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Abstract— Person re-identification (Re-ID) aims at matching
person images captured in non-overlapping camera views. To rep-
resent person appearance, low-level visual features are sensitive
to environmental changes, while high-level semantic attributes,
such as “short-hair” or “long-hair”, are relatively stable. Hence,
researches have started to design semantic attributes to reduce
the visual ambiguity. However, to train a prediction model for
semantic attributes, it requires plenty of annotations, which are
hard to obtain in practical large-scale applications. To alleviate
the reliance on annotation efforts, we propose to incrementally
generate Deep Hidden Attribute (DHA) based on baseline deep
network for newly uncovered annotations. In particular, we pro-
pose an auto-encoder model that can be plugged into any deep
network to mine latent information in an unsupervised manner.
To optimize the effectiveness of DHA, we reform the auto-encoder
model with additional orthogonal generation module, along with
identity-preserving and sparsity constraints. 1) Orthogonally gener-
ating: In order to make DHAs different from each other, Singular
Vector Decomposition (SVD) is introduced to generate DHAs
orthogonally. 2) Identity-preserving constraint: The generated
DHAs should be distinct for telling different persons, so we
associate DHAs with person identities. 3) Sparsity constraint:
To enhance the discriminability of DHAs, we also introduce the
sparsity constraint to restrict the number of effective DHAs for
each person. Experiments conducted on public datasets have
validated the effectiveness of the proposed network. On two
large-scale datasets, i.e., Market-1501 and DukeMTMC-reID,
the proposed method outperforms the state-of-the-art methods.

Index Terms— Person re-identification, attribute learning,
generation, discrimination.
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I. INTRODUCTION

PERSON re-identification (Re-ID) is attracting increasing
attentions in computer vision and artificial intelligence

community [1]–[5], due to its important application to video
surveillance and criminal investigation systems [6], [7]. Re-ID
seeks to match persons across non-overlapping surveillance
camera views through their visual appearance. Hence, design-
ing a good appearance descriptor is necessary and essential to
the Re-ID task.

To represent person image, a lot of approaches try to
design low-level visual features [8], [10], [11], which are
discriminative but sensitive to appearance disturbances, such
as illumination variation, scale change and viewpoint change.
In comparison, high-level attributes, e.g., age, gender and
dressing, are relatively robust to different imaging conditions.
Hence, person representation with semantic attributes start to
be investigated [9], [12]–[16]. Most of these methods require
predefined semantic attributes with thousands of annotated
samples for each of them, and train an attribute prediction
model based on such annotated data. As we know, the more
types of semantic attributes we predefine and annotate,
the more benefits the person representation will gain. In other
words, the performance is likely to be further improved by
just adding more attributes.

However, the quantity of types of semantic attributes is
always limited, compared with the number of persons to
be distinguished. By measuring the attribute statistics on the
VIPeR dataset [17], we find that even exploiting 15 predefined
semantic attributes [14], 4.49 out of totally 632 persons in
average still hold common semantic attributes (as Fig. 1(a)
shows). Analogously, we have 750 and 1110 different per-
sons for the Market-1501 [8] and the DukeMTMC-reID [18]
datasets, respectively, while only 27 and 23 types of seman-
tic attributes are correspondingly designed [9], which are
still not enough to separate all different persons. Fig. 1(b)
gives an example that eight persons hold common seman-
tic attribute annotations. As we know, enlarging the types
of semantic attributes is a direct way to improve Re-ID
performance. However, when we design a new semantic
attribute, it requires massive annotated samples. For instance,
if we attempt to raise only one new semantic attribute
for the DukeMTMC-reID dataset, we have to re-annotate
16522 training samples. It is unrealistic in the practical
application.
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Fig. 1. (a) The tendency of average number of persons with common
semantic attributes V.S. the number of predefined semantic attributes.
The statistic data is counted on the VIPeR dataset (632 persons in total).
As the quantity of types of attributes increases, the average number of persons
with common semantic attributes will decrease. Even exploiting 15 predefined
semantic attributes for 632 persons, 4.49 persons in average still hold common
semantic attributes. (b) An example to illustrate the idea of this paper.
These eight persons are selected from Market-1501 dataset [8]. All of them
are with the same semantic attribute annotations. The semantic attributes are
partly selected from the predefined attributes in [9]. In this paper, we propose
to mine incremental hidden attributes for newly uncovered annotations, and
to make attribute representation more discriminative.

To address this challenge, as Fig. 1(b) shows, we pro-
pose to create some hidden attributes without any new
annotation. Generally, semantic attributes are mined from
low-level features, which contains detailed descriptions of
person appearance. Specifically, taking the low-level features
as the input space and high-level attributes as the latent space,
an encoding step is taken to simulate the process of inferring
semantic and hidden attributes from visual feature respectively.
Then, we introduce a decoding step to reconstruct the visual
feature with semantic and hidden attributes simultaneously.
To make inferred attributes sensible, the latent space is learned
by minimizing the reconstruction loss of input space. In this
way, we employ an auto-encoder model to the baseline deep
network and mine the Deep Hidden Attribute (DHA).

As we know, deep learning based person representation has
been widely exploited, and showed their strengths in Re-ID
task recently. It is reasonable to add the hidden attribute
prediction progress into a deep learning network. In particular,
we plug-in the auto-encoder model into general deep learning

network, and construct the Deep Hidden Attribute Network
(DHA-Net). In the proposed DHA-Net, a new reconstruction
loss is introduced to learn the hidden attributes, along with the
person identities and predefined semantic attributes. To opti-
mize the effectiveness of DHA, we reform the auto-encoder
model with additional orthogonal generation module, along
with identity-preserving and sparsity constraints.

