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A Deep Learning Reconstruction Framework for
Differential Phase-Contrast Computed Tomography

with Incomplete Data
Jianbing Dong and Jian Fu and Zhao He

Abstract—Differential phase-contrast computed tomography
(DPC-CT) is a powerful analysis tool for soft-tissue and low-
atomic-number samples. Limited by the implementation con-
ditions, DPC-CT with incomplete projections happens quite
often. Conventional reconstruction algorithms are not easy to
deal with incomplete data. They are usually involved with
complicated parameter selection operations, also sensitive to
noise and time-consuming. In this paper, we reported a new
deep learning reconstruction framework for incomplete data
DPC-CT. It is the tight coupling of the deep learning neural
network and DPC-CT reconstruction algorithm in the phase-
contrast projection sinogram domain. The estimated result is the
complete phase-contrast projection sinogram not the artifacts
caused by the incomplete data. After training, this framework
is determined and can reconstruct the final DPC-CT images for
a given incomplete phase-contrast projection sinogram. Taking
the sparse-view DPC-CT as an example, this framework has been
validated and demonstrated with synthetic and experimental data
sets. Embedded with DPC-CT reconstruction, this framework
naturally encapsulates the physical imaging model of DPC-CT
systems and is easy to be extended to deal with other challengs.
This work is helpful to push the application of the state-of-the-art
deep learning theory in the field of DPC-CT.

I. INTRODUCTION

THE invention of X-ray computed tomography (CT) has
led to a revolution in many fields such as medical

imaging, nondestructive testing and materials science. How-
ever, since traditional X-ray contrast is generated by the
difference in attenuation, weak-absorbing materials are not
imaged satisfactorily, limiting the range of application of X-ray
CT. To overcome this problem, X-ray phase-contrast CT (PC-
CT) uses the phase shift that X-rays undergo when passing
through matter as the imaging signal to nondestructively
provide the internal physical and biomedical properties of the
specimens. Over the last years, several phase-contrast imaging
techniques have been developed [1]–[24]. One of the recent
developments is differential PC-CT (DPC-CT), based on a
grating interferometer [12]–[20]. It has become more and more
popular as a powerful analysis tool for soft-tissue and low-
atomic-number samples.

Image reconstruction plays an important role for the devel-
opment of DPC-CT. Filtered back-projection (FBP) with an
imaginary Hilbert filter is generally preferred since it keeps a
good balance between reconstrucion speed and image quality
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when applied to complete data. However, constrained by im-
plementation conditions, DPC-CT with incomplete projections
occurs quite frequently. The corresponding FBP reconstruction
will have quite visible artifacts and noise.

Reconstruction with incomplete data has attracted more and
more interests. Guna Kim et al investigated analytic CT recon-
struction in sparse-angular sampling using a new interpolation
method [25] to reduce patient radiation dosage. According
to the results, the quality of the images reconstructed by
their method was considerably improved over the cases using
cubic interpolation method. Deriving a maximum likelihood
(ML) reconstruction algorithm with regularization [26] for
differential phase-contrast imaging, Thomas et al used spher-
ically symmetric basis functions and differential footprints in
forward and back-projection to avoid the need for numerical
differentiation. Their results showed that sparsely sampled data
could be handled efficiently. Based on a novel spling-based
discretization of the forward model and an iterative recon-
struction algorithm using the alternating direction method of
multipliers, Masih et al gave out an iterative reconstruction
method [27] for DPC-CT with fewer angular views, and
the results suggested that their method allows to reduce the
number of required views by a factor of four. Jian Fu et
al developed an algebraic iteration reconstruction technique
[28] for incomplete data DPC-CT. By minimizing the image
total variation, their work could permits accurate tomographic
imaging with less data. These reconstruction techniques could
be better than FBP, but they still have some limits such as
expensive time consumption for the succesive iterative steps
and the complicated parameter selection.

A more recent trend is the application of deep learning (DL).
It has led to a series of breakthroughs for image classification
[29], [30] and segmentation [31] and also demonstrated im-
pressive results on signal denoising [32] and artifacts reduction
[33], [34].

