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Abstract— Eye tracking technology in low resolution scenarios
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1

is not a completely solved issue to date. The possibility of using2

eye tracking in a mobile gadget is a challenging objective that3

would permit to spread this technology to non-explored fields.4

In this paper, a knowledge based approach is presented to solve5

gaze estimation in low resolution settings. The understanding6

of the high resolution paradigm permits to propose alternative7

models to solve gaze estimation. In this manner, three models8

are presented: a geometrical model, an interpolation model9

and a compound model, as solutions for gaze estimation for10

remote low resolution systems. Since this work considers head11

position essential to improve gaze accuracy, a method for head12

pose estimation is also proposed. The methods are validated13

in an optimal framework, I2Head database, which combines14

head and gaze data. The experimental validation of the models15

demonstrates their sensitivity to image processing inaccuracies,16

critical in the case of the geometrical model. Static and extreme17

movement scenarios are analyzed showing the higher robustness18

of compound and geometrical models in the presence of user’s19

displacement. Accuracy values of about 3◦ have been obtained,20

increasing to values close to 5◦ in extreme displacement settings,21

results fully comparable with the state-of-the-art.22

Index Terms— Gaze estimation methods, low resolution, eye23

tracking.24

I. INTRODUCTION25

DURING the last decades, especially during the last five26

years, a big effort has been made by the scientific27

community in order to extend the application of eye tracking28

systems to other frameworks, such as off-the-shelf systems or29

low resolution hardware, i.e. eye trackers employing a webcam30

or the mobile device camera. The application of eye tracking31

technology, in their high resolution fashion, can be verified32

in fields such as the analysis of eye movements or human33

computer interaction for severely disabled people [1]. The high34

resolution systems are a fact, although further improvements35
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are still pursued in order to increase the accuracy and reduce 36

head movement constraints [2], [3]. 37

Regarding low cost systems, we find some publications in 38

which the accuracies reported are far from being compara- 39

ble to the ones obtained by high resolution systems. This 40

is partially comprehensive due to the lack of detail in the 41

image and the inaccuracies arisen from the features detection. 42

The employment of more off-the-shelf cameras, such as a 43

webcam, reduces considerably the density of pixels in the 44

pupil area compared to high resolution systems. Consequently, 45

the research related to low cost eye tracking is also named as 46

low resolution eye tracking as it will be considered in this 47

article. Apart from the lower resolution, there are additional 48

factors that can contribute to the inaccurate gazed point estima- 49

tion. High resolution systems use high focal length lenses with 50

narrow Field of View (FoV) providing an extremely detailed 51

image of the eye area and not allowing large movements 52

of the subject to remain visible (for the camera). Contrarily, 53

the wider FoV of a webcam permits the user to move freely. 54

Additionally, when moving to webcam-based systems, it is 55

reasonable to remove the infrared light sources, the goal being 56

to reach a plug-and-play eye tracking technology. The absence 57

of the infrared light produces, on the one hand, a lower quality 58

image and on the other hand, the lack of a key feature, i.e. 59

corneal reflection (glint), for gaze estimation. In summary, 60

the extrapolation of the know-how obtained in the field of 61

high resolution infrared gaze tracking cannot be applied to 62

low resolution systems straightforwardly [4]. 63

First, the image processing algorithms employed need to 64

be reoriented to low resolution images (obtained using sys- 65

tems with no infrared light). Second, geometrically speaking, 66

regardless of the type of system employed, i.e high or low 67

resolution system, the head position with respect to the camera 68

and the eyeball pose within the head are required to determine 69

the Line of Sight (LoS) with respect to a remote camera. For 70

high resolution systems, the corneal glint is normally assumed 71

to be a reference for the head position. Thus, alternative gaze 72

estimation methods incorporate the head pose information 73

in different manners. When regression based methods are 74

employed for gaze estimation, e.g. a second degree polyno- 75

mial, the Pupil Center-Corneal Reflection (PC-CR) vector is 76

used as independent variable, assuming its robustness against 77

head movement [5]. On the other hand, the geometrical 78

methods do an explicit modeling of head position based on the 79

information provided by the glints and assuming a simplified 80

eye model [6]. The absence of infrared light reinforces the 81

need of incorporating head information by using alternative 82
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methods not previously employed in the field of high res-83

