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Intermediate Deep Feature Compression:
Toward Intelligent Sensing

Zhuo Chen, Kui Fan, Shiqi Wang, Lingyu Duan, Weisi Lin, Fellow, IEEE, and Alex C. Kot, Fellow, IEEE

Abstract—The recent advances of hardware technology have
made the intelligent analysis equipped at the front-end with
deep learning more prevailing and practical. To better enable
the intelligent sensing at the front-end, instead of compressing
and transmitting visual signals or the ultimately utilized top-layer
deep learning features, we propose to compactly represent and
convey the intermediate-layer deep learning features with high
generalization capability, to facilitate the collaborating approach
between front and cloud ends. This strategy enables a good
balance among the computational load, transmission load and
the generalization ability for cloud servers when deploying the
deep neural networks for large scale cloud based visual analysis.
Moreover, the presented strategy also makes the standardization
of deep feature coding more feasible and promising, as a series of
tasks can simultaneously benefit from the transmitted intermedi-
ate layer features. We also present the results for evaluations of
both lossless and lossy deep feature compression, which provide
meaningful investigations and baselines for future research and
standardization activities.

Index Terms—Deep learning, intelligent front-end, feature
compression.

I. INTRODUCTION

ECENTLY, deep neural networks (DNNs) have demon-

strated the incomparable performance in various com-
puter vision tasks, e.g., image classification [1], [2], [3],
[4], image object detection [5], [6], visual tracking [7] and
visual retrieval [8]. Different from handcrafted features, like
Histogram of Oriented Gradient (HOG) [9] and Scale-Invariant
Feature Transform (SIFT) [10], deep learning features are
directly learned from masses of data. For image classification,
which is the fundamental task of computer vision, AlexNet [1]
has achieved 9% better classification accuracy than the previ-
ous handcrafted methods in the 2012 ImageNet competition
[11], which provides a large scale training dataset with 1.2
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million images and one thousand categories. Inspired by the
fantastic achievement of AlexNet, DNN models continue to
be the undisputed leaders in the competition of ImageNet. In
particular, both VGGNet [2] and GoogLeNet [12] announced
promising performance in the ILSVRC 2014 classification
challenge, which demonstrated that deeper and wider architec-
tures can bring great benefits in learning better representations
via large scale datasets. In 2016, He et al. also proposed
residual blocks to enable very deep learning structure [3].

With the advances of network infrastructure, cloud-based
applications are springing up in recent years. In particular,
the front-end devices acquire information from users or the
physical world, which are subsequently transmitted to the
cloud end (i.e., data center) for further process and analysis. In
particular, for visual analysis, the front-end devices deployed
in the real world, such as surveillance cameras and wearable
devices, acquire massive visual data which are transmitted to
the cloud side for analyses, as shown in Fig. 1. Many computer
vision models powered by deep learning can be applied in
such cloud-based paradigm, such as pedestrian detection [13],
person [14] and vehicle re-identification [15] in surveillance
systems; autopilot [16] and license plate recognition [17]
with on-board devices; face recognition [18], [19], landmark
retrieval [20] and object detection [5], [6] in portable device
(e.g., mobile, smart glasses) applications.

For data communication between front-end and cloud sever,
video compression and transmission serve as the founda-
tion infrastructure in the traditional “compress-then-analyse”
paradigm. In other words, the front-end devices capture and
compress the visual data at signal level, such that the coded
bitstream can be transmitted to the cloud server for analyses.
After the decoding process at the cloud side, the feature extrac-
tion and visual analysis are subsequently performed. However,
the vast amount of front-end devices produce thousands-of-
thousands bitstreams simultaneously, especially in the scenar-
ios of video surveillance and Internet-of-Things (IoT). The
signal level visual compression imposes high transmission
burden, which is usually unaffordable in practical applications.
Moreover, the computational load of the numerous deep learn-
ing models executed simultaneously for feature extraction also
becomes a significant bottleneck for scaling up at the cloud
end.

An alternative strategy ‘“‘analyze-then-compress” [21], the
rational of which lies in compressing and transmitting the
features extracted at the front-end to the cloud center, provides
a feasible solution as features instead of the visual signals
are ultimately used for analysis. For hand-crafted features,
the standards from MPEG including MPEG CDVS [22] and
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Fig. 1. Diagram of cloud-based visual analysis applications. Images and
videos are acquired at the front end and the analysis is performed at the
cloud end. The two sides collaborate together through data transmission.

MPEG CDVA [23] specify the feature extraction and compres-
sion processes. For deep learning features, top-layer features
of the deep learning models are usually transmitted to the
cloud side, since the top-layer features of deep models are
compact and can be straightforwardly utilized for analyses.
For instance, in the face recognition task, the deep feature
of a human face is only with dimension of 4K in Facebook
DeepFace [19], 128 in Google FaceNet [24], and 300 in Sense-
Time DeepID3 [25]. In such scenarios, only the lightweight
operations such as feature comparison are required to be
performed at the cloud servers, while the heavy workloads of
feature extraction are distributed to the front-end. Moreover,
transmitting features is also favorable for privacy protection.
In particular, instead of directly conveying the visual signal
which may easily expose privacy, feature communication can
largely avoid the disclosing of the visible information.

However, one obstacle that potentially hinders the appli-
cations of deep learning feature compression is that deep
learning models are normally designed and trained for specific
tasks, and the top-layer features are extraordinary abstract
and task-specific, making such compressed features difficult
to generalize. This also prevents the applications of the future
standardization of the deep feature coding, as the standardized
compact deep features shall be well generalized to enable the
interoperability in different application scenarios. In view of
this, the intermediate layer feature compression, which shifts
the computational load while maintaining the availability of
various visual analysis tasks is presented and analyzed in this
paper. The presented approach can be regarded as a compro-
mise between the two extremes ‘“‘analysis-then-compression”
and “compression-then-analysis”, and provides a good balance
among the computational load, communication cost and the
generalization ability.

The rest of the paper is organized as follows. Section II
provides a brief review on the compact visual information rep-
resentation, including video compression and feature compres-
sion. Section III describes our proposed collaborating approach
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Fig. 2. The compression and transmission of visual signals and ultimate
features has been widely investigated and standardized, but the study on
transmitting intermediate features is limited which needs further exploration.

for cloud-based visual analysis applications. In Section IV, we
discuss and envision the future standardization of deep feature
coding. Section V presents the evaluation results of lossless
deep feature compression, and Section VI shows the results of
lossy compression. Finally, Section VII concludes this paper.

II. RELATED WORKS

In cloud-based visual analysis tasks, the bitstream trans-
mitted between the edge side and cloud side can be either
visual signals or features. As shown in Fig. 2, visual signal
can be utilized by all analysis applications, including manual
monitoring based on human viewing, as the visual signal is
the origin of feature extraction. On the contrary, the ultimately
utilized features (it will be denoted as “ultimate feature” in
the following for convenience) can serve specific applications
well but lose the generalization capability to deal with other
analysis tasks. The transmission and compression for both
visual signals and handcrafted ultimate features have been well
explored and standardized.

Video Coding Standard: High Efficiency Video Coding
(HEVC) [26] is the state-of-the-art video coding standard,
which achieves 50% bit-rate reductions for equal perceptual
visual quality comparing to H.264/MPEG 4 Advanced Video
Coding (AVC) [27]. As a joint video project of ITU-T Video
Coding Experts Group (VCEG) and the ISO/IEC Moving Pic-
ture Experts Group (MPEG), the standardization of HEVC was
finalized in Jan. 2013. As a video coding standard, HEVC only
specifies the decoder. In other words, the decoder conforming
to the standard can correctly reconstruct the video based on the
bitstream, and the encoder can be feasibly optimized according
to the application scenarios and requirements. HEVC can
be applied to both image and video in lossy and lossless
ways. Recently, in Apr. 2018, the standardization for new
generation video coding, Versatile Video Coding (VVC) [28],
was launched. It is expected to be completed before 2020, with
much superior coding performance compared to HEVC.