There is currently a scarcity of researches on applying DL
to DPC-CT reconstruction, and there remains an important
need to develop the relative techniques. Nevertheless, several
works have applied DL to absorption-based incomplete CT
reconstruction. They can be grouped into two categories. The
first category can be classified as post-processing. Its key idea
is to reduce artifacts on the CT image domain. A method
presented by Cierniak [35] uses hopfield-type neural network
on the back-projection to solve the image deburring problem.
This approach bypasses the problem of too many parameters
by fixing them in the back-projection step and degenerates
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the reconstruction to an image-based filtering approach. Based
on a persistent homology analysis, Han et al developed a
deep learning residual architecture [36] for sparse-view CT
reconstruction. The input of this architecture is the initial
corrupted reconstruction image from FBP or other algorithm.
It firstly estimates topologically simpler streaking artifacts
from the input image and then subtracts the estimated result
from the input image to get artifact-free image. Obviously
this method is independent on X-CT reconstruction and works
in an indirect way. Using multi-scale wavelet, they extended
their work to limited angle CT reconstruction [37]. Jin et
al also proposed a deep convolutional neural network [38]
for inverse problem in imaging. It is similarly independent
on X-CT reconstruction, but the estimated result is the final
CT image not the artifacts. With dialted convolutions, Pelt
et al introduced an architecture [39] to capture features at
different image scales and densely connect all feature maps
with each other. Their method is also independent on CT re-
construction, but is able to achieve accurate results with fewer
parameters, which reduced the risk of overfitting the training
data. Zhicheng Zhang et al proposed a method [40], which
takes full advantages of DenseNet [41] and deconvolution
[42] to remove streaking artifacts from the sparse-view CT
images. The second category can be classified as sinogram
completion. Its key idea is to complement the incomplete
projections before reconstructing them with analytical algo-
rithms. Hoyeon Lee et al developed an interpolation method
[43] using convolutional neural network (CNN) to interpolate
the missing data in sinogram from sparse-view CT. Their
work shows better result than other interpolation methods, like
linear interpolation method. Changed the network to U-Net
[31] and combined with residual learning [44], their extended
work [45] outperformed the existing interpolation methods and
iterative image reconstruction approach. Donghoong Lee et al
employed DL on hybrid domain of sparsely sampled CT to
restore high quality images [46]. Firstly, they apply DL on
the linear interpolated sinogram to get full sampled sinogram,
then, DL is utilized again on the CT image reconstructed from
the full sampled sinogram to obtain the final CT image. Their
experiments shows it is able to restore images to a quality
similar to fully sampled images.

In this paper, we report a new deep learning reconstruction
framework for DPC-CT with incomplete projections. Different
from post-processing and sinogram completion methods, we
firstly project the initial reconstructed DPC-CT image into
corrupted sinogram, in which the missing information will
be completed in a fashion of CT scanning instead of in-
terpolation, and then remove the artifacts on the projection
sinogram domain. It is the tight coupling of the DL and FBP
algorithm in the phase-contrast projection sinogram domain.
The estimated result is the complete projection sinogram not
the DPC-CT image or the artifacts. Embedded with DPC-CT
reconstruction, it naturally encapsulates the physical imaging
model of DPC-CT systems and is easy to be extended to
deal with other challengs such as photon starvation and phase
wrapping. When training, this framework firstly obtains the
forward projections from the initial reconstruction by applying
FBP to the original incomplete projection sinogram. Taking

the complete projection sinogram as a target, they are then
fed into the neural network to get the net parameters by
deep learning. After training, this framework is determined
and can reconstruct the final DPC-CT image for a given
incomplete phase-contrast projection sinogram. Taking sparse-
view DPC-CT reconstruction as an application example, this
framework has been validated by using synthetic data sets
and experimental data sets. This work is helpful to push the
application of deep learning in the field of DPC-CT.

II. METHODS

A. Framework overview

Fig.1 shows the proposed deep learning reconstruction
framework for DPC-CT with incomplete projections. It is
based on FBP and a neural network and called DLFBP. This
framework consists of five parts. Initial FBP reconstruction
of the original incomplete phase-contrast sinogram is the first
part. The second part is the forward projection operator which
is applied to the initial reconstructed image to obtain corrupted
sinogram. Then the differential operation is conducted to
get differential phase-contrast sinogram. The fourth part is a
neural network and used to execute deep learning. Final FBP
reconstruction of the complete phase-contrast sinogram from
the fourth part is the last part of the framework.