olution gaze tracking. Moreover, high accuracy Head Pose84

Estimation (HPE) methods are required since any HPE error85

would contribute directly to the gaze estimation error.86

Alternative solutions can be found in the literature proposing87

gaze tracking methods for low resolution systems. One of88

the first works regarding low resolution is that presented by89

Valenti et al. [7]. In this paper, it is explicitly stated that the90

head modelling is a requirement in low resolution scenarios.91

The paper clearly demonstrates that a joint modelling of the92

head and eye improves gaze estimation. An iterative process93

is carried out in which “normalized” eye images are obtained94

from the head position, and the eye position is then employed95

to correct head information. A couple of years later, in the96

paper by Wood and Bulling [8], a model-based approach for97

binocular gaze estimation to be run in a tablet was shown.98

The accuracy obtained was about 6◦ but the tolerance to99

head movement was not clearly demonstrated. The accuracy100

values obtained in low resolution systems are below those101

achieved by high resolution gaze trackers, but there are some102

interesting applications for which no outstanding accuracies103

are required. In the work by Vicente et al. [9], a remote104

gaze tracking system is presented to be installed in a car to105

detect “eyes off the road” situations. A complete system is106

proposed composed by an image processing stage leading to107

the geometry based estimation of head pose and gaze direction.108

More details are provided about head pose results than about109

gaze tracking accuracy. Similar works aimed to detect gazing110

zones in driving scenarios [10] can be found.111

The methods mentioned can be grouped under the term112

of feature-based-methods. Regardless of the gaze estimation113

method employed, an image processing stage is required to114

extract specific image features to be used as input for the gaze115

estimation method. During the last years, alternative works116

based on deep learning, e.g. Convolutional Neural Networks117

(CNNs), have been proposed for gaze estimation. CNNs,118

as supervised learning tools, have demonstrated to be a nice119

solution for many computer vision problems, such as object120

detection or scene recognition among others. The methods121

based on CNNs have common aspects with appearance-122

based-methods [11]. Roughly speaking, it is not required123

to extract features from the image but it is the network124

which, automatically, learns the required information from125

the image to carry out the classification/regression, i.e. the126

gaze estimation in our case. In other words, when dealing127

with CNNs there is not a division between eye tracking (i.e.128

image processing) and gaze estimation, but both stages are129

performed by the same tool. In the work by Krafka et al. [12]130

CNNs are used to calculate gaze direction. A database of131

approximately 2.5M images containing faces of individuals132

gazing points on a screen is used for training the network.133

Basically, the network is fed using three cropped images of134

the face and both eyes. Additionally, an empty image in which135

the face position within the image is marked is employed as136

input. The network is trained to obtain the head pose with137

respect to the camera and the position of both eyes with138

respect to the head. Thus, combining the output data, the gaze139

direction can be inferred. In the work by Zhang et al. [13],140

the gaze is estimated by means of a two-step procedure based 141

on CNNs. Cropped eye images are used as input to a CNN 142

whose output is combined with data about the head pose to 143

obtain the gaze. The suitability of CNN-based methods relies 144

basically in two aspects: first, the availability of a large scale 145

database that is able to represent the variability of the problem 146

to be solved. Second, its success depends on the trained 147

network ability to generalize, i.e. the capability to obtain a 148

correct output for samples not included in the training stage. 149

The requirement of having a representative database is key to 150

obtain successful results. In fact, during the last few years, 151

interesting efforts have been carried out in order to produce 152

this kind of databases, such as POG Eye Tracking [14], 153

EYEDIAP [15], MPIIGaze [13], [16], Columbia dataset [17] 154

and TabletGaze [18]. 155

The works employing these databases utilize deep learning 156

as gaze estimation method. The main contribution of these 157

works is valuable from the point of view of the regression 158

method employed, more than from the perspective of the 159

results representability. The number of training and testing 160

images of the mentioned databases approximates some thou- 161

sands, except for the MPIIGaze database containing about 162

250,000 images. Nevertheless, they are far from being con- 163

sidered large scale databases. The difficulty of obtaining large 164

scale databases in the field of eye tracking is the fact that 165

the data labelling is not straightforward. Eye images have to 166

be linked with the gazed point and this information is not 167

easily available. The most remarkable work in the field is 168

the one developed at the MIT [12] containing 2.5 millions 169

of images from 1450 participants. The method employed for 170

obtaining labelled data is based on crowdsourcing by means 171

of a designed application named GazeCapture, installed in 172

subjects’ tablets and phones. In this manner, the subjects could 173

activate the application any time and gaze specific points 174

on the screen that could be registered together with the eye 175

images captured by the gadget camera. An alternative solution 176

for overcoming the problem of obtaining tagged data is to 177

use “learning by synthesis” approaches. Employing simulation 178

environments, synthetic images are constructed in which the 179

labels are already known as they have been used to build the 180

image. In this manner, enormous amount of tagged images 181

can easily be obtained. Remarkable works in this area are the 182

ones presenting Multi-view gaze dataset [19] and the proposals 183

made by Świrski and Dodgson [20] and Wood et al. [21]. 184

Accuracies reported for low resolution gaze tracking are 185

far from being comparable with the results obtained by 186

other approaches using a geometrical perspective, and highly 187

dependent on the database for which the method has been 188

trained. Reviewing the literature, angular errors in the range 189

of 7◦-9◦ are reported for Columbia dataset, while values in the 190

range of 6◦-20◦ are found for the EYEDIAP, showing a strong 191

dependency on the estimation method used [8], [22], [23]. 192

CNNs show up as a promising technique to be applied to gaze 193

estimation, and could probably provide better results than the 194

ones reported to date if the existing difficulties are overcome 195

in the near future. For MPIIGaze, which is one of the most ref- 196

erenced datasets in the literature, errors in the range of 7◦-9◦
197

have been reported [16] using appearance-based methods. 198
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Moreover, in a later work of the authors, it is shown that199

feature-based approaches using explicit landmarks extracted200

from the image can outperform appearance-based approaches201

to date, showing errors in the range of 3◦-6◦ [24].202

In any case, today, feature-based methods show up as a203

possible solution for low resolution gaze tracking systems.204

Moreover, working from a more geometrical perspective per-205

mits to obtain a valuable knowledge of the system under study206

and provides a deeper understanding of the different variables207

affecting the system accuracy.208

In this paper, we review the basics of high resolution209

systems and we propose novel solutions for low resolution210

remote eye trackers using the knowledge acquired so far. The211

know-how constructed in the last decades about the geometry212

and the key aspects of gaze estimation permits to approach the213

problem from an advantageous perspective. Therefore, three214

alternative models are proposed for gaze estimation in the low215

resolution environment. Moreover, image processing strategies216

are evaluated and suggested for both head pose estimation and217

iris detection, which are key for the different gaze estimation218

methods proposed.219

In the next section, the basics about gaze estimation geome-220

try problems are reviewed. Section III presents alternative gaze221

estimation methods proposed for low resolution eye trackers.222

In section IV the framework in which the methods are evalu-223

ated is carefully described. Additionally, the I2Head database,224

which is key for the validation of the gaze estimation methods,225

is presented. Section V shows the results achieved in the226

different tests carried out in this work. Finally, the discussion227

and conclusions of the work are presented in section VI.228

II. GAZE ESTIMATION REVISITED229

In this section, the basics of gaze estimation theory are230

described and discussed. It is important to analyze the problem231

by using high and low resolution perspectives with the aim to232

identify those points that can be applied to both frameworks233

and to detect their main differences from the gaze estimation234

point of view.235

A. High Resolution Gaze Estimation236

Gaze estimation based on remote video-oculography has237

been around since decades ago. High performance or high238

resolution eye trackers using infrared light sources, optical239

filters and high focal length lenses produce high resolution240

pupil area images. Hence, the detection of the pupil center241

and corneal glints is feasible.242

Different approaches have been proposed to approximate243

the geometry of the 3D framework composed by the user,244

the camera, light sources and the screen. A review of the245

alternative methodologies can be found in [11]. Regarding246

gaze estimation methods, the most popular ones due mainly to247

their robustness and accuracy are, on the one hand, the meth-248

ods based on interpolation models (i.e. using a polynomial)249

and, on the other hand, geometrical models. All these methods250

consider as input the information extracted from the image, i.e.251

image features, and provide as output the 2D gaze position252

on the screen, named the Point of Regard (PoR) or the 3D253

Line of Sight (LoS). The Line of Sight can be geometrically 254

determined by knowing the head position and the eye pose 255

within the head model. 256

According to the literature, eye tracking methods with an 257

acceptable accuracy require a user calibration stage in which 258

the unknown parameters of the gaze estimation model are to 259

be estimated. The calibration consists in asking the subject to 260

gaze specific targets on the gazing area. The number of targets 261

can vary from one to more points, e.g. grids of nine or sixteen 262

points, according to bibliography. 263

Regarding geometry-based-models, the parameters to be 264

deduced in the calibration procedure are individual’s parame- 265

ters such as corneal radius or angular offset between optical 266

and visual axes. The fovea is a small depression of the 267

retina responsible for our most accurate vision. It is the 268

area in which the gazed objects are projected. The fovea is 269

located temporally in the eyeball, meaning that there is an 270

angular offset between our Line of Sight represented by an 271

imaginary axis (named the visual axis) and the symmetry axis 272

of the eye (named the optical axis of the eye). The output 273

of the geometry-based methods is the 3D LoS resulting in the 274

estimation of the 2D PoR when the intersection with the screen 275

plane is calculated. Geometrically, it has been demonstrated 276

that a single camera and two light sources is the minimum 277

hardware required to determine gaze direction with no head 278

movement constraints [6]. Thus, geometry based frameworks 279

present better robustness regarding head movements of the 280

user. The handicap of geometrical methods is the model 281

complexity involving projective relationships and 3D models 282

of the alternative elements, eyeball, camera, light sources and 283

screen. On the other hand, the complete knowledge of the 284

system requires a setup calibration, i.e. calibration of the 285

camera, the screen position and the light sources. In summary, 286

eye trackers using geometrical models are far from being plug- 287

and-play systems. 288

The alternative is to use interpolation-based-methods for 289

which the simplicity is one of their outstanding characteris- 290

tics. Interpolation based methods can be considered as blind 291

methods in which no knowledge about the system or the user 292

is required. The model is able to adapt to the subject working 293

with the system. It has been shown that a second degree 294

polynomial is sufficient for gaze estimation purposes [5]. Gen- 295

erally, the interpolation based methods output is the 2D PoR. 296

During the calibration, the unknown polynomial coefficients 297

are deduced. Most of this type of approaches take under 298

consideration the head movement in an approximate manner. 299

The infrared light sources employed by high resolution eye 300

tracking systems produce corneal reflections that are visible for 301

the camera and normally named glints. It is assumed that the 302

vector connecting the pupil center and the glint(s) named Pupil 303

Center-Corneal Reflection, PC-CR vector, is approximately 304

stable against head movement. The calibration procedure of 305

the user permits to adapt the model to the specific situation in 306

the calibration position. 307

In general, the user’s displacement from the calibration 308

situation affects the accuracy. Fortunately, due to the high focal 309

lengths used by high performance eye trackers, the allowable 310

head movement is reduced. Thus, the assumption that the 311
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Fig. 1. a) An image with a resolution of 800×600 pixels captured by a high resolution eye tracking system using a focal length value of 35 mm. The glints
and the pupil are clearly visible. b) An image with a resolution of 800×600 pixels captured by a low resolution system, i.e. using a webcam with a focal
length value of 2.7 mm. c) The eye area shown by the pink frame is extracted from b). The detail level in the eye area is low compared with a). The eye
area in b) is limited to an area of about 66×49 pixels size while it covers the whole image resolution in a).

