
TO APPEAR, IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Improved Techniques for Adversarial Discriminative
Domain Adaptation
Aaron Chadha and Yiannis Andreopoulos

Abstract—Adversarial discriminative domain adaptation
(ADDA) is an efficient framework for unsupervised domain
adaptation in image classification, where the source and target
domains are assumed to have the same classes, but no labels
are available for the target domain. While ADDA has already
achieved better training efficiency and competitive accuracy on
image classification in comparison to other adversarial based
methods, we investigate whether we can improve its performance
with a new framework and new loss formulations. Following
the framework of semi-supervised GANs, we first extend the
discriminator output over the source classes, in order to model
the joint distribution over domain and task. We thus leverage
on the distribution over the source encoder posteriors (which is
fixed during adversarial training) and propose maximum mean
discrepancy (MMD) and reconstruction-based loss functions for
aligning the target encoder distribution to the source domain.
We compare and provide a comprehensive analysis of how our
framework and loss formulations extend over simple multi-class
extensions of ADDA and other discriminative variants of
semi-supervised GANs. In addition, we introduce various forms
of regularization for stabilizing training, including treating
the discriminator as a denoising autoencoder and regularizing
the target encoder with source examples to reduce overfitting
under a contraction mapping (i.e., when the target per-class
distributions are contracting during alignment with the source).
Finally, we validate our framework on standard datasets like
MNIST, USPS, SVHN, MNIST-M and Office-31. We additionally
examine how the proposed framework benefits recognition
problems based on sensing modalities that lack training data.
This is realized by introducing and evaluating on a neuromorphic
vision sensing (NVS) sign language recognition dataset, where
the source domain constitutes emulated neuromorphic spike
events converted from conventional pixel-based video and the
target domain is experimental (real) spike events from an NVS
camera. Our results on all datasets show that our proposal is
both simple and efficient, as it competes or outperforms the
state-of-the-art in unsupervised domain adaptation, such as
DIFA and MCDDA, whilst offering lower complexity than other
recent adversarial methods.

Index Terms—adversarial methods, domain adaptation, neu-
romorphic vision sensing

I. INTRODUCTION

ALONG-STANDING goal in visual learning is to gen-
eralize the learned knowledge from a source domain

to new domains, even without the presence of labels in the
target domains. Significant strides have been made towards
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this goal in the last few years, mainly due to proposals based
on multilayered convolutional neural networks that have shown
cross-domain generalizations and fast learning of new tasks by
fine-tuning on limited subsets of labelled data.

Unsupervised domain adaptation directly aims at improving
the generalization capability between a labelled source domain
and an unlabelled target domain. Deep domain adaptation
methods can generally be categorized as either being dis-
crepancy based or adversarial based, with the common end
goal of minimizing the difference between the source and
target distributions. Adversarial methods in particular have
become increasingly popular due to their simplicity in training
and success in minimizing the domain shift. In this paper
we focus on the recently proposed adversarial discriminative
domain adaptation (ADDA) [1], which is related to generative
adversarial learning and uses the GAN [2] objective to train
on the target domain adversarially until it is aligned to the
source domain. ADDA uses the source image dataset labels
solely for the pretraining of the source encoder. We improve
upon this by:

• extending the discriminator output over the source
classes, in order to additionally incorporate task knowl-
edge into the adversarial loss functions;

• leveraging on the fixed distribution over source encoder
posteriors in order to propose a maximum mean discrep-
ancy (MMD) [3] and reconstruction-based loss function
for training a target encoder and discriminator, respec-
tively;

• comparing and providing a complete analysis of how
our method extends over a simple multi-class extension
of ADDA and discriminative variants of semi-supervised
GANs [4], [5], including a proposed pseudo-label adver-
sarial loss function that can be viewed as a multi-class
version of the inverted label GAN setting [2].

• addressing the issue of performance loss and overfittting
for adversarial adaptation when the target class distribu-
tions are being contracted for source alignment; we refer
to this case as a contraction mapping.

We benchmark the performance of our proposal against the
state-of-the-art by evaluating on standard domain adaptation
tasks with digits and Office-31 active pixel sensing (APS)
datasets, showing that we surpass the performance of ADDA
by up to 21% and remain competitive or superior to other
recent proposals. To highlight how our proposed framework
can alleviate domain shift occurring in recognition tasks due
to the use of novel sensing modalities, we select the emerging
scenario of recognition tasks based on neuromorphic vision
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sensing (NVS)-based recognition. NVS hardware like the
iniLabs DAVIS and the Pixium Vision ATIS cameras [6], [7],
[8] emulate the photoreceptor-bipolar-ganglion cell informa-
tion flow and their output consists of asynchronous ON/OFF
address events (a.k.a., spike events) that indicate the changes
in scene reflectance. Existing NVS cameras can produce spike
representations that can be rendered into frame representations
comprising up to 2000 frames-per-second (fps), whilst operat-
ing with robustness to changes in lighting and at low power, on
the order of 10mW. However, the events generated by NVS
cameras are typically sparse and substantially more difficult
to train on than APS domain inputs, predominantly due to the
lack of labelled NVS data currently available for training. We
therefore introduce and evaluate on a new NVS sign language
recognition dataset, in which we present the emulated (source,
labelled) → real (target, unlabelled) NVS domain adaptation
task, showing substantial improvement on accuracy compared
to ADDA and training on the source only.

The remainder of the paper is organized as follows. Section
II reviews recent work related to our proposals. Section III
introduces our proposed framework for improving ADDA,
which constitutes our proposed loss formulations. Section
IV provides an extensive analysis of how we are able to
bridge the gap from baseline ADDA with standard binary
discriminator domain classification, to discriminative variants
of semi supervised GANs and, finally, to our proposed loss
formulations. In particular, we analyze our target encoder loss
function and justify our design by comparing with conven-
tional loss functions derived from semi-supervised GANs. In
Section V, we consider various domain adaptation scenarios
and introduce a method for target regularization with source
examples. Finally, in Section VI we validate our proposal on
conventional pixel domain datasets and our newly introduced
emulated-to-real NVS dataset for sign language recognition,
and Section VII concludes the paper.

II. RELATED WORK

We briefly discuss recent developments in deep learning for
unsupervised domain adaptation. In general, we can segment
recent work into discrepancy based and adversarial based
methods. We also review and illustrate the need for domain
adaptation within the context of NVS based recognition
systems.