A. Orthogonally Generating

It is reasonable to make the DHA orthogonal to each
other. Inspired from [19], we add an eigenlayer into the deep
framework to find a set of orthogonal projection directions
by exploiting Singular Vector Decomposition (SVD). Then,
the DHA is generated orthogonally in the latent part of the
auto-encoder model.

B. Identity-Preserving Constraint

The DHA should be discriminative for telling different
persons. Thus, we associate the generated DHA with person
identities. In particular, DHA inferred from different images
should be similar if the corresponding images are from the
same identity, and vice versa. In this paper, we introduce the
cross entropy to exploit the hidden attribute discrimination.
If the generated attributes are related to the corresponding
identity, they are judged as true ones. In contrast, the attributes
would be judge as false, if they are not related to corresponding
person identity.

C. Sparsity Constraint

Besides identity-preserving constraint, to enhance the dis-
criminability of DHAs, we also introduce the sparsity con-
straint to restrict the number of effective DHAs for each
person. The philosophy is that the representation of certain
individual will be discriminative, if only a small number of
unique attributes are activated.

The baseline deep learning network for person Re-ID with
semantic attributes includes an identification loss and several
semantic attribute losses [9]. In the proposed DHA-Net, a new
reconstruction loss is introduced. To this end, besides person
identities and predefined semantic attributes, DHAs are deeply
learned simultaneously. We further reform the network with
the new module and constraints described above. After that,
our new network can mine more informative DHAs. The main
contributions of this paper are summarized as follows:

• The plugged-in auto-encoder model: We plug-in the
auto-encoder model to the baseline deep network, which
extends novel DHAs by mining latent information from
visual features for newly uncovered attribute annota-
tions. Along with original identification loss and semantic
attribute losses, a reconstruction loss is designed for
DHA generation. Without more annotations, the hidden
attribute generation process acts in an unsupervised man-
ner. After optimizing, we make each layer of the network
physical meaningful.

• The eigenlayer and two constraints: We embed the
eigenlayer in the auto-encoder model. With SVD, hidden
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attributes are projected orthogonally. For the DHA dis-
crimination, a cross entropy loss associated with identities
and a sparsity loss are further designed. They are opti-
mized together. Meanwhile, the weights of eigenlayer are
updated with SVD during the network training process.

• Simple and effective: The proposed method is very simple
to construct and easy to implement. Experiments con-
ducted on two large-scale Re-ID datasets, as indicated
in [20], have validated the effectiveness of the proposed
model, which outperforms most of the state-of-the-art
methods.

A preliminary conference version of this paper was pub-
lished in [21]. In this journal version, we propose to reform
the DHA-Net with additional Identity-preserving and Sparsity
constraints and the Orthogonal generation module (ISO),
which make DHAs more informative and effective. We also
include in this paper more related works on person identifica-
tion and more experiments to show the influence of different
configurations and parameters.

II. RELATED WORK

The approaches [20], [22] give detailed reviews of person
Re-ID. Here, we mainly investigate two aspects, 1) Deep
learning for person Re-ID, and 2) Person Re-ID with semantic
attributes.

A. Deep Learning for Person Re-ID

Deep learning methods in Re-ID task can be grouped
into two categories. The first type is deep metric learning,
in which image pairs, triplets, quadruplets or batch of images
are fed into the network [23]–[30]. Generally speaking, this
kind of methods are effective in learning image similarities
in an adaptive manner, but may have efficiency problems
under large-scale galleries [19]. The second one focuses
on feature learning, which categorizes the training samples
into predefined classes and the FC descriptor is used for
retrieval [11], [31]–[35]. Reference [11] proposed to learn a
generic feature embedding by training a classification model
from multiple domains with a domain guided dropout. Refer-
ence [33] jointly learned multiple classification losses of local
and global discriminative feature optimization subject to the
same Re-ID labeled information. Reference [32] designed a
classification model by learning powerful features over full
body and body parts. Reference [31] combined the verification
and classification losses together, and learned an effective pre-
sentation. Reference [34] exploited the collaboration between
handcrafted and deep learning features. Reference [35] utilized
the view information in the feature extraction stage. With only
person identities, we take this kind of networks as the base
part of Re-ID template deep learning network.

B. Person Re-ID With Semantic Attributes

High-level semantic attributes, used as auxiliary informa-
tion, have been investigated in some works. Reference [12]
proposed to learn a selection and weighting of predefined
semantic attributes to describe persons. Reference [13] applied
semantic color names to represent person. Reference [36]

Fig. 2. The baseline network. The general framework of approaches with
person identities and predefined semantic attributes.

tuned deep Re-ID network with additional semantic attributes.
Reference [37] exploited the inter-attribute correlations to
improve the representation. Reference [15] combined the
semantic attribute learning process into the CNN frame-
work. Reference [9] followed the idea of [15] that learns
a Re-ID embedding and predicts the pedestrian seman-
tic attributes simultaneously. Reference [16] attempted to
directly use semantic attributes to retrieval person images
in a cross-modality way. As we know, human annotations
are the key information for Re-ID with semantic attributes.
Hence, [14] released attribute-augmented versions for dif-
ferent Re-ID datasets, such as VIPeR. Reference [9] released
similar ones for the two largest datasets, i.e., Market-1501 and
DukeMTMC-reID. Fig. 2 illustrates the general framework of
this kind of methods.

Although [9] achieved the top performance among Re-ID
methods with semantic attributes. Compared with the quantity
of person identities, the number of the types of semantic
attributes is still compromised. Designing more attributes is an
effective way for better Re-ID performances. However, making
more annotations is not in accord with practical situation.
To this end, we propose to enlarge types of attributes with
a hidden part, without additional annotations.