calibration results are stable is partially acceptable within the312

range of permitted head movements at the expense of losing313

some accuracy.314

B. Low Resolution Gaze Estimation315

During the last years a big effort has been made to extend316

gaze estimation technology to low resolution environments317

where no infrared light is used and lower focal lengths are318

employed.319

In figure 1, a comparison between the images acquired using320

a high resolution and a low resolution eye trackers is shown.321

As it can be seen in the image, the resolution regarding the322

eye area is not comparable between the two frameworks. The323

lenses employed by high resolution systems present high focal324

lengths, e.g. 35 mm, while standard low resolution systems325

using webcams show lower focal length numbers of about326

2 or 3 mm. In this manner, the Field of View (FoV) of high327

performance systems permits to obtain a more focused image328

of the eye with higher resolution in the eye area, i.e. more329

pixels, than lower resolution systems. In fact, strictly speaking,330

the term resolution when differentiating between high and low331

resolution systems should be understood as the resolution in332

the eye region and not as the resolution of the whole image.333

The scenario is completely different and affects most of the334

stages of the gaze estimation procedure. The most obvious335

one is the task related to image processing. First, the scene336

lighting is no longer under control, and second, the lower337

resolution of the image in the eye area makes the pupil/iris338

center detection more difficult. In terms of gaze estimation,339

in principle, the basics are still valid, i.e. the Line of Sight340

can be calculated as a function of the head position and341

the eyeball pose within the head. However, there are key342

differences with respect to high resolution systems that make343

gaze estimation more complicated: first, if a geometrical model344

is used, the absence of infrared light sources prevents the345

system from using them as valid features to estimate the head346

position. In this manner, an alternative method is required347

to determine the head pose and to complete the geometrical348

model. Second, if an interpolation model is used, one could349

think of employing another head-fixed feature as head position350

indicator, such as the eye corner, and use the Pupil Center-Eye351

Corner (PC-EC) vector as an alternative. However, in this352

Fig. 2. PC-EC vector (in yellow) when gazing the same point from different
head positions. a) In the upper row the images captured by the camera are
shown. The user gazes at the same point from different head poses b) In the
lower row zoomed versions of the eye region are shown together with the
PC-EC vector, i.e. for the same gazed point different values of the vector
can be obtained. It has to be taken into account that low resolution scenarios
permit larger head movements and this type of situations are potentially more
frequent than in high resolution setups.

new scenario in which the range of head movement is larger, 353

the fact of considering the PC-EC vector “stable” in the 354

presence of head movement is less assumable compared to 355

high resolution systems. In figure 2 we observe the PC-EC 356

vector behavior when gazing at the same point, i.e. same PoR, 357

from different extreme head positions in a pure rotation of the 358

head. It can be observed that the PC-EC vector has not a 359

univocal value for the same gazed point, i.e. PoR, when large 360

head movements are allowed. 361

The objective of this work is to analyze different gaze esti- 362

mation methods for low resolution scenarios using as departure 363

point the knowledge of the problem geometry. The paper 364

suggests alternative models ranging from interpolation based 365

methods to pure geometrical methods for gaze estimation that, 366

on the one hand, provide a deeper insight about the underlying 367

theory of low resolution systems and, on the other hand, 368

demonstrate the possibilities to adapt part of the know-how 369

acquired to this new paradigm, i.e. the low resolution scenario. 370

III. GAZE ESTIMATION METHODS FOR LOW RESOLUTION 371

The aim of this section is to propose three models that 372

try to solve the problem of gaze estimation in low resolution 373
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TABLE I

SUMMARY OF SYMBOLS EMPLOYED IN THIS PAPER

scenarios. In order to help readers to follow the explanation374

of the models, a table of symbols is provided as reference375

(see table I).376

The setup is composed by a subject, i.e. the head of the377

user is taken as reference and named H, gazing at different378

points in the gazing surface, S (see figure 3). The WCS (World379

Coordinate System) is assumed to be the camera, named C.380

The gaze direction g is defined as the vector pointing in the381

LoS direction. It can be referenced to the head as gH or382

to the camera, namely, gC, i.e. superscripts will be used to383

show the coordinate system an element is referenced to. The384

position of the head with respect to the camera, the head pose385

H PC, can be expressed by means of a rigid transformation386

(RCH, TCH) where RCH is the rotation matrix of the head387

reference system with respect to the camera and TCH is the388

translation vector of the head reference system with respect to389

the camera.390

In this manner, the gaze direction with respect to the camera391

can be calculated geometrically, knowing the gaze direction392

with respect to the head, by means of the following expression:393

gC = (RCH|TCH)gH (1)394

The PoR, q, can be calculated as the result of the intersec-395

tion of g and the gazing surface, S.396

On the other hand, in the image, I, features such as pupil/iris397

center is defined as p which is approximated by the projection398

of the 3D iris center P, onto the image plane. Figure 3399

summarizes the elements involved in the system framework.400

Three models are presented: the first model is the geo-401

metrical model, which tries to mimic the same principles402

of high resolution systems but considering the new scenario403

in which no infrared light sources are employed and larger404

head movements are possible. The second method presents405

an interpolation model, i.e. new features are proposed to be406

extracted from the image and the model output is understood407

in a geometrical context. Lastly, a compound algorithm is408

proposed, trying to combine the interpolation model simplicity409

and the robustness of the geometrical model in the presence410

of large head movements. Since no infrared lighting is used411

Fig. 3. Elements of the system. The camera, C, is considered to be the
WCS. The individual’s position is defined by the head position, H. In addition,
reference systems are defined for the gazing area, S, and the image, I.

in the proposed low cost system, alternative HPE techniques 412

are to be used as it will be later explained. 413

A. Geometrical Model 414

This model is fully based on the system geometry. The 415

LoS is calculated as a function of head position and eye- 416

ball information. Assuming that the head pose is known 417

(see section IV-B), a simplified eyeball model is proposed 418

consisting of a sphere rotating around the eyeball center. This 419

assumption is slightly different from the one considered in 420

high resolution systems [25]. The approach employed in most 421

high resolution systems is to consider the cornea as a sphere 422

rotating around the eyeball center. Hence, the cornea center 423

translates with respect to the center of the eyeball as the eye 424

focuses on alternative points on the screen. In our proposal 425

for the eyeball model, the cornea is not explicitly modeled, 426

i.e. the pupil center moves along a sphere centered at a fixed 427

point with respect to the head, named eyeball center, EH. 428

A correct estimation of the angular offset between optical 429

and visual axes has demonstrated to be critical in most high 430

resolution gaze estimation systems. The horizontal angular 431

offset between optical and visual axes is named kappa, κ , 432

and it is an individual’s parameter in the range of 3◦ to 7◦. 433

A smaller vertical offset exists between the axes but it is 434

obviated in this work for simplicity. The visual axis is normally 435

approximated by the imaginary line joining the fovea with the 436

cornea center. In the simplified model assumed in this work, 437

the optical axis is defined as the line connecting the pupil 438

center and the eyeball center, and the visual axis is considered 439

to be the line intersecting the eye at the eyeball center forming 440

an angle equal to κ with the eye optical axis. The angle κ and 441

the eye sphere radius named r are estimated for each individual 442

through a calibration procedure. The 3D eye model employed 443

by this method is shown in figure 4. 444

Once the pupil center is detected in the image, p, it is back 445

projected as a line ∈ R3 with respect to the camera. As a 446

result of head pose estimation, and knowing the head model, 447

the position of the eye sphere is calculated centered at E with 448

a radius equal to r. 3D pupil center, P, is calculated as the 449
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Fig. 4. The 3D eye model employed in this work. The eye is a sphere and
the pupil center P moves along an imaginary surface (in purple). Most of
the models employed by high resolution systems include the cornea as an
additional sphere as it is shown in the figure. In our model for low resolution,
the cornea is obviated and a single sphere centered at E with radius r is
considered. The LoS is approximated by the visual axis calculated as the line
containing the eyeball center and presenting a horizontal angular offset, κ ,
with respect to the optical axis of the eye model. Both angle κ and eyeball
radius r are to be estimated during the calibration procedure.

