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Path-Based Dictionary Augmentation: A Framework
for Improving k-Sparse Image Processing
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Abstract— We have previously shown that augmenting
orthogonal matching pursuit (OMP) with an additional step in
the identification stage of each pursuit iteration yields improved
k-sparse reconstruction and denoising performance relative to
baseline OMP. At each iteration a “path” or geodesic, is generated
between the two dictionary atoms that are most correlated with
the residual and from this path a new atom that has a greater
correlation to the residual than either of the two bracketing
atoms is selected. Here, we provide new computational results
illustrating improvements in sparse coding and denoising on
canonical datasets using both learned and structured dictionaries.
The two methods of constructing a path are investigated for
each dictionary type: the Euclidean geodesic formed by a linear
combination of the two atoms and the 2-Wasserstein geodesic
corresponding to the optimal transport map between the atoms.
We prove here the existence of a higher-correlation atom in the
Euclidean case under assumptions on the two bracketing atoms
and introduce algorithmic modifications to improve the likelihood
that the bracketing atoms meet those conditions. Although,
we demonstrate our augmentation on OMP alone, in general
it may be applied to any reconstruction algorithm that relies
on the selection and sorting of high-similarity atoms during an
analysis or identification phase.

Index Terms— Matching pursuit, path augmentation, image
denoising, image reconstruction, k-Sparse.

I. INTRODUCTION

AFREQUENT goal within signal/image processing is to
reconstruct or compress the information contained in

a signal by representing it as a linear combination of a set
of reference signals. In the most general case, this reference
set is a (possibly overcomplete) dictionary composed of
signal atoms drawn from some underlying signal model.
“Good” models are those that can sparsely represent signals
as linear combinations of relatively few atoms drawn from
the dictionary. Signals that can be represented to within
some acceptable error tolerance using at most k atoms are
defined as k-sparse relative to that dictionary. Reconstruction
algorithms designed to decompose the signal into a linear
combination of atoms can be designed to terminate based on
an error threshold or a fixed degree of sparsity.

For fixed sparsity, consideration of all possible atom com-
binations of that order is computationally intractable other
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than for a limited set of problems. A popular and success-
ful approach to this combinatorial optimization problem is
a greedy algorithm called Matching Pursuit (MP) [3], [21].
Standard MP begins by greedily searching for the best
reconstruction produced from a single atom where “best” is
determined by the magnitude of the inner product between
the signal and the dictionary atoms. This optimal atom
is scaled by the length of the projection of the signal
onto the space spanned by the optimal atom and is then
subtracted from the original signal to yield a residual.
The residual image is then fit in the same greedy way,
updated, and the process repeats such that k iterations of MP
yields a k-sparse representation with some associated final
error/residual Rk .

One problem persists, however, because even if the under-
lying signal model could perfectly represent the signal the
atoms must be discretely sampled from the model and will in
general fail to represent any given signal component exactly.
For example, a 1D sinusoidal signal composed of a single tone
is well-represented by a sinusoidal model, but if the frequency
of the signal falls between the discrete Fourier frequencies of
a given Fourier basis then the number of non-zero Fourier
coefficients can actually be quite large [22].

This problem of “basis mismatch” has been considered
in the literature [4], [6], [10], [28], [29] and mitigated with
some success in the case of 1D sinusoidal signals where
a search over the frequencies between the two most simi-
lar Fourier basis elements can find the exact representative
element [25]. But reconstruction is more difficult for images
because relatively few local image regions can be exactly
represented by an atom from a single structured (parameter-
ized) dictionary (e.g., Fourier, wavelet). Unstructured, learned
dictionaries constructed from ensembles of images generally
produce higher-sparsity representations but still suffer from
basis mismatch and in such cases there is no model parameter
that one can modify to find some better atom residing between
the two atoms with which the image patch has the largest
correlation.

Overcomplete dictionaries attempt to reduce basis mismatch
error by increasing the number of signal exemplars such that
any given signal is more likely to be well-represented by
at least one member of the dictionary. Unfortunately, there
is a trade-off between the degree of overcompleteness and
the uniqueness required to ensure sparsity [8]. In addition
to increasing the computational burden at each identification
stage, increasing overcompleteness essentially reduces the
likelihood that there will be just a single representative atom
and thus suffers from diminishing returns.
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We introduced “path-based” augmentation of the match-
ing pursuit algorithm in [12], [13] as a compromise between
orthonormal bases and overcomplete dictionaries. In essence,
this augmentation can be applied to any reconstruction algo-
rithm that relies on the selection and sorting of high-similarity
atoms during an analysis or identification phase. We consid-
ered two methods for constructing better image exemplars
from a learned dictionary as a means of mitigating basis
mismatch: a linear combination of the two most-correlated
atoms (Euclidean geodesic) and a construction relying on
the optimal transport map between said atoms (2-Wasserstein
geodesic) [16]. Computational results were provided for
denoising and k-sparse reconstruction using learned dictionar-
ies on a specific short-wave infrared (SWIR) dataset [13] and
for improved k-sparse reconstruction of faces [12] using an
open-source eigenface dataset [1].

Here, we illustrate that augmenting MP with our path-based
modification leads to better general image reconstruction
and denoising performance relative to traditional orthogonal
matching pursuit (OMP) on canonical datasets using both
structured (DCT) and unstructured learned (kSVD) dictionar-
ies. Although learned dictionaries are expected to perform
better than their structured cousins, structured dictionaries
are of interest in superresolution and compressive sensing
applications where high-resolution datasets are difficult and/or
expensive to acquire (e.g., infrared images of Navy interest).