Standardization of Ultimate Features: To provide a stan-
dardized bitstream syntax to enable interoperability in the con-
text of image retrieval applications, MPEG published Compact
Descriptors for Visual Search (CDVS) [22] in Sep. 2015.
CDVS leverages handcrafted local (i.e., SIFT descriptors)
and global (i.e., Scalable Compressed Fisher Vector) features
to represent the visual characteristics of images. To achieve
compact image representation while maintaining the discrim-
ination capability, a series of compression techniques were
developed. In particular, with the process of local feature
selection, descriptor compression, location compression and
descriptor aggregation, CDVS enables interoperability among
six different feature sizes from 512B to 16KB.

Based on CDVS, MPEG has moved forward to the standard-
ization of Compact Descriptors for Video Analysis (CDVA)
[23] since Feb. 2015. Considering the fact that extracting
features frame-by-frame will result in extremely high computa-
tional costs and redundancy in the video representations, multi-
keyframe based retrieval strategy was adopted by the ongoing
CDVA standard. More specifically, to generate compact video
descriptors, both local and global descriptors of sampled
keyframes are firstly extracted by standardized CDVS. Then,
the CDVA descriptors are constituted by compressing and
packing these frame-level features. Furthermore, deep learning
features were also adopted into the working draft of CDVA to
further boost the retrieval performance [8].

In [29], [30], the joint texture and feature compression
strategies were studied, such that the compressed texture and
feature can be transmitted simultaneously, and the interac-
tions between them have also been considered. Moreover, the
compact representation of deep learning ultimate features (i.e.
features from the last layer of neural networks) has also been
widely investigated in the literature.

Compact Deep Representations: In computer vision, visual
embeddings from deep neural networks have been widely
used. To achieve compact and discriminative representations,
existing methods can be classified into two categories. The first
one aims to design the deep models with small-size embedding
layers before training, and the other targets to add a series
of dimension-reduction/binarization layers (e.g., hashing and
PCA) on top of the trained deep learning models. For the
first category, the work in [24] explored the effect of chang-
ing embedding layer size in deep face recognition models,
and better image retrieval performance can be achieved with
smaller embedding size by tailoring the CNN architecture
[31]. For the second category, the authors in [32] applied
PCA compression on the top layer representations of a pre-
trained CNN to achieve state-of-the-art accuracy on a number
of image retrieval datasets. Moreover, hashing also plays an
important role in deep embedding compression, and different
hashing methods on the top of deep neural networks have been
investigated [33], [34], [35], [36].

In contrast to the visual signal and the handcrafted fea-
ture compression, there are much fewer works studying the
transmission and compression of deep learning intermediate
features. The comparisons of intermediate features, ultimate
features and visual signals are shown in Fig. 2. The recent
works [37], [38] conducted deep feature compression on
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Fig. 3. Two commonly used strategies for cloud-based visual analysis.

two specific types of intermediate features in the context
of collaborative intelligence and image object detection. In
particular, the work in [37] employed HEVC Range extension
(RExt) to compress deep features extracted by two specific
layers (i.e. Max11 and Max17) of the YOLO9000 network.
Subsequently, the authors in [38] proposed a near-lossless deep
feature compressor and evaluated the performance on four
deep networks. However, general deep feature compression
should cover different types of deep features from off-the-
shelf deep neural networks. There are several differences
between this work and [37], [38]. Firstly, we propose to
balance the computational load and feature usability in a
more generalized way for intermediate features instead of
focusing on a specific task. Secondly, both lossless and lossy
compression on deep features are studied, while in [37], [38]
only the lossy compression results are reported. Thirdly, for
the lossy compression methods, feature maps are combined
into image by tiling and quilting before applying off-the-
shelf image/video encoder in [37], [38], and we compose the
feature maps into video sequences which can be more flexibly
compatible with varied feature channels.

III. TOWARD TRANSMISSION OF DEEP LEARNING
FEATURES

In cloud-based visual analysis scenarios, visual signal ac-
quisition and analysis are processed in distributed devices.
In particular, images/videos are usually acquired in front-end
devices (e.g. mobile phones, surveillance cameras) while the
analysis is completed in the cloud side. As such, the data
transmission between the edge and cloud sides is inevitable.
Typically, the data to be transmitted can be either visual signals
or features, as shown in Fig. 3.

As the most conventional paradigm, the visual signal com-
pression and transmission methods have been well developed
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and standardized. As shown in Fig. 3(a), visual signals (i.e.,
images and videos) are captured and encoded in the front-
end for transmission, and decoded and analyzed in the cloud-
end after receiving the bit-stream. More specifically, various
analysis tasks can be performed in the cloud-end, since the
original visual signals are available. However, it is question-
able that whether such visual signal level transmission can
efficiently handle the visual big data. Moreover, although the
state-of-the-art coding standards such as HEVC and VCC have
dramatically improved the coding efficiency, all the computing
load for analysis tasks remain on the cloud side. It is almost
impossible for the cloud-side servers to timely analyze all the
visual signals sent from the front-end devices in the context
of visual big data, as the deep learning models are charac-
terized with high computational complexity. For instance, the
processing speed of a CNN-based object detection model can
reach around 50 FPS with a single Titian X GPU in the best
case [6], which is the best performance ever reported to our
best knowledge. It implies that one state-of-art GPU card can
only process two video signal inputs for one single task in
real time. As the edge-side cameras can easily proliferate to a
larger population, e.g., a smart city can have over one million
surveillance cameras installed, a comparable amount of GPUs
should be allocated in the cloud side to timely perform the
visual analysis, which is unbearable in terms of economic cost
and power consuming.

Benefiting from the development of the low-power Al
processors [39], [40], [41], deep learning models are able to
be implemented on front-end devices. It enables the intelligent
analysis to be performed directly after the sensor data captured
in the front-end devices, where this new fashion is named
as “intelligent sensing”. To reduce the computing load on
cloud side, an alternative approach is to transmit the features
instead of the visual signals, as shown in Fig. 3(b). In this
case, features are extracted right after the visual signals being
captured in the front-end devices. Then, after the feature
transmission, visual analyses based on the received features
instead of the visual signal can be applied in the cloud-end
servers. As the feature extraction usually takes the majority
of computing load in a visual analysis application, the cloud-
side server only needs to handle light computing loads, such as

feature comparison, making visual big data analysis feasible.
For handcrafted features, there are quite a few standards
defining the feature extraction, compression and transmission,
such as the previously mentioned MPEG CDVS and CDVA
[22], [23]. As the feature extraction substantially performs
dimensionality reduction on the original visual signals, the
features are usually featured with less generalization ability
than the visual signals, such that the transmitted features
can only be applied to very specific types of tasks. For
example, the features defined by CDVS are more suitable for
image retrieval and matching tasks. The deep learning models,
which are learned in a data-driven manner, are usually task-
specific and the generalization ability is highly concerned in
this scenario. Considering the deep learning model as one
feature extractor, the top layer feature of a deep model is
usually extracted as the visual embedding. Comparing with
handcrafted features, although the deep leaning features are
more expressive and powerful, they still cannot generalize to
all the visual analysis tasks. In summary, transmitting the deep
learning features can facilitate the shifting of the computing
load from the cloud side to the front side which makes visual
big data analysis possible. However, the supported analysis
tasks that can be achieved on the cloud side are quite limited.
In other words, the availability of visual analysis applications
on the cloud side is constrained by the models employed in
the front-end devices.