Fig. 5. Geometrical model scheme for a single eye. The pupil center p
is back projected from the image I onto the eyeball modeled as a sphere
centered in E. The intersection point is considered to be the pupil center
position in 3D, P. Assuming that κ is known, the visual axis is estimated, g.
Once the visual axis is estimated the intersection with S can be calculated to
obtain the PoR, q.

intersection of the back-projected line and the eyeball sphere.450

Thus, the optical axis can be calculated as the line connecting451

E and P. The visual axis estimation is straightforward if452

κ is known from calibration [25]. The gazed point q is453

calculated as the intersection between the visual axis and454

the gazing area S (see figure 5). A simulation tool has been455

constructed in order to test and evaluate this model, in terms456

of accuracy and calibration issues, based on the tool designed457

by Böhme et al. [26].458

B. Interpolation model459

This model is based on the interpolation methods employed460

for high resolution systems. As mentioned before, the use of461

Pupil Center-Corneal Reflection vector, PC-CR vector, as a 462

reliable feature for gaze estimation is based on the idea that 463

it is robust against head movements. The limited FoV in 464

those systems does not allow large head movements. In that 465

scenario, the assumption regarding PC-CR vector is partially 466

acceptable since the accuracy decreases as the user moves from 467

the calibration position. 468

In the low resolution scenario no infrared light sources 469

are used, hence, PC-CR vector cannot be calculated. Instead, 470

the eye corner is proposed in this method as anchor point, 471

i.e. as reference point of head position. In any case, accord- 472

ing to figure 2, the PC-EC vector does not provide a uni- 473

vocal relationship with the gaze direction, gC. However, 474

the PC-EC vector provides information about the eyeball ori- 475

entation with respect to the head univocally. In other words, 476

instead of calculating gC, the position of the pupil center 477

with respect to the eye corners can be used to estimate gaze 478

direction with respect to the head, gH. As a remark, the pupil 479

is not easily distinguishable from the iris; in fact, the iris 480

center is pursued assuming it is equivalent to the pupil center. 481

However, the nomenclature PC-EC is maintained to refer to 482

the iris (Pupil) Center-Eye Corner vector. The PC-EC vector 483

is represented by PC EC symbol and is calculated as: 484

PC ECI = (PC ECx , PC ECy)
I = pI − cI

‖cI
le f t − cI

right‖
(2) 485

where cI is the eye outer corner in the image coordinate 486

system. In fact, a normalized version of the PC EC is 487

employed, i.e. the vector is divided by the distance between 488

the right and left outer corners of the eye. This type of strategy 489

has demonstrated to work nicely in high resolution systems, 490

making the system more robust against subject’s displacements 491

from the calibration position [5]. 492

In high resolution scenarios, second degree polynomials 493

using PC-CR vector as input are generally employed to 494

estimate 2D gaze position (PoR). For our low resolution 495

framework, the interpolation-based approach is to propose 496

two second degree polynomials to estimate the gaze direction 497

with respect to the head, using as independent variable the 498

PC ECI vector and as dependent variable the unity norm 3D 499

vector representing the gaze direction, gH = (gH
x , gH

y , gH
z ). 500

In this manner, we can construct an interpolation model to 501

estimate gaze as: 502

gH
x = a1 · PC EC2

x + a2 · PC EC2
y + a3 · PC ECx · PC ECy 503

+ a4 · PC ECx + a5 · PC ECy + a6 504

gH
y = a7 · PC EC2

x + a8 · PC EC2
y + a9 · PC ECx · PC ECy 505

+ a10 · PC ECx + a11 · PC ECy + a12 506

The previous expressions can be more simply expressed 507

using matrix notation as: 508

gH =
(

gH
x

gH
y

)
= A

⎛
⎜⎜⎜⎜⎜⎜⎝

PC EC2
x

PC EC2
y

PC ECx · PC ECy

PC ECx

PC ECy

1

⎞
⎟⎟⎟⎟⎟⎟⎠

; ‖gH‖ = 1 (3) 509
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where A is a 2×6 matrix containing the unknown coefficients,510

[a1, ..., a6; a7, ..., a12], of the second degree polynomials to511

be solved during the calibration stage [5]. In the equation512

PC ECI = PC EC has been used for simplicity. The cali-513

bration procedure conducted by the user will permit to fit the514

polynomials, i.e. to calculate A, to the calibration situation515

in which the gaze direction will be “learnt” as a function of516

PC EC vector extracted from the image.517

In order to determine the LoS with respect to the camera,518

this model requires to know the value of H PC. Combining519

both head position, H PC, and gaze direction with respect to520

the head, gH, the gaze direction with respect to WCS, gC,521

is obtained using equation 1.522

The proposed method can encounter some limitations in the523

fact that the eye corner does not stay completely stable as the524

eyeball rotates [27]. However, more importantly, the method525

can fail in the presence of strong head translations and526

rotations that force the eyeball to rotate to poses not cov-527

ered during the calibration process, in which the polynomial528

obtained as result of the calibration can behave slightly worse.529

C. Compound Model530

The last model proposed tries to take advantage of the531

interpolation model simplicity and the robustness of the geo-532

metrical model in terms of head movement, trying to combine533

the benefits of both approaches. The main limitation of the534

interpolation model in low resolution scenarios is that the535

calibration procedure, in the way it is conducted, is not able536

to cover all the possible eyeball rotations gazing at different537

points from any head position. Extending the calibration538

procedure to cover as many head positions as possible is not539

a feasible option.540

The proposal made in this model is to conduct the cali-541

bration procedure carried out by the interpolation model in542

a virtual normalized camera with respect to the head of the543

user named as V. Starting from the image obtained by the544

real camera, the objective is to infer the image that would545

be obtained by a camera placed in front of the user for any546

head position. In other words, the user’s head remains static in547

the virtual normalized camera framework, i.e. the paradigm of548

high resolution systems is fairly approximated in this manner549

since no head movements take place with respect to the virtual550

camera. A simplified eyeball model is used for all the users551

(r is equal to 8 mm and κ is assumed to be 0), i.e no calibration552

is performed for the eyeball.553

First, the pupil center in the image pI is back projected554

from the real image onto the simplified eyeball, using the555

H PC information. Once the intersection is calculated, PC,556

this point is projected onto the virtual camera, V, fixed with557

respect to the head, obtaining the normalized pupil center558

in the virtual image defined as nIn. The value of the head559

position with respect to the virtual camera is defined as560

H PV = (I3, (0, 0, 500)T ), where I3 is the 3×3 identity561

matrix. Figure 6 summarizes the components of the compound562

model.563

In this manner, during the calibration process the normal-564

ized gaze direction with respect to the virtual camera, gV,565

Fig. 6. The pupil center, pI, is backprojected knowing H PC. Once the
intersection point with the eyeball PC is calculated, it can be projected onto
the virtual image of the virtual camera, which is fixed with respect to the
head to calculate nIn. The calibration is performed using the normalized data
in In.

is adjusted using the information of the normalized iris 566

center, nIn. As in the interpolation model, a second degree 567

polynomial is employed using the normalized iris center as 568

independent variable and the normalized gaze direction as the 569

dependent one. Note that the PC-EC vector (PC EC) is no 570

longer employed in this model. In the normalized image the 571

eye corners remain static, thus they do not provide any useful 572

information about the head, which is considered to be fixed 573

with respect to the virtual camera. Therefore, equation 3 is 574

modified accordingly as: 575

gV =
(

gV
x

gV
y

)
= B

⎛
⎜⎜⎜⎜⎜⎜⎝

(nIn
x )2

(nIn
y )2

nIn
x · nIn

y
nIn

x
nIn

y
1

⎞
⎟⎟⎟⎟⎟⎟⎠

; ‖gV‖ = 1 (4) 576

where B, is a 2×6 matrix containing the unknown coefficients, 577

[b1, ..., b6; b7, ..., b12], of a second degree polynomial to be 578

solved during the calibration stage. 579

Once the normalized gaze direction is obtained, 580

a de-normalizing process is conducted to calculate the 581

Line of Sight, i.e., LoS, with respect to the WCS, gC. 582

Using head pose information, H P , this transformation 583

is straightforward according to equation 1. In the same 584

manner as in the case of the geometrical model, a simulation 585

environment has also been designed in order to test the model 586

under controlled conditions before employing real data. 587

IV. FRAMEWORK 588

In order to evaluate the models presented in the previous 589

section in a real scenario, essential elements are required. First, 590

an annotated database is needed to study the gaze estimation 591

methods. The proposed models use head pose information to 592

estimate gaze, i.e. head pose needs to be estimated. Addition- 593

ally, the proposed models use key image features as inputs, 594

such as pupil and corners centers. In the following sections 595

these questions are addressed. 596

A. I2Head Database 597

With the aim to evaluate the different models, a consistent 598

framework is required. As mentioned in the introduction, 599
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Fig. 7. In the photograph, the mannequin represents the user with the
sensor attached to the head. The camera, the transmitter and the gazing
surface are placed in the same wood structure in order to fix their relative
poses. The framework is sketched showing its main elements. The relative
position between the transmitter and the camera is carefully calibrated to
obtain (RCT, TCT).

