prove the convergence of the algo-
rithm under several reasonable assumptions. Numerical ex-
periments demonstrate that the proposed algorithm overall
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deblurring results for δ = 10, ε = 0.01

IADMM (α = 0.5) IADMM (α = 0.2) ADMM(TV1)
IMG I1 ERROR SNR RES I2 ERROR SNR RES I2/I1 I3 ERROR SNR RES I3/I1
L0 5 3.0 26.5 4.72e-01 5 2.8 27.1 4.31e-01 1.00 10 6.2 20.0 9.56e-02 2.00
L1 3 3.3 24.1 5.38e-01 5 3.2 24.3 4.62e-01 1.67 10 5.8 19.2 9.48e-02 3.33
L2 1 3.8 22.9 8.22e-01 3 3.7 23.0 5.13e-01 3.00 10 9.3 15.0 9.68e-02 10.00
L3 6 1.4 34.6 2.41e-01 7 1.3 35.5 2.00e-01 1.17 10 7.0 20.7 9.86e-02 1.67
M0 3 6.2 27.6 5.79e-01 5 6.0 28.0 4.98e-01 1.67 10 7.0 26.5 9.74e-02 3.33
M1 7 4.3 30.2 4.40e-01 7 3.9 31.0 4.12e-01 1.00 10 5.4 28.1 9.78e-02 1.43
M2 4 3.0 34.5 1.50e-01 4 3.0 34.7 1.00e-01 1.00 10 20.6 17.8 9.90e-02 2.50
M3 1 14.6 20.2 8.94e-01 1 14.5 20.2 8.68e-01 1.00 10 31.7 13.4 9.64e-02 10.00
H0 5 13.8 24.5 4.96e-01 5 12.6 25.3 4.44e-01 1.00 10 15.2 23.7 9.52e-02 2.00
H1 3 16.6 18.7 5.73e-01 5 16.2 18.9 4.98e-01 1.67 10 20.4 16.9 9.47e-02 3.33
H2 5 15.7 16.8 5.11e-01 5 14.6 17.4 4.57e-01 1.00 10 20.7 14.4 9.29e-02 2.00

TABLE III: Deblurring results for a large value of δ (δ = 10) using the tolerance ε = 0.01. Iteration number (I1, I2, I3),
Real error (ERROR), SNR, Residual (RES) and efficiency rates I2/I1 and I3/I1 using the IADMM (α = 0.5 and 0.2) and
the ADMM (TV1) methods applied to all the 12 test images (IMG).

deblurring results for ε = 0.01 on M0 image

IADMM (α = 0.5) IADMM (α = 0.2) ADMM(TV1)
δ I1 ERROR SNR RES I2 ERROR SNR RES I2/I1 I3 ERROR SNR RES I3/I1

0.001 6 33.5 13.0 7.40e-03 8 35.3 12.5 8.70e-03 1.33 9 34.0 12.8 7.50e-03 1.50
0.01 4 19.1 17.9 8.88e-03 4 21.2 16.9 9.82e-03 1.00 5 20.0 17.4 7.68e-03 1.25
0.10 3 11.2 22.5 2.39e-02 4 11.4 22.3 2.31e-02 1.33 5 10.8 22.8 2.32e-02 1.67
1.00 1 8.0 25.4 2.25e-01 2 7.5 26.0 2.03e-01 2.00 3 7.3 26.3 2.20e-01 3.00

10.00 3 6.2 27.6 5.79e-01 5 6.0 28.0 4.98e-01 1.67 10 7.0 26.5 9.74e-02 3.33

TABLE IV: Deblurring results for several values of parameter δ using the tolerance ε = 0.01 on M0 image. Iteration number
(I1, I2, I3), Real error (ERROR), SNR, Residual (RES) and efficiency rates I2/I1 and I3/I1 using the IADMM
(α = 0.5 and 0.2) and the ADMM (TV1) methods.

outperforms the widely used augmented Lagrangian ADMM
methods, being a fast option, although it can be unstable
for high precision. This instability is easily controlled via a
suitable stop control criteria.

APPENDIX A: PROOF OF LEMMA 2

Direct computation yields

T ∗T =

(
(IN ⊗D)(IN ⊗D)∗

(D ⊗ IN )(D ⊗ IN )∗

)
. (42)

Then, we have

λmin(T ∗)2 = λmin(T T ∗) = (43)

min
{
λmin

(
(IN ⊗D)(IN ⊗D)∗

)
, λmin

(
(D ⊗ IN )(D ⊗ IN )∗

)}
.