A two-dimensional object can be described by a complex
refractive index distribution n (x, y) = 1− δ (x, y)+ iβ (x, y),
where x and y describe the coodinate system of the sample. In
differential phase-contrast imaging, one measures the effect of
variations of the real part δ by evaluating the tiny refraction an-
gles of X-rays induced by the specimen with a grating Talbot-
Lau interferometer. The differential phase-contrast projection
can be expressed by αθ (s) = ∂

(∫
l
δ (x, y) dl

)
/∂s, where s

describes the coordinate system of the detector, θ the rotation
view angle of the object, and l the incident ray direction. Using
the three point differential method, the differential phase-
contrast projection can be discretely re-expressed into Eq.(1).

αθ (s) ≈
p (j + 1,m)− p (j − 1,m)

2
(1)

Here, p is a two-dimensional matrix and each element in
this matrix represents the line integral value detected by one
detector channel. It is used in the third part to get differential
phase-contrast sinogram.

Eq.(2) is the well-known two dimensional fan beam FBP
algorithm which is adopted to reconstruct the DPC-CT image
in this article. It has many extension versions for different
CT scanning configurations. In this equation, δ (x, y) repre-
sents the DPC-CT image, U the geometrical weight factor,
αθ (s) the differential phase-contrast projection sinogram, h
the Hilbert filter, Eq.(3), v the frequency variant and θ the
rotation angle.

δ (x, y) =
1

2

∫ 2π

0

U × αθ (s) ∗ h (v) dθ (2)

h (v) =
1

2π
isgn (v) (3)
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Fig. 1. The architecture of the framework: DLFBP. The neural network is constructed using U-net and DenseBlock.

Eq.(4) is the forward projection operator. In this equation,
P (δ (x, y)) the forward projection, δ (x, y) represents the ini-
tial reconstructed DPC-CT image and l the forward projection
path.

P (δ (x, y)) =

∫ 2π

0

δ (x, y) dl (4)

Eq.(5) represents the way how the neural network in this
framework produce complete phase-contrast sinogram. Cor-
rupted sinogram X with artifacts is feed into the neural net-
work, then an artifact-free complete phase-contrast sinogram
Ŷ could be obtained. Finally, FBP is used again on Ŷ to get
the final DPC-CT image.

Ŷ = F (X) (5)

B. Neural network

The neural network is build upon a more elegant architec-
ture, U-net [31], which has wide applications like semantic
segmentation [31] and medical image processing [38], due
to its goal is to generate a complete sinogram and the size
of input and output are identical. U-net has large number of
feature channels to extract high-level features in the extracting
path, and large number of feature channels in the expansive
path to allow the propagation of context information to higher
resolution layers. As a consequence, its symmetric structure is
organized in the form of Encoder-Decoder. Recently, research
[47] shows many layers contribute very little and can in
fact be randomly dropped during training, and DenseNet [41]
points out densely-connection can act as a substitute for large
number of feature channels because there is no need to relearn
redundant feature-maps. Therefore, this neural network takes
fully advantages of U-net and DenseNet to generate complete
phase-contrast sinogram.

According to the spatial resolution of feature maps, this
network can be divided into different stages. As depicted in
Fig.1, there are five encoding stages which are surrounded by
gray dotted boxes, and four decoding stages surrounded by
green dotted boxes. Numbers next to each stage denote the
corresponding spatial resolution on that stage.

1) Encoder-Decoder: Encoder is used to extract multi
scale features from the input corrupted sinogram. Bigger
convolutional (Conv.) filter could provide larger receptive field,
but more parameters will be introduced, which may cause
overfitting and hardly converging. Consecutive convolution
with small filter could provide the same size of receptive
field as bigger filter does, with less parameters. Therefore,
consecutive 3 × 3 Conv., Rectified Linear Units (Relu) [48]
and BatchNormalization (BN) [49] are used to extract features
from the input.

In common use [31], [40], max-pooling is taken to reduce
the feature maps’ spatial resolution to increase the size of
receptive field and get multi scale features. It computes fastly,
but only keeps the maximum value from the pooling window.
In order to pay more attention to important values rather than
maximum one, strided convolution is used. The parameters in
convolution filter will decide which part is important and give
it higher weight. Besides, to reduce the feature maps’ spatial
resolution as max-pooling does, the stride is set to 2. So 3×3
Conv. (strides=2) is used for reducing spatial resolution.