III. PROPOSED NETWORK

As Fig. 3 shows, the proposed DHA-Net consists of a base-
line network, a plugged-in auto-encoder model. In [21], there
are three kinds of losses, i.e., an identification loss for visual
feature, several semantic attribute losses for their prediction,
a loss for visual feature reconstruction. The identification loss
and the semantic attribute losses are used for the feature layer,
as the baseline network does. The reconstruction loss is used
for the discrepancy of two feature layers. In this paper, we fur-
ther reform the network with additional ISO module, where we
introduce an embedded eigenlayer. In addition, a cross entropy
loss and a sparsity loss for hidden attribute discrimination
are taken into consideration. The cross entropy loss and the
sparsity loss are used for the orthogonal hidden attribute layer.
In the following subsections, we will respectively demonstrate
the baseline network, the architecture of DHA-Net with ISO
module, in particular the auto-encoder model, the orthogonal
generation module, the identity-preserving constraint and the
sparsity constraint.

A. Baseline Network

Following [9], we construct the baseline network for Re-ID
with person identities and semantic attributes. The baseline
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Fig. 3. The architecture of the proposed DHA-Net with ISO module. The DHA-Net consists of a baseline network, a plugged-in auto-encoder model and
several losses, including an identification loss, several semantic attribute losses, and a reconstruction loss. The ISO module consists of an embedded eigenlayer
and two kinds of losses, including a cross entropy loss and a sparsity loss. f , f̂ , a and b (h) respectively stand for feature, reconstructed feature, inferred
semantic attributes and mined hidden attributes. The identification loss and semantic attribute losses are original losses designed in the baseline network. The
auto-encoder model and reconstruction loss are used to generate DHAs. In addition, we substitute the DHA b, with orthogonal generation, identity-preserving
and sparsity constraints. The eigenlayer is designed for hidden attribute generation, and used to project DHA to orthogonal DHA. The cross entropy loss and
the sparsity loss are designed for hidden attribute discrimination. In this paper, besides f , [a, h] are also treated as representations, but from the semantic
attributes perspective.

network consists of a base network, and fully-connected layer
for person identification and semantic attribute prediction. The
survey [22] has proved that among all the base networks, such
as ResNet [38] and CaffeNet [39], ResNet-50 shows to yield
competitive Re-ID performance. We select ResNet-50 as the
base network, and pre-trained it on ImageNet [40]. After that,
we use M + 1 fully-connected (FC) layers followed by the
softmax layers for person identification and semantic attribute
prediction, where M denotes the number of types of predefined
semantic attributes. We set the number of neurons in FC
layer for identification to K , where K denotes the number
of training identities. For a certain semantic attribute with m
classes, the FC layer is m-dim.

Suppose we have N images of K identities in training
stage. Each identity has M types of semantic attributes. Let
Di = {Xi , I Di , Attri } be the training set, where Xi denotes
the i -th image, I Di denotes the identity of image Xi , and
Attri = {Attr1

i , Attr2
i , . . . , Attr M

i } is a set of M predefined
semantic attribute labels of the image Xi . Given a training
sample (Xi , I Di , Attri ), a feature description fi ∈ R

d is
first extracted from the feature layer (pool5), where d is
2, 048-dimension. Exploiting the feature fi , the model predicts
semantic attributes ai . For the baseline network, an identifica-
tion loss is for the person ID, semantic attribute losses are for
the person’s semantic attributes.

1) Identification Loss: Given a training sample X , the out-
put of person ID layer is z = [z1, z2, . . . , zK ] ∈ R

K . Thus the
predicted probability of each ID label k is calculated as:

p(k|X) = ex p(zk)∑K
i=1 ex p(zi)

. (1)

The cross entropy of identification loss is formulated as below:

L I D = −
K∑

k=1

log(p(k|X))q(k|X), (2)

where q(·) stands for the ground-truth identity class distribu-
tion. Let y be the ground-truth ID label of X , so that q(y) = 1,
and q(k) = 0 for all k �= y. In this case, minimizing the
identification loss is equivalent to maximizing the possibility
of being assigned to the ground-truth class.

2) Semantic Attribute Losses: As [9], [15] did, we also
use M softmax losses for semantic attributes prediction.
Assume that m classes for a certain semantic attribute s =
[s1, s2, . . . , sm ] ∈ R

m , and the probability of assigning sample
X to the semantic attribute class j ∈ {1, . . . , m} will be
written as

ps( j |X) = ex p(s j)∑m
i=1 ex p(si)

. (3)

Similarly, the certain semantic attribute loss of classifying
sample X will be computed as − ∑m

j=1 log(ps( j))qs( j). Let
ym denote the ground-truth attribute label, so that qs(ym) = 1,
and qs( j) = 0 for all j �= ym . The total is combining multiple
semantic attribute losses together as:

LS = − 1

M

M∑

i=1

m∑

j=1

log(ps( j |X))qs( j |X). (4)

B. Auto-Encoder Model

We define the semantic attributes for the training sample
X as a ∈ R

M . Our goal is to augment a hidden part DHA
b ∈ R

H , and form a hybrid attribute vector [a, b] for each
person image, where H is the number of hidden attributes. The
auto-encoder model is adopted, which has the following two
characteristics: (1) information in the input feature is preserved
in the reconstructed future as much as possible; (2) the hidden
part is learned automatically instead of learned by classifiers.
It is achieved by a two-step construction: encoding step and
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decoding step. Consequently, we design a simple way to reveal
the lacking expressive information in semantic attributes.