In addition, we provide a proof of the existence of an atom
on the Euclidean geodesic that is maximally similar to the
signal as long as certain assumptions regarding the endpoints
of the geodesic are satisfied. Based on these results, we modify
the algorithm to increase the probability that said conditions
will indeed be satisfied during each analysis stage of the
algorithm.

We begin with a general description of path-based aug-
mentation and detail the algorithm as it applies to OMP in
Section 2. The proof of the existence of an atom on the
Euclidean geodesic that is maximally similar to the signal is
provided in Section 3. Numerical experiments and their results
are presented in Section 4 before concluding with a discussion
in Section 5.1

II. PATH-AUGMENTED MATCHING PURSUIT

A. Orthogonal Matching Pursuit

As previously mentioned, MP is a greedy search based
approach to solving the combinatorial optimization problem
to identify the best sparse representation. Due to the suc-
cess of the original algorithm several variations of MP have
been developed [5], [7], [9], [20], [23], [24], [26], [30], [32].
In general each of these variations consist of three steps. The
identification step in an iteration of an MP-based algorithm
refers to determining which atom(s) is(are) closest to the
current residual. Augmentation is used to describe the step of

1The numerical results for the Maritime imagery will be appearing in the
proceedings of a workshop in the 2018 IEEE Conference on Computer Vision
and Pattern Recognition [13]. The algorithm will also be appearing in the
proceedings of the 2018 European Signal Processing Conference [12]. All
theoretical results are novel and have not appeared in previously published or
currently accepted papers.

Algorithm 1 Orthogonal Matching Pursuit

adding the atom(s) identified to the support of the reconstruc-
tion. Finally, each pursuit-type algorithm is concluded by a
residual update. The fundamental difference between MP and
OMP is that the residual in OMP is updated by projecting
the image onto the orthogonal complement of the span of
the current support. Note that when the dictionary consists of
pairwise orthogonal atoms, MP and OMP are equivalent. Here
we only consider augmenting basic OMP, the pseudocode for
which is provided in Algorithm 1.

B. Paths Between Atoms

Our approach can be differentiated from other existing
variants of OMP by the construction of a path between the
two most-similar dictionary atoms and then performing a
secondary indentification step. In the OMP case, similarity
is quantified by the inner product between a dictionary atom
and the test image (residual) at that stage. We recall that the
largest-magnitude inner product is equivalent to the closest
vector as determined by the angle, θ , between the vectorized
images.

We define a path as a smooth map between two dictionary
atoms, {D1, D2}, that is parameterized by a variable t ∈ [0, 1].
Explicitly, a path p is defined as

p(D1, D2, t) : D1 → D2, (1)

s.t. p(D1, D2, 0) = D1 and (2)

p(D1, D2, 1) = D2. (3)

Although a path can be created between any arbitrary
dictionary atoms, here we exclusively consider paths between
the two atoms that are most similar to the current test signal
(i.e., have the largest inner product or the smallest angle). That
is to say in a primary identification step we identify the two
most similar dictionary atoms and form a path between them.



EMERSON et al.: PATH-BASED DICTIONARY AUGMENTATION: A FRAMEWORK FOR IMPROVING K -SPARSE IMAGE PROCESSING 1261

Fig. 1. Samples along the linear path between two bar atoms D1 and D2 are
shown below a plot displaying the angle between the test image, T, and the
path samples, Dt . Samples are generated using Equation 4 for a discrete set
of t sampled with uniform spacing from [0, 1]. All atoms along the path are
equally similar, or dissimilar, to the test atom as there is never any intensity
overlap between a path atom and the test atom.

Given a path between two atoms we search for a novel
atom which is more similar to the test signal than either of
the path end-points. Here, we “search” by drawing samples
from a path that correspond to a discrete set of t sampled
with uniform spacing from [0, 1] and test their similarity to
the test image. An alternate formulation might seek a local
optimum by performing a line search along the geodesic.
We further note that in some cases there is a closed form
for identifying the optimal sample along the path as will be
shown in Section III. If a novel atom that is more similar to the
test image exists it is added to the current support of the test
signal. If a more similar atom is not found on the geodesic,
the most similar of the original two atoms identified in the
primary identification step will be selected instead.

A variety of viable paths between the atoms exist and some
will be considered in later work. At present we narrow the
focus to a globally linear path (Euclidean geodesic) and a
globally nonlinear path (2-Wasserstein geodesic) approximated
by pixel-wise linear trajectories.

1) Linear Path: Perhaps the most familiar path is a line
segment with endpoints D1 and D2 given by

Dt = (1 − t)D1 + (t)D2, (4)

for t ∈ [0, 1]. This path is the Euclidean geodesic between D1
and D2, that is, the shortest path in Euclidean space.

Examples drawn from the linear path between two image
atoms D1 and D2 are shown in Figure 1 and Figure 2 for
atoms with “bar” and Gaussian structures, respectively. Note
that in both cases the sampled images are characterized by
the presence of intensity that matches the combined support
from D1 and D2 and simply shifts intensity magnitude from
the support represented by D1 to the support represented by
D2 as t increases. As such, all samples along the Euclidean
geodesic between the two bar atoms are equidistant from and
orthogonal to the test image. That is, there is no overlap in
the intensity support between T, either atom, or any linear
combination of the atoms and therefore the angle between T
and any sample from the geodesic will be 90 degrees. In the
Gaussian example, the most similar sample from the geodesic
is the endpoint, D2.

Fig. 2. Samples along the linear path between two Gaussian atoms D1
and D2 are shown below a plot displaying the angle between the test image,
T, and the path samples, Dt . Samples are generated using Equation 4 for a
discrete set of t sampled with uniform spacing from [0, 1]. An optimal atom
along the linear path occurs at t = 0.50 due to maximal intensity overlap.
The location of this optimal atom could also have been predicted according
to Theorem 3.4 after noting that cos(θ1) = cos(θ2) and cos(θ1,2) = π/2.