Therefore, the approach which can ideally balance the
computing load between the front and cloud sides without
the limitation of the analysis capability in the cloud side is
highly demanded. As shown in Fig. 4, we aim to transmit
the intermediate layer features instead of original visual sig-
nals and ultimate features. Deep learning models are usually
characterized by hierarchical structures, which implies that a
deep model shall be considered as a combination of stacked
feature extractor rather than a single straightforward feature
extractor. As such, higher layer features are characterized with
large global receptive field which makes them more abstract
and task-specific, while lower layer features are characterized
with smaller receptive field and with more location information
encoded in the 2D feature maps, enabling them to generalize to
a broader range of analysis tasks. This provides the flexibility



for the cloud side to request appropriate features from the
front-end depending on the requirement of analysis task.

In this case, a generic deep model, the features of which
can be applied to a broad range of tasks in visual analysis, is
anticipated to be applied in front-end devices. Contemporarily,
commonly-used pre-trained deep neural networks, such as
VGGNet and ResNet, which are trained on ImageNet dataset
consisting of 1.2 million images of 1000 classes, in general
can be regarded as generic. Features of these deep learning
models are widely adopted in many applications as visual
feature extractors, as shown in Fig. 5. For instances, in image
captioning tasks, the work [42] leverages the convb features
(the output feature maps of the fifth convolutional block, we
use the shorthands for convenience in the rest of this paper,
more details can be found in Table II) of VGGNet to represent
given images. The authors in [43] encoded the full image with
the ResNet to extract both spatial and semantic information
from its conv4 layer. In visual tracking tasks, pool4 and pool5
features of VGGNet were employed in [7]. In image object
detection tasks, the work in [5] used the fc2 features and
poolb feature of VGGNet was employed in [44], [45]. In
visual retrieval, the pool5 features of VGGNet were modified
to introduce translation, scale and rotation invariances for
image retrieval [8]. Handcrafted features and fcl features of
VGGNet were combined to achieve better retrieval perfor-
mance [46]. In image QA tasks, the conv4 feature of ResNet
was leveraged as the visual representation [47], and poold
features of VGGNet and convb features of ResNet were used
in [48]. In view of this, a plenty of visual analysis problems
can be solved by applying task-specific neural networks on
top of the features extracted by a generic deep model. As the
generic model can provide the task-specific neural network
with strong representations of the visual signals, a shallow
architecture is usually adequate to handle the rest of the visual
analysis task which is favorable in terms of the computing
costs. Furthermore, we observe that most of task-specific
networks prefer to take high level features (conv4 or higher)
as their input. As the computing load are mainly laid on
low layers in neural networks (as shown in Table I), it can
help saving great computing cost for the server-end with our
proposed strategy. Thus, the deployment of our proposed data
transmission approach can minimize the computing load on
the cloud side while maximizing the availability of various
analysis types. Furthermore, it is envisioned that in the future
the deep learning models will be developed to more and more
generic. At that stage, our proposed approach will have more
advantages over the former ones.

IV. DEEP LEARNING FEATURE COMPRESSION

Transmitting intermediate-layer features instead of ultimate
features and visual signals is superior at easing the computing
load of the cloud end and maintaining the availability of
various analysis tasks. However, the transmission bandwidth
may limit the deployment of such approach, as the data volume
of the intermediate-layer features is non-negligible. In deep
learning models, the feature volume of first few layers can be
even larger than the input visual signals, as shown in Table II.

Classification

e —] fe3 Object detection[5]

]
Thne=
Visual captioning [42]
Visual QA[48

e fe2 VM

C——

— R Retrieval[46
R L

Pool5 — —

=

Poold —

Conv4 —

Pool3

Object detection[44,45]

=

Visual tracking[7

Conv3

Pool2

QRN Qg

m Convz mrm

Visual QA[47]

i
FFT
WA~ |
|

m Canv:l

Visual captioning [43]
Fig. 5. Generic deep models (e.g. VGGNet and ResNet trained on ImageNet
classification task) are widely employed as backbone networks in many
computer vision tasks. Task-specific networks are designed on top of the
intermediate layers of generic models.

TABLE I
THE COMPUTATIONAL COMPLEXITY OF VGGNET AND RESNET. THE
COMPUTING COST OF NUERAL NETWORKS ARE USUALLY LAID ON LOWER

LAYERS.
FLOPs
VGGNet-16 ResNet-50

convl | 1.94G(12.5%)  0.12G(3.1%)
conv2 | 2.77G(30.5%) 0.67G(20.4%)
conv3 | 4.62G(60.3%)  0.95G(45.0%)
convd | 4.62G(90.2%)  1.39G(81.0%)
convb | 1.39G(99.2%)  0.73G(99.9%)

fe | 0.12G(100%)  2.05M(100%)
Total 15.47G 3.86G

As such, to optimize the bandwidth, compression for deep
features is necessary.

A. Features of Deep Neural Networks

As the deep neural networks are characterized with a
hierarchical structure of multiple layers, a group of features
can be extracted, where the outputs of each layer of the deep
model can be considered as features. In the rest of this section,
features of convolutional neural networks (CNNs), which are
the dominant deep model type in the visual computing task,
will be investigated.

Typically, CNN consists of convolutional layers, normaliza-
tion layers, pooling layers and fully connected layers as its
hidden layers. The convolutional layer is the core building
block of a CNN that accounts for most of the computational
heavy lifting. It applies convolutional filtering to the input, and
generates a 3-D matrix with appointed depth. For convenience,



the feature of the last convolutional layer in i—th block
is recorded as convi in the rest of this paper. In general,
pooling layers are periodically inserted in-between successive
convolutional layers to progressively reduce the spatial size of
the representations. The pooling layer operates independently
on each slice of the convolutional feature and resizes it spa-
tially by combining the outputs of neuron clusters at previous
convolutional layer into a single neuron. The output of last
pooling layer in i—th block is denoted as pooli feature. It is
also worth noting that some architectures use convolutional
layers, instead of pooling layers, to down-sample the input
matrix by modifying the stride factors of convolutional layers.
Fully connected layers are stacked in the top of a CNN to
extract high-level semantic information. Such layer applies
connections to all neurons in the previous layer with a matrix
multiplication followed by a bias offset. The output of a
fully connected layer is a 1-D matrix (i.e. a vector) with
fixed size. We call the feature of i—th fully connected layer
as fci. Various normalization layers, such as local response
normalization (LRN), batch normalization (BN), can also be
adopted in a CNN. They regularize the network for better
performance. Normalization layers are always parameter-free,
and they will not change the shapes of input matrices. Such
layers cannot bring the features with new semantic meanings.
As such, the outputs of normalization layers will not be
discussed in the rest of this paper.