1) Encoding Step: The network encodes the original feature
into hybrid attribute vector, which is composed of two parts:
a predefined semantic part a obtained by general softmax
predictors and a hidden part DHA b learned from visual
features by an encoding function. Each component of semantic
attributes a is obtained from prediction of learned attribute
classifiers. The encoding function E encodes feature vector f
only for the hidden attribute part as

b = E( f ) = φ(Wb f ), (5)

where Wb ∈ R
H∗d is the augmentation matrix containing all

the attribute augmentation parameters. φ(z) = 1/(1+exp(−z))
is a sigmoid function which ensures values of b are in a range
comparable to the a. This encoding process is shown as

[a, b] = [a, E( f )] = [a, φ(Wb f )]. (6)

Decoding step. The decoding function D aims at recon-
structing the input feature space from hybrid attribute vector
[a, b]. This process is shown as Eq. 7, where R ∈ R

d∗(M+H)

is the reconstruction matrix.

f̂ = D([a, b]) = R[a, b]. (7)

2) Reconstruction Loss: The reconstruction loss measures
the loss incurred in the reconstruction of input feature vectors
of all samples, which is used to guide the learning of Wb.
We use a squared error loss [41] as Eq. 8.

L R = ‖ f̂ − f ‖2 = ‖R[a, φ(Wb f )] − f ‖2. (8)

With help of the plugged-in auto-encoder model with recon-
struction loss, the Re-ID network gains the ability of DHA
generation. By using the identity loss, the semantic attribute
loss and the feature reconstruction loss, the DHA-Net is
trained to predict person identity and semantic attribute labels,
and to reconstruct feature. The total loss function is defined as:

L = α1 L I D + α2 LS + α3 L R, (9)

where L I D , LS and L R denote the cross entropy loss of
identity classification and semantic attribute prediction, and
the squared error loss of feature reconstruction respectively.
Parameters α1, α2 and α3 (α1, α2, α3 > 0) balance the
contributions of the three losses and is determined on a
validation set.

In the following, as Fig. 3 shows, we substitute the DHA b,
with orthogonal generation module, identity-preserving and
sparsity constraints. The eigenlayer is designed for hidden
attribute generation, and used to project DHA to orthogonal
DHA. The cross entropy loss and the sparsity loss are designed
for hidden attribute discrimination.

C. Hidden Attribute Orthogonal Generation

SVD for Eigenlayer. After encoding process, we add an
eigenlayer to project hidden attribute vector to be an orthog-
onal one, as shown in Fig. 3. The Eigenlayer contains an
orthogonal weight matrix and is a linear layer without bias.
The reason for not using bias is that the bias will disrupt the

learned orthogonality [19]. During training, the input DHA b
is passed through the Eigenlayer. Its inner products with the
weight vectors of the Eigenlayer form the output orthogonal
DHA h ∈ R

H . The optimization method of the Eigenlayer is
learned from [19].

• Step 1-Decorrelation. We perform SVD on the weight
matrix as follows:

We = U SV �, (10)
where We is the weight matrix of the Eigenlayer, U is
the left unitary matrix, S is the singular value matrix, and
V is the right-unitary matrix. After the decomposition,
we replace We with U S. Then the linear layer uses all the
eigenvectors of WeW�

e as weight vectors and is named
as Eigenlayer.

• Step 2-Restraint. The backbone model is fine-tuned till
convergence, but the Eigenlayer is fixed.

• Step 3-Relaxation. The fine-tuning goes on for some more
epochs with Eigenlayer unfixed.

After Step 1 and Step 2, the weight vectors are orthogonal,
i.e., in an eigen state. But after Step 3, i.e., relaxation training,
We shifts away from the eigen state. The training procedure
works in restraint and relaxation iteration.

Then, the total attributes become to [a, h]. The reconstruc-
tion is based on the hybrid attribute vector [a, h], and the
reconstruction loss becomes to Eq. 11.

L R = ‖ f̂ − f ‖2 = ‖R[a, h] − f ‖2. (11)

With help of the embedded eigenlayer with SVD, the ability
of hidden attribute orthogonal generation is acquired for the
Re-ID network.

D. Identity-Preserving and Sparsity Constraints

Considering that the generated DHA should be suitable for
Re-ID independently, we also have to design a strategy for its
discrimination. An easy way is to re-exploited the person ID
label to train the DHA representative for identification. Similar
to the identification Loss, we propose a cross entropy loss for
hidden attribute. As Fig. 3 shows, we connect a person ID layer
after orthogonal DHA layer, and use the softmax activation to
construct the loss.

1) Cross Entropy Loss: Following the identification loss
described above, we suppose that the output of person ID layer
is z̄ = [z̄1, z̄2, . . . , z̄K ] ∈ R

K . So the predicted probability of
each ID label k is also calculated as Eq. 1. To simplify the
equation, the cross entropy loss is formulated as below:

LC = −
K∑

k=1

log(pc(k))qc(k). (12)

Let y be the ground-truth ID label, so that qc(y) = 1,
and qc(k) = 0 for all k �= y. In this case, minimizing the
cross entropy loss is equivalent to maximizing the possibility
of being assigned to the ground-truth class.

2) Sparsity Loss: In addition, to enhance the discriminabil-
ity of DHAs, we also introduce the sparsity constraint to
restrict the number of effective DHAs for each person. It is
defined as follows:

LSparsit y = |h|. (13)
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The total loss is a combination of the cross entropy loss and
the sparsity loss for the DHA h.

L D = LC + LSparsit y . (14)

With help of the cross entropy loss and the sparsity loss,
the ability of hidden attribute discrimination is acquired for
the Re-ID network.

E. Implementation Procedure

By using the identity classification loss function, the mul-
tiple semantic attribute prediction loss function, the feature
reconstruction loss function, the cross entropy loss function
and the sparsity loss function, the DHA-Net with ISO module
is trained to predict person identity and semantic attribute
labels, to mine DHA, and to reconstruct feature. The final
loss function is defined as:

L = α1 L I D + α2 LS + α3 L R + α4 L D, (15)

where L I D , LS , L R and L D denote the loss of identity
classification and semantic attribute prediction, the squared
error loss of feature reconstruction, and the cross entropy
loss of generated hidden attribute discrimination respectively.
Parameters α1, α2, α3, and α4 (α1, α2, α3, α4 > 0) balance the
contributions of the four kinds of losses and can be determined
on a validation set. In essence, L I D leads the feature layer
representation discriminative. LS guides the prediction of
predefined attributes robust. L R gifts the network the ability
of generating hidden attributes. L D provides the network the
ability of discriminating hidden attributes.