2) Optimal Transport Path: An alternate path can be con-
structed by an Optimal Transport (OT) map that transforms
one image into the other while minimizing the transport energy
of the map [31]. Two main versions of OT exist: (1) the Monge
formulation in which all the intensity located at a pixel in D1
must be mapped to a single pixel in D2, and (2) the Kan-
torovich formulation which allows for intensities at starting
pixels to be split among multiple destination pixels [31].

Within both Monge and Kantorovich OT formulations there
are additional sub-versions for different combinations of objec-
tive function and constraints. Specifically, different formula-
tions of the OT problem produce constant-speed geodesics
with respect to different distance measures. Paths produced
by OT between images have shown improved performance
in image registration and warping [15], super-resolution of
low-resolution face images [19], and cell morphology [2].
We generate paths corresponding to an approximate solution
to the Monge OT using a recently developed, computationally-
efficient approximation based on the Radon Cumulative
Distribution Transform (RCDT) [17], [18].

A solution to the Monge OT problem between images yields
a vector field of direction vectors that implicitly indicate the
terminal location (in D2) of intensity from a given pixel in D1.
Let

V =

⎡
⎢⎢⎢⎣

�v1,1 �v1,2 · · · �v1,m

�v2,1 �v2,2 · · · �v2,m
...

...
. . .

...
�vn,1 �vn,2 · · · �vn,m

⎤
⎥⎥⎥⎦ (5)

where �v j,k is the velocity vector for the intensity of the pixel
indexed by ( j, k) in D1. Let pV (D1, D2, t) be the path induced
by V. We define

pV (D1, D2, t) : D1 → D2 s.t. (6)

pV (D1, D2, t) = tV(D1, D2) (7)

where tV(D1, D2) indicates movement of the intensity in D1 a
partial step (of size t) in the directions given by OT. This OT
path can be thought of as a set of linear path approximations to
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Fig. 3. Samples along the 2-Wasserstein geodesic between two bar atoms D1
and D2 are shown below a plot displaying the angle between the test image,
T, and the path samples, Dt . Samples are generated using Equation 5 and
Equation 7 for a discrete set of t sampled with uniform spacing from [0, 1].
The minimum angle occurs at the value of t where the intensity support of
the geodesic sample and the test image maximally overlap.

Fig. 4. Samples along the 2-Wasserstein geodesic between two Gaussian
atoms D1 and D2 are shown below a plot displaying the angle between the test
image, T, and the path samples, Dt . Samples are generated using Equation 5
and Equation 7 for a discrete set of t sampled with uniform spacing from
[0, 1]. The minimum angle occurs at the value of t where the intensity support
of the geodesic sample and the test image maximally overlap.

a globally nonlinear path between images (the 2-Wasserstein
geodesic).

In other words, we will transform D1 into D2 by transporting
pixel intensities at constant speed from starting pixel locations
( j, k). The velocity map, V, provides both the speed and
direction (i.e., velocity) that the intensity at pixel location
( j, k) in D1 will need to move over a total transport time
given by t = 1 to produce the final image D2. Intermediate
images along this geodesic are generated by selecting t < 1
such that each pixel intensity starting in D1 is only partially
transported along its trajectory at constant velocity toward its
final position in D2.

Examples of samples along the OT path between two
image atoms with bar and Gaussian structures are shown
in Figure 3 and Figure 4, respectively. Contrary to the linear
case, the intensity support for samples along the geodesic
is seen to shift between the support of the two endpoint
images. As a result, there is a clear minimum angle (maximum
similarity) between the bar test image and one of the geodesic
samples in Figure 3 when their intensity supports maximally
overlap.

The effect of this shift in support can also be clearly seen
in Figure 4 where images sampled from the geodesic show a
smooth melding from the single Gaussian intensity spot of D1
into the two Gaussian intensity spots in D2. In both examples,
a sample from the geodesic is found to be more similar to the
test image.

C. The Algorithm: POMP

Path Orthogonal Matching Pursuit (POMP) is a mod-
ification to the well-known OMP algorithm described in
Section II-A. Instead of finding a single nearest dictionary
element and removing its contribution, two dictionary ele-
ments are chosen at each iteration. A path is formed which
moves between the closest dictionary atom and a secondary
dictionary atom (which meets criteria presented in Section III)
and an optimal atom is found along the path where optimality
is defined as having the largest-magnitude inner product with
the test image.

A positive inner product can be interpreted as two images
sharing more in-phase (same sign) intensities than out-of-
phase intensities. When considered from the phase perspective,
it is reasonable to pick two atoms whose inner products share
the same sign with the test image. As will be shown in
Section III the assumption of shared signs is a sufficient condi-
tion to guarantee the existence of a novel optimal atom for the
linear path given an orthonormal dictionary. If sgn(〈T, D1〉) �=
sgn(〈T, D2〉), then we set D2 = −D2 so that the signs of
the inner products are in agreement. We adopt the same sign
heuristic for the OT-based path although this has not been
theoretically shown to be a sufficient condition to guarantee
improvement.

Let D1 be the dictionary atom having the largest-magnitude
inner product with the test image. Define D2 to be a
second-closest dictionary atom. The simplest, and perhaps
most natural, form of a path is linear. When the globally-linear
path (Equation 4) is used within an iteration of POMP we refer
to it as L-POMP. The pixel-wise linear path resulting from
solving the OT problem between D1 and D2 selected within
an iteration of POMP is denoted by OT-POMP.