With Lemma 7.2 in [44], we obtain

λmin

(
(IN ⊗D)(IN ⊗D)∗

)
= λmin

(
(D ⊗ IN )(D ⊗ IN )∗

)
= λmin(DD∗). (44)

Noting DD∗ is a symmetric tridiagonal matrix

DD∗ =


2 −1

−1 2
. . .

. . . . . . −1
−1 2

 , (45)

and using the result in [45],

λmin(DD∗) = 2 + 2 cos

(
π − π

N

)
= 4 cos2

(
π

2
− π

2N

)
= 4 sin2

(
π

2N

)
, (46)

we obtain λmin(T ∗) ≥ 2 sin

(
π

2N

)
. Now, taking into account

that T ∗ is full row-rank,

‖T ∗x‖ ≥ λmin(T ∗)‖x‖ ≥ 2 sin

(
π

2N

)
‖x‖. (47)

APPENDIX B: PROOF OF LEMMA 4

As the point uk+1 is the minimization of Lϕδ (u, vk+1, p̂k),
then the optimization condition yields

K∗(Kuk+1 − f)− T ∗p̂k + δT ∗(T uk+1 − vk+1) = 0. (48)

Therefore,

K∗(Kuk+1 − f)− T ∗pk+1 = 0, (49)

and replacing k + 1 by k

K∗(Kuk − f)− T ∗pk = 0. (50)

Subtracting (49) and (50), and using Lemma 2,

‖pk − pk+1‖ ≤ θ‖T ∗(pk − pk+1)‖
= θ‖K∗K(uk+1 − uk‖ ≤ θ‖K‖22 · ‖uk+1 − uk‖. (51)
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Fig. 2: The evolution curves of the (a) objective function, (b)
the Real Error, (c) the signal-to-noise ratio (SNR) and (d) the
Residual, for the brain M0 image versus the iteration number.
All the simulations have been done using the ADMM TV1 and
TV(1/2) algorithms and the IADMM algorithm using α = 0.2
and 0.5, and δ = 0.001.
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Fig. 3: The evolution curves of (a) the Real Error and
(b) the Residual, for the brain M0 image versus the it-
eration number. All the simulations have been done using
the IADMM algorithm with several values of the parameter
α = 0.1, 0.2, 0.5, 0.8, 1.0 and 2.0 and δ = 0.001.

APPENDIX C: PROOF OF LEMMA 5

Note that vk+1 is the minimizer of Lϕδ (uk, v, p̂k) with
respect to the variable v. Then we have:

Lϕδ (uk, vk+1, p̂k) ≤ Lϕδ (uk, vk, p̂k). (52)

In (24), we have obtained

Lϕδ (u
k+1, vk+1, p̂k) +

ν

2
‖uk+1 − uk‖2 ≤ Lϕδ (u

k, vk+1, p̂k). (53)

By direct calculations, we obtain

Lϕδ (u
k+1, vk+1, pk+1)

= Lϕδ (u
k+1, vk+1, p̂k) + 〈p̂k − pk+1, T uk+1 − vk+1〉

= Lϕδ (u
k+1, vk+1, p̂k) +

1

δ
‖p̂k − pk+1‖22

≤ Lϕδ (u
k+1, vk+1, p̂k) +

2

δ
‖p̂k − pk‖22 +

2

δ
‖pk − pk+1‖22

≤ Lϕδ (u
k+1, vk+1, p̂k) +

2α2

δ
‖pk − pk−1‖22 +

2

δ
‖pk − pk+1‖22

≤ Lϕδ (u
k+1, vk+1, p̂k) +

2θ2‖K‖42
δ

‖uk+1 − uk‖2

+
2α2θ2‖K‖42

δ
‖uk − uk−1‖2. (54)
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Fig. 4: The evolution curves of (a) the Real Error and (b)
the Residual, for the brain M0 image versus the iteration
number. All the simulations have been done using the IADMM
algorithm with several values of the parameters α = 0.2, 0.5
and δ = 0.001, 0.01, 0.1, 1 and 10.

and

Lϕδ (u
k, vk, p̂k)

= Lϕδ (u
k, vk, pk) + 〈pk − p̂k, T uk − vk〉

= Lϕδ (u
k, vk, pk) +

1

δ
〈pk − p̂k, pk+1 − p̂k〉

≤ Lϕδ (u
k, vk, pk) +

‖pk − p̂k‖2

2δ
+
‖pk+1 − p̂k‖2

2δ

≤ Lϕδ (u
k, vk, pk) +

3α2‖pk − pk−1‖2

2δ
+
‖pk+1 − pk‖2

δ

≤ Lϕδ (u
k, vk, pk) +

θ2‖K‖42
δ

‖uk+1 − uk‖2

+
3α2θ2‖K‖42

2δ
‖uk − uk−1‖2. (55)