After high-level features are extracted, which possess high
semantic information and are abstract, Decoder should make
use of those abstract features to restore a high-quality output
with the same size as the input corrupted sinogram. Firstly,
deconvolution [42], which can be regarded as the reverse
version of convolution, also known as transpose convolution
(ConvTranspose), is adopted to recover the spatial resolution,
with stride 2. Then high-level features are concatenated with



4

low-level ones, and 3 × 3 Conv.-Relu-BN are used to refine
details. It’s working stage-by-stage. When the feature maps’
spatial resolution are the same as input’s, 1× 1 Conv. is used
to merge multi channels into one for matching the input’s
dimension.

2) Skip Connection: There exists two kinds of skip con-
nections: connection between input and output in the form of
residue learning [44] and connections among different stages.

Firstly, input is directly added to the output, so the neural
network could be reformulated as (6). Consequently, it only
needs to recognize and remove the artifacts from the corrupted
sinogram, rather than removing artifacts and building up the
whole complete sinogram from those abstract features at the
same time. This way can simplify the learning process, which
makes the network focus on the artifact reduction.

Ŷ = H (X) +X (6)

Secondly, the output from different stages are connected.
Though high-level features contains high semantic informa-
tion, it is not helpful for recovering the spatial information,
while low-level features retain spatial accuracy with less
semantic information. So low-level features are concatenated
with high-level ones to refine the spatial information, which
is similar to [31], [38], [40], [45].

3) DenseBlock: DenseBlock is the basic module in
DenseNet [41]. It distills skip connection into a simple pattern:
all layers are directly connected with each other in the same
block. As shown in Fig.2, each layer obtains additional inputs
from all preceding layers and passes on its own feature
maps to all subsequent layers. It exploits the potential of the
network through feature reuse instead of extreamly deep or
wide architectures, and yield condensed models and highly
parameter-efficiency.

Densely connection makes model easy to train, because each
layer in the same block has direct access to the gradients from
the loss functions and the original input signal, resulting in
implicit deep supervision [50]. Further, it proves that small
number of feature channels are sufficient to obtain state-of-
the-art results, because global information can be reached
from everywhere within the network, and unlike in traditional
network architectures, there is no need to replicate it from layer
to layer. Besides, each layer just adds k (e.g. k = 16) feature
maps to global information, which regulates how much new in-
formation each layer contributes to the global one and reduces
redundancy. This pattern also has regularizing effect resulting
from highly-parameter-efficiency, which reduces overfitting on
tasks with smaller training set sizes.

In this paper, each DenseBlock contains four BN-Relu-
5×5 Conv. (strides=1) layers, and each layer produces k new
feature maps. The parametric architecture of one DenseBlock
is shown in Table I, where H and W denotes spatial resolution
of feature maps’, CI denotes the number of input feature
channels.

4) Parameters in Neural Network: The whole archi-
tecture of this neural network is shown in Table II. All
the parameters in this neural network are initialized using a
Gaussian distribution with zero mean and standard deviation

Input

Output

BN+Relu+Conv.

Fig. 2. The structure of DenseBlock. Arrows with color represent copy and
concatenation.

TABLE I
PARAMETERS IN THE DENSEBLOCK

Layers Input Size Output Size
BN-Relu-5× 5 Conv. H×W ×CI H×W× k

Concatenate H×W ×CI H×W ×(CI+k)
H×W ×k

BN-Relu-5× 5 Conv. H×W ×(CI+k) H×W ×k

Concatenate H×W ×(CI+k)
H×W ×(CI+2k)

H×W ×k
BN-Relu-5× 5 Conv. H×W ×(CI+2k) H×W ×k

Concatenate H×W × (CI+2k)
H×W ×(CI+3k)

H×W ×k
BN-Relu-5× 5 Conv. H×W ×(CI+3k) H×W ×k

Concatenate H×W ×(CI+3k)
H×W ×(CI+4k)

H×W×k

√
2
nin

in which nin indicates the number of input units in
each layer.