To this end, for the DHA-Net with ISO module, different
kinds of losses are optimized simultaneously. We utilize Ten-
sorflow [42] and Keras [43] to implement the codes of baseline
network, the DHA-Net and the ISO module. The training
process includes four steps. Note that Step 3© and Step 4©
process in iteration.

• Step 1©: We use ResNet-50 as the base network. The base
network is pre-trained on ImageNet [40].

• Step 2©: The baseline network is constructed taking
advantage of the trained ResNet-50, which is essentially
the same as [9]. Network parameters in trained ResNet-
50 are shared to the baseline network. The baseline
network is fine-tuned using the currently available seman-
tic attribute annotations and identity labels. To avoid
over-fitting, a dropout layer is inserted before the FC
layers, and the dropout rate is 0.9. After training the
baseline network, its network parameters are shared to
the DHA-Net.

• Step 3©: We re-use semantic attribute annotations and
identity labels to fine-tune the DHA-Net with ISO mod-
ule. The batch size is set to 64. Learning rate is initial-
ized to 0.001. The stochastic gradient descent (SGD) is
implemented in each mini-batch to update the parameters.
We set the number of epochs to 120.

• Step 4©: For each 10 epochs, we decompose We with
SVD decomposition, and then the linear layer uses all
the eigenvectors of WeW�

e as weight vectors. Then,
we continue fine-tuning the network.

During testing, the outputs will be extracted respectively
from the activations of the feature layer ( f ) and the attribute
layer ([a, h]). The L2 normalized outputs are taken as the
person representations, and Euclidean metric is utilized to
measure the distances between representations. Note that
although it takes more time to train the DHA-Net and the
ISO module, compared with the baseline network, the testing
time does not change too much, due to the tiny change for
extracting person representation.

IV. EXPERIMENTS

A. Datasets and Evaluation Protocol

1) Image Datasets: The Market-1501 dataset [8] contains
32,668 annotated bounding boxes of 1,501 identities. Images
are captured from six cameras. As far as we know, it is
one of the most popular and largest person Re-ID dataset.
The Market-1501 dataset is split into 751 identities for train-
ing and 750 identities for testing. The DukeMTMC-reID
dataset [18] is a subset of the DukeMTMC dataset [44].
It contains 1,812 identities captured from eight cameras.
A number of 1404 identities appear in more than two cameras.
The rest 408 are distractor images. Following the evaluation
protocol in [18], the training and testing subsets both have
702 identities. There are 16,522 training images, in which
2,228 are query images, and 17,661 are gallery images.

2) Attribute Annotations: We used the predefined semantic
attributes designed in [9]. The authors manually annotated
the Market-1501 and DukeMTMC-reID datasets with attribute
labels. For Market-1501 dataset, they labeled 27 types of
semantic attributes, such as gender (male, female), length of
lower-body clothing (long, short), carrying backpack (yes, no)
and so on. For DukeMTMC-reID dataset, they labeled 23 types
of semantic attributes.

3) Evaluation Metrics: In common, the Cumulative Match-
ing Characteristic (CMC) [45] value and the mean average
precision (mAP) [22] are used to evaluate the results for the
Re-ID task. Given a query, its average precision (AP) is com-
puted from its ranking result or precision-recall curve. Then,
the mAP calculates the mean value of precisions of all queries.
The presumption is that CMC reflects retrieval precision (CMC
value at rank 1 is mainly evaluated, i.e., CMC-1), and mAP
reflects the recall.

4) Parameters Setting: As Eq. 15 shows, α1, α2, α3 and
α4 are key parameters balancing the contributions of different
losses. When α3 = 0, L R is removed from the loss function,
and the DHA-Net degenerates to the baseline network. When
α2 = 0 in further, LS is removed from the loss function, and
the baseline network reduces to Resnet-50. The approach [9]
had an observation on the setting of α1 and α2. When
α1 = 8 ∗ M ∗ α2, a relatively higher Re-ID performance
can be obtained for the baseline. Hence, in this paper, we set
α2 = 0.1, α1 = 21.6 and 18.4, respectively for Market-1501
(M = 27) and DukeMTMC-reID (M = 23). In this paper,
to simply the method, we set α3 and α4 as fixed values. If not
specified, we set α3 = α4 = α1/2, i.e., α3 = α4 = 10.8 and
α3 = α4 = 9.2 respectively.
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Fig. 4. Evaluation on different parameters, with experiments on the Market-1501 dataset. In the figures, ‘DHA-Net’ and ‘Baseline’ respectively denote
the accuracy curves generated by DHA-Net and the baseline network. The suffixes ‘F’ and ‘A’ respectively stand for evaluations with the output of feature layer
and attribute layer as person representation. CMC-1 and mAP results are respectively demonstrated in all the evaluations. In order to facilitate comparison,
the results of baseline are drawn as well. (1) Evaluation as the value of α3 changes. (2) Evaluation on different number of hidden attributes H . (3) Evaluation
on different number of predefined attributes M. The number of predefined attributes decreases from 27 to 0. Note that this figure was used in the conference
version [21]. We make the analysis more clear in this version.