several databases devoted to gaze estimation can be found in600

the bibliography. In comparison with other datasets, I2Head601

provides not only images and data about gaze but also accurate602

head pose data [28]. In addition, partial information of head603

models for each user is provided, more specifically the position604

of four eye corners and the nose tip with respect to the head605

are included for each participant. In this manner, it is not only606

a valid framework to test gaze estimation methods but also to607

evaluate HPE techniques.608

Moreover, since ground truth data of the head pose is609

provided, the contribution to the error from different sources610

can be more easily determined. It is already known that611

the robustness of the gaze estimation method against head612

movements is one of the cornerstones of the technology.613

Hence, any database intended to be a framework to evaluate614

gaze estimation methods should consider head movements.615

The I2Head database contains sessions performing controlled616

movements of the subjects: the subject is displaced to specific617

positions to measure the effect of translation in gaze estima-618

tion. In some of the sessions the user is asked to remain static619

while in others the user is able to move the head freely.620

One of the criticisms that can be made to several articles in621

the field is the fact that they measure the accuracy using the622

same grid employed for calibration. Due to the fact that the623

calibration procedure is the result of an optimization process,624

we can expect a better behavior when the accuracy is tested625

using the calibration points, especially in the interpolation626

and compound methods. As in any other learning process627

it is not convenient to employ training data as test data.628

In order to measure the generalization capacity of the gaze629

estimation method, sessions including different grids of points630

are included. Finally, the coordinates of the gaze points and631

the intrinsic camera parameters are provided.632

I2Head provides gaze and head pose data of twelve633

users performing different head movements in a controlled634

Fig. 8. Grids of points used for sessions recordings. Left) 65-point grid.
Right) 17-point grid.

procedure. The hardware employed to construct the database 635

consists of the Flock of Birds (Ascension Technologies) 636

magnetic sensor for 3D pose estimation and a camera. The 637

sensor is used to register the head pose with respect to the 638

transmitter T. To this end, the sensor is attached to the head 639

of the user while performing head movements and registers 640

240 samples per second. The sensor output is a 6D vector 641

containing translation information and rotation information, 642

i.e. roll, yaw and pitch angles. The system can register the 643

position of the sensor with an accuracy value of 1.4 mm rms 644

and 0.5◦ rms as provided by the manufacturer. 645

The employed camera is a Logitech webcam with a resolu- 646

tion of 1280×720 pixels working at 30 fps. The hardware has 647

been calibrated, i.e. the camera and the position of the trans- 648

mitter have been accurately calculated, and thus, the head pose 649

obtained with respect to the transmitter H PT = (RTH, TTH) 650

can be transformed into camera coordinates, H PC. Moreover, 651

the camera has been calibrated and the positions of the target 652

points in the gazing surface S have also been calculated. In the 653

database the camera projection center is taken as the origin 654

of the WCS. In figure 7 a detailed scheme of the recording 655

framework is presented. 656

Two different patterns of gaze points are employed in the 657

surface area of size 28×38 cm. The first one is composed 658

by 17 points, i.e. a 4×4 regular grid plus the central point. 659

The second one consists of 65 points, i.e. a 8×8 regular grid 660

plus the central point (see figure 8). 661

For each user, eight videos are recorded under controlled 662

movements. In a centered position four sessions are recorded. 663

The user is asked to keep the head static in the first two ses- 664

sions, during which the 17-point grid (static) and the 65-point 665

grid (static) are recorded. During the next two sessions the user 666

is allowed to move the head in a free fashion while the 17- and 667

65-point grids are recorded. In the remaining four sessions the 668

17-point grid is exclusively employed changing the position of 669

the user. The user is moved approximately 5 cm in forward, 670

backward, leftward and rightward directions. During these 671

sessions the user is asked to remain static. Table II summarizes 672

the main I2Head dataset features. Additionally, in table III the 673

recorded sessions are summarized. 674

No chin rest is employed in any of the sessions. While the 675

head pose is registered employing the main sensor, a second 676

sensor is used to mark the eye corners and the nose tip 677

using a dedicated tool. In this manner, 3D face information 678

is recorded, which is useful to create the simplified head and 679

eyeball models. 680
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TABLE II

MAIN FEATURES OF I2HEAD DATASET

TABLE III

THE FOLLOWING TABLE SUMMARIZES THE EIGHT SESSIONS RECORDED

FOR EACH USER. THE CHARACTERISTICS FOR EACH SESSION ARE
PROVIDED IN THE COLUMNS. THE FIRST COLUMN SHOWS THE

NAME OF THE SESSION, THE SECOND ONE INDICATES THE

GRID, THE THIRD ONE DESCRIBES THE FREE OR STATIC

HEAD CONDITION WHILE THE LAST ONE
SHOWS THE POSITION OF THE USER

The sensor registers the user’s position during all the ses-681

sions together with the time stamp. In the same manner, for any682

gazed point 30 images are recorded for which the registration683

times are saved. Hence, employing a careful synchronization684

procedure, user images and the head pose information can be685

paired.686

Light conditions were not controlled, thus different light687

intensities can be observed in the database. However, no com-688

plex variations of lights or wild images have been considered.689

The objective pursued with this database is to obtain solid690

conclusions based on real data about gaze estimation methods691

for low cost systems using controlled head movements. The692

database provides the perfect framework to test HPE and gaze693

estimation methods in a reliable manner. Ground truth (GT)694

values for the head position and the Point of Regard (PoR)695

are available together with the corresponding images, making696

it possible to evaluate the contribution of each source of error697

to the final LoS estimation.698

B. Head Pose Estimation699

The gaze estimation algorithms proposed in this paper700

largely rely on the knowledge of the head pose. One of the701

most effective and computationally assumable algorithms for702

HPE is POSIT (Pose from Orthography and Scaling with703

ITerations) method [29]. The method is based on knowing704

the correspondence between the 2D landmarks in the face705

image and the corresponding 3D landmarks in the head model706

assumed for the user, using the camera calibration parameters.707

If this knowledge is available, the 3D pose of the user with708

respect to the camera is obtained by means of POSIT [30].709

This method assumes a scaled orthographic projection of the710

Fig. 9. a) Our HPE method considers the first 43 landmarks detected by
IntraFace software, i.e. it obviates the inner landmarks of the mouth area.
b) This figure shows the 43 corresponding 3D points in the BFM mean head
model.