ORIGINAL IMAGE: brain BLURRED IMAGE: brain(a) (b)

IADMM (    =0.005)(c) (d)ε IADMM (    =0.0005)ε

Fig. 5: Deblurred images at different stages of the IADMM
method for brain M0 image. (a) Original image; (b) Blurred
image; (c) Recovery by IADMM using error tolerance ε =
5×10−3; (d) Recovery by IADMM using error tolerance ε =
5× 10−4.

Combining the above equations, we obtain

Lϕδ (x
k+1, yk+1, pk+1) +

ν

2
‖uk+1 − uk‖2

≤ Lϕδ (x
k, yk, pk) +

3θ2‖K‖42
δ

‖uk+1 − uk‖2

+
7α2θ2‖K‖42

2δ
‖uk − uk−1‖2.

Thus, taking into account the definition of F (30), we have

F (wk)− F (wk+1) (56)

≥
[
ν

2
−
(
3θ2‖K‖42

δ
+

7α2θ2‖K‖42
2δ

)]
‖uk+1 − uk‖2.

Now, using the condition (26) and the definition (33) of ĥ, we
obtain the descent result given in Eq. (32).

The boundness of {(uk, vk, pk)}k=0,1,2,... implies the
boundness of {wk}k=0,1,2,..., and the continuity of F im-
plies that {F (wk)}k=0,1,2,... is bounded. From the above
proven result Eq. (32), F (wk) is decreasing. Thus, the se-
quence {F (wk)}k=0,1,2,... is convergent, i.e., limk[F (wk) −
F (wk+1)] = 0. Therefore, from (32), we have

lim
k
‖uk+1 − uk‖2 ≤ lim

k

√
F (wk)− F (wk+1)

ĥ
= 0, (57)

which indicates limk ‖pk+1−pk‖ = 0 due to (29). The scheme
of updating pk+1 gives us limk ‖vk+1 − vk‖ = 0.
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APPENDIX D: PROOF OF LEMMA 6

From (50), we derive

‖pk‖2 ≤ θ2‖K‖42 · ‖Kuk − f‖2. (58)

By direct calculations, we obtain

Lϕδ (u
k, vk, pk) =

1

2
‖Kuk − f‖2 + σ‖vk‖ϕ

− 〈pk, T uk − vk〉+ δ

2
‖T uk − vk‖2

=
1

2
‖Kuk − f‖2 + σ‖vk‖ϕ

+
δ

2

∥∥∥∥T uk − vk − pk

δ

∥∥∥∥2

− ‖p
k‖2

2δ

≥ 1

2
‖Kuk − f‖2 + σ‖vk‖ϕ +

δ

2

∥∥∥∥T uk − vk − pk

δ

∥∥∥∥2

− θ2‖K‖42
2δ

‖Kuk − f‖2

=

(
1

2
− θ2‖K‖42

2δ

)
‖Kuk − f‖2

+
δ

2

∥∥∥∥T uk − vk − pk

δ

∥∥∥∥2

+ σ‖vk‖ϕ.

Thus, we have

F (wk) ≥
(

1

2
− θ2‖K‖42

2δ

)
‖Kuk − f‖2

+
δ

2

∥∥∥∥T uk − vk − pk

δ

∥∥∥∥2

+ σ‖vk‖ϕ.

From Lemma 5, {F (wk)}k=0,1,2,... is bounded. This means,
using the definition of F (wk), the boundedness of se-
quences {‖vk‖ϕ}k=0,1,2,..., {T uk − vk − pk

δ }k=0,1,2,... and
{Kuk − f}k=0,1,2,.... Taking into account the coercivity of
ϕ, {vk}k=0,1,2,... is bounded. Now, taking into account (58),

{pk}k=0,1,2,... is bounded. Then,
{(

T
K

)
uk
}
k=0,1,2,...

is

bounded, and using the reversibility of
(
T
K

)
, we obtain

that {uk}k=0,1,2,... is bounded. Therefore, all the components
of the sequence {wk}k=0,1,2,... are bounded, and so the result
is proved.