B. Investigation on the Parameters of DHA-Net

The proposed framework consists of different components,
which give different contributions to the Re-ID model. These
components are balanced by the corresponding parameters.
In this subsection, we evaluate each component by adjusting
the corresponding parameter. Here, we take the Market-1501
dataset as an example. We fix two of the following parameters,
change the value of the other observed parameter, and drew
its Re-ID results. Note that, in previous researches, the output
of the feature layer is taken as the sole person representation.
Although the baseline [9] has introduced a lot of predefined
semantic attributes, it still only took the output of the feature
layer as the person representation. The output of the attribute
layer has not been taken into evaluation. Indeed, the semantic
attributes are not discriminative enough. Since multiple hidden
attributes are generated in DHA-Net, we evaluated the Re-ID
performances of both views of the representations, by the
output of the feature layer and the output of attribute layer.

• α3: the strength of reconstruction loss
• H : the number of hidden attributes
• M: the number of predefined attributes
1) The Influence of the DHA Component: We first fixed M

and H , then changed the value of parameter α3. As Eq. 9
described, the parameter α3 determines the strength of recon-
struction loss L R . Larger the value is, more contribution will
be made by the auto-encoder part of DHA-Net, consequently
DHAs will be more influential to the Re-ID performance.
We evaluated the Re-ID performances by the output of feature
layer and the output of attribute layer. We set α1 and α2 as
recommended values. As the number of predefined semantic
attributes M = 27, we fixed the number of hidden attributes
H as 60, and changed the value of α3 based on α1 step by
step, i.e., 0.1 ∗α1, 0.5 ∗α1, 1 ∗α1, 10 ∗α1, 50 ∗α1, and so on.
Fig. 4(a) shows the Re-ID accuracy curves. We can find that
the accuracy of the output of attribute layer ‘DHA-Net (A)’
increases as the value of α3 becomes larger when α3/α1 < 10.

It proves that more weights the reconstruction loss has, more
benefits the output of attribute layer will gain. We can also
find that although the accuracy of the output of feature layer
‘DHA-Net (F)’ goes down a little, DHA-Net obtains a con-
siderable improvement, compared with the baseline method
(nearly 3% CMC-1 and 5% mAP promotions in average when
α3/α1 < 10). Note that we selected H = 60 because our
focus is on demonstrating the function of DHA component
and the influences to DHA-Net as parameters change, rather
than finding out the most effective parameters. We believe that
when we chose different H values, the tendencies of the curves
would be similar.

2) The Number of the DHA Component: We fixed
M and α3, then changed the value of parameter H . The
number of hidden attributes H is essential to the discrimination
of DHAs, which is very important to be investigated. We also
evaluated the Re-ID performances of both two views of the
representations, by the output of feature layer and the output
of attribute layer. We set α1 and α2 as recommended values,
and fixed α3/α1 = 0.5. Then, we changed the number
of hidden attributes H . Fig. 4(b) show the Re-ID accuracy
curves. We can find that the Re-ID accuracy of the attribute
layer ‘DHA-Net (A)’ goes better as H becomes larger when
H < 500. That is to say, the hidden attributes are useful to
promote the discrimination ability of the output of attribute
layer. We can also find that, with fixed α3, the number
of hidden attributes does not intensively make the result
of the output of feature layer ‘DHA-Net (F)’ fluctuated.
Nevertheless, similar to the evaluation above, the Re-ID per-
formance of the output of feature layer has a considerable
improvement with DHA-Net, compared with the baseline
network.

3) The Number of the Semantic Attribute Component:
We fixed H and α3, then changed the value of parameter M .
As we know, the number of predefined semantic attributes M
stands for the number of attribute annotations. In a practical
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situation, we cannot always obtain so many types of semantic
attributes and their annotations. In this situation, we investi-
gate whether the DHA-Net is still effective with less or no
predefined semantic attributes. We set the number of hidden
attributes as H = 60. We also set α1 and α2 as recommended
values, and fixed α3/α1 = 0.5. Then, we changed the number
of predefined semantic attributes M . Fig. 4(c) shows the Re-ID
accuracy curves. We can find that the change of M does not
intensively influence the results of the output of the feature
layer ‘DHA-Net (F)’. Whereas, the results of the output of
attribute layer ‘DHA-Net (A)’ go down and up, as the number
of semantic attributes M changes from 27 to 0. As one of the
important parts of the attribute layer, the predefined semantic
attributes will reduce their contribution as the number goes
small. Hence, we can find that the curves ‘DHA-Net (A)’
firstly go down. However, the curves again go up when M < 4.
We consider the reason may be that the hidden attribute part
starts to take the responsibility of the semantic part, when the
number of semantic attributes is too small. The accuracy of the
attribute layer even performs very well, when M = 0. M = 0
means that there are no predefined semantic attributes. It is
interesting that even without predefined semantic attributes,
the accuracy of the feature layer ‘DHA-Net (F)’ obtains 85.2%
CMC-1 and 65.85% mAP value, which outperforms that of the
baseline. It tells us that the plugged-in auto-encoder model
will refine the feature layer, during the process of mining
latent information to form hidden attributes. We consider
that DHA-Net may learn something similar to the predefined
semantic attributes. It should be mentioned that DHA-Net
with H = 60 hidden attributes outperforms that with the
combination of M = 27 predefined attributes and H = 60
hidden attributes (as the blue and purple curves show). The
reason is that when M = 0, α1 = 8 ∗ M ∗ α2 = 0, and we set
α3 = 0.5 ∗ α2, and then relatively more weights are assigned
to the reconstruction loss. In this situation, DHA-Net learns
more discriminative and robust hidden attributes.

C. Comparison With the State-of-the-Art Methods

In this subsection, we make comparisons with the state-
of-the-art methods. We exploit the Market-1501 and the
DukeMTMC-reID datasets. For the baseline network [9],
we set the training batch size as 64 and chose Tensorflow as
our deep learning platform. Note that the reported batch size of
the baseline network [9] is 128 and the deep learning platform
is different. In this situation, the baseline network results are a
bit smaller than the reported ones in [9]. Whatever, the results
are still competitive. Besides the results of the state-of-the-art
methods, we list the results of the baseline, DHA-Net, and
DHA-Net+ISO, to prove the effectiveness of the DHA-Net
and the ISO module.