Mean square error (MSE) can force the network to learn
difference on pixel value, and Multi-scale structure similarity
(MS-SSIM) [51] can make it to learn the difference on
structure. In this paper, MSE and MS-SSIM are combined
to be the loss function, Eq.(7). Here, Ŷ denotes output, and
Y represents corresponding grouth truth. The initial learning
rate is set to 1× 10−4, and gradually reduced to 1× 10−5.

loss =
1

2

∥∥∥Y − Ŷ
∥∥∥2
2
+ 1−MS SSIM(Y, Ŷ ) (7)

C. Artifact reduction in the sinogram domain

The output of a neural network can not be entirely cor-
rect, and even the latest optimization algorithm [52] can not
improve the accuracy to 100%. When DL is applied in the
CT image domain, the imprecise value of the output will be
directly reflected in the CT image, resulting in the structural
deformation. However, Eq. (2) tells that when leveraging FBP
on sinogram to obtain CT image, the object information on
CT image is obtained by weighted combination of information
from all angles on sinogram. Thus, the final CT image recon-
structed from the sinogram in which the artifact is reduced
by DL could be more tolerant to inaccurate output value, and
could get more accurate structure. The experimental section
also confirms that the results of artifact reduction conducted
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TABLE II
PARAMETERS IN THE NEURAL NETWORK

Stages Layers Output Size
(k = 16)

Encoder-1

3× 3 Conv. (strides=1)
720× 731× 2k-Relu-BN

3× 3 Conv. (strides=1)
720× 731× 2k-Relu-BN

Encoder-2 3× 3 Conv. (strides=2) 360× 366× 2k
DenseBlock-1 360× 366× 6k

Encoder-3 3× 3 Conv. (strides=2) 180× 183× 2k
DenseBlock-2 180× 183× 6k

Encoder-4 3× 3 Conv. (strides=2) 90× 92× 2k
DenseBlock-3 90× 92× 6k

Encoder-5 3× 3 Conv. (strides=2) 45× 46× 2k
DenseBlock-4 45× 46× 6k

Decoder-1

3× 3 ConvTranspose (strides=2)
90× 92× 6k-Relu-BN

Concatenate 90× 92× 12k
3× 3 Conv. (strides=1)

90× 92× 6k-Relu-BN

Decoder-2

3× 3 ConvTranspose (strides=2)
180× 183× 6k-Relu-BN

Concatenate 180× 183× 12k
3× 3 Conv. (strides=1)

180× 183× 6k-Relu-BN

Decoder-3

3× 3 ConvTranspose (strides=2)
360× 366× 6k-Relu-BN

Concatenate 360× 366× 12k
3× 3 Conv. (strides=1)

360× 366× 6k-Relu-BN

Decoder-4

3× 3 ConvTranspose (strides=2)
720× 731× 6k-Relu-BN

Concatenate 720× 731× 8k
3× 3 Conv. (strides=1)

720× 731× 4k-Relu-BN
Merge 1× 1 Conv. (strides=1) 720× 731× 1

— Add 720× 731× 1

in the sinogram domain are better than those whose artifact
reduction is conducted on CT image domain.

D. Running modes

This framework has two running modes. One is training
mode and another is working mode. Training mode has
following steps:

1) A set of incomplete phase-contrast sinograms is firstly
matched with the corresponding complete sinogram into
many pairs of training data which include an incomplete
sinogram and a complete sinograms.

2) These data is fed into the framework depicted in Fig.1 one
pair by one pair and the network parameters are updated
iteratively.

3) When all pairs are used once, an outer learning iteration
is completed.

4) Repeat steps 2 and 3 utill the learning converges.
The procedure for working mode is much simpler. When an

incomplete phase-contrast sinogram is fed into the framework
determined by training mode, the output of the framework will
be a high quality DPC-CT image.

III. EXPERIMENTS

Sparse-view DPC-CT is a typical case with incomplete data.
Taking sparse-view DPC-CT as an application example, this

section validates the proposed reconstruction framework by
synthetic data sets and experimental data sets.

A. Data preparation

1) Synthetic: For synthetic data sets, 500 phantoms are
used to obtain the fan beam phase-contrast sinograms with
different sampling factors. Each phantom consists of tens of
ellipses with random refraction coefficients, size, and location.
And the sampling factors are set to be 1, 4, 6, 8 and 12. They
correspond to 720, 180, 120, 90 and 60 views, respectively.
The size of each phantom is 512 × 512 pixel. Fan beam
sinograms are generated by using the embedded MATLAB
function fanbeam (). The width of all the sinograms are
731 pixels. The sinogram with sampling factor 1 has a size
720 × 731 pixel and is treated as complete one. Other sino-
grams are incomplete. Sinograms of 400 phantoms are used
to train the framework and those from another 100 phantoms
are used to test the framework.