object, i.e. head, instead of using perspective projection. This 711

assumption permits to find rotation and translation parameters 712

by solving a linear system. Consequently, considering a cal- 713

ibrated camera, two inputs are required to apply POSIT for 714

HPE: 2D landmarks in the image and their corresponding 3D 715

points in a head model. 716

With the aim to obtain 2D landmarks in the image, 717

IntraFace [31] software is used. IntraFace is a commercial soft- 718

ware employing Supervised Descent Method (SDM) in which 719

face tracking is provided together with HPE and gaze direction 720

among others. The authors do not provide detailed information 721

about the implementation of the training procedure. However, 722

it is known that a proprietary version of Scalar Invariant 723

Feature Transform (SIFT) is employed. The detection of 2D 724

landmarks corresponding to characteristic face points resulting 725

from IntraFace is highly accurate and robust. IntraFace detects 726

49 points from which the first 43 are used (see figure 9a) in 727

our HPE method. Characteristic face points are selected as 728

tracking points assuming that they are the best features to be 729

tracked. 730

Regarding the 3D head model, alternative options can be 731

chosen. In our method the Basel Face Model (BFM) has 732

been selected [32]. It is a publicly available 3D morphable 733

face model. The model was built based on training data 734

obtained from the 3D scans of 200 subjects, 100 females 735

and 100 males, between 8 and 62 years old, most of them 736

Caucasian. All the scans contained a neutral facial expression 737

and were registered using an Optimal Step Nonrigid ICP 738

Algorithm [33] to ensure an optimized anatomical point cor- 739

respondence between faces. The faces were parameterized as 740

triangular meshes after registration, resulting in 53,490 vertices 741

described by a coordinate vector (xi ; yi; zi )
T ∈ R3 with an 742

associated colour (ri ; gi; bi)
T ∈ [0; 1]3. Principal component 743

analysis (PCA) was then applied to create an orthonormal 744

basis of 199 principal components of texture and shape, which 745

permits to generate new observations as linear combinations 746

of those components. The average head is obtained from the 747

model as standard for all the users in our database. The 748

3D landmarks of the model have been carefully identified in 749

order to be associated with the 2D landmarks obtained from 750

IntraFace (see figure 9b). 751

Thus, once the corresponding points have been identified, 752

POSIT is applied for every acquired frame to obtain the 753

head pose with respect to the camera, named as H PC
est , 754
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and to be compared with the ground truth obtained by the755

sensor transformed into camera coordinates using I2Head756

database [34].757

C. Accurate Iris Detection758

The accurate iris center estimation is a key point for the759

gaze estimation algorithms presented in our work. Different760

methods can be found in the literature regarding iris center761

estimation [35], [36]. With the aim to measure the perfor-762

mance of any iris center detection method two alternative763

approaches are possible. On the one hand, there are several764

public databases, such as GI4E [37] and others [13], in which765

iris centers have been manually labeled with varying accuracy.766

Some of these databases, such as GI4E, contain images from767

low cost gaze tracking scenarios while others such as LFPW768

[38] present images from users facing at a camera but not per-769

forming an eye tracking session. For those databases in which770

the landmarks corresponding to iris centers are provided, the771

accuracy of the iris detection method can be easily measured772

by comparing the labeled values with the outputs of the773

detection method. However, the tedious procedure of labeling774

images makes it difficult to find gaze tracking databases with775

an acceptable number of images and accurate landmarks.776

On the other hand, we find those datasets, such as I2Head777

or the MIT database [12], devoted to gaze tracking in which778

no information about the image is provided except for data779

of gazed points on a screen. The subject is asked to gaze780

specific points on the screen while the camera is recording.781

In this manner, the obtained images can be easily correlated782

with the gazed points. In those cases, the performance of the783

iris detection algorithm can be potentially determined as its784

ability to estimate the gazed points correctly.785

In our proposal, two methods have been evaluated in order786

to select the best iris tracking algorithm. First, the afore-787

mentioned IntraFace algorithm has been selected because it788

provides the iris center together with the rest of the face789

points as output. Second, a method based on Radial Symmetry790

Transform (RST) has been used [39]. The RST method tries to791

detect the point in the image with the highest radial symmetry792

value. The points in the image vote according to their gradient793

direction and magnitude for varying radii. Assuming that the794

iris can be approximated by a circle and that the range in which795

the radius may vary can be standardized, the RST is applied796

to detect the iris center as the point with the highest number797

of votes for the correct radius. Both methods assume that the798

face has been correctly identified and that the eye area has799

been detected. In the case of IntraFace this is straightforward800

since all the points are numbered and easily identifiable. In the801

case of the method based on radial symmetry, the Viola-Jones802

face detector is applied to detect the eye region [40].803

V. RESULTS804

The results section is organized as follows: first, the results805

obtained by our HPE method are shown. To follow, the iris806

center detection algorithms are evaluated using alternative807

databases. Finally, the main results obtained by the proposed808

gaze estimation methods are shown.809

A. HPE Results 810

In order to evaluate the performance of our algorithm, 811

the head pose value obtained, H PC
est , is compared with the 812

ground truth stored in the I2Head database, H PC, for every 813

single frame. The proposed method (see section IV-B) to 814

obtain H PC
est has been tested on different datasets, showing a 815

performance improvement of about 60% with respect to state- 816

of-the-art methods [34]. 817

In the database, the sensor origin placed on the top of the 818

head is considered to be the head model origin. However, 819

the POSIT algorithm devoted to estimating the head pose 820

considers the origin of the BFM as the reference point of 821

the head coordinate system, which is located approximately 822

in the midpoint between the ears. In order to carry out a fair 823

comparison, the coordinate system of the head model, H, has 824

to be the same. To this end, the relative poses with respect 825

to the pose in the first frame are compared instead of using 826

absolute values. In table IV, the average differential errors for 827

rotation and translation are provided. 828

The obtained results are fully comparable with the state-of- 829

the-art values which are summarized in the work by Chutorian 830

and Trivedi [41]. As mentioned before the performance of 831

the head pose algorithm employed has been validated in 832

a previous work [34]. However, the tests were carried out 833

using datasets different from I2Head. In order to complete 834

the analysis, our results are contrasted with the ones obtained 835

by IntraFace [31] which can be considered a good perfor- 836

mance head tracker for comparison. Head pose is one of the 837

outputs that IntraFace retrieves as result of the tracking. The 838

results obtained by IntraFace for I2Head are (0.92◦±0.63◦, 839

2.19◦±1.07◦, 1.45◦±0.45◦) for roll, yaw and pitch angles, 840

respectively. It can be easily observed in table IV that our 841

results are significantly better. The average error obtained by 842

Intraface is 1.52◦, whereas our method obtains an average error 843

of 0.92◦. This supports the results observed in [34], as the 844

improvement given by our algorithm is again of about 60%. 845

B. Iris Detection 846

As mentioned before, two algorithms have been selected 847

to detect the iris center, pI, namely, IntraFace and Radial 848

Symmetry Transform (RST). Two databases are employed 849

to measure the performance of the methods. GI4E database 850

provides accurate labels for the iris center, thus this dataset is 851

used to compare both algorithms in terms of detection error in 852

the image. On the other hand, I2Head is used to evaluate the 853

accuracy, precision and robustness of the algorithms regarding 854

gaze estimation. 855

The first experiment consists in using the pre-labelled GI4E 856

database in which the center of the irises have been annotated 857

in 1,236 images of users gazing at different points on the 858

screen. The Euclidean distances between the points given by 859

the detection algorithm and the labelled iris centers are cal- 860

culated for left and right eyes and normalized with respect to 861

the distance between them. The maximum normalized distance 862

is considered to be the detection error for the image. The 863

global accuracy is computed as the mean percentage of images 864

for which the error is below the following thresholds: 0.025, 865
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TABLE IV

THE TABLE SHOWS THE AVERAGE HEAD POSE ESTIMATION ERRORS OBTAINED FOR ALL THE USERS ACCORDING TO THE SESSION. THE TRANSLATION
ERROR IN x , y AND z COORDINATES IS PROVIDED TOGETHER WITH THE ORIENTATION ERRORS ACCORDING TO ROLL, YAW AND PITCH ANGLES.