For samples along the paths between D1 and D2, the angle
between T may be computed by

θt = cos−1 〈Dt , T〉
||Dt ||F ||T||F

, (8)

where t ∈ [0, 1] parameterizes the distance along the path
from D1 to D2 and ‖A‖F =

√∑
i
∑

j |ai, j |2 is the Frobenius
norm. Let p(D1, D2, t) be the path from D1 to D2. At each
iteration the optimal atom is

Dt� = p(D1, D2, t�) where t� = arg min
t∈[0,1] θt . (9)

Pseudocode for POMP is provided in Algorithm 2. Lines 2-4
initialize variables. In line 6 we find the optimal atom and in
line 7 we add its index to the list of support atoms. The signs
of the inner products of the first and second closest (identified
in line 9) atoms are identified and matched, if necessary,
in lines 10-14. The optimal atom along the path between
the two nearest neighbors is selected in lines 16-17 and is
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Algorithm 2 Path Orthogonal Matching Pursuit

then appended to the support in line 18. Residual updates and
updating of indexing variables are performed in lines 19-22.

It is important to note that without further constraints, there
is no guarantee of a novel/nontrivial minimum angle being
found along the path, that is, D∗ = Dt for t ∈ (0, 1). As long as
the path is continuous for t ∈ [0, 1] a minimum will exist since
the composition of continuous functions is also continuous
(inner product composed with the path). This minimum may
occur at t = 1 (nontrivial) and may not be unique. Consider
|〈T, Dt 〉| for some t ∈ [0, 1]. The desired inner product can
be written as

〈T, Dt 〉 = 1

2

[
T
Dt

]
 [
0 I
I 0

] [
T
Dt

]
. (10)

This is an indefinite quadratic form, that is, the characteristic
matrix has eigenvalues {−1, 1} with each one having the same
multiplicity [14]. As a result, the inner product is not generally
convex. However, with added constraints on the equations
governing Dt it may be possible to prove convexity. Current
results guaranteeing existence of non-trivial atoms along the
Euclidean geodesic between atoms are presented in Section III.

A rigorous study of these necessary and sufficient properties
of the path form are the focus of ongoing and future work.

Regardless, the proposed algorithm can be seamlessly com-
bined with OMP as well as many of its derivatives. When
the dictionary consists of pairwise orthogonal atoms, MP and
OMP are equivalent. If the dictionary atoms are orthogonal
then the linear combination of two of the atoms will also
be orthogonal to all other atoms. Thus, a linear path-based
MP algorithm will be equivalent to an OMP algorithm when
an orthogonal dictionary is used. When guarantees about
orthogonality along a path cannot be made, the reconstruction
can differ between MP and OMP implementations.

III. LINEAR PATH THEORETICAL RESULTS

We will show a set of sufficient conditions under which
there is guaranteed to be an improvement in reconstruction
error using a linear path orthogonal matching pursuit. The
more involved proofs have been placed in Appendix . In stan-
dard matching pursuit a “closest” dictionary atom is chosen
for the current residual. Previously we used bold face capitals
to denote the matrix form of images and dictionary elements.
Moving forward we will use lower case letters to denote the
vectorized version of a matrix. This convention is appropriate
since ||A||F = ||a|| when a = vec(A).

Let r be the current residual and let d1 be the best dictionary
element, i.e. |〈r, d1〉| > |〈r, d〉| for all d ∈ D. Recall the inner
product between two vectors can be equivalently written as
〈r, d〉 = r
d = ||r || ||d|| cos(θ) where r, d ∈ R

N , θ is the
angle between the two vectors, and || · || is the usual 2-norm.
When the dictionary is comprised of unit length vectors and
the current residual has also been normalized we then have
〈r, d〉 = cos(θ). Let d1 be chosen as above. Let d2 ∈ D and
consider the linear path between d1 and d2 defined by dt =
td1 + (1 − t)d2 for t ∈ [0, 1].

Another way to define the “closest” dictionary atom is as
the dictionary atom d1 such that the length of the orthogonal
projection of r onto d1 is the longest, i.e., ||Pd1r ||2 ≥ ||Pdr ||2
for all d ∈ D where Pd = d(d
d)−1d
 is the orthogonal
projection matrix onto the vector d . Consequently, in order for
our presented algorithm to have merit there must be some atom
(dt ) along the t-parameterized path between d1 (as defined)
and some d2 ∈ D satisfying that the length of the projection
of r onto dt is greater than the length of the projection onto
d1. This alternative way of considering closeness will play a
critical role in the proof of our theorem.

Before we prove our theorem, we will first state two
lemmas. Proofs of these lemmas are omitted but can be readily
verified using linear algebra.

Lemma 3.1: If d1, d2 ∈ D, ||d1|| = ||d2|| = 1, given the
linear path between d1 and d2 defined by dt = td1 + (1− t)d2
for t ∈ [0, 1], then the orthogonal projection matrix onto dt

is given by

Pdt = t2d1d

1 + t (1 − t)(d1d


2 + d2d

1 ) + (1 − t)2d2d


2

t2 + 2t (1 − t) cos θ1,2 + (1 − t)2

This lemma falls out directly from the definition
of the orthogonal projection matrix onto dt given by
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Pdt = dt (d

t dt )

−1d

t . Using this definition and the definition

of dt together with properties of vector transpose one can
verify the result.

Lemma 3.2: If ||Pd1r ||2 > ||Pd2r ||2 then
|〈r, d1〉| > |〈r, d2〉|.

The proof of this lemma relies simply on the definition
||v||2 = 〈v, v〉. Armed with these two lemmas we now state
and prove our main result.