1) The Market-1501 Dataset: In Table. I, we compare
with existing state-of-the-art methods. Among these methods,
(1) SSDAL [36], ACRN [51], and APR [9] are typical methods
utilizing semantic attribute annotations. APR [9] is our referred
baseline method with an attribute re-weighting module. ‘w/o
ARM’ denotes APR without the attribute re-weighting module.

TABLE I
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART ON THE

MARKET-1501 DATASET. ‘A’ AND ‘F’ DENOTE RESULTS
RESPECTIVELY BY THE OUTPUT OF ATTRIBUTE LAYER

AND FEATURE LAYER. ‘AGGR’ MEANS AGGREGATION

RESULTS OF ATTRIBUTE AND FEATURE VIEWS.
‘DHA-NET’ STANDS FOR THE BASELINE

NETWORK WITH AUTO-ENCODER, AND

‘ISO’ STANDS FOR IDENTITY-PRESERVING

AND SPARSITY CONSTRAINTS, AND
ORTHOGONAL GENERATION MODULE

(2) XQDA [10], SCSP [46], and Null [47] are typical methods
focusing on learning distance metrics, while our method
only uses the standard Euclidean metric. (3) Some methods
design an additional re-ranking step for Re-ID tasks, such as
Re-ranking [49] and SSM [50]. (4) The rest methods try to
design special and promotional deep learning networks for
Re-ID task, such as LSTM [48], GAN [18], JLML [33],
MGCAM [52], AACN [54], and HACNN [55], while our
baseline just takes the simple ResNet-50 as the base network.
The results of ‘Baseline (A)’ and ‘Baseline (F)’ are obtained
by setting α3 = 0, α4 = 0, where the network degenerates
to the baseline network. The results of Base ResNet-50 are
obtained by setting α2 = 0 in further, where LS is removed
from the loss function, and the network reduces to ResNet-50.
Note that One-Example [53] proposed a network to address
the challenge that each identity has only one labeled example
along with many unlabeled examples. In this paper, its upper
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bound base network achieves 83.1% in CMC-1, which is much
higher than our base network does. The reason is that we set
the training batch size as 64 and chose Tensorflow as our deep
learning platform, which is different from [53].

For our methods, we evaluated the baseline network,
DHA-Net, i.e., the baseline network with auto-encoder.
We also evaluated DHA-Net with ISO module, i.e.,
Identity-preserving and Sparsity constraints, and Orthogonal
generation module. For the symbols in the table, the suffixes
‘A’ and ‘F’ denote results respectively by the output of attribute
layer and feature layer. ‘Aggr’ means aggregation results of
attribute and feature views. To achieve state-of-the-art results,
we reformed HACNN [55] with our DHA-Net, and fine-tuned
the network with semantic attribute annotations. The method is
denoted as HACNN+DHA-Net. Note that HACNN is marked
with a asterisk, which means that the method is implement
with Torchreid.1

The table shows that our method improves the results
of the baseline with a big margin. Taking the output of
attribute layer as the representation, the accuracy promotions
are over 36% for CMC-1 and 31% for mAP. Taking the
output of feature layer as the representation, the accuracy
promotions are over 3% for CMC-1 and 5% for mAP.
The table also shows that DHA-Net improves the results
of the baseline, and DHA-Net+ISO improves the results
of DHA-Net. ‘DHA-Net+ISO (A)’ and ‘DHA-Net+ISO (F)’
respectively stand for attribute and feature views. The CMC-1
value of ‘DHA-Net+ISO (F)’ performances better than all the
other methods. Motivated by the philosophy of multi-view
verification, DSRA [56] aggregates methods with different
views. We utilized this aggregation method to fuse the ranking
results of these two views together. We can see that DSRA
works effectively, and it proves that ‘DHA-Net+ISO (A)’ and
‘DHA-Net (A)’learn discriminative representations different
from ‘DHA-Net+ISO (F)’ and ‘DHA-Net (F)’. We can also
see that HACNN combined with our method, HACNN+DHA-
Net, obtained the state-of-the-art performance.

2) The DukeMTMC-reID Dataset: The evaluation fol-
lows the process on the Market-1501 dataset. In Table. II,
we compare with other state-of-the-art methods, such as
LOMO+XQDA [10], GAN [18], EquiDML [57], ACRN [51],
AACN [54], and HACNN [55]. Among these methods,
ACRN [51] and APR [9] are typical methods utilizing seman-
tic attribute annotations. APR [9] is our referred baseline
method with an attribute re-weighting module. ‘w/o ARM’
denotes APR without the attribute re-weighting module. When
we set α3 = 0 and α4 = 0, the network degenerates to the
baseline network. Then we obtain the results of ‘Baseline (A)’
and ‘Baseline (F)’. When we further set α2 = 0, the baseline
network reduces to Resnet-50. For the symbols in the table,
the suffixes ‘A’ and ‘F’ denote results respectively by the
output of attribute layer and feature layer. ‘Aggr’ means
aggregation results of attribute and feature views. To achieve

1We refer to Torchreid, which is a library built on PyTorch for deep-learning
person re-identification. The code link: https://github.com/KaiyangZhou/
deep-person-reid

TABLE II
COMPARISON OF OUR METHOD WITH STATE-OF-THE-ART ON THE

DUKEMTMC-REID DATASET. ‘A’, ‘F’, ‘AGGR’, ‘DHA-NET’
AND ‘ISO’ ARE THE SAME DENOTATIONS AS IN TABLE. I

state-of-the-art results, we also reformed HACNN [55] with
our DHA-Net, and fine-tuned the network with semantic
attribute annotations.