IN THE LAST ROW MEAN ERRORS ARE PROVIDED TOGETHER WITH STANDARD DEVIATION VALUES

TABLE V

AVERAGE VALUES OF GAZE ESTIMATION ERROR FOR CENTERED SESSIONS. THE VALUES TO THE LEFT OF THE SLASH SHOW THE

ERROR WHEN GROUND TRUTH VALUES FOR THE HEAD POSE ARE USED WHILE THE VALUES TO THE RIGHT
REPRESENT THE ONES OBTAINED IF HEAD POSE ESTIMATIONS ARE EMPLOYED

0.05 and 0.1. The obtained values show a better performance866

of IntraFace in comparison to RST. IntraFace presents a global867

accuracy value of 98.5% whereas it decreases to 90.07% for868

RST.869

Gaze estimation information is used to evaluate the870

algorithms on the I2Head dataset. The calibration procedure871

performed for all the gaze estimation methods largely com-872

pensates for inaccuracies, not only produced by biases from873

the gaze estimation method but also for systematic errors of874

the image processing algorithm. On the other hand, most gaze875

estimation methods perform an averaging stage, using all the876

images corresponding to each gazed point, devoted to compen-877

sating for the noise inherent to the image. Hence, the accuracy878

regarding the PoR is not considered to be the only reliable879

selection criteria for the iris detection method. Alternatively,880

the method robustness is analyzed based on precision mea-881

surements using the interpolation method already described882

in section III-B. First, the number of outliers is calculated883

for each method. Thirty images per point are captured and a884

separate statistical analysis is performed for left and right eyes.885

An estimation is considered to be an outlier when the distance886

from the average gazed point on the screen, q̄S is larger than887

the standard deviation of the distribution, σ(qS).888

The results show that the method based on RST presents889

more outliers than IntraFace. In addition, RST presents larger890

values of σ(qS) and there is less coherence in terms of left891

and right eye compared to IntraFace. Moreover, the outliers892

do not present any specific pattern but they are arbitrarily893

distributed around the average. Once the outliers from both894

methods are eliminated, the standard deviation values are895

comparable for both methods. Using the 17-point static ses-896

sion, an analysis is performed trying to identify the best ten897

images among the thirty for each point to compare IntraFace898

and RST estimations. Those images with the lowest gaze899

estimation error are selected. The error is calculated as the 900

sum of errors for both eyes using the Euclidean distance 901

between the estimated PoR and the calibration point position 902

as cost function. As expected, there is a nice coherence 903

between both algorithms regarding the ten best images in 904

both cases, i.e. before and after the removal of outliers. 905

IntraFace method is selected as the most robust and accurate 906

iris detection algorithm among the ones analyzed. It will be 907

used to detect the iris center for the experiments in the next 908

section. 909

C. Gaze Estimation 910

In this section the results obtained by each method in terms 911

of gaze estimation are summarized. To this end, data contained 912

in the I2Head database are employed. The head pose with 913

respect to the camera is calculated as shown in section V-A. 914

As mentioned before, I2Head database contains a simplified 915

model for each subject using a reduced number of points, 916

i.e. eye corners and nose tip that are annotated in 3D with 917

respect to the head. Separate models are calculated for left 918

and right eyes, thus, a binocular gaze estimation is performed 919

by averaging the samples obtained for both eyes. 920

The three methods proposed, i.e. geometrical, interpolation 921

and compound methods, require a user calibration procedure 922

in which alternative parameters for each model are calculated. 923

To this end, the 17_point_static session is employed for 924

calibration. Then, once the parameters for each model are 925

estimated, gaze accuracy is calculated for the rest of the 926

sessions (see table V). Two different scenarios are evaluated: 927

first, ground truth values are used as head pose by means 928

of the sensor, H PC. Second, the head pose values obtained 929

by our HPE method, H PC
est , are used as input to the gaze 930

estimation methods. During the calibration stage, gaze esti- 931

mation accuracy is optimized. Accuracy is calculated as the 932
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TABLE VI

AVERAGE VALUES OF GAZE ESTIMATION ERROR FOR EXTREME MOVEMENTS SESSIONS. THE VALUES TO THE LEFT OF THE SLASH
SHOW THE ERROR WHEN GROUND TRUTH VALUES FOR THE HEAD POSE ARE USED WHILE THE VALUES TO THE RIGHT

REPRESENT THE ONES OBTAINED IF HEAD POSE ESTIMATIONS ARE EMPLOYED

angular absolute difference between real and estimated gaze933

directions. In the case of interpolation and compound methods,934

the coefficients of a polynomial are calculated. Moreover, for935

the compound model, the labelled eye corners are used to936

calculate the eyeball center, E, as the mean point between937

the corners. In the geometrical model, angle κ , eyeball center938

and radius r are the unknown model parameters. During the939

experiments, it has been observed that the calibration of the940

geometrical model is highly sensitive to the initial conditions,941

especially to the initial value of the eyeball center. For this942

reason, calibration is carried out using two stages for this943

model. In the first step, a simulated annealing algorithm is944

employed in which the initial eyeball center is calculated as the945

average value of the 3D corners obtained from the simplified946

eyeball model. Additionally, the initial value of the radius, r,947

is obtained as the half distance between the estimation of the948

initial value of the eyeball center and eye corner in 3D. Once949

the simulated annealing is concluded, a further more precise950

minimization algorithm is employed. A Levenberg-Marquadt951

procedure is carried out using as initial values the outputs952

obtained in the previous step.953

Tables V and VI show the average accuracy values of the954

alternative methods. The columns contain the values obtained955

by each method in the different sessions. The value to the left956

of the slash is the error obtained by the corresponding method957

when ground truth head pose, H PC, is used, while the value958

to the right represents the accuracy if the estimated head pose959

value, H PC
est , is employed. Table V shows the accuracy values960

for sessions carried out in a centered position of the head and961

table VI provides the results obtained when the user performs962

significant translation movements from the calibration posi-963

tion. Thus, the influence of large head movements can be more964

clearly appreciated. The accuracy is shown in degrees since965

this is the standard way of representing it, so independent from966

the screen resolution and the working distance.967

As expected, the gaze estimation errors obtained are not968

comparable to the ones obtained by high resolution systems,969

but they are fully comparable with the ones obtained by970

alternative approaches devoted to low resolution eye track-971

ing [7], [13], [24]. It is straightforward to observe that the972

smallest errors are obtained for the calibration session, i.e.973

17_points_static. Consequently, in general, lower errors are974

observed for the 65_points_static session compared to the975

free sessions in the centered position (see table V). Errors976

shown in table V are generally lower than the ones reported977

in the literature and described in the introduction, i.e. 4◦-6◦.978

However, in order to perform a fair comparison, free head979

movements sessions and sessions in which extreme movements 980

from the calibration position are performed, summarized in 981

table VI, should be taken under consideration. Except for 982

the geometrical model, compound and interpolation models 983

present fully competitive results when compared to the state- 984

of-the-art. 985

In order to validate our method with other state-of-the-art 986

database, we have also tested it on the MPIIGaze dataset 987

[13]. This database contains images from fifteen users gazing 988

at their gadgets during different everyday tasks. The MPI- 989

IGaze was conceived to be used as a large scale dataset for 990

learning-based approaches, such as CNNs and many works 991

devoted to using machine learning techniques for gaze esti- 992

mation employ MPIIGaze as a testing benchmark. Therefore, 993

the aim of the captured images is to provide the largest 994

possible variability and representability, i.e. including images 995

of varying quality, illumination and blurring degree. The 996

annotation subset of the dataset is used for this evaluation 997

because it is the only set for which iris center and eye corner 998

landmarks have been manually annotated. The dataset provides 999

these data for more than ten thousand images and the accuracy 1000

of the labelling procedure is not homogeneous through the 1001

annotated subset. There are additional factors that make this 1002

comparison a challenging task. No ground truth values for 1003

head pose are provided but estimated values for rotation and 1004

translation of the user with respect to the camera. Head pose 1005

is calculated using a method based on a six-point face model 1006

that is described in their paper [13], but no accuracy values are 1007

provided. Many of the annotated images are cropped, i.e. only 1008

the eye area is provided. Consequently, we cannot apply our 1009

HPE method, since it requires the whole face image as input. 1010

Contrarily to I2Head database, a single image per gazed point 1011

is given. It is of general practice to employ several images 1012

per point to average the result and make gaze estimation 1013

more robust in the presence of noise. Taking into account 1014

the characteristics of the images included in the database, 1015

it would be desirable to have more images per point available. 1016

Moreover, since the recordings of the database are conducted 1017

in everyday situations, it is not feasible to select those images 1018

belonging to a regular grid covering the whole screen that are 1019

normally required for calibration purposes. Since the database 1020

was constructed to be principally used by other methods under 1021

different premises the comparison represents a critical task. 1022

However, being the main reference database of the state-of- 1023

the-art, an evaluation is performed. The interpolation method 1024

is selected to be applied to the MPIIGaze dataset due to 1025

its simplicity and lower dependency on head pose values. 1026
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Fig. 10. The image on the left shows a user gazing to a point in the upper
part of the grid, while the image on the right shows the same user gazing to
a lower point.