Theorem 3.3 Straddle Theorem: Let ||d1|| = ||d2|| =
||r || = 1, 〈r, d1〉 = r
d1 = cos θ1, 〈r, d2〉 = r
d2 =
cos θ2 and 〈d1, d2〉 = d


1 d2 = cos θ1,2. If |〈r, d1〉| >
|〈r, d〉| for all d ∈ D, sgn(cos θ1) = sgn(cos θ2) and
cos θ1,2 ∈ [0, cos θ1/ cos θ2), then there exists t� ∈ (0, 1) such
that |〈r, dt�〉| > |〈r, d1〉|.

The proof largely relies on a few trigonometric identities
and algebraic manipulations. The proof of Theorem 3.3 is
presented in Appendix A for interested readers. We note that
the condition that sgn(cos θ1) = sgn(cos θ2) can be trivially
satisfied for any dictionary containing two or more elements.
In the case that sgn(cos θ1) �= sgn(cos θ2), i.e. (sgn(〈r, d1〉) =
− sgn(〈r, d2〉) for all d2 ∈ D such that d2 �= d1), multiply
any dictionary element by -1 and there is now an atom
with sgn(cos θ1) = sgn(cos θ2). Moreover, to make the ratio
cos θ2/ cos θ1 as large as possible we employ the heuristic of
picking the two closest atoms by measure of the magnitude
of the inner product and multiplying the second closest atom
by −1 if necessary to match the inner-product sign of the
closest atom. This heuristic guarantees the first assumption
will be met and increases the probability that the second
assumption is met.

To help build intuition we look to Figure 5 which con-
tains two examples in 2D: one where the assumptions of
Theorem 3.3 are met and one where they are not. As pre-
viously stated it is always possible to satisfy the condition
sgn(cos θ1) = sgn(cos θ2). The difficulty can arise in ensuring
the pair {d1, d2} satisfy cos θ1,2 < cos θ2/ cos θ1. In two
dimensions, this inequality can be interpreted as d1 and d2
must “straddle” the vector r . Furthermore, consider that we
want to find a t ∈ (0, 1) such that

|〈r, d1〉| < |〈r, td1 + (1 − t)d2〉|. (11)

From properties of the inner product this can be rewritten as

|〈r, d1〉| < |〈r, d2 + t (d1 − d2)〉|. (12)

The vectors in green in Figure 5 are the vectors d1 − d2 for
each scenario and the black dashed lines correspond to d2 +
t (d1−d2) for multiple ts. Thus, in the top picture it is apparent
that there are multiple ts with the desired property while in
the bottom there are none.

Keeping this intuition in mind we can now consider some
special cases of Theorem 3.3. These cases are summarized in
the following two corollaries and theorem. First we begin with
the special case of an orthonormal dictionary. This setting is
possible when the problem is under-determined or when the
dictionary is at most a spanning set.

Corollary 3.1 Orthonormal Dictionary Case: If D is an
orthonormal set, then there will always be a t ∈ (0, 1) such
that dt has the desired property.

Fig. 5. 2D examples where nontrivial optimizer does/does not exist, that
is, the conditions of Theorem 3.3 are/are not satisfied. Dashed black lines
correspond to various values of t .

In the case that D is an orthonormal set we have that cos θ1,2 =
0 for all pairs {d1, d2} and thus cos θ1,2 ∈ [0, α) and the
assumptions of Theorem 3.3 are trivially satisfied and the
existence of a t with the desired properties follows.

Corollary 3.2 Positive Maximizer: For each pair
{d1, d2} ∈ D if |〈r, d1〉| > |〈r, d2〉| and
sgn(cos θ1) = sgn(cos θ2) there is a single positive t
(given by a closed form) that

t

= cos (2θ1)−cos (2θ2)

cos (2θ1)−cos (2θ2)+4 cos (θ1)(cos (θ2)−cos(θ1) cos (θ3))
(13)

maximizes ||Pdt�
r ||2 − ||Pd1r ||2. Explicitly

t� =
(
cos θ1 − cos θ2 cos θ1,2

)
(csc

(
θ1,2

2

)
)2

2 (cos θ1 + cos θ2)
. (14)

The proof or Corollary 3.2 is provided in Appendix B.
The result is shown by maximizing, over t, the difference
in projection lengths between the most similar atom and
atoms along the parameterized path. Two critical points are
identified, one of which is shown to correspond to a t > 0.
As a last theoretical result we state our final theorem.

Theorem 3.4 Orthogonal Closed-Form Solution: Let

||d1|| = ||d2|| = ||r || = 1, 〈r, d1〉 = r
d1 = cos θ1,

〈r, d2〉 = r
d2 = cos θ2, and 〈d1, d2〉 = d

1 d2 = cos θ1,2.

If |〈r, d1〉| ≥ |〈r, d〉| for all d ∈ D, sgn(cos θ1) = sgn(cos θ2)
and cos θ1,2 = 0, then

t� = cos θ1

cos θ1 + cos θ2
∈ (0, 1) (15)

will yield the greatest improvement for the current iteration.
The proof of this final results amounts to showing that for

cos θ1,2 = 0 the maximizer stated in Corollary 3.2 is less than
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Fig. 6. Reconstruction error, ||Rk ||F /||T||F , as a function of sparsity k using OMP and the two path-augmented variants using either DCT or kSVD
dictionaries. Standard images from left to right are: Lena, Barbara, Peppers, House, and Boat.

one. This proof is straight forward when recalling that for

cos θ1,2 = 0, we also have csc
(

θ1,2
2

)2 = 2.
Practically speaking, Theorems 3.3 and 3.4 verify the

necessity of picking two atoms with the same signed inner
product to the current residual. In the case of an orthonormal
dictionary (possible when the dictionary is at most a spanning
set) the guaranteed maximizer can be readily computed and
the d2 yielding the greatest improvement can be chosen.
Alternatively, when the dictionary is unstructured/learned the
assumptions of the Theorem 3.3 can be checked and any
t = m ∈ (0, 1) can be chosen for m defined as in Eq. 20.