Within the framework, for each incomplete sinogram, the
initial FBP reconstruction is firstly executed with Eq.(2) and
Eq.(3) to obtain the initial DPC-CT image. Then the forward
projection operator in Eq.(4) and the differential method in
Eq.(1) are applied to the initial DPC-CT image to generate
the corresponding corrupted phase-contrast sinogram with a
size 720× 731 pixel. Next the iterative deep learning runs to
update the network parameters by making comparison between
the corrupted and the complete phase-contrast sinogram.

This framework involves complicated calculations such as
image reconstruction, forward projection and convolution.
They may lead to unignored computation errors and degrade
the training efficiency and accuracy. So we apply normaliza-
tion operation to input X and ground truth Y to avoid this
problem. This normalization operation is expressed in Eq. (8)
in which In represents the normalized image, I the raw image,
mean() a operator to obtain mean value and std() a operator
to obtain standard deviation value.

In =
I −mean(I)

std(I)
(8)

2) Experimental: The experimental CT Lymph Nodes
data sets [53]–[55] is collected from The Cancer Imaging
Achive (TCIA) [56]. This collection consists of CT images
of 90 patients’ mediastinum and 86 patients’ abdomen. For
the consistency of the data sets’ size on both synthetic and
experimental, 50 out of 86 patients who underwent abdominal
imaging are randomly selected, and then split into 40 patients
used for training and 10 patients for testing. 10 images are
randomly chosen from each of these 50 patients.

After that, all the operations and procedures are the same
as the ones for synthetic data sets. Fig. 3 is an example of
how to prepare the training and testing data.

B. Implementation

This framework is implemented with Python 3.5.2 and
Tensorflow 1.8. It runs in a workstation Advantech AIMB-785
with a CPU i7 6700 and a Graphics Processing Unit (GPU)
nVidia GTX 1080Ti 11 GBytes.
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Original

Fanbeam()
and Differential

FBP
Forward Projection

and Differential
60

Incomplete
731

Corrupted
731

720

Complete  
731

720512

512

Sampling factor = 1

Fanbeam()
and Differential

Sampling factor = 4, 6, 8, 12 
(e.g. 12)

Fig. 3. An example of how to prepare the training and testing data.

For synthetic data sets, datas from 60, 90, 120 and 180
views are used to train a model seperately. So experimental
data sets do.

Adam [57] algorithm is used to train the neural network.
The mini-batch size is 2. All the models are trained for 100
epochs.

C. Comparison with other methods

In this study, two methods (deep-neural-network-enabled
sinogram synthesis, DNN-SS [45] and sinogram-normalization
interpolation, SN-I [25]) based on sinogram completion and
one method (DenseNet-Deconvolution network, DD-Net [40])
based on post-processing are conducted to compare the per-
formance with the proposed framework.

D. Image evaluation

When training, MSE and MS-SSIM have been used as the
loss function to guide the network to optimize parameters.
Consequently, the network will try to generate output that
has low MSE and high MS-SSIM index. So MSE and MS-
SSIM are not objective and not suitable for quantitative
measurement of the network performance. Besides, Lin Zhang
et al [58] compared the performance of several full reference
image evaluation methods, such as feature similarity (FSIM)
[59], MS-SSIM, SSIM [60] and peak signal to noise ratio
(PSNR), and results show that FSIM and information content
weighted SSIM index (IW-SSIM) [61] are more accurate than
others. Therefore, FSIM and IW-SSIM are used as quantitative
metrics.

Qualitative evaluation is also carried out using visual in-
spections and image intensity profiles.

Relative improvement ratio based on FSIM and IW-SSIM
index using different methods compared to FBP is calculated
with Eq.(9).

relI =
Met−MetonFBP

MetonFBP
(9)

Where relI represent relative improvement ratio, Met
denotes metric value using FSIM and IW-SSIM on different
methods. MetonFBP denotes metric value using FSIM and
IW-SSIM on FBP images.

E. Results

1) Synthetic data sets: Figs.4-6 present results of one of
the 100 synthetic phantoms with 120 views for testing using
different methods. Same regions indicated with yellow box are
enlarged for better visualization in Fig.5. The image intensity
profile in same position is shown in Fig.6.