It is assumed that the results obtained for the interpolation1027

model can be extrapolated for the rest of the models. Since no1028

calibration grid is available, for each user half of the data are1029

used for calibration purposes and the other half for the testing1030

stage. The results should be compared with the ones obtained1031

for I2Head in moving scenarios (table VI). The average gaze1032

estimation error obtained is 7.49◦±0.76◦. Since no averaging1033

process is available, an outlier removal stage is included1034

to neglect outliers (values greater than the 0.8 quantile are1035

considered to be outliers) and carry out a fair comparison. The1036

results obtained after outlier removal are 6.07◦±1.32◦. They1037

are slightly higher values than the ones obtained for I2Head1038

but, taking into account the type of images of the database,1039

this increment could be expected. Additionally, this result is1040

fully comparable with the reference values described in the1041

introduction.1042

It has been observed in the experiments carried out on the1043

I2Head database that the most important source of error are1044

inaccuracies arisen in the image processing stage. The use1045

of a high number of images per point leads to reduce the1046

noise regarding the iris center estimation. However, for several1047

images, it is not noise the issue affecting the accuracy, but1048

the failures of the algorithm in certain circumstances. It is1049

worth mentioning that, due to the position of the camera,1050

there are more frequent tracking errors in images in which1051

the user gazes at the lower part of the grid, i.e. when the1052

eyelids occlude part of the eye it is more difficult to conduct1053

an accurate tracking of the iris center (see figure 10).1054

The design of the models proposed in this work is based1055

on the knowledge acquired in high resolution systems where1056

their validity has been demonstrated. The assumptions made1057

for the alternative models also contributed to some extent to1058

the error, but it is negligible compared to the one resulting1059

from the landmarks tracking in the image. The inaccuracies in1060

the landmarks detection affect both, the head pose and gaze1061

direction estimation, being the accurate detection of the iris1062

center key for all the models. It is remarkable to observe that1063

those approaches having higher geometrical modeling, such as1064

geometrical and compound methods, present higher errors due1065

to an inaccurate tracking as it can be observed in the errors1066

arisen for the geometrical model for which non-admissible1067

errors are obtained. The same error in landmark tracking pro-1068

duces extremely higher errors in the gaze value for this model.1069

However, the compound and interpolation models present1070

more assumable errors in the same scenario. Moreover, this1071

hypothesis is reinforced if we focus on the centered position,1072

Fig. 11. Interpolation and compound models are compared for the same
user using the 17_points_free session. The blue crosses are the ground truth
positions of the gazed points while the green circle shows the estimated PoR.
In the upper part of the figure the results of the grid for the interpolation model
are shown, while the ones arisen for the compound model are provided below.
The left column refers to the results obtained using ground truth values for
head pose, and the right column shows the results when estimated head pose
values are employed. It can be observed that the effect on the interpolation
model is negligible, while it is more significant on the compound model.
Average accuracy errors are provided.

i.e., table V, and we compare the errors using the ground truth 1073

value of the head pose and those using the estimated head 1074

position. It is observed that the geometrical and compound 1075

models are the ones presenting the highest increments while 1076

the interpolation model presents a lower sensitivity to errors in 1077

the head position. In figure 11 the behavior of the compound 1078

and interpolation models is compared when ground truth and 1079

estimated values for head pose are used. It can be observed that 1080

the compound model increases the error when estimated head 1081

values are used while for the interpolation model no significant 1082

increments can be distinguished. 1083

The same effect can be observed in table VI, in which 1084

the sessions having strong displacements from the calibration 1085

position are shown, i.e. introducing the estimated value of the 1086

head position leads to an increment of the error in similar 1087

proportion for geometrical and compound models. 1088

Contrarily, the geometrical model presents a higher robust- 1089

ness in the presence of head movements. Average error values 1090

in tables V and VI are comparable for the geometrical model, 1091

meaning that it presents a higher tolerance to user’s extreme 1092

translation movement. This conclusion resembles partially the 1093

behavior of geometrical models in high resolution systems. 1094

In contrast, the interpolation model almost duplicates the error 1095

in the presence of extreme movements compared to the values 1096

in the centered position. Probably, the compound model is 1097

the one presenting the best balance between accuracy and 1098

robustness against head movements. An ideal estimation of the 1099

head pose, i.e. ground truth, for the compound model would 1100

lead to errors comparable to the ones in the centered position, 1101

especially for the sessions presenting forward and backward 1102

movements. 1103
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Fig. 12. The first row shows the estimations obtained by the interpolation
model while the second row shows the result for the same user and sessions
using the compound model. The blue crosses are the ground truth positions
of the gazed points while the red and blue x-s show the estimations for the
left and right eyes, respectively. Finally, the green circle shows the average
between both eyes. Sessions 17_points_free and 65_points_static have been
selected as example.

Fig. 13. The consensus between left and right eyes is shown for compound
and interpolation models. The difference between the PoRs estimated for left
and right eyes is smaller when the compound model is used.

From the average errors it cannot be observed a remarkable1104

property of the compound method in comparison with the1105

interpolation one. The compound model presents a consider-1106

ably higher consensus between the left and right eyes. In other1107

words, as the estimated PoR is calculated as the average1108

between left and right eyes, a further step is required to1109

evaluate the goodness of the models for each eye separately.1110

In figure 12 the output for two sessions, i.e. 17_points_free1111

and 65_points_static, can be observed for the same user using1112

compound and interpolation models. The figures on the left1113

are the grids obtained for the 17_points_free session using1114

interpolation and compound models while the figures on the1115

right show the estimations for the 65_points_static sessions.1116

From the figure, it can be clearly seen that the consensus1117

between left and right eyes is significantly higher for the 1118

compound model, which is a valuable property to take under 1119

consideration. In figure 13 the distribution of the difference 1120

between left and right eye estimations can be observed for 1121

compound and interpolation models. In the case of the com- 1122

pound model the mean consensus is about 2.5◦, increasing 1123

significantly in the case of the interpolation model. 1124

VI. CONCLUSIONS 1125

From the gaze estimation results obtained, several con- 1126

clusions can be drawn. Regarding head pose estimation, 1127

the algorithm shows outstanding values compared with the 1128

other state-of-the-art algorithms in the literature outperforming 1129

the results by 60%. As expected, the lower resolution of the 1130

image makes it difficult to obtain an accurate detection of 1131

face landmarks resulting in higher errors in the gaze estimation 1132

stage. Moreover, those models employing a higher geometrical 1133

content present a significantly higher sensitivity to errors in 1134

the tracking stage, resulting in non-admissible errors for the 1135

case of the geometrical model. The interpolation model, which 1136

is the one with the least geometrical information, is more 1137

robust against image inaccuracies; however, it doubles the 1138

error in presence of severe translation head movements, from 1139

2.70◦ in the calibration position to almost 5◦ when severe 1140

head movements are performed. In contrast, the geometri- 1141

cal models present better robustness in presence of user’s 1142

movement. These conclusions firmly support one of the most 1143

well-known ideas of eye tracking technology, largely validated 1144

in high resolution settings: being the compound model the one 1145

with the best balance between accuracy and robustness. Both 1146

interpolation and compound models have shown results in the 1147

range of 2◦-5◦ assuming an accurate HPE, i.e. significantly 1148

good when compared to the state-of-the-art. 1149

Above all, the main conclusion obtained is that improving 1150

the accuracy of landmark detection in the image, particularly 1151

the tracking of the iris center, is one of the main obstacles 1152

to overcome when approaching low resolution scenarios. The 1153

error arisen due to the models is negligible compared to 1154

the one produced by inaccuracies in the image. Obtaining 1155

more accurate and precise image processing methods for 1156

low resolution systems is a challenge. Thus, further inves- 1157

tigations in low resolution gaze estimation are required to 1158

analyze techniques oriented towards artificial intelligence or 1159

geometry-based among others. 1160
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