The table shows that our method improves the results of
the baseline with a big margin. Taking the output of attribute
layer as the representation, the accuracy promotions are over
37% for CMC-1 and 32% for mAP. Taking the output of
feature layer as the representation, the accuracy promotions
are over 3% for CMC-1 and 2% for mAP. The table also
shows that DHA-Net improves the results of the baseline,
and DHA-Net+ISO improves the results of DHA-Net. Again,
we utilized the DSRA [56] method to aggregate the ranking
results of feature view and attribute view together. As the
proved on the Market-1501 dataset, ‘DHA-Net+ISO (A)’ and
‘DHA-Net (A)’learn discriminative representations different
from ‘DHA-Net+ISO (F)’ and ‘DHA-Net (F)’. We can also
see that HACNN combined with our method, HACNN+DHA-
Net, got the state-of-the-art performance.

D. Analysis and Visualization of DHA

To investigate the genuine meaning of DHA, we visualized
the class activation mapping of some attributes by the Global
Average Pooling (GAP) method [58]. In Fig. 5, we show
the activation maps of three types of predefined attributes,
i.e., “wearing backpack”, “black lower-body clothing” and
“white upper-body clothing”, and we also show four ran-
domly selected hidden attributes, named as “DHA1”, “DHA2”,
“DHA3” and “DHA4”. From the figure, we can find that
“DHA1” pays attention to the central part of the upper-body
and some background area. “DHA2” activates some local area,
such as legs or feet. “DHA3” focuses on the strap of the
backpacks in the front/side view. It should be noted that the
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Fig. 5. Class activation mapping images of different attributes. We list
the original image and the generated class activation mapping images of
eight persons. Each column stands for one person. The top row is the
original images. The following three rows are generated by predefined
semantic attributes, i.e., “wearing backpack”, “black lower-body clothing”
and “white upper-body clothing”. The bottom four rows are generated by
hidden attributes. We can find that “DHA1” focuses on the central area of
the upper-body and some background areas, “DHA2” focuses on some local
areas, “DHA3” focuses on the strap of the backpacks in the front/side view,
and “DHA4” focuses on the body with the front viewpoint.

fifth person with the back viewpoint has a confused activation
map. For the “DHA4”, the activation maps of the second,
fourth and seventh persons highlight the whole body. Note that
these three persons are with the front viewpoint. The activation
maps of the other persons with the side/back viewpoint are in
chaos. These incremental DHAs are activated from particular
areas of the body, different from that of semantic attributes.
These areas indicate some latent information for corresponding
DHA, just as the activation areas for semantic attributes.
Basically, different areas of the body contain different kinds
of details of the person’s appearance. Hence, we consider that
the DHA-Net is able to mine useful information to produce
DHAs. In addition, the activated areas of DHAs are different

Fig. 6. The sparsity of DHA. We randomly selected 30 samples and their
15 DHAs from the generated results. Then, we drew the heat map with the
value of DHAs. Each row stands for the DHAs of one person, and each
column denotes one type of DHA.

from each other. It shows that the incremental DHAs are
orthogonal.

To show the effectiveness of the sparsity of DHA, we ran-
domly selected 30 samples and their 15 DHAs from the
generated results (in total 50 types of DHAs). Then, we drew
the heat map with the value of DHAs as Fig. 6 shows. For
the Fig. 6, each row stands for the DHAs of one person, and
each column denotes one type of DHA. We can see that the
results are sparse.

To investigate the discrimination effectiveness of DHA,
we also selected images of the eight persons in Fig 1(b),
and perceptually visualized their distribution in the PCA 3D
attribute space through exploiting t-SNE [59]. As Fig. 7
shows, selected samples are drawn in the PCA 3D attribute
space without DHA and with DHA. It shows that samples
of different persons are mixed with other and indistinguish-
able in Fig. 7(a). Whereas, in Fig. 7(b), samples of the
same person get together and samples of different persons
are relatively separated apart. It shows that the mined hid-
den attributes do improve the discrimination ability of the
model.

E. Evaluation on the Running Cost

We evaluated the running cost of our method in this
subsection. We used the NVIDIA Tesla K80 12G (GPU) to
extract image features and attributes, and took Market-1501 as
an example. In the testing stage, 3, 368 query images and
19, 732 gallery images were used. It costs 128, 849 ms to
extract all the features and attributes. Hence, the method takes
5.578 ms in average to extract features and attributes for
each image. As we know, a real time monitor application
runs 40 ms per frame. If we have less than 8 persons in
average for each frame, our method can fulfill the high speed
requirement. In addition, it costs 558, 969 ms to conduct
all queries. In total, 3, 368 queries were evaluated. So the
proposed method takes 165.96 ms in average to obtain a
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Fig. 7. 3D attribute space visualization of some representative samples.
These samples are selected from 8 persons, as shown in Fig. 1(b). The top
figure is the attribute space (PCA to 3D) with only defined semantic attributes,
while the bottom figure is the attribute space with defined semantic attributes
and DHAs together. In these two attribute space figures, points with different
colors indicate different persons.

ranking list. We can see that the proposed method is very
fast.

V. CONCLUSION

In the preliminary conference version, to incrementally
generate DHA, we contribute a simple deep learning network,
called DHA-Net. In this paper, we reform the DHA-Net.
We embed an eigenlayer with SVD, so that the network
obtains the ability of hidden attribute orthogonal genera-
tion. In addition, we supplement a cross entropy loss and
a sparsity loss to make the network acquire the ability of
hidden attribute identity-preserving and sparsity discrimina-
tion. After optimizing together, we easily boost the Re-ID
performance by incremental deep hidden attributes without
additional attribute annotations. Comprehensive experiments
demonstrate that DHA-Net with ISO module not only achieves
better attribute representation but also improves the feature
representation.
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