Although various CNN architectures have been proposed in
recent years, we find that they share common characteristics in
terms of hierarchical structures and feature sizes. Table II lists
four milestone CNN architectures in image classification tasks,
including AlexNet [1], VGGNet [2], ResNet [3] and DenseNet
[4]. With the same input size, these state-of-the-art CNNs ex-
tract the features in a hierarchical manner. In the convolutional
part, the sizes of feature maps gradually get reduced along
with the inference process. It is found to be regular that the
feature map size will be halved after one certain block. Such
block can be composed of either one single convolutional layer
such as in AlexNet, few stacked convolutional layers such as
in VggNet, or some more advanced structures like residual or
dense connections of several convolutional layers. Along with
the size reduction, feature maps usually can represent more
high level semantic information in higher layers. When the
feature map size becomes small enough, fully connected layers
will be followed to convert the visual characteristics to the
task-related semantic space, which will largely erase the spatial
information in the feature. It can be easily observed that the
CNNs share similar feature map size for each block, only the
number of feature maps varies. In addition, the fully connected
layer features are with similar volume. Such observations
imply that CNNs are with analogical hierarchical structures
which can provide semblable features. It is also worth men-
tioning that most of these benchmark CNNs use ReLU as the
activation function, which constrains the numerical distribution
of deep features in a similar range. This property is useful for
the deep feature compression.

B. Toward Standardization of Deep Feature Compression

To ensure compatibility and facilitate interoperability, a
series of standards have been established for transmitting
visual signal and handcrafted ultimate features, as mentioned
in Section II. It is envisioned that our proposed approach of
transmitting intermediate deep features can also be standard-
ized in the future.

Conventionally, to fully ensure interoperability, feature cod-
ing standards usually specify both feature extraction and com-
pression processes [22], [23]. It is because, in feature coding,
the features from different extractors can be diverse from each
other in terms of shape, distribution, numerical type, etc. [49].
In view of this, feature extractors should be carefully designed
and specified in feature coding standards including CDVS and
CDVA. Such standardization strategy obtains interoperability
by sacrificing the compatibility for different feature extractors
and the generality for different tasks. Regarding intermediate
deep feature coding, benefiting from the characteristics of the
deep features, we believe the interoperability can be ensured
together with the compatibility and generality. Although the
deep learning models are kaleidoscopic, the deep features
share similar shapes and distributions in specific layers as
discussed in Section IV-A. Such observation provides possi-
bility to ensure the interoperability by only standardize the
feature compression process. In this manner, the choice of
feature extractor (i.e. deep learning model) will be left open
for system customization, which is conducive for the standard
to keep long-lasting vitality, since any emerging deep learning
models in the future can be compatible with the standard
seamlessly. Moreover, since intermediate features are with
better generalization ability than the ultimate features to apply
to various tasks, the generality of the standard can be further
ensured.

Concretely, regarding to the compression process, it is
expected to remove the redundancy of deep learning features
in both single images and video sequences. Also, deep feature
compression methods should be either lossless or lossy. This
is very similar to video coding standards such as HEVC which
supports both image/video compression and lossless/lossy
methods. Instead of being uniform as the image or video
signals, the characteristics of deep features are more diverging.
For example, features of convolutional layers are in the form
of feature maps which is very different from features of fully-
connected layers that are in terms of vectors. In view of this,
there should be different compression strategies for distinct
feature categories (i.e. conv, pool, fc). For the conv and pool
feature which is a combination of spatial 2D signals, many
video coding techniques can be transferred to compress deep
features, such as inter / intra prediction and rate distortion
optimization. For the fc¢ feature which is a vector, general data
compression methods can be referred, such as entropy coding.
As the dynamic range of deep feature values is commonly
smaller compared with the numerical range of its data type,
quantization methods should be efficient to remove the redun-
dancy. As such, how the redundancies of deep features can be
removed and how to minimize the performance drop of deep
feature while maximizing the redundancy reduction should be



TABLE I
ARCHITECTURES OF FOUR BENCHMARK DEEP CONVOLUTIONAL NEURAL NETWORKS. ‘OP. UNIT’ STANDS FOR OPERATION UNIT, AND IT CAN BE EITHER
A SINGLE LAYER OR A COMBINATION OF MULTIPLE LAYERS. ‘FEAT. SYMBOL’ IS THE SYMBOL OF FEATURE WHICH INDICATES THE SPECIFIC TYPE OF
FEATURE. ‘FEAT. SIZE’ CONTAINS THE SHAPE AND BIT SIZE OF THE FEATURE.

Blocks AlexNet [ VGGNet [ ResNet [ DenseNet
op. unit feat. symbol feat. size | op. unit feat. symbol feat. size | op. unit feat. symbol feat. size | op. unit feat. symbol feat. size
Input 224 x 224 x 3 RGB image
single conv convl 56 x 56 X 96 | stacked conv convl 224 x 224 x 64 . o . i . . . N
Conv. Block 1 Tmax pool pooll 58 X 28 X 96 max pool pooll T2 X 112 X 61 single conv convl 112 x 112 x 64 single conv convl 112 x 112 x 64
Conv. Block 2 single conv conv2 28 x 28 x 256 | stacked conv conv2 112 x 112 x 128 max pool pool2 56 X 56 X 64 max pool pool2 56 X 56 x 64
) max_pool pool2 14 x 14 x 256 max_pool pool2 56 X 56 x 128 residual bIk. conv2 56 X 56 x 256 | dense + trans. conv2 56 X 56 X 64
i . R . j stacked conv conv3 56 x 56 X 256 G B - ave. pool pool3 28 x 28 x 64
Conv. Block 3 | single conv conv3 14 x 14 x 384 max pool pool3 98 X 28 X 056 residual blk. conv3 28 x 28 x 512 Jense + trans. conv3 38 X 28 X 64
. i .- Ao stacked conv convd 28 x 28 X 512 . o o ave. pool pool4 14 x 14 x 64
Conv. Block 4 | single conv convd 14 x 14 x 384 max pool pooll 1A% 14 X 512 residual blk. convd 14 x 14 x 1024 Jense + trans. conod TAX 14X 64
N single conv convb 14 x 14 x 256 | stacked conv convb 14 x 14 x 512 . I o0, ave. pool pool5 7T X T x64
Conv. Block 5 max pool pool5 7 X T X 256 max_pool pool5 7T X T X512 residual blk. convo X7 X 2048 dense convb TXTXT?
single fc fel 4096 single fc fel 4096 i o o
FC Block Single Tc i) 7096 Single Tc 72 1096 ave. pool pool6 1Lx 12048 ave. pool pool§ Lx 1
single fc Je3 1000 single fc Je3 1000 single fc el 1000 single fc Jel 1000

further investigated during the standardization explorations.

V. EVALUATIONS ON LOSSLESS COMPRESSION OF
INTERMEDIATE DEEP LEARNING FEATURES

In this section, we present the evaluation results of the loss-
less compression of intermediate deep learning features. By
evaluating the benchmark lossless data compression methods
on deep learning features extracted with several widely-used
networks, we aim to provide the baselines for further research
and standardization activities.

A. Experiment Setup

To provide the meaningful baseline evaluations, we care-
fully selected the generic deep learning models and data com-
pression methods. In particular, the deep learning models are
chosen based on the principle that the extracted intermediate
features should be generic enough to be applied to a wide
range of tasks in visual analysis. Then four conventional and
widely used compression algorithms are selected to perform
deep feature compression.

1) Deep Learning Models and Datasets: In this paper, we
adopt official models of VGGNets and ResNets to perform
feature extraction. These commonly used pre-trained CNN
models are the winners of ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2014 and 2015, which are
trained on ImageNet dataset consisting of 1.2 million images
of 1000 classes. The bellwethers of ILSVRC become the
common choice for image feature extraction as their features
can be regarded as generic. As mentioned in Section III, for
many computer vision applications, the task-specific models
are designed on top of the features of VGGNets and ResNets,
such as image captioning [42], [43], visual tracking [7], image
object detection [5], [44], [45], [6], visual retrieval [8], [46],
image QA [47], [48].