APPENDIX E: PROOF OF LEMMA 7

For the vk+1 component, we have

−p̂k + δ(T uk − vk+1) ∈ ∂σ‖vk+1‖ϕ. (59)

Easy computations on the new defined term sk+1
v give

sk+1
v := (1 + δ)(pk+1 − p̂k) ∈ ∂vF (wk+1). (60)

Direct calculations hold

‖sk+1
v ‖ ≤ (1 + δ)‖pk+1 − pk‖+ (1 + δ)‖pk − p̂k‖

= (1 + δ)‖pk+1 − pk‖+ α(1 + δ)‖pk − pk−1‖
≤ (1 + δ)θ‖K‖22‖uk+1 − uk‖

+ α(1 + δ)θ‖K‖22‖uk − uk−1‖.

Thus, we obtain that

‖sk+1
v ‖ ≤ γv(‖uk+1 − uk‖+ ‖uk − uk−1‖), (61)

where the parameter γv is given by

γv = max

{
(1 + δ)θ‖K‖22, α(1 + δ)θ‖K‖22

}
.

For the uk+1 component, we have

T ∗p̂k − δT ∗(T uk+1 − vk+1) = K∗(Kuk+1 − f). (62)

With (62), we have the new term sk+1
u

sk+1
u := T ∗p̂k − T ∗pk+1 +

7α2θ2‖K‖42
2δ

(uk+1 − uk)

∈ ∂uF (wk+1). (63)

It is easy to obtain that

‖sk+1
u ‖ ≤ γu(‖uk+1 − uk‖+ ‖uk − uk−1‖), (64)

where

γu = max

{
θ‖T ‖2‖K‖22 +

7α2θ2‖K‖42
2δ

, αθ‖T ‖2‖K‖22
}
.

Obviously, it holds

sk+1
p := −T uk+1 + vk+1 ∈ ∂pF (wk+1). (65)

From the scheme, we can easily see

‖sk+1
p ‖ =

1

δ
‖pk+1 − p̂k‖ ≤ ‖p

k+1 − pk‖
δ

+
α‖pk − pk−1‖

δ
≤ γp(‖uk+1 − uk‖+ ‖uk − uk−1‖),

where γp = max

{
θ‖K‖22
δ ,

αθ‖K‖22
δ

}
. Therefore, we have

‖∇xF (wk+1)‖ ≤ 7α2θ2‖K‖42
δ

(‖dk+1−dk‖+‖uk−uk−1‖). (66)

Letting sk+1 := (sk+1
v , sk+1

u , sk+1
p ,∇xF (wk+1)), we have

sk+1 ∈ ∂F (wk+1). With all the above equations (61), (64),
(65), and (66), we obtain the global bound

‖sk+1‖ ≤ (γu + γv + γp +
7α2θ2‖K‖42

δ
)

× (‖uk+1 − uk‖+ ‖uk − uk−1‖). (67)

Denoting γ = γu + γv + γp +
7α2θ2‖K‖42

δ , and then, we finish
the proof.

APPENDIX F: PROOF OF THEOREM 1

For any cluster point (u∗, v∗, p∗), there exists {kj}j=0,1,2,...

such that limj(u
kj , vkj , pkj ) = (u∗, v∗, p∗). Then, from

Lemma 5, we have that

lim
j

(ukj+1, vkj+1, pkj+1) = lim
j

(ûkj , v̂kj , p̂kj ) = (u∗, v∗, p∗).

From the scheme of Algorithm 1, we have the following
conditions

−p̂kj + δ(T ukj − vkj+1) ∈ ∂σ‖vkj+1‖ϕ,
T ∗p̂kj − δT ∗(T ukj+1 − vkj+1) = K∗(Kukj+1 − f),

pkj+1 = p̂kj − δ(T ukj+1 − v̂kj+1).
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Letting j → +∞, with Proposition 1, we have

−p∗ ∈ ∂σ‖v∗‖ϕ,
T ∗p∗ = K∗(Ku∗ − f),

T u∗ = v∗.

Finally, from Proposition 2, we obtain that (u∗, v∗, p∗) is a
critical point of Lϕδ .

APPENDIX G: PROOF OF LEMMA 8
(1) From Lemma 6 the sequences {(uk, vk, pk)}k=0,1,2,...

and {wk}k=0,1,2,... are bounded. Thus, M is nonempty.
Assume that w∗ ∈ M, then from the definition there ex-
ists a subsequence wki = (uki , vki , pki , uki−1) → w∗ =
(u∗, v∗, p∗, u•). In that case, from Lemma 5, we also have
uki−1 → u∗. That is also u• = u∗, i.e., w∗ = (u∗, v∗, p∗, u∗).
Besides, from Lemma 7 and Lemma 5, we have ski ∈
∂F (wki) and ski → 0. Finally, Proposition 1 indicates that
0 ∈ ∂F (w∗), i.e. w∗ ∈ crit(F ).