IV. COMPUTATIONAL RESULTS

Computational results are shown for both k−sparse signal
reconstruction examples and image denoising using a fixed
number of OMP iterations. We test our method on two data
sets: one canonical set of images and one comprised of
SWIR maritime imagery. We consider both reconstruction and
denoising using two types of dictionaries: structured (DCT)
and unstructured (learned) overcomplete dictionaries. Over-
complete dictionaries cannot be orthonormalized and so the
theoretical results of Section III cannot be leveraged, that is,
there is no known closed-form solution for the optimal t along
the path. Consequently, for both path types we compare the
current residual to 20 discrete samples along the path to check
for a closer atom. This implementation is sub-optimal but
provides sufficient proof of concept.

A. Canonical Image Data Set

1) k−Sparse Reconstructions: We begin by considering
the reconstruction error between a pristine original image
and a patch-based k-sparse reconstruction using a dictionary.
In particular, we consider the DCT and kSVD dictionaries
composed of 256 8 × 8 image atoms that were provided
in support of [11]. Each dictionary is used to reconstruct
8x8 patches overlapped with a stride of four where the error
between the original and the reconstructed image is given by
||Rk||F/||T||F , where k is the number of atoms included in
the reconstruction. Reconstruction errors as a function of k for
all algorithms and images are shown in Figure 7.

Figure 7 shows that the path-augmented approach yields
lower reconstruction error for all tested sparsity levels and
images. Reconstructions produced from the DCT dictionary

TABLE I

STARTING PSNR VALUES FOR THE FIVE IMAGES AND DENOISED PSNR
VALUES FOR THREE METHODS USING DCT DICTIONARIES,

RESULTS REPORTED FOR k = 1. SEE FIGURE 11 FOR A

REPRESENTATION OF THE IMAGERY

are nearly always worse than the learned dictionary but the
differences in performance between the three algorithms are
greater in the case of the DCT dictionary. In the case of
the DCT dictionary the reconstructions obtained using the
proposed heuristic show OT-POMP performing better than
L-POMP. However, in the case of the learned dictionary
L-POMP achieves better fidelity than OT-POMP. We strongly
suspect that OT-POMP will outperform L-POMP once we
identify the appropriate heuristic to identify the two bracketing
atoms for OT-POMP. For example, Figure 1 shows a case
where no trivial minimum can be found along the linear path
(due to mismatched signs) yet there exists a much closer
atom along the OT path than at either endpoint. Potential
modifications for improving POMP results are presented in
Section V.

2) Denoising: Denoising experiments were also performed
where white Gaussian noise with σ = 20 was added to each
pristine image. Patches of the noisy image, of size 8 × 8, are
then estimated using 5 iterations of the indicated algorithm.
Both DCT and the globally trained learned dictionary are
tested. A denoised image is then constructed by stitching
together the OMP estimated patches. Performance is measured
using output PSNR as is standard practice. The noise level
presented was one of the middle levels tested in [11]. Results
of DCT and kSVD denoising are shown in Tables I and II,
respectively. An example of the different denoising methods
can be seen in Figure 8.

Path augmentation of OMP improves PSNR for each image
after patch fitting for a fixed number of OMP iterations.
Average improvement in PSNR using POMP is 1.3dB, across
all five images, on the structured dictionary. When POMP out-
performs OMP using the learned dictionary the improvement
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Fig. 7. Reconstruction error, ||Rk ||F /||T||F , as a function of sparsity k using OMP and the two path-augmented variants using either DCT dictionary (left
image set) or the learned kSVD dictionary (right image set).

TABLE II

STARTING PSNR VALUES FOR THE FIVE IMAGES AND DENOISED PSNR
VALUES FOR THREE METHODS USING LEARNED DICTIONARIES.

RESULTS REPORTED FOR k = 1. SEE FIGURE 11 FOR
A REPRESENTATION OF THE IMAGERY

Fig. 8. Denoising example. Clockwise from upper left, noisy image (σ = 20),
OMP denoised, L-POMP denoised, OT-POMP denoised with DCT dictionary,
k = 1.

is 0.2dB but overall PSNR is greater for denoising performed
on the learned rather than structured DCT dictionary. Table I
shows that OT-POMP performs better on the DCT dictionary
than the learned dictionary. Using a learned but spanning (not
overcomplete) dictionary may improve POMP performance.
In the L-POMP case this would guarantee the existence of a
nontrivial minimizer along the path.

B. SWIR Maritime Imagery

To construct a learned dictionary one must identify a collec-
tion of a training images that roughly represent the expected
statistical qualities of the imagery under test. We choose a set
of 85 broadband SWIR images of marine vessels including
Naval (military), fishing, cargo, and sailing. Each 16-bit image

Fig. 9. A subsample of the training data set used to create the learned
dictionary.

Fig. 10. The kSVD dictionary learned from a corpus of SWIR maritime
images.

is of size 1024 × 1280–a subset of which can be seen
in Figure 9. This corpus of images was divided randomly such
that 80 images were designated to train the dictionary and
5 images were withheld for testing. We randomly selected
5,000 patches of size 8 × 8 from each training image to
generate the kSVD dictionary. Over 100 iterations of the kSVD
algorithm 256 atoms were selected to minimize the represen-
tation error using OMP and a target sparsity of 5 atoms to
yield the learned dictionary shown in Figure 10.