VGGNet: Simonyan and Zisserman developped VGGNet at
the ILSVRC 2014. VGG-16 stands out from the six variants
of VGGNet for its good balance among performance and
computational complexity. VGG-16 is very appealing thanks
its neat architecture consisting of 16 convolutional layers
which only performs 3 x 3 convolution and 2 X 2 pooling
all the way through. Currently it is the most preferred choice
to extract features from images in computer vision community.

ResNet: At the ILSVRC 2015, He et al. introduced Residual
Neural Network (ResNet) which contains a novel technique
called “skip connections”. Thanks to this new structure, the
networks are able to go into very deep (152 layers in He
et al.’s work) with lower complexity than VGGNet. ResNets
have three commonly used variants with 50, 101, 152 layers
respectively. Benefited from the astonishing performance (top-
5 error rate of 5.25%, 4.60%, 4.49%), ResNets are increasingly
adopted by various tasks.

We extract the deep features of the aforementioned deep
learning models on a subset of the validation set of the
ImageNet 2012 dataset [11]. To economize the subsequent
compression time while maintaining the variety of test image
categories, we randomly choose one image from each of the
1,000 classes. Overall, we evaluate the compression perfor-
mance on each feature type with 1,000 feature entities.

2) Compression Methods: Analogous to data compression,
deep feature compression aims to encode deep learning fea-
tures with fewer bits than the original, which can be either
lossless or lossy. The lossless compression ensures that the
decoded feature is identical with the one before encoding. As
such, analysis of performance degradation will be avoided.
Lossy feature compression reduces the data size by optimizing
the information loss and bitrate, which may end in perfor-
mance loss of corresponding deep learning models. In this
section, we evaluate the performance with four conventional
lossless data compression methods, and lossy methods will
be explored in the next section. The adopted compression
methods are described as follows.

GZIP: GZIP [50] was developed in the early 1990’s as a
replacement for patent-encumbered algorithms such as LZW
[51]. The DEFLATE algorithm [52] is the core of GZIP, which
employs LZ77 [53] followed by Huffman coding [54]. The
GZIP algorithm enjoys very fast compression speed and small
memory footprint.

ZLIB: ZLIB [55] was adapted from the GZIP in mid-
1990’s. It abstracts the DEFLATE algorithm to achieve higher
compression ratio and faster speed. ZLIB is now widely used
for data transmission and storage.

BZIP2: BZIP2 [56] compresses the initial data with Run-
length encoding (RLE) and applies the Burrows-Wheeler
transform to rearrange character strings into runs of similar
characters. It then uses move-to-front (MTF) transform and
a combination of RLE and Huffman coding to efficiently



represent the data stream. BZIP2 is generally considered with
higher compression ratio than the LZW and Deflate algorithms
with relatively slower speed.

LZMA: The Lempel-Ziv—Markov chain algorithm (LZMA)
[57] uses a dictionary compression scheme, similar to LZ77
[53], followed by a range encoder. Comparing to LZ77, the
dictionary compressor is with huge dictionary sizes (up to
4 GB). The range encoder employs a complex mechanism
to make probability predictions of each bit. LZMA fea-
tures a generally high compression ratio with a comparable
speed [58].

B. Results

To evaluate the deep feature compression performance,
deep features are firstly extracted from different layers of
deep models. Subsequently, four classic lossless compression
algorithms with default configurations are applied on the
extracted features. The feature extractions are performed by
Caffe and Tensorflow on a NVIDIA GeForce 1080 GPU. The
compression processes are conducted on Intel Xeon CPU E5-
2650 v2 @ 2.60GHz with only one thread.

We mainly consider two criteria to evaluate the compression
performance: compression rate and computational time cost.
In particular, the compression rate is defined as

data volume after compression

Compression rate = —,
data volume be fore compression
1

In this paper, we report the mean compression rate and com-
putational time over 1,000 samples of each type of the deep
learning features for the four lossless compression methods.
The statistics of each type of features, including the shape,
volume and non-zero rate, are also provided. In particular,
based on the observation that ReLU function in deep learning
models can result in a plenty of identical values (i.e. zeros),
which may directly affect the compression rate, we list the
mean non-zero rates of each type of feature for compression
rates comparison. The results are listed in Tables III to VI for
VGGNet-16, ResNet-50, ResNet-101, ResNet-152. Visualized
results are also presented in supplemental material as Fig. 8.

From Tables III to VI we can see that, in terms of compres-
sion time cost, the ZLIB method is with the standout com-
pression speed. It takes less time than the other three methods
conspicuously on each type of feature. On the contrary, the
speed performance of GZIP, BZIP2 and LZMA varies on dif-
ferent feature types. For instance, when compressing the large-
volume features (e.g., convl of VGGNet with 12.25MByte)
and small-volume features (e.g., pool5 of ResNets and fc
features which are under 16KByte), LZMA is the slowest
among the four methods. When dealing with features of the
volume between 98KByte and 3.0625MByte, BZIP2 takes
longer time than LZMA in some cases (e.g., conv4-poold of
VGGNet and convl, pooll, convd, convb of ResNet). GZIP
takes less time than LZMA and BZIP2 in most cases. However,
regarding pool2, poold of VGGNet and conv2, conv3 of
ResNet, which are with the volume between 784KByte and
3.0625MByte, BZIP2 is faster. Overall, the compression speed
of ZLIB is orders of magnitude faster than the other three.

GZIP, BZIP2 and LZMA are with comparable time cost, while
GZIP is generally faster and LZMA is relatively slow among
the three. The speed of BZIP2 is not stable and highly depends
on feature types.

Regarding the compression performance, we can see that the
performance of LZMA is superior to the other three methods
on most of feature types except for fc3 of VGGNet and
pool5/fcl of ResNets, while ZLIB performs better on fc3
of VGGNet and pool5/fcl of ResNets. GZIP has similar
performance compared with ZLIB, though it wins ZLIB a
little bit on compressing features except for fc3 of VGGNet
and pool5/fcl of ResNets. BZIP2 provides comparable com-
pression rates on features except for fc3 of VGGNet and
pool5/fcl of ResNets, whereas its performance on fc3 of
VGGNet and pool5/fcl of ResNets is obviously worse than
the other three methods. In particular, the compression rates of
BZIP2 on the final layer features of all the four tested networks
are higher than 1.0, which implies that the compressed data
volume is even larger than the uncompressed one. The above
observations show that the performance of the four methods on
fe3 of VGGNet and pool5/fcl of ResNets is largely different
from the other feature types. This may be because that the
distributions of fe¢3 of VGGNet and pool5, fcl of ResNets
are different from the others. These three types of features
are from the top layers of the corresponding neural networks.
Unlike the low level layer features which are stacked 2-D
maps with remaining spatial correlations among the elements,
the top layer features are in the form of 1-D vector which
is lack of correlations between its elements, as mentioned
in Section IV-A. Furthermore, these three types of features
are of higher non-zero rates than the other feature types,
which may also affects the performance of the compression
methods. From Tables III to VI, we can also find that the
compression rates of the four compression methods on one
feature type are highly related with the non-zero rates of
this feature type. It may be because that ReL.U functions in
neural networks provides a number of zero values in a feature
sample, which produce statistical redundancy in the feature.
The non-zero elements in the feature usually distribute in a
broad numerical range, making the possibility very low to
have several elements with the same value. As such, it is
difficult for the compression methods to exploit the statistical
redundancy in non-zero elements. Therefore, the performance
of the lossless compression methods are largely affected by
the non-zero rate of a feature sample.