(2) This item follows as a consequence of the definition of
the limit point set (Definition 4).

(3) In Eq. (53), by taking limits on i, we obtain
lim supi ‖vki‖ϕ ≤ ‖v∗‖ϕ. And with the closedness of ϕ, we
have the other bound lim infi ‖vki‖ϕ ≥ ‖v∗‖ϕ. That means
limi ‖vki‖ϕ = ‖v∗‖ϕ. Using the continuity of the rest of
functions that defines F , we have limi F (wki) = F (w∗).
On the other hand, Lemma 5 indicates {F (wk)}k=0,1,2,...

is decreasing. Noting the boundedness of {F (wk)}k=0,1,2,...,
this sequence has a lower bound. Thus, {F (wk)}k=0,1,2,... is
convergent. And then, we have limk F (wk) = limi F (wki) =
F (w∗).

APPENDIX H: PROOF OF THEOREM 2
From Lemma 8, F is constant on M. Let w∗ =

(u∗, v∗, p∗, x∗) be a stationary point of {wk}k=0,1,2,.... Then,
from the definition of wk we have u∗ = x∗. Also from
Lemma 8, we have dist(wk,M) < ε and F (wk) < F (w∗)+η
for any k > K, for some K. Hence, from Lemma 1, we have

dist(0, ∂F (wk))ρ′(F (wk)− F (w∗)) ≥ 1, (68)

that together with Lemma 7 give that
1

ρ′(F (wk)− F (w∗))
≤ dist(0, ∂F (wk))

≤ γ(‖uk+1 − uk‖+ ‖uk − uk−1‖). (69)

Then, the concavity of ρ yields that

F (wk)− F (wk+1)

= F (wk)− F (w∗)− [F (wk+1)− F (w∗)]

≤ ρ[F (wk)− F (w∗)]− ρ[F (wk+1)− F (w∗)]

ρ′[F (wk)− F (w∗)]

≤ γ(‖uk+1 − uk‖+ ‖uk − uk−1‖)
× {ρ[F (wk)− F (w∗)]− ρ[F (wk+1)− F (w∗)]}. (70)

Using Lemma 7, we have

ĥ‖uk+1 − uk‖2 ≤ γ(‖uk+1 − uk‖+ ‖uk − uk−1‖)
× {ρ[F (wk)− F (w∗)]− ρ[F (wk+1)− F (w∗)]}, (71)

which is equivalent to

ĥ

γ
‖uk+1 − uk‖ ≤ 2 · 1

2

√
ĥ

γ

√
‖uk+1 − uk‖+ ‖uk − uk−1‖

×
√
ρ[F (wk)− F (w∗)]− ρ[F (wk+1)− F (w∗)]. (72)

Using the Schwartz’s inequality, we then derive that

ĥ

γ
‖uk+1 − uk‖ ≤ ĥ

4γ
(‖uk+1 − uk‖+ ‖uk − uk−1‖)

+ {ρ[F (wk)− F (w∗)]− ρ[F (wk+1)− F (w∗)]}. (73)

Summing (73) from K to K + j yields that

ĥ

2γ

K+j−2∑
k=K

‖uk+1 − uk‖+
3ĥ

4γ
‖uK+j+1 − uK+j‖

≤ ρ[F (wK)− F (w∗)]− ϕ[F (wK+j+1)− F (w∗)]

+
ĥ

4γ
‖uK−1 − uK−2‖.

Letting j → +∞, and applying Lemma 5, we have

ĥ

2γ

+∞∑
k=K

‖uk+1 − uk‖ < +∞. (74)

Then, {uk}k=0,1,2,... is convergent. And noting that u∗

is a stationary point of {uk}k=0,1,2,... we also have that
{uk}k=0,1,2,... converges to u∗. With (29), the convergence
of {uk}k=0,1,2,... indicates the convergence of {pk}k=0,1,2,....
And then the sequence {p̂k}k=0,1,2,... is also convergent. With
the identity pk+1 = p̂k − δ(T uk+1 − vk+1), {vk}k=0,1,2,...

is convergent. That means (uk, vk, pk) converges to some
point (u∗, v∗, p∗). Finally, from Theorem 1, we have that
(u∗, v∗, p∗) is a critical point of Lϕδ .
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