As expected, severe artifacts exist in the result using FBP,
and DLFBP, DNN-SS, SN-I and DD-Net could reduce the
artifacts. Though most artifacts are suppressed, there still
remains some in the background using SN-I, furthermore, its
central part of the image has the clearest structure and the
nearer the boundary, the more blurred it is. DD-Net could
also remove the artifacts satisfactorily, but the result is overly
smoothed, and there is slight distortion in the edge structure.
As shown in Fig.5 and Fig.6, DD-Net loses small image details
and the pixel value changes gently and far from the reference
value. Through visual inspection, DLFBP and DD-Net could
remove the artifacts and retain small structures.

Table III shows the quantitative measurement using FSIM
and IW-SSIM index on this synthetic phantom. DLFBP gets
higher value on FSIM and IW-SSIM index compared to other
methods.

Fig.7 shows the average relative improvement ratio based on
FSIM and IW-SSIM index using different methods compared
to the results from FBP on the whole 100 synthetic testing
datas. Tabel IV lists the average FSIM and IW-SSIM values
using different methods on 60, 90, 120, and 180 views’
synthetic data sets. DLFBP and DNN-SS get higher metric
values than other methods.

Ground Truth FBP DLFBP

DNN-SS SN-I DD-Net

Fig. 4. One group of results from synthetic data sets with incomplete phase-
contrast sinogram of 120 views, using FBP, DLFBP, DNN-SS, SN-I and DD-
Net. Same regions of these images, indicated by yellow box, are enlarged for
better visualization.

TABLE III
QUANTITATIVE MEASUREMENT USING DIFFERENT METHODS FOR THIS

SYNTHETIC PHANTOM.

FBP DLFBP DNN-SS SN-I DD-Net
FSIM 0.841 0.995 0.994 0.872 0.986

IW-SSIM 0.866 0.996 0.996 0.892 0.986
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Ground Truth FBP DLFBP

DNN-SS SN-I DD-Net

Fig. 5. Enlarged regions indicated by yellow box in Fig.4 for better
visualization. DLFBP and DNN-SS could remove the artifacts and retain small
image structures.

Fig. 6. Image intensity profiles as measured along the blue solid line in Fig.4.
The profile using DLFBP is the closest to that of the reference image.

TABLE IV
QUANTITATIVE MEASUREMENT USING DIFFERENT METHODS FOR

SYNTHETIC DATA SETS.

Methods 60 90 120 180

FSIM

FBP 0.718 0.790 0.831 0.897
DLFBP 0.977 0.988 0.992 0.998
DNN-SS 0.974 0.984 0.990 0.997

SN-I 0.816 0.888 0.885 0.971
DD-Net 0.953 0.976 0.982 0.993

IW-SSIM

FBP 0.678 0.788 0.848 0.938
DLFBP 0.975 0.990 0.995 0.998
DNN-SS 0.980 0.993 0.996 0.998

SN-I 0.758 0.840 0.895 0.974
DD-Net 0.949 0.981 0.988 0.995
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Fig. 7. Relative improvement ratio based on FSIM and IW-SSIM index
using different methods compared to FBP on synthetic data sets. (A) Relative
improvement ratio based on FSIM index. (B) Relative improvement ratio
based on IW-SSIM index.

2) Experimental data sets: Figs.8-Fig.10 present results of
one of the 100 experimental abdominal slice with 120 views
for testing using different methods. Same regions indicated
with yellow box are enlarged for better visualization in Fig.9.
The image intensity profile in same position is shown in
Fig.10.

Still, SN-I could not completely remove the artifacts, and its
edge is blurred. As shown in Fig.9 and Fig.10, DLFBP, DNN-
SS and DD-Net could suppress the artifacts clearly, while the
result from DD-Net is overly smoothed and loses details.

Table V shows the quantitative measurement using FSIM
and IW-SSIM index on this experimental slice. DLFBP and
DNN-SS get higher value on FSIM and IW-SSIM index
compared to other methods.

Fig.11 shows the average relative improvement ratio based
on FSIM and IW-SSIM index using different methods com-
pared to the results from FBP on the entire experimental
testing data sets. Tabel VI lists the average FSIM and IW-
SSIM values using different methods on 60, 90, 120, and 180
views’ experimental testing data sets. DLFBP and DNN-SS
get higher metric values than other methods.

TABLE V
QUANTITATIVE MEASUREMENT USING DIFFERENT METHODS FOR THE

EXPERIMENTAL DATA.

FBP DLFBP DNN-SS SN-I DD-Net
FSIM 0.801 0.990 0.990 0.930 0.987

IW-SSIM 0.835 0.990 0.989 0.931 0.987
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Ground Truth FBP DLFBP

DNN-SS SN-I DD-Net

Fig. 8. One group of results from experimental data sets with incomplete
phase-contrast sinogram of 120 views, using FBP, DLFBP, DNN-SS, SN-I
and DD-Net. Same regions of these images, indicated by yellow box, are
enlarged for better visualization.

Ground Truth FBP DLFBP

DNN-SS SN-I DD-Net

Fig. 9. Enlarged regions indicated by yellow box in Fig.8 for better
visualization. DLFBP and DNN-SS could remove the artifacts and keep tiny
structures.

Fig. 10. Image intensity profiles as measured along the blue solid line in
Fig.8. The profile using DLFBP is the closest to that of the reference image.
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Fig. 11. Relative improvement ratio based on FSIM and IW-SSIM index
using different methods compared to FBP on experimental data sets. (A)
Relative improvement ratio based on FSIM index. (B) Relative improvement
ratio based on IW-SSIM index.

TABLE VI
QUANTITATIVE MEASUREMENT USING DIFFERENT METHODS FOR

EXPERIMENTAL DATA SETS.

Methods 60 90 120 180

FSIM

FBP 0.712 0.782 0.802 0.904
DLFBP 0.969 0.983 0.988 0.996
DNN-SS 0.958 0.976 0.984 0.992

SN-I 0.862 0.912 0.927 0.978
DD-Net 0.965 0.978 0.983 0.989

IW-SSIM

FBP 0.705 0.793 0.832 0.926
DLFBP 0.961 0.982 0.988 0.996
DNN-SS 0.941 0.970 0.981 0.990

SN-I 0.833 0.901 0.928 0.978
DD-Net 0.957 0.978 0.985 0.990

3) Parameters and computational cost: The synthetic and
experimental results show DLFBP and DNN-SS outperform
other methods in artifacts reduction and structure preservation.
Using FSIM and IW-SSIM index as quantitative measurement,
these two get high value than others. Besides, DLFBP and
DNN-SS both corrected the missing information in the phase-
contrast sinogram domain. But the number of parameters
used in DNN-SS is 27 times that of DLFBP. And when
inference with a single sinogram, DNN-SS will spend more
time than DLFBP. Table VII shows the number of parameters
in DNN-SS and DLFBP, and the inference time using a single
sinogram.

IV. CONCLUSION

In this paper, we reported a new deep learning reconstruc-
tion framework for DPC-CT with incomplete data. Different
from post-processing and sinogram completion methods, the
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TABLE VII
PARAMETERS AND COMPUTATIONAL COST IN DNN-SS AND DLFBP.

DNN-SS DLFBP
Number of parameters (million) 37.50 1.36

Inference Time (seconds per sinogram) 3.56 0.21

artifacts are firstly projected into corrupted sinogram, in which
the missing information will be completed in a fasion of CT
scanning instead of numerical interpolation, and then it is
reduced by a neural network. Validated with synthetic and
experimental data sets, it could remove artifacts clearly and
preserve structures at the same time.

Compared with sinogram completion and post-processing
methods and taking FSIM and IW-SSIM index as quantita-
tive metrics, the results from which missing information are
corrected in the phase-contrast sinogram domain are better
than those from post-processing method. Post-processing will
lose tiny details and deform structures, which may be caused
by the imprecise output from neural network. When artifacts
reduction is conducted in the sinogram domain, it is more tol-
erant to the inaccurate output from the neural network, because
the objects are weighted combination of all projections in the
sinogram.

In addition, this framework has high computational effi-
ciency. The neural network is constructed based on elegant
models, U-net and DenseNet. U-net could extract multi-scale
features from the input and then make use of those abstract
features to generate complete sinogram. But there are large
number of feature channels in original U-net, and DenseNet
has demonstrated small number of feature channels is suffi-
cient to achieve the same effect through densely connections.
By combination of U-net and DenseNet, the reported frame-
work could get slightly better results while the number of
parameters is 27 times less than that of the method which
also corrected information in the sinogram domain.
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