In summary, regarding lossless compression of the deep
learning features, the compression rates of the four benchmark
data compression methods are around the non-zero rate of
the deep feature. LZMA achieves the best compression rates
on most of the feature types with the highest computational
complexity. ZLIB performs comparably in term of compres-
sion rate with much shorter time. GZIP performs well but not
the best in terms of both compression rate and computational
cost. The performance of BZIP2 is not stable in terms of both
compression rate and time cost, and highly depends on the
feature type.



TABLE III
LOSSLESS FEATURE COMPRESSION RESULTS OF VGGNET.

Feat. Type Feat. Shape Data Volume Non-zero Gzip ZL1B BZIP2 LZMA
} ) B Comp. Rate Time Cost Comp. Rate Time Cost Comp. Rate Time Cost Comp. Rate Time Cost
convl 224 x 224 x 64 12.25M 0.685 £ 0.021 | 0.639 £ 0.044 2.016 £ 0.345 0.641 &+ 0.044 0.521 = 0.040 0.648 £ 0.044 3.170 £ 0.572 0.609 &+ 0.045 5.146 £ 0.585
pooll 112 x 112 x 64 3.0625M 0.81540.023 | 0.752 £ 0.055 0.345 4 0.050 0.753 & 0.055 0.147 £ 0.013 0.766 4 0.053 0.688 4 0.227 0.719 & 0.058 0.815 % 0.056
conv2 112 x 112 x 128 6.125M 0.480 4 0.012 | 0.482£0.028 1.369 £ 0.199 0.486 + 0.028 0.216 + 0.015 0.475 4 0.026 1.556 £ 0.489 0.460 % 0.028 2.451 £ 0.330
pool2 56 x 56 x 128 1568 K 0.694 4 0.033 | 0.680 £ 0.046 0.378 4 0.039 0.683 4 0.046 0.075 & 0.006 0.672 4 0.043 0.239 4 0.076 0.655 & 0.046 0.493 £ 0.021
conv3 56 x 56 x 256 3.0625M 0.302 4 0.026 | 0.319 £ 0.030 0.541 4 0.098 0.322 4 0.030 0.077 £ 0.007 0.308 4 0.028 1.188 £ 0.095 0.301 4 0.028 1.130 £0.120
pool3 28 x 28 x 256 T84K 0.484 4 0.049 | 0.502 + 0.050 0.241 4 0.032 0.506 & 0.050 0.031 +0.003 0.484 4 0.047 0.139 4 0.055 0.478 4 0.049 0.259 + 0.021
convd 28 x 28 x 512 1568 K 0.12740.014 | 0.146 £ 0.016 0.124 4 0.016 0.148 4 0.016 0.023 + 0.002 0.138 4+ 0.015 0.511 4 0.022 0.137 +0.014 0.348 + 0.054
pool4 14 x 14 x 512 392K 0.243 +0.030 | 0.274 £0.033 0.071 £ 0.011 0.278 £0.033  9.969m + 1.114m | 0.259 + 0.030 0.131 4 0.019 0.255 % 0.030 0.122 +0.012
convs 14 x 14 x 512 392K 0.068 4 0.017 | 0.079 £ 0.018 0.024 4 0.004 0.0814+0.019  4.045m £ 0.411m | 0.075£0.018 0.108 4 0.002 0.074 +0.017 0.048 £ 0.010
pool5 7xT7x512 98K 0.124 4 0.028 | 0.147 £ 0.031 0.013 4 0.002 0.150 +0.032  1.498m £ 0.213m | 0.143 £ 0.030 0.029 4 0.001 0.139 & 0.029 0.018 + 0.003
fel 4096 x 1 16K 0.248 4 0.046 | 0.304 4 0.047  5.204m £ 0.662m | 0.307 £0.047  0.537m £ 0.062m | 0.30540.046  2.918m + 0.191m | 0.288 £0.045  6.800m =+ 0.849m
fe2 4096 x 1 16K 0.259 4+ 0.061 | 0.315+0.062 4.964m + 0.485m | 0.318 £0.062  0.540m £ 0.070m | 0.317 £0.061  2.933m £ 0.191m | 0.300 4+ 0.060  6.257m =+ 0.249m
fe3 1000 x 1 4000 1.000 £ 0.000 | 0.9404+0.002  0.156m £ 0.016m | 0.937 +0.002  0.115m £ 0.008m | 1.086 +0.004  1.310m £ 0.009m | 0.964 +0.006  2.007m % 0.090m
TABLE IV
LOSSLESS FEATURE COMPRESSION RESULTS OF RESNET-50.
GZIP ZLIB BZIP2 LZMA
Feat. Type Feat. Shape Data Volume Non-zero Comp. Rate Time Cost Comp. Rate Time Cost Comp. Rate Time Cost Comp. Rate Time Cost
convl 112 x 112 x 64 3.0625M 0.686 +0.026 | 0.619 £0.019 0.254 & 0.091 0.619 £ 0.019 0.117 £ 0.006 0.639 & 0.021 1.067 £ 0.047 0.578 £0.023 0.765 £ 0.083
pooll 56 X 56 x 64 784K 0.765 4+ 0.031 | 0.529 &+ 0.025 0.050 % 0.009 0.529 + 0.025 0.024 £ 0.001 0.638 4 0.029 0.261 +0.017 0.459 + 0.024 0.162 £ 0.014
conv2 56 x 56 x 256 3.0625M 0.707 £ 0.028 | 0.681 +0.018 0.595 4 0.089 0.683 + 0.018 0.138 £ 0.003 0.681 4 0.022 0.442 + 0.069 0.652 + 0.016 1.067 £ 0.091
conv3 28 x 28 x 512 1568 K 0.686 +0.014 | 0.672 £0.011 0.327 4 0.037 0.674 £ 0.011 0.068 £ 0.002 0.666 4 0.012 0.204 + 0.021 0.649 £ 0.011 0.488 £ 0.049
convd 14 x 14 x 1024 784K 0.541 4 0.024 | 0.548 4 0.021 0.172 +0.017 0.550 + 0.021 0.030 £ 0.001 0.535 4 0.022 0.126 + 0.031 0.526 + 0.021 0.238 £0.013
convb 7 X 7 x 2048 392K 0.176 4 0.032 | 0.200 £ 0.033 0.065 & 0.011 0.203 £0.034  7.311m £ 0.943m | 0.190 £ 0.032 0.115 & 0.006 0.188 £ 0.032 0.086 £ 0.012
pool5 1x1x2048 8K 0.887 +0.063 | 0.858 £0.041  0.405m % 0.176m | 0.857 £0.041  0.265m + 0.035m | 0.935£0.053  1.852m £ 0.048m | 0.861+0.044  2.476m =+ 0.081m
fel 1000 x 1 4000 1.000 £0.000 | 0.941£0.002 0.155m £ 0.015m | 0.938 +0.002  0.115m £ 0.012m | 1.086 +0.004  1.246m % 0.021m | 0.965 £0.006  1.699m + 0.038m
TABLE V
LOSSLESS FEATURE COMPRESSION RESULTS OF RESNET-101.
GZIP ZLIB BZIP2 LZMA
Feat. Type Feat. Shape Data Volume Non-zero Comp. Rate Time Cost Comp. Rate Time Cost Comp. Rate Time Cost Comp. Rate Time Cost
convl 112 x 112 x 64 3.0625M 0.660 £ 0.023 | 0.588 £0.017 0.216 = 0.070 0.588 £ 0.018 0.110 £ 0.005 0.610 & 0.020 1.042 £0.031 0.543 £0.021 0.640 £ 0.047
pooll 56 X 56 x 64 T84K 0.713 +0.026 | 0.489 £ 0.023 0.041 & 0.007 0.490 + 0.023 0.022 £ 0.001 0.590 = 0.026 0.261 & 0.008 0.422 £ 0.022 0.143 £ 0.015
conv2 56 X 56 x 256 3.0625M 0.687 +0.037 | 0.663 + 0.026 0.601 4 0.091 0.665 + 0.026 0.131 + 0.004 0.662 & 0.030 0.441 + 0.059 0.632 + 0.024 0.980 + 0.067
conv3 28 x 28 x 512 1568 K 0.724 4+ 0.021 | 0.703 £ 0.015 0.325 4 0.042 0.705 £ 0.014 0.070 £ 0.002 0.699 4 0.017 0.201 4 0.011 0.676 £ 0.013 0.427 £0.017
convd 14 x 14 x 1024 784K 0.730 +0.032 | 0.711 +0.025 0.180 + 0.037 0.714 + 0.024 0.036 + 0.002 0.704 4 0.028 0.100 % 0.005 0.691 + 0.025 0.202 + 0.009
convb 7 x 7 x 2048 392K 0.164 4 0.035 | 0.187 +0.037 0.060 4 0.011 0.190 £ 0.037  6.516m % 0.957m | 0.178 £0.035 0.116 % 0.006 0.176 + 0.035 0.079 £0.013
poold 1x 1 x2048 8K 0.860 + 0.075 | 0.84140.051  0.455m + 0.214m | 0.840 £ 0.051  0.276m + 0.035m | 0.914 +£0.064  1.848m + 0.062m | 0.843 +0.054  2.544m + 0.104m
fel 1000 x 1 4000 1.000 £0.000 | 0.94140.002 0.146m £ 0.005m | 0.938 +0.002  0.115m 4 0.008m | 1.086 +0.004  1.233m =+ 0.030m | 0.965 £0.006  1.746m + 0.039m
TABLE VI
LOSSLESS FEATURE COMPRESSION RESULTS OF RESNET-152.
GZIP ZLIB BZIP2 LZMA
Feat. Type Feat. Shape Data Volume Non-zero Comp. Rate Time Cost Comp. Rate Time Cost Comp. Rate Time Cost Comp. Rate Time Cost
convl 112 x 112 x 64 3.0625M 0.595 4+ 0.026 | 0.527 & 0.022 0.177 &+ 0.046 0.527 £ 0.022 0.102 £ 0.005 0.548 £ 0.025 0.981 + 0.049 0.485 £ 0.024 0.679 £0.057
pooll 56 x 56 x 64 784K 0.640 4 0.029 | 0.441 4 0.025 0.040 =+ 0.008 0.442 + 0.025 0.020 £ 0.001 0.532 4 0.029 0.248 +0.010 0.379 £ 0.023 0.144 £ 0.012
conv2 56 X 56 X 256 3.0625M 0.71540.030 | 0.681 £ 0.021 0.538 & 0.076 0.682 + 0.021 0.138 £ 0.006 0.685 4 0.024 0.683 & 0.186 0.644 £ 0.017 1.121 £ 0.096
conv3 28 x 28 x 512 1568 K 0.757 £ 0.023 | 0.729 £ 0.017 0.322 4 0.048 0.731 £ 0.017 0.072 £ 0.003 0.727 4 0.020 0.201 +0.011 0.704 £ 0.016 0.485 £ 0.032
convd 14 x 14 x 1024 T84K 0.765 4 0.031 | 0.740 £ 0.023 0.165 4 0.038 0.742 £ 0.022 0.037 £ 0.002 0.735 4 0.026 0.098 & 0.004 0.719 £ 0.023 0.231 £0.016
convb 7 X T x2048 392K 0.165 4 0.034 | 0.188 +0.036 0.062 4 0.011 0.191+0.036  6.835m % 1.000m | 0.178 £ 0.034 0.121 % 0.006 0.177 £ 0.034 0.085 £ 0.013
pool5 1x1x2048 8K 0.860 4 0.074 | 0.841£0.050 0.469m 4 0.218m | 0.840 £0.050  0.276m £ 0.035m | 0.914 £0.063  1.980m £ 0.054m | 0.843 4 0.054 2.841m £ 0.096
fel 1000 x 1 4000 1.000 £ 0.000 | 0.941£0.002  0.155m £ 0.003m | 0.938 +0.002  0.115m £ 0.007m | 1.086 +0.004  1.286m % 0.023m | 0.965 £ 0.006  1.986m + 0.037m