Computational results are shown for both k-sparse signal
reconstruction (see Section IV-B.1) and image denoising (see
Section IV-B.2 using a fixed number of OMP iterations).
Both applications are tested on the five test images shown as
backgrounds in Figure 11. For both algorithms we compare
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Fig. 11. Relative reconstruction error as a function of iterations for the three algorithms considered. Results over 5 iterations are shown. Background of each
plot is the test image under consideration (note that the alpha value has been lowered for graph readability). Images are numbered 1-5 left-to-right to match
with the numbering in Table IV.

the current residual to five discrete samples along the path to
check for a closer atom.

1) k−Sparse Reconstructions: As was done for the canon-
ical image data set, we consider the reconstruction error
between the original image and a patch-based k-sparse recon-
struction using the dictionary. The dictionary is used to recon-
struct 8x8 patches overlapped with a stride of one where the
error between the original and the reconstructed image is given
by ||Rk||F/||T||F , where k is the number of atoms included
in the reconstruction. Reconstruction errors as a function of
k for all algorithms and images are shown in Figure 11;
the background of each plot is the image being sparsely
reconstructed.

Figure 11 shows that the path-augmented approach yields
lower reconstruction error for all tested sparsity levels and
images. In each case the reconstructions obtained using the
proposed heuristic show L-POMP and OT-POMP performing
better than OMP. It is also clear that OT-POMP outperforms
L-POMP over the first few iterations (sparsity level) but after
approximately 5 the two versions converge in performance.
We have noticed–though the results are omitted here–that
both L-POMP and OT-OMP continue to outperform OMP
for decreasing sparsity levels but L-POMP begins to overtake
OT-POMP in performance. This is believed to occur due to
additional possibility of errors introduced by the estimation
algorithm used to construct the OT geodesic, which is not a
problem in the linear case.

2) Denoising: Denoising experiments were also performed
where additive white Gaussian noise (AWGN) with σ =
2, 500 (images are 16-bit) was added to each pristine image.
Patches of the noisy image, of size 8 × 8, are then estimated
using several iterations of the indicated algorithm. A denoised
image is then constructed by stitching together the OMP
estimated patches. Performance is measured using output
PSNR as is standard practice. Results of denoising are shown
in Table IV for a sparsity of 1. Path augmentation of OMP
improves PSNR for each image after patch fitting for a fixed
number of OMP iterations. Average improvement in PSNR
using L-POMP is ∼ 0.2dB and using OT-POMP is ∼ 1.1dB.

V. DISCUSSION

A novel modification to the well-known matching pursuit
algorithm has been proposed using path-based dictionary
expansion/augmentation at each iteration. Theoretical results

TABLE III

STARTING PSNR VALUES FOR FIVE IMAGES AND DENOISED PSNR
VALUES FOR THE THREE METHODS USING THE DCT DICTIONARY.

SEE FIGURE 11 FOR A REPRESENTATION OF THE IMAGERY

TABLE IV

STARTING PSNR VALUES FOR FIVE IMAGES AND DENOISED PSNR
VALUES FOR THE THREE METHODS USING A LEARNED DICTIONARY.

SEE FIGURE 11 FOR A REPRESENTATION OF THE IMAGERY

guarantee improved reconstruction error after a fixed number
of iterations under certain assumptions. Furthermore, in the
case of an orthonormal, under-determined dictionary the the-
oretical assumptions are trivially satisfied. Existing theory has
been proved for the case of a linear path-based approach and
extensions to generic paths are underway because it is likely
that the current heuristic (same-sign sufficient condition) is
sub-optimal for the OT-based path.

This work has demonstrated added benefit to a path-based
OMP approach for both k−sparse signal reconstruction and
image denoising. Results show improved output PSNR using
the path-augmented approach on both structured and unstruc-
tured dictionaries. Additionally, for all considered sparsity
levels there is a reduced reconstruction error obtained using
the proposed modification. We note that this augmentation can
be integrated into any MP-type approach.

From a mathematical perspective image reconstruction and
denoising (as considered in this paper) are based on the
assumption that the image patches belong to some underlying
manifold. Learned dictionaries are a way of trying to produce
a denser sampling of the global, underlying manifold. The
path augmented approach, however, uses paths to more densely
sample the manifold in local regions. In future work we hope
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to exploit this interpretation to make statements about the
distributions of the points sampled from the manifold using
path-based approaches as well as learned samplings. Further,
this interpretation will contextualize our research relative to
other existing manifold models like that of [27].

Rigorous comparison to performance on overcomplete
dictionaries, including statistical statements of when the
assumptions of proven theory will hold for overcompleteness,
is a point of continuing research. We also seek to formulate our
approach as an alternative to overcomplete learned dictionaries
for addressing the basis mismatch problem. Additionally, error
bounds and convergence rates for k-sparse signal reconstruc-
tion will be considered as well as the application of POMP to
compressive sensing.

APPENDIX

A. Proof of Theorem 3.3

Theorem 1.1 Straddle Theorem: Let ||d1|| = ||d2|| =
||r || = 1, 〈r, d1〉 = r
d1 = cos θ1, 〈r, d2〉 = r
d2 =
cos θ2 and 〈d1, d2〉 = d


1 d2 = cos θ1,2. If |〈r, d1〉| >
|〈r, d〉| for all d ∈ D, sgn(cos θ1) = sgn(cos θ2) and
cos θ1,2 ∈ [0, cos θ1/ cos θ2), then there exists t� ∈ (0, 1) such
that |〈r, dt�〉| > |〈r, d1〉|.