Discrepancy based methods: Discrepancy based methods
minimize the domain distribution discrepancy directly,
typically using an integral probability metric (IPM) based
metric such as MMD [3] loss for this purpose. MMD
maps the original data to a reproducing kernel Hilbert
space (RKHS), where the source and target distributions
are assumed separable. Notably, MMD is commonly used
with a Gaussian kernel, which from the Taylor expansion
enables matching between all moments of distributions, albeit
with some cost in processing. For example, Tzeng et al.
[9] proposed the deep domain confusion (DDC) method
which applied a joint classification and linear MMD loss on
an intermediate adaptation layer. Long et al. [10] extended

on DDC by adding multiple task-specific adaptation layers
and minimizing the domain shift with a multiple-kernel
maximum mean discrepancy. Rather than matching the
marginal distributions, the joint adaptation network (JAN)
[11] aligns the domain shift between the joint distributions of
input features and output labels. More recently, Li et al. [12]
proposed DICD, which uses MMD to match the marginal and
conditional distributions in an iterative refinement manner.
Alternatively, CORAL [13] matches only the mean and
covariance between distributions, which despite its simplicity
in only matching second order moments, still maintains
competitive performance. More recently, Haeusser et al. [14]
proposed associative domain adaptation that replaces the
MMD with an efficient discrepancy-based alternative that
reinforces association between source and target embeddings.
The basis of associativity is the two-step round-trip probability
of a random walker starting from a labelled source feature
and ending at another source feature via transition to a target
feature. Associative cycle probabilities are encouraged to be
close to a uniform distribution. Effectively, associative domain
adaptation uses the clustering assumption, where target and
source samples from the same class should be located in high
density regions of the feature space, with low density regions
between classes. Similarly, this assumption is adopted by
Shu et al. [15], who add an additional penalty loss function
to their adversarial learning framework, in order to punish
violation of the clustering assumption. More recently, LDADA
[16] uses the discrepancy between the per-class means for
each domain to learn an LDA-like projection of the data.
The target class assignment is estimated with pseudo-labelling.

Adversarial based methods. In this paper, adversarial
learning methods constitute the main point of comparison as
our proposal directly improves on adversarial discriminative
domain adaptation. Adversarial based methods opt for an
adversarial loss function in order to minimize the domain shift.
The domain adversarial neural network (DANN) [17] first
introduced a gradient reversal layer that reversed the gradients
of a binary classifier predicting the domain in order to train for
domain confusion. Training is performed jointly with a cross
entropy loss that classifies the source examples, in order to
learn a shared task-based embedding. Other recent proposals
[18], [19], [20] have explored generative models such as
GANs [2], [21] to learn from synthetic source and target data.
These approaches typically train two GANs on the source and
target input data with tied parameters. In order to circumvent
the need to generate images, Adversarial Discriminative
Domain Adaptation (ADDA) [1] was recently proposed as an
adversarial framework for directly minimizing the distance
between the source and target encoded representations. A
discriminator and target encoder are iteratively optimized
in a two-player game akin to the original GAN setting,
where the goal of the discriminator is to distinguish the
target representation from the source domain and the goal of
target encoder is to confuse the discriminator. This implicitly
aligns the target distribution to the (fixed) source distribution.
The simplicity and power of ADDA has been demonstrated
in visual adaptation tasks like MNIST, USPS and SVHN
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Fig. 1: Proposed improvements for adversarial discriminative domain adaptation. The figure shows the best configuration for
training and inference explored in the paper.

digits datasets. The recently proposed DIFA [22] extends this
discriminative adversarial framework further by training a
generator to generate source-like features that can be used
to supplement the source examples during target adversarial
training. Finally, Saito et al. [23] propose MCDDA, a feature
generator and two classifiers are trained in an adversarial
fashion. This framework is based on the assumption that
target examples that fall outside the support of the source will
be misclassified by two different classifiers. They alternately
maximize a discrepancy based loss function to train the
two classifiers and minimize the same function to train the
generator, such that the generator will eventually generate
target features that fall inside the support of the source and
thus are more easily classified. Importantly, MCDDA has no
source/target domain classification component and no explicit
discriminator; on the contrary, our proposal embeds both a
task classifier and domain classifier into the discriminator with
a single head. We show that modelling the joint distribution
over domain and task can improve performance.

The need for domain adaptation in NVS domain. A
pertinent example of a domain where it is difficult to obtain
labelled data is neuromorphic vision sensing (NVS). NVS
cameras produce coordinates and timestamps of on/off spikes
in an asynchronous manner, i.e., when the logarithm of the
intensity value of a CMOS sensor grid position changes
beyond a threshold due to scene luminance changes. While
such cameras are now gaining traction as a low-power/high-
speed visual sensing technology that circumvents the limi-
tations of conventional active pixel sensing (APS) cameras,
there are currently very limited or no annotations in the NVS
domain for higher-level semantic tasks. This has been widely

recognized [6] to be hampering progress in the adoption of
NVS hardware within practical applications. Emulation from
APS to NVS has attempted to provide for a solution [24].
Essentially, emulated NVS data is generated directly from
APS frames, for which there is an abundance of publicly
available datasets. The APS instances are typically labelled
and these can therefore be carried over to the emulated NVS
domain, which now constitutes the source domain. Therefore,
we can present the transductive transfer learning from the
labelled emulated NVS domain to the unlabelled real NVS
domain as an unsupervised domain adaptation problem. We
evaluate our improved techniques for ADDA training on a new
NVS sign language recognition task and demonstrate that our
performance gains generalize to the NVS modality.

III. IMPROVING ADVERSARIAL ADAPTATION

We illustrate the framework for improving unsupervised
adversarial discriminative domain adaptation in Fig. 1 and
list all relevant symbols with their definitions in Table I for
reference purposes. Let XS = {(xis, yis)}

Ns
i=0 represent the

set of source image and label pairs, where (xs, ys) ∼ DS ,
XT = {(xit)}

Nt
i=0 represent the set of unlabeled target images,

xt ∼ DT . Let Es(xs; θs) represent the source encoder
function, parameterized by θs which maps an image xs to
the encoder output hs, where (hs, ys) ∼ HS . Likewise, let
Et(xt; θt) represent the target encoder function, parameterized
by θt which maps an image xt to the encoder output ht, where
ht ∼ HT . In addition, Cs represents a classifier function that
maps the encoder output h to class probabilities p. In this
paper, we only consider hs and ht as representing the source
and target logits respectively and therefore Cs simply denotes
the softmax function on the logits. Finally, let Ed(h;φd)
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TABLE I: Nomenclature Table.