C. Discussions

By evaluating the four benchmark lossless data compres-
sion methods on deep learning features, we observe that
the compression rate of a lossless compression method is
largely limited by the non-zero rate of the feature to be
compressed. The statistical redundancy of the deep learning
feature mainly depends on the elements with zero value. It
is difficult to identify and eliminate statistical redundancy
from the non-zero elements of the deep learning features. As
such, compressing the deep features in a lossless manner does
not guarantee much room to improve. From the evaluation
results, compression ratios of the lossless manner are around
1.5x73x, which may not be desirable for real applications.
Accordingly, lossy compression on deep features is worth
for further investigation. Moreover, it has been shown that
the final output result of a neural network is not sensitive to
slight changes of the activations in intermediate layers [59],
which provides tolerability of the information loss for the lossy
compression. In addition, the dynamic range of a deep learning
feature is generally much smaller than the value range of the

corresponding numeric data type, which provides much room
for techniques such as quantization and sampling to compress
the deep learning features. It is valuable to conduct further
researches on compressing the deep learning features in a lossy
way while maintaining the analysis performance.

VI. EVALUATIONS ON LOSSY COMPRESSION OF
INTERMEDIATE DEEP LEARNING FEATURES

As discussed in the previous section, the lossless com-
pression methods can hardly provide high compression ratio,
which is not desirable for practical applications. In this section,
we present lossy compression results of intermediate deep
learning features to show the potential.

A. Compression Methods

In CNN:ss, the feature of a convolutional layer is in the form
of feature maps which is a combination of stacked 2-D arrays
with spatial correlations among the elements. Intuitively, one
2-D feature map can be consider as a frame, while the
feature of the convolutional layer can be consider as the video
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Fig. 6. Flow chart of lossy compression for intermediate deep learning feature
maps.

sequence. As such, existing video codecs can be applied to
compress deep features in the lossy manner [37], [38]. In this
paper, we conduct the lossy compression experiments with the
video codec based compression method. Fig. 6 describes the
flow of the compression method.

In the encoding phase, pre-quantization module is first
applied to convert the floating point deep learning feature
data to integers. It is necessary since that deep learning
features, like the vanilla VGGNets and ResNets features, are
in float32 format, which are not compatible with the desired
input format of most video codecs. For instance, HEVC and
AVC require 8-bit (or higher) integers as the input. In view of
that the intermediate deep feature generally has a right-skewed
exponential distribution with a wide data span (histograms of
intermediate deep features are presented in the supplemental
material as Fig. 7), we quantize the features to 8-bit precision
with logarithmic sampling in this paper. The quantization and
corresponding dequantization (i.e. inverse quantization) are
performed as

X yuant —round( logp(X — min('X) +1) -
maz(logp(X —min(X)+1)) (2)
(2bitdepth _ 1))

Xquant maz(logg (X —min(X)+1))
Sbitdepth _ 1

Xdequant =2 —l—mm(X) -1 (3)

where X can be the feature tensor of a certain input from
any specific layer of the neural network; Xgyant and Xgequant
are the corresonding quantized and dequantized feature tensor;
round(-) rounds the input float value to the nearest integer;
B is the base of logarithm which can be any real number; and
bitdepth denotes the bit depth of the quantized integers, we
set it as 8 in this paper.