Proof: Let ||d1|| = ||d2|| = ||r || = 1, 〈r, d1〉 = r
d1 =
cos θ1, 〈r, d2〉 = r
d2 = cos θ2 and 〈d1, d2〉 = d


1 d2 =
cos θ1,2. Assume that |〈r, d1〉| > |〈r, d〉| for all d ∈ D,
sgn(cos θ1) = sgn(cos θ2) and cos θ1,2 ∈ [0, cos θ1/ cos θ2).
Define α = cos θ2/ cos θ1. Note that 0 ≤ α < 1 is implied by
|〈r, d1〉| > |〈r, d2〉| together with sgn(cos θ1) = sgn(cos θ2).
Further, we have 1 − α2 > 0. Using these facts together with
our assumptions we have

cos θ1,2 < α (16)

0 < 2α − 2 cos θ1,2 (17)

0 < 1 − α2 < 2α − 2 cos θ1,2 + 1 − α2 (18)

0 <
1 − α2

2α − 2 cos θ1,2 + 1 − α2 < 1. (19)

From the property of reals we have that there exists some
number m such that

1 − α2

2α − 2 cos θ1,2 + 1 − α2 < m < 1. (20)

Set t� = m ∈ (0, 1). Consequently,

1 − α2 < t�(2α − 2 cos θ1,2 + 1 − α2) (21)

�⇒ 0 < t�(2α − 2 cos θ1,2 + 1 − α2) + α2 − 1 (22)

�⇒ 0 < 2t�(α − cos θ1,2) + (1 − t�)(α
2 − 1). (23)

Rewriting in terms of the angles we have

0 < 2t�

(
cos θ2

cos θ1
− cos θ1,2

)
+ (1 − t�)

(
(cos θ2)

2

(cos θ1)2 − 1

)
.

(24)

Multiplying through by (cos θ1)
2 yields

0 < 2t�(cos θ2 cos θ1 − cos θ1,2(cos θ1)
2)

+(1 − t�)((cos θ2)
2 − (cos θ1)

2). (25)

Expanding and writing in terms of vector multiplication we
have

0 < t�(r

d2d


1 r + r
d1d

2 r) − 2t� cos θ1,2(r


d1d

1 r)

+(1 − t�)(r

d2d


2 r − r
d1d

1 ). (26)

Multiply through by the positive value

1 − t�
t2
� + 2t�(1 − t�) cos θ1,2 + (1 − t�)2 (27)

to produce

0 <
t�(1 − t�)(r
d2d


1 r + r
d1d

2 r)

t2
� + 2t�(1 − t�) cos θ1,2 + (1 − t�)2

− 2t�(1 − t�) cos θ1,2(r
d1d

1 r)

t2
� + 2t�(1 − t�) cos θ1,2 + (1 − t�)2

+ (1 − t�)2(r
d2d

2 r − r
d1d


1 )

t2
� + 2t�(1 − t�) cos θ1,2 + (1 − t�)2 . (28)

Next, add 0 = t2
� r
d1d


1 r − t2
� r
d1d


1 to the numerator and
regroup terms to get

0 <
t2
� r
d1d


1 r + t�(1 − t�)(r
d2d

1 r + r
d1d


2 r)

t2
� + 2t�(1 − t�) cos θ1,2 + (1 − t�)2

+ (1 − t�)2(r
d2d

2 r)

t2
� + 2t�(1 − t�) cos θ1,2 + (1 − t�)2

− (t2
� + 2t�(1 − t�) cos θ1,2 + (1 − t�)2)r
d1d


1

t2
� + 2t�(1 − t�) cos θ1,2 + (1 − t�)2 . (29)

From Lemma 3.1 we have that the first two lines of Eq. 29 can
be simplified to r
Pdt�

r and the last line simplifies to r
Pd1r .
Thus, we have

0 < r
Pdt�
r − r
Pd1r (30)

0 < ||Pdt�
r ||2 − ||Pd1r ||2 (31)

�⇒ ||Pd1r ||2 < ||Pdt�
r ||2 (32)

Finally, using Lemma 3.2 we have

|〈r, d1〉| < |〈r, dt�〉|. (33)

Thus, we have that there exists a t� ∈ (0, 1) such that dt� is
“closer” to r than d1. �

B. Proof of Corollary 3.2

Corollary 1.1 Positive Maximizer: For each pair
{d1, d2} ∈ D if |〈r, d1〉| > |〈r, d2〉| and
sgn(cos θ1) = sgn(cos θ2) there is a single positive t
(given by a closed form) that maximizes ||Pdt�

r ||2 − ||Pd1r ||2.
Explicitly

t� =
(
cos θ1 − cos θ2 cos θ1,2

)
(csc

(
θ1,2

2

)
)2

2 (cos θ1 + cos θ2)
. (34)

Proof: We seek to maximize ||Pdt r ||2 − ||Pd1r ||2 over
all feasible t . Using Lemma 3.1 together with Eq. 30 we can
write

f (t) = ||Pdt r ||2 − ||Pd1r ||2 (35)

f (t) = r
Pdt r − r
Pdt r. (36)
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Equivalently,

f (t) = t2(cos θ1)
2 + 2t (1 − t) cos θ1 cos θ2

t2 + 2t (1 − t) cos θ1,2 + (1 − t)2

+ (1 − t)2(cos θ2)
2

t2 + 2t (1 − t) cos θ1,2 + (1 − t)2 + (cos θ1)
2. (37)

The function f (t) is differentiable and has two critical points
given by

t1 = 1

1 − cos θ1 sec θ2
and (38)

t2 =
(
cos θ1 − cos θ2 cos θ1,2

)
(csc

(
θ1,2

2

)
)2

2 (cos θ1 + cos θ2)
. (39)

This can be verified by hand or through the use of software.
When sgn(cos θ1) = sgn(cos θ2) and |〈r, d1〉| > |〈r, d2〉| it can
be seen that t1 < 0 and t2 > 0. Further, it can be shown that
for all values of cos θ1, cos θ2, and cos θ1,2 that f ′′(t2) < 0
implying that t2 is a local maximum of f (t) and the global
maximum when t ≥ 0. �
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