Symbol Definition

xs,xt Source / target images
K Number of task-specific classes
ys Source task-specific labels (ys ∈ {1, . . . ,K})
y Extended class labels (y ∈ {1, . . . ,K + 1})

Es(.; θs), Et(.; θt) Source / target encoder function, parameterized by
θs and θt respectively

Ed(.; θd) Discriminator encoder function, parameterized by
θd

Cs Encoder classifier function (softmax)
Cd Discriminator classifier function (softmax)
D Complete discriminator mapping (D = Cd(Ed))

hs,ht Source / target encoder logits (h = E(x))
h̃s, h̃t Source / target corrupted encoder logits
N(h̃|h) Conditional distribution of corrupted encoder log-

its h̃ given encoder logits h
z Dropout keep probability for corruption process

XS ,XT Set of source image and label pairs / set of target
images

DS ,DT Distribution over source image and label pairs /
distribution over target images

HS ,HT Source / target distribution over encoder logit and
label pairs and logits respectively

PS ,PT Source / target distribution over encoder posteriors
QS ,QT Source / target distribution over discriminator pos-

teriors
ps,pt Source / target encoder posteriors (p = Cs(h))
qs, qt Source / target discriminator posteriors (q =

D(h̃))
φ Feature map to RKHS (φ : X → H)
k Radial basis function (RBF) kernel
σr Standard deviation of the r-th RBF kernel
F Function class for RKHS (F = {f : ‖f‖ ≤ 1})
H Reproducing kernel hilbert space (RKHS)

p̂s, [ps, [0]] Zero concatenated source encoder posteriors
ypred Predicted task label (ypred ∈ {1, . . . ,K})

represent an encoder mapping from h to an intermediate
representation, and Cd represent a softmax function on said
representation; Ed and Cd jointly constitute our discriminator
mapping, which we refer to as D = Cd(Ed).

Our objective is to substantially improve the adversarial
training of the target encoder in ADDA [1]. Rather than
training the discriminator D and target encoder Et with
the standard GAN loss formulations (i.e., training a logis-
tic function on the discriminator by assigning labels 1 and
0 to the source and domains respectively and training the
generator with inverted labels [2]), our approach is inspired
by semi-supervised GANs [4], [5], where it has been found
that incorporating task knowledge into the discriminator can
jointly improve classification performance and quality of im-
ages produced by the generator. Under the discriminative
adversarial framework, we can equivalently incorporate task
knowledge by replacing the discriminator logistic function
with a K +1 multi-class classifier. However, unlike the GAN
setting, the discriminator inputs and outputs can now both
be represented with K + 1 dimensions, with each dimension
representing a class; we leverage on this fact in our proposed
loss formulations in Sections III-B1 and III-B2 to improve the
convergence properties of our framework, in comparison to
the original ADDA proposal [1].

We begin by outlining three main steps for our proposed

adversarial framework, which involve learning the source
mapping on the source dataset, adversarial training to align the
source and target domains and finally inferring on the target
dataset. The classifier Cs is fully interchangeable between the
source encoder Es and the target encoder Et. This means
we can embed Cs into the adversarial training of the target
encoder Et and discriminator D.

A. Step 1: Supervised Training of the Source Encoder and
Classifier

Given that we have access to labels in the source domain, we
first train the source encoder Es and classifier Cs on the source
image and label pairs (xs, ys ∈ {1, ...,K}) in a supervised
fashion, by minimizing the standard cross entropy loss with
K classes:

LS = −E(xs,ys)∼DS

K∑
k=1

1[k=ys] log (Cs(Es(xs))k) (1)

The source encoder parameters θs are now frozen, which
fixes the distribution HS . This becomes our reference distri-
bution for adversarial training, analogous to the real image
distribution in the GAN setting, where our aim is now to align
the target distribution HT to HS by learning a suitable target
encoding Et.

B. Step 2: Adversarial Training of the Encoder

1) Discriminator loss function LREC
D : We train a target en-

coder adversarially by passing the source and target encoder
logits, hs and ht, to a discriminator D. In doing so, we
implicitly align the target encoder distribution to that of the
source; i.e., Et(xt) ∼ HS . As the source encoder has fixed
parameters, we learn an asymmetric encoding with untied
weights, which is the standard setting in both ADDA [1]
and GAN implementations [2], [21]. In addition, we can
improve the convergence properties by first initializing the
target encoder weights with the source encoder weights; i.e.,
θt = θs. This choice of initialization is motivated by GANs.
As theoretically proven by Arjovsky and Bottou [25] for the
GAN setting, if the ‘real’ and ‘fake’ distributions are disjoint,
we are always capable of finding an optimal discriminator
and this leads to instability or vanishing gradients propagated
to the generator. By initializing the target encoder weights
with the source encoder weights, we ensure the target encoder
distribution is not initially disjoint from the source encoder
distribution and that there is some initial clustering based on
class, which thus stabilizes convergence.

We extend the discriminator output q to a K+1 dimensional
vector representing the class probabilities, in which the first K
dimensions represent the joint distribution over source domain
and the task specific classes and final K + 1-th dimension
represents the target domain. We denote the K+1 class labels
as y ∈ {1, . . . ,K + 1}, where each source encoder logit hs
is assigned its task label y = ys ∈ {1, . . . ,K} and the ‘target
domain’ label y = K + 1 is only assigned to target encoder
logits ht. However, contrary to semi-supervised GANs where
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the discriminator inputs are images, the discriminator inputs
and outputs now share common supports over the K task
classes. For the source domain, we can leverage on this fact by
effectively modelling the discriminator as a denoising autoen-
coder [26], where we can jointly train the discriminator to re-
construct the source encoder logits and encourage the discrim-
inator to potentially learn a more informative representation by
corrupting the logits. A denoising autoencoder is an effective
method of approximating the underlying source logit manifold
and ensures that the discriminator deviates away from learning
a simple identity function. We refer to the corruption process
as N(h̃s|hs), which represents the conditional distribution
over the corrupted source encoder logits h̃s given the source
encoder logits hs. Therefore, the first term of our discriminator
loss function is effectively a reconstruction loss, which we set
as the cross entropy between the zero-concatentated source
encoder posteriors p̂s = [Cs(hs), [0]] = [ps, [0]] and source
discriminator posteriors qs = Cd(Ed(h̃s;φd)) = D(h̃s) (i.e.,
post-softmax):

LREC
D,s = −E(hs,ys)∼HS

Eh̃s∼N(h̃s|hs)
([Cs(hs), [0]] · log(D(h̃s)))

= −E(hs,ys)∼HS
Eh̃s∼N(h̃s|hs)

K∑
k=1

p̂s,k log(qs,k)

(2)
where ps,k and qs,k are the k-th elements of p̂s and qs
respectively. Notably, we append a zero to the source encoder
posteriors to represent the K + 1-th ‘target domain’ class,
which maintains a valid probability distribution (sums to 1),
whilst enforcing a zero probability that the posteriors were
generated by the target encoder. In this paper, the corruption
process N is simply configured as dropout on the encoder
logits.

We also apply dropout independently to the target encoder
logits ht, in order to symmetrize the source and target encoder
inputs presented to the discriminator. However, we want the
discriminator to distinguish between the source and target
encoder logits. We train the discriminator to assign the K+1-
th ‘target domain’ class to the corrupted target encoder logits
h̃t, such that they lie in an orthogonal space to the source
domain. In other words, the second term of our discriminator
loss function for the target encoder logits is:

LREC
D,t = −Eht∼HT

Eh̃t∼N(h̃t|ht)
log(D(h̃t)K+1) (3)

where D(h̃t)K+1 is the K + 1-th dimension of D(h̃t). The
discriminator loss function LREC

D is thus simply the sum of
(2) and (3): LREC

D = LREC
D,s + LREC

D,t . In order to further
motivate this reconstruction based loss function, we derive
a loss function akin to a discriminative variant to semi-
supervised GANs in Section IV-A and compare with our
proposed formulation.

2) Target encoder loss function LMMD
T : In order to train the

target encoder adversarially, we want the target encoder to
generate an output that is representative of one of the first K
task-specific classes rather than the K + 1-th ‘target domain’

class that it is assigned when training the discriminator.
To achieve this, we leverage on the two source posteriors,
ps = Cs(hs) and qs = D(h̃s), generated by the source
encoder and discriminator respectively. Contrary to supervised
domain adaptation methods, there are no known source and
target pairwise correspondences and we cannot formulate a
paired test over the posteriors. However, we can formulate the
problem as a two-sample test by considering the distribution
over target discriminator posteriors, qt = D(h̃t), compared
to the distribution over the source encoder posteriors ps,
where our null hypothesis is that the distributions are equal.
We consider a set of target discriminator posteriors QT =
{q1
t , . . . , q

n
t } ∼ QT and a set of source encoder posteriors

PS = {p1
s, . . . ,p

n
s } ∼ PS , where n is the set cardinality

and PS and QT are the respective posterior distributions.
Effectively, we want to minimize the distance between PS
and QT without performing any density estimation. To this
end, we adopt the Maximum Mean Discrepancy (MMD) [3]
metric as a measure of distance between the mean embeddings
of ps and qt. For reproducing kernel Hilbert space (RKHS)
H, function class F = {f : ‖f‖ ≤ 1} and infinite dimensional
feature map φ : X → H the MMD can be expressed as:

DMMD = sup
f∈F,‖f‖H≤1

|Eps∼PS
f([ps, [0]])− Eqt∼QT

f(qt)|

= ‖Eps∼PS
φ([ps, [0]])− Eqt∼QT

φ(qt)‖H
(4)

The distribution PS over source encoder posteriors is fixed
during adversarial training and, as such, we are effectively
aligning the distribution QT over target discriminator posteri-
ors to PS . We again append a 0 to the source encoder posteri-
ors to represent the ‘target domain’ class probability, such that
both source and target posteriors are K+1 dimensional prior to
mapping to H. This zero constraint on the K+1-th class acts
as a stronger prior upon which to learn the target encoder; as
such, the source encoder posterior provides a more informative
representation than the source discriminator posterior. The
feature map φ in (4) corresponds to a positive semi-definite
kernel k such that k(x,y) = 〈φ(x), φ(y)〉H, which means
we can rewrite (4) in terms of k. The loss function on our
target encoder that we wish to minimize can thus be written
for aligning QT to PS as:

LMMD
T (PS → QT ) = DMMD

2

= Eps,p′s∼PS ,PS
k([ps, [0]], [p

′
s, [0]])

− Eps,qt∼PS ,QT
k([ps, [0]], qt)

+ Eqt,q′t∼QT ,QT
k(qt, q

′
t)

(5)

In this paper we opt to use a linear combination of r multiple
radial basis function (RBF) kernels over a range of standard
deviations, such that k(x,y) =

∑
r exp{−

1
2σr
‖x− y‖22},

where σr is the standard deviation of the r-th RBF kernel.
We find that the standard RBF kernel with squared Euclidean
distance as above performs better in practice than a generalized
RBF kernel with a distribution based metric such as chi-
squared distance or squared Hellinger’s distance - we present
some representative results on standard datasets in Appendix
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A to validate our choice of kernel function. By introducing a
linear combination over varying bandwidths, we improve the
generalization performance over different sample distributions.
This method of generalization with fixed kernels is commonly
used both in generative models [27], [28] and other domain
adaptation discrepancy based methods [10], [29]. In order
to further motivate our proposed MMD loss formulation, we
introduce alternative target encoder loss functions in Section
IV and a full ablation study on all introduced discriminator-
encoder loss combinations in Section VI-A2.

C. Step 3: Inference on the Target Dataset

After training the target encoder, we can now perform
inference on the target dataset. However, we have effectively
trained two sets of target predictions; namely, the mapped
target encoder output Cs(ht) and the discriminator output qt.
In the optimal setting, where we have trained the discriminator
to equilibrium, we would expect the discriminator mapped
source and target distributions would be aligned. However,
we empirically find that evaluation on qt is marginally worse
(˜1%) than evaluation on Cs(ht). Therefore, for the remainder
of the paper, we infer on the target encoder output. The class
prediction ypred is given as:

ypred = arg max
j∈{1,...,K}

(ht,j) (6)

IV. BRIDGING THE GAP FROM ADDA TO OUR PROPOSAL

We provide further insight on the design of our adversarial
loss formulations by first demonstrating in Section IV-A how
we can extend from ADDA [1], to a multi-class version of
ADDA with separate task and domain classification heads
and, finally, to a framework with a single classification head.
For the latter, we perform a detailed comparison between the
target encoder loss function in our proposal and discriminative
variants of semi-supervised GANs [4], [5] in Section IV-B.

A. Transitioning from Two Heads to One Head

Let us denote a discriminator classification head as the layer
H and the preceding discriminator layers as D′. We begin with
ADDA, which is typically trained with a domain classification
head Hdomain, in which the discriminator assigns a domain la-
bel yb ∈ {0, 1} to instances (where 1 corresponds to the source
domain instance and 0 to the target domain instance). This
configuration, which is effectively a discriminative variant of
the vanilla GAN, is illustrated in Fig. 2(a). The discriminator
loss function can be written as [1]:

LADDA
D′,Hdomain

=− E(hs,ys)∼HS
log(pdomain(yb = 1|hs))

− E(ht)∼HT
log(1− pdomain(yb = 1|ht))

(7)
where pdomain(yb = 1|h) is the posterior probability out-
put by Hdomain(D

′(h)) that logit h is from the source
domain. Similarly, the target encoder can be trained in an
adversarial setting with a minimax loss function LMAX

T =
E(ht)∼HT

log(1−pdomain(yb = 1|ht) or an inverted label loss
function LINV

T = −E(ht)∼HT
log(pdomain(yb = 1|ht)).

The simplest extension of ADDA to a multi-class variant
that leverages on source task knowledge would be add an-
other K-dimensional head Htask to the discriminator. This
additional head performs task classification, and trains the
discriminator to classify the source examples only based on
their task labels ys ∈ {1, . . . ,K}. The setup is illustrated
in Fig. 2(b) and is analogous to the DANN [17] except we
have separate domain encoders and we replace the gradient
reversal layer with a discriminator and adversarial training.
Additionally, the base configuration is also representative of
a discriminative variant to the AC-GAN [30], which adds a
second classification head in the discriminator for stabilizing
GAN training. However, we note that unlike AC-GAN, we
assume no target labels in the unsupervised adaptation setting,
so we can only train the task classification head on source
examples. In order to simplify the expressions, we can write
the discriminator loss function for two heads in terms of
posteriors as:

LMULTI
D′,H{domain,task}

=− E(hs,ys)∼HS
log(ptask(ys|hs))

+ LADDA
D′,Hdomain

(8)

where ptask(ys = k|hs) is the posterior probability output
by Htask(D

′(hs))k that source logit hs is from class with
label ys = k. The first term represents the cross entropy loss
with source task labels and the remaining terms equate to
LADDA
D′,Hdomain

. As we only train the domain head adversarially,
the adversarial loss function for training the target encoder is
simply LINV

T or LMAX
T .1

We can rewrite (8) as:

LMULTI
D′,H{domain,task}

=

− E(hs,ys)∼HS
log(ptask(ys|hs).pdomain(yb = 1|hs))

− E(ht)∼HT
log(1− pdomain(yb = 1|ht))

(9)

As is evident from the first term in (9), with two heads we
are effectively optimizing the likelihood of the joint posterior
distribution over the task classes and source domain, but
treating source domain classification and task classification as
independent events. Notably, as we only have access to labels
in the source domain, the task classifier is only trained on
source domain examples. As such, we can improve general-
ization by removing the independence assumption and model
with a single multi-task classification head Hjoint:

LJOINT
D′,Hjoint

=

− E(hs,ys)∼HS
log(pjoint(ys, yb = 1|hs))

− E(ht)∼HT
log(1− pjoint(yb = 1|ht)) =

− E(hs,ys)∼HS
log(pjoint(ys|hs, yb = 1).pjoint(yb = 1|hs))

− E(ht)∼HT
log(1− pjoint(yb = 1|ht))

(10)

1Another option would be to train Htask adversarially in addition to
Hdomain by alternately minimizing and maximizing a distribution metric
between Htask(D

′(hs)) and Htask(D
′(ht)). However, as there is no ‘target

domain’ class, this intuitively means that the only way for the discriminator
to maximize the metric would be to introduce intra-class confusion within the
target domain - thus leading to instability during training.
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(a) ADDA (b) MULTI (c) JOINT

Fig. 2: Variants of discriminator configuration for adversarial training. (a)ADDA: this represents the standard ADDA formulation
with a single discriminator head for classifying the domain - this is the discriminative variant of the vanilla GAN. (b)MULTI:
this extends (a) with an additional task classification head Htask for classifying the source examples - this is effectively
equivalent to DANN [17] (replacing the gradient reversal layer with an adversarial loss) and represents a discriminative variant
of the AC-GAN [30]. (c) JOINT: our proposal is adapted from this formulation, in which we learn a joint distribution over
task and domain with a single discriminator head Hjoint - this represents a discriminative variant of semi-supervised GANs
[4], [5].

We illustrate this joint formulation in Fig. 2(c). Essen-
tially, by directly optimizing the joint posterior distribution
pjoint(ys, yb = 1|hs), we can now also implicitly model
a conditional dependency pjoint(ys|hs, yb = 1) for task
classification given the source domain. Furthermore, if we
marginalize over the task labels ys, we end up with the
standard ADDA loss formulation LADDA

D′,Hdomain
, of (7).

As in our proposal, we can write (10) in terms of a single
K+1 classification head with K+1 labels y ∈ {1, . . . ,K+1},
where the first K classes model the joint distribution over task
classes and source domain and the K +1-th class models the
distribution over the target domain:

LJOINT
D′,Hjoint

=− E(hs,y)∼HS
log(pjoint(y, y < K + 1|hs))

− E(ht)∼HT
log(pjoint(y = K + 1|ht))

=− E(hs,ys)∼HS
log(pjoint(ys|hs))

− E(ht)∼HT
log(pjoint(y = K + 1|ht))

(11)
With the above notation, pjoint(y = K + 1|h) =

(1 − pjoint(yb = 1|h)) and pjoint(y, y < K + 1|hs) =
pjoint(ys, yb = 1|hs)). Finally, we can rewrite (11) in terms
of the discriminator D(h)k = pjoint(y = k|h) and D =
Hjoint(D

′), which gives us the loss function for a discrim-
inative variant to semi-supervised GANs [4], [5]:

LJOINT
D =− E(hs,ys)∼HS

K∑
k=1

1[k=ys] log(D(hs)k)

− E(ht)∼HT
log(D(ht)K+1)

(12)

We denote the first expectation term in (12) as LJOINT
D,s and

the second expectation term as LJOINT
D,t . The loss function in

(12) corresponds with the discriminator loss functions utilized

for training semi-supervised GANs; the first term is the cross
entropy term on the source examples with the K task-specific
labels and the second term is the cross entropy term on the
target logits with the K + 1-th ‘target’ label. Our proposed
discriminator loss function LREC

D in (2) also follows the
same format, except we substitute logits h for noisy logits
h̃ ∼ N(h̃|h) and substitute the indicator function 1[k=ys] with
the source encoder posteriors ps = Cs(hs), thus emulating a
denoising autoencoder in the first term.

B. Analysis of Target Encoder Loss Functions, LT
We now perform an extended analysis of target encoder

loss functions given a single discriminator head, by consid-
ering discriminative variants to semi-supervised GANs and
comparing with our proposed formulation, LMMD

T (PS → QT ).
Semi-supervised GANs are typically trained adversarially with
either a minimax or feature matching objective function [4],
[5]. The discriminative variant of the minimax objective LMAX

T

for training the target encoder corresponds to maximizing (12).
For feature matching, the target encoder is trained to minimize
a L2 distance-based loss on the averaged intermediate source
and target activations f(h) of the discriminator:

LFEAT
T =

∥∥E(hs,ys)∼HS
(f(hs))− E(ht)∼HT

(f(ht))
∥∥2
2

(13)

We note the equivalence between LFEAT
T and an MMD

loss function between discriminator posteriors, LMMD
T (QS →

QT ). Following the notation, in Section III-B, for infinite
dimensional feature map φ : X → H, where H represents re-
producing kernel hilbert space (RKHS), this can be expressed
as:

LMMD
T (QS → QT ) = ‖Eqs∼QS

φ(qs)− Eqt∼QT
φ(qt)‖2H

(14)
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The difference between LFEAT
T and LMMD

T (QS → QT )
is that LFEAT

T aligns intermediate features in finite dimen-
sional Euclidean space, whereas LMMD

T (QS → QT ) aligns
the projected discriminator posteriors in infinite dimensional
RKHS. Notably, MMD employed in (14) (and in our proposal)
can be interpreted as matching all moments between the
source and target posterior distributions, whereas conventional
feature matching of (13) is only empirically matching the first
order moments (means) of the intermediate discriminator layer
activations.

In order to transition from (14) to our proposed target en-
coder loss function LMMD

T (PS → QT ), we simply replace the
distribution over source discriminator posteriors QS with the
distribution over source encoder posteriors PS . The problem
with LMMD

T (QS → QT ) (and feature matching) is that it
suffers from internal covariate shift2 ; this is because it is
effectively aligning the distribution over target discriminator
posteriors QT to a changing source reference QS , as both
QS and QT are parameterized by the discriminator (which
is being trained). The constantly changing QS adds noise
to the target encoder alignment and destabilizes training. On
the contrary, in our proposal, LMMD

T (PS → QT ), we align
QT to the distribution over the source encoder posteriors PS ,
which is fixed during adversarial training and only changes
stochastically with mini-batch, as the source encoder has
already been trained with source labels3. In addition, the
source encoder posteriors ps ∼ PS are K-dimensional, which
we extend with a zero to represent the K+1-th ‘target domain’
class probability. This zero constraint on the ‘target domain’
class acts as a stronger prior, in which we enforce that the
target domain examples are coming from the source. The
combination of the zero constraint and fixed source reference
provides improved stability during alignment of the target to
source distribution; this is reflected later in Table III, where
accuracy with LMMD

T (PS → QT ) is shown to be substantially
higher than LMMD

T (QS → QT ).
For the sake of completeness, we propose a final discrim-

inative variant for the target encoder loss function, inspired
by unsupervised GAN training, where the generator is com-
monly trained with an inverted label objective LINV

T (i.e.,
inverting the generator label and training with cross entropy).
As the inverted label objective is not viable for a multi-
class discriminator output in our proposal, we instead propose
a pseudo-label objective for training the target encoder in
the discriminative setting. This objective draws parallels to
unsupervised domain adaptation work that use pseudo-labels
(typically in conjunction with co-training). The pseudo-label is
taken as the index of the maximum of the first K discriminator
logits hd. In other words, denoting ŷt = argmaxj∈1,...,K hd,
we train the target encoder by minimizing:

2Internal covariate shift is the phenomenon wherein the distribution of
inputs to a layer in the network changes due to an update of parameters of the
previous layers, and is typically synonymous with batch normalization [31],
which tries to minimize internal covariate shift by normalizing each layer to
be zero mean and unit variance.

3It is worth noting that both our discriminator and target encoder loss
functions, LREC

D and LMMD
T (PS → QT ) respectively, are centralized on

the fixed distribution PS

LPSEUDO
T = −E(ht)∼PT

K∑
k=1

1[k=ŷt] log(D(ht)k) (15)

We note that, unlike our proposed target encoder loss func-
tion that is distribution-based, both inverted label assignment
and our pseudo-label assignment are instance-based. This
potentially means they are more prone to instability from noisy
examples in the training batch.

In order to motivate our proposed adversarial loss functions
compared to these discriminative variants of semi-supervised
GANs, we perform an extensive ablation analysis in Section
VI-A2 on the SVHN → MNIST domain adaptation task.

V. TARGET REGULARIZATION WITH SOURCE EXAMPLES

We can further improve on the convergence properties
of adversarial training by considering the various adaptation
scenarios that arise after initializing Et with θs. We illustrate
respectively in the first and second rows of Fig. 3, contraction
and expansion mappings on the 3 class SVHN→ MNIST and
MNIST → MNISTM domain adaptation tasks, after initializ-
ing the target encoder with the source weights. Essentially, a
contraction mapping is where the target per-class distributions
must contract or converge towards the source origin during
adversarial training, in order to align with the source per-
class distributions. Conversely, an expansion mapping is where
the target per-class distributions must expand or diverge away
from the source origin in order to align with the source
per-class distributions. The origin represents a fixed point
of uncertainty in classification (where the logits represent a
uniform distribution).

The target distribution undergoes a contraction mapping
under adversarial training for SVHN → MNIST, with the
contraction direction represented with red arrows in Fig. 3(a).
For this contraction mapping, we note that during adversar-
ial training, the target logits can overfit to the source and
misclassify around the origin - this is evident in Fig. 3(b),
where we show that target logits with label ‘0’ (pale red
points) are being misclassified as ‘1’(pale green points) or ‘2’
(pale blue points). As adversarial alignment is only focused
on aligning the entire distribution, it does not consider the
class decision boundaries. This aspect is discussed in detail by
Saito et al. [23]. However, if the source is well defined around
its origin, we can regularize training of the target encoder
with source examples, in order to minimize overfitting and
negative transfer around the source origin. In this way, we
can enforce better class separation around the origin. Indeed,
when comparing Fig. 3(b) (no target reg.) and (c) (with target
reg.), we see that the decision boundaries between the 3 classes
are more clearly defined with target regularization.

The target distribution undergoes an expansion mapping
under adversarial training for MNIST → MNIST-M, with the
expansion direction represented with red arrows in Fig. 3(d).
For this expansion mapping, regularizing with source examples
instead has a negative bias. Essentially, whereas the target per-
class distributions are diverging away from the source origin,
the additional source examples bias the target distribution
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(a) SVHN → MNIST (source only) (b) SVHN→ MNIST (contraction, no target reg.) (c) SVHN → MNIST (contraction, target reg.)

(d) MNIST → MNISTM (source only) (e) MNIST → MNISTM (expansion, no target
reg.)

(f) MNIST → MNISTM (expansion, target reg.)

Fig. 3: (Best viewed in color) 3D scatter plot of source and target logits for SVHN → MNIST and MNIST → MNISTM
domain adaptation tasks on 3 classes only (0, 1 and 2). Pale points represent target logits and dark points represent source
logits, color coded by class. The plots represent the following: (a), (e): source pre-training only on target encoder; (b), (c):
adversarial training with no target regularization; (c), (f): adversarial training with target regularization. The red arrows in (a)
and (d) represent the direction of alignment for SVHN → MNIST and MNIST → MNIST-M respectively during adversarial
training; we refer to this as a contraction mapping for SVHN → MNIST (i.e., the target per-class distributions are being
contracted in (b) and (c)) and an expansion mapping for MNIST → MNIST-M. Source and target examples are randomly
selected from the test datasets respectively for visualization.

towards the origin, thus reducing class separation. While this
bias may not be immediately clear when comparing Figs.
3(e) (no target reg.) and (f) (with target reg.), it is apparent
when comparing the axis scales that target regularization is
constraining the support of the target distribution within the
range [-10,10] for each axis.

We define the distribution DS∪T as the distribution of the
union over the set of source and target examples XS∪T =
XS ∪ XT . During adversarial training, each mini-batch to
the target encoder is composed of 50% source examples and
50% target examples. We present results on the contraction
(SVHN → MNIST) and expansion (MNIST → MNISTM)
setting in Table II (as illustrated in Fig. 3). As expected, while
the regularization does improve results for SVHN → MNIST,
there is a slight detrimental effect on MNIST → MNISTM
as, in this case, adding source examples has a negative bias
as training progresses.

A heuristic method for identifying whether the target distri-
bution undergoes an expansion or contraction mapping during
alignment would require computing the per-class statistics of
the target distribution. However, in the unsupervised domain
adaptation setting, we assume no access to target labels

TABLE II: Accuracy on SVHN → MNIST and MNIST →
MNISTM task with 3 (0,1 and 2) classes for our proposed
loss formulation with and without target regularization.

MNIST → MNISTM SVHN → MNIST

Source only 0.798 0.795
Target reg. 0.866 0.980

No target reg. 0.905 0.948

and therefore can not compute the target per-class statistics.
Therefore, in this paper, we instead propose to use a simple
bagging process, by training models with and without target
regularization and performing a weighted averaging of logits
during inference. The weights are computed based on the L1
normalized maximum ‘confidence’ in the predicted class (i.e.,
maximum value post-softmax). In this way, target regulariza-
tion with source examples is used in this paper as the means
to better generalize our proposal across multiple datasets.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

We present experimental results and analysis on the unsu-
pervised domain adaptation task. In order to compare with
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ADDA and other recently proposed methods, we experiment
on four digits datasets of varying sizes and difficulty: MNIST-
M [17], MNIST [32], USPS and SVHN [33]. We demonstrate
substantial gain over ADDA and other recent methods, which
is evident on the more difficult domain adaptation tasks such
as SVHN → MNIST. We additionally report accuracy on
the Office-31 dataset [34] compared to the current state-of-
the-art methods. Finally, since neuromorphic vision sensing
presents a pertinent application for domain adaptation, we
introduce and validate on a new NVS sign language dataset,
demonstrating substantial gain in target accuracy compared
to training with the source domain only. For each domain
adaptation task, we extract 5% of each target adversarial train-
ing split for validation, in order to tune the hyperparameters.
To ensure consistency and demonstrate lack of sensitivity
to hyperparameters, we fix these globally over all tasks.
Specifically, for the MMD radial basis function (RBF) kernel
combination k (as described in Section III-B), we found that
on average, the best performance to computational cost for our
framework is achieved with a summation over five kernels,
with σr = 10−r, r ∈ {0, . . . , 4}. Finally, as the discriminator
is typically overcomplete (more nodes in the hidden layers
than input classes), we add an L1 regularization term to (2) on
the discriminator weights wd to improve the feature selection
with regularization coefficient λ = 0.001 for all cases.

A. Digits datasets

We consider four standard domain adaptation scenarios
between dataset pairs drawn from MNIST-M [17], MNIST
[32], USPS and SVHN [33] digits datasets, which are each
comprised of K = 10 digit classes (0-9). Specifically, we
evaluate on MNIST → USPS, USPS → MNIST, SVHN
→ MNIST and MNIST → MNIST-M. The difficulty in
domain adaptation task increases as the variability between
datasets increases. We follow a similar training procedure to
Tzeng et al. [1]. For the MNIST → USPS and USPS →
MNIST experiments, we sample 2000 images from MNIST
and 1800 from USPS, otherwise we train and infer on the
full datasets. For MNIST → MNIST-M, we generate the
unlabelled MNIST-M target dataset by following the process
described by Ganin et al. [17]. We follow the architectures
utilized by DANN [17] and MCDDA [23]. Let us denote
Conv(m, c) and FC(c) as convolutional and fully connected
layers respectively, with m being the kernel size and c the
number of channels. Let us additionally denote pooling layers
as Pool(w, s), where w is the window size and s is the stride.
Following this notation, our encoder architecture for larger
datasets, (i.e., SVHN → MNIST, MNIST → MNIST-M) is
Conv(5, 64) → Pool(3, 2) → Conv(5, 64) → Pool(3, 2) →
Conv(5, 128) → FC(3072) → FC(K) with discriminator
FC(2048) → FC(K + 1) (where K is the number of
task-specific classes). We follow every convolutional layer
with batch normalization and ReLU activation function, as
per MCDDA. For smaller datasets (i.e., USPS → MNIST,
MNIST→ USPS), our encoder architecture is Conv(5, 32)→
Pool(2, 2) → Conv(5, 48) → FC(100) → FC(K) with
discriminator FC(500) → FC(500) → FC(K + 1). In step

Fig. 4: Graph of dropout keep probability z versus accuracy
on subset of target dataset used for validation for various digits
domain adaptation tasks (without target regularization).

1, the source encoder is trained with the Adam optimizer [35]
for 10k iterations with a batch size of 128 and learning rate of
0.001. In step 2, the target encoder is trained with a batch size
of 128 per domain for 10k iterations, with a lower learning rate
of 0.0002, β1 = 0.5 and β2 = 0.999. We resize all images to a
fixed size of 28×28 prior to CNN processing. Additionally, we
use data augmentation for MNIST → MNIST-M by randomly
inverting the MNIST grayscale values and replicating the
MNIST inputs channel-wise to match MNIST-M dimensions.
Our results when training on source only are provided in
Table III. We also include results from several state-of-the-art
methods as benchmarks, including ADDA [1], RAAN [36],
DIFA [22] and MCDDA [23], which are recently proposed
adversarial methods.

1) Parametric exploration for discriminator loss function
LREC
D : In Fig. 4 we perform a parametric exploration over

different values of dropout keep probability z by computing
the accuracy on the validation set for various digits domain
adaptation tasks. As discussed in Section III-B, adversarial
training tends to destabilize when there are disjoint supports
between the target and source encoder distributions. With
a dropout keep probability z < 0.5, over 50% of classes
will be randomly set to 0 for the source and target encoder
logits, hs and ht respectively. It is now likely that there is
no overlap between the remaining non-zero classes of the
corrupted source and target logits. In this case, the source
and target encoder distributions (over logits) may not only
be disjoint but lie in orthogonal spaces, which leads to a sub-
stantial drop in accuracy; for example, for SVHN → MNIST
and z = 0.2, the target accuracy attainable is only 51.3%.
Given this drop in accuracy, we only plot z for [0.6, 1.0]. No
denoising corresponds to z = 1.0. We note from the figure that
including denoising either improves or maintains accuracy;
in particular for the most difficult task SVHN→MNIST, the
accuracy improves by 5% when decreasing z from 1.0 to 0.7.
As z = 0.7 provides the most consistent gain for the four
tasks, we fix z to this value for the remainder of the paper.

2) Ablation Study : In order to illustrate the performance
of our method and better understand where the performance
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(a) Proposed MMD(Ps → QT ) (b) Minimax (MAX) (c) Feature matching (FEAT)

Fig. 5: (Best viewed in color) 3D scatter plot of source and target logits for SVHN → MNIST domain adaptation task on
3 classes only (0, 1 and 2) for our proposed, minimax and feature matching loss formulations. Source and target examples
are randomly selected from the SVHN and MNIST test datasets respectively for visualization. The top-right of each scatter
plot shows the zoomed section around the source origin, where the distribution over classes is more uniform and there is
susceptibility to negative transfer. We see that decision boundaries at the origin are more clearly defined in (a) (our proposal)
than in (b) or (c).

TABLE III: Accuracy on SVHN → MNIST task with 3 (0,1
and 2) and 10 classes for all considered discriminator (LD′,H )-
encoder (LT ) loss combinations (as detailed in Section IV).
Each loss function is denoted by its corresponding column and
superscript (e.g., ADDA→ LADDA.

D′,Hdomain
). PS → QT refers to

distribution alignment of QT to PS .

LD′,H LT 3 classes 10 classes

ADDA
INV (Inverted label) 0.831 0.787
MAX (Minimax) 0.866 0.799

MULTI
INV (Inverted label) 0.847 0.783
MAX (Minimax) 0.868 0.796

JOINT

MAX (Minimax) [5], [4] 0.856 0.753
FEAT (Feature matching) [5] 0.805 0.772
PSEUDO (Pseudo-label) 0.863 0.800

MMD (PS → QT ) 0.895 0.856

REC (proposed) MMD (QS → QT ) 0.878 0.804
MMD (PS → QT ) (proposed) 0.948 0.918

gains are coming from, we perform an ablation analysis
over various discriminator-encoder loss combinations for the
most difficult digit domain adaptation task, SVHN→MNIST.
This includes the loss formulations introduced in Section
IV. Our results are presented in Table III, for all considered
loss combinations, when training on 3 classes only (0,1 and
2) and all 10 classes. All hyperparameters and the training
procedure are as described above for digits datasets; the only
distinction is that for 3 classes we utilize our smaller dataset
architecture (as utilized for USPS → MNIST) and only train
on the source for 5000 iterations, in order to avoid overfitting.

One head versus two heads: In the first two parts of
Table III, we evaluate performance of training with ADDA
versus a multi-class variant of ADDA (MULTI) with two
classification heads (as introduced in Section IV-A). For these
two benchmarks, we train the target encoder with the inverted
label setting or minimax, i.e., LINV

T and LMAX
T respectively.

The results show that adding the additional task classification
head Htask in the MULTI configuration has little effect on
accuracy compared to baseline ADDA. We attribute this to

the fact that the inputs hs and outputs of Htask(D
′(hs))

are both learned with the source labels, and the output is
not conditioned on the domain. The task classification head
Htask simply learns to invert the mapping learned by the
preceding discriminator layers D′; Htask ∼ D′−1. This further
motivates our proposed learning with a single classification
head that models the joint distribution between the task and
source domain classification, as defined in (12). However,
the third part of Table III shows that there appears to be a
stronger discriminator bias and a slight detriment in accuracy
for JOINT−MAX compared to the baseline ADDA−MAX
discriminator-encoder loss combinations. This motivates the
need for our proposed encoder loss function LMMD

T .
Proposed LREC

D , LMMD
T versus discriminative variants of

semi-supervised GANs: We next consider how our proposed
MMD based target encoder loss function LMMD

T (PS → QT ),
improves over conventional minimax LMAX

T , feature matching
LFEAT
T and pseudo-label LPSEUDO

T encoder loss formulations,
as defined in Section IV. In order to isolate the performance
of our proposed MMD loss function and perform a fair
comparison, we fix the discriminator loss function to LJOINT

D .
The third part of Table III shows that, on both 3 and 10 classes
our proposed MMD loss formulation outperforms all other
target encoder loss variants. In particular, when compared to
feature matching, our proposal provides accuracy gains of over
11% on both 3 and 10 classes. In order to establish the source
of this gain, we present 3D scatter plots in Fig. 5 of the
source and target logits when trained on 3 classes only from
the SVHN → MNIST domain adaptation task.4 As shown
in the figure, both minimax and feature matching are prone
to overfitting on the source dataset. While both formulations
result in a tight bound on the source distribution, they forego a
good class separation close to the source origin (as represented
in top-right corner of each plot), where the distribution over

4We opted for this approach instead of using a reduction method such as
t-SNE [42] that introduces additional hyperparameters such as perplexity to
visualize the domain shift.
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TABLE IV: Accuracy for our proposed method compared to the current state-of-the-art. In order to isolate the performance
gain from domain adaptation for our proposals, we report in parentheses the percentage increase (relative) over the source-only
accuracy, as reported in the respective papers for DIFA [22] and ADDA [1].*UNIT [37] and DTN [20] use additional SVHN
data (131 images and 531 images respectively). **This is our implementation of ADDA [1] on MNIST → MNIST-M, as this
task is not used in the original paper.

Method SVHN → MNIST USPS → MNIST MNIST → USPS MNIST → MNIST-M

Source only 0.644 0.597 0.754 0.705

LSC [38] - 0.655 0.723 -
NLSDT [39] - 0.791 0.874 -
DANN [17] 0.739 0.730 0.771 0.529
DICD [12] - 0.652 0.788 -
DDC [9] 0.681 0.665 0.791 -
DSN [29] 0.827 - - 0.832
DTN [20] 0.844* - - -
UNIT [37] 0.905* - - -

CoGAN [18] no convergence 0.891 0.912 -
RAAN [36] 0.892 0.921 0.890 0.985
ADDA [1] 