After quantization, integer feature maps will
then be repacked to YUV 4:0:0 format NJ *W'*C o feed
the video encoder. Pratically, the height H and width W of
feature maps will be extended to H' and W/, by padding after
the last array element along each dimension with repeating
border elements, to fullfill the frame size requirement that
the input height and width should be integral multiple of
8, where H' = [H/8] x 8 and W' = [WW/8] x 8. Each
feature map will be then considered as a frame in the yuv
format data. It is worth noting that the order of the frames
can be reorganized during the repack phase, which may affect
the compression performance if inter-frame correlations are

N(])‘IXWXC

considered. In this paper, we only apply intra coding while
the frame order reorganization is not investigated.

The repacked data are then compressed with the video
encoder. We adopt the reference software (HM16.12) of HEVC
Range extension (RExt) to conduct the experiment. To evaluate
on a broad range of bitrate condition, we test the compression
performance and accuracy loss with five quantization param-
eter (QP) values, i.e., [0,12,22,32,42].

The decoding phase is an inverse of the encoding flow, the
bitstream is decoded by video decoder, DeRepack module and
DeQuantization module in sequence. The reconstructed deep
feature maps will be further passed to their birth-layer in the
corresponding neural network to infer the network outputs,
which will be compared with pristine outputs to evaluate the
information loss of the lossy compression methods.

Different from the feature maps, feature vectors from the fc
layers do not have the 2-D map structure. Therefore, video
codec based lossy compression methods cannot be applied
to the feature vectors. Instead of repacking and passing the
feature to the video codec, we apply lossless compression
on the quantized feature vectors. As LZMA performs well
in Section V, we adopt LZMA to further eliminate the redun-
dancy in the quantized feature data. It is worth noting that
the upper and lower bound values of each feature sample (i.e.
maz(loga (X —min(X)+1)) and min(X) in Eq. 2 and Eq. 3)
are also included in the bitstream for further dequantization.

B. Results

The experimental settings of lossy compression are basically
identical with the lossless compression experiments. Deep
features are extracted from different layers of four deep models
on a subset of ImageNet dataset which is mentioned in
Section V-Al. The extracted deep features are then compressed
with lossy compression methods described in Section VI-A.

In contrast with lossless compression which introduces no
information loss to reconstructed features, the lossy compres-
sion reduces the data volume by eliminating less important
information which may result in performance loss of corre-
sponding deep learning models. As such, in this section, we
evaluate the lossy compression performance in both terms of
compression rate and information loss. For the compression
rate, we follow Eq. 1 to obtain the compression ratio. As to
the information loss, we calculate the fidelity by comparing
the pristine DNN outputs with the outputs inferred from the
reconstructed intermediate deep features, as below

o Hamming(Y;, V)
length(Y;)

1

Fidelity = 1 5N i 4)
where Y; is the onehot vector (output result of a deep learning
model) inferred with i-th test image sample, Y is the onehot
vector inferred with the corresponding reconstructed deep fea-
ture, length(-) returns the dimension of input, N denotes the
total number of tested samples. There is a negative relationship
between fidelity and information loss. Namely, higher fidelity
values tend to be associated with lower information loss, and
vise verse.



Tables VII to X list lossy compression results on VGGNet-
16, ResNet-50, ResNet-101, ResNet-152 respectively. Visual-
ized results are also presented in supplemental material as Fig.
9. From the results, we can see that compression rates of lossy
methods get dramatically improved comparing with lossless
methods. The mean compression rates of lossy methods over
tested feature vectors and feature maps on QP12 are around
0.205 and 0.140 respectively, while the lossless methods can
only provide around 0.777 and 0.469 in the best cases (i.e.
with LZMA). Beyond that, for lossy compression on feature
maps, with the QP value increasing, the bitstream can be
even more compact. For instance, the compression rate for
convl of VGGNet-16 is 0.116 on QP12, while it gets more
than 5x smaller (i.e. 0.020) on QP42. However, increasing QP
values will also result in loss of information. For example, for
VGGNet convl features, the fidelity of the reconstructed fea-
tures on QP12 is 0.996 which denotes that the discriminative
capability of the features is not significantly affected during the
lossy compression process, while the fidelity on QP42 is only
0.839 which means almost 20% of the reconstructed features
are mismatched with the pristine ones.

Since feature vectors are compressed without video codecs,
the compression performance on feature vectors will not be
affected by the quantization parameter (QP) as shown in the
tables. Only quantized by the straightforward 8-bit quantiza-
tion, the lossy compression for feature vectors are with very
high fidelity while the data volume is nearly 4x smaller than
the result of lossless methods. In particular, the fidelity on
final layer features (i.e. fc3 of VggNet and fcl of ResNets)
are slightly lower than which on others. It may be because the
elements of last layer features are directly associated with the
final classification results, which suppresses the tolerability for
the information loss.

Regarding feature maps, we can see that applying quan-
tization (i.e., the cases other than QPO) inside video codec
can generally result in greater compression ratio. However,
for higher layer features, such as convb, pool5 of VGGNet
and convb of ResNets, the difference of compression ratio
between with (i.e., QP12) and without (i.e., QP0) quantization
is not significant comparing with the lower layer features. It
may be due to that high layer features are usually abstract and
dense, and in this case, feature maps are relatively smooth
and highly spatially correlated. The existing intra prediction
scheme can remove the spatial redundancy efficiently, and only
little energy remains in the residual signal accordingly. In this
context, quantization with small QP can hardly have effect on
the residuals. As a result, the compression ratio will not change
too much. When enlarging QP values, compression ratio
increases along with the degradation of the fidelity. From the
experimental results, it can be observed that QP22 generally
provides a good trade-off between the compression rate and
fidelity. Comparing to QP12, the compressed bitstream at
QP22 is around 1.5x smaller while the information loss does
not significantly increase. The deep features compressed at
QP32 enjoy 2x smaller volume than QP22, but the quality of
the feature is out of control, especially on low layer features
like conwvl and pooll of ResNet. It can also be observed that,
the fidelity of some features does not change much with the

QP values, like convb of ResNets. They can be compressed to
extremely low volume with high QP values, while maintaining
most of useful information. As such, we can expect that lossy
compression methods with adaptive parameter selection will
be more effective to achieve a better trade-off between the
compression rate and information loss.

In summary, lossy deep feature compression methods are
more promising to compress the feature data into smaller
volume than the lossless methods. However, lossy methods
will also introduce information loss where the lossless methods
will not. The compression parameters, like the QP value in
this paper, can be adjusted to control the trade-offs between
the compression rate and the fidelity of the compressed deep
feature.

VII. CONCLUSIONS

We have investigated a new strategy that exploits the re-
dundancy of intermediate deep learning features instead of
visual signal or ultimately utilized features. The advantage of
this strategy lies in that the generalization ability is greatly
enhanced to achieve multiple analyses tasks performed si-
multaneously at the cloud side, such that better trade-off can
be achieved in terms of the computational load, communica-
tional cost and generalization capability. We further conducted
comprehensive lossless and lossy compression evaluations on
deep features of four widely used neural networks. As the
first attempt to the problem, the proposed strategy and the
evaluation results in this paper provide a good reference for
further studies and investigations along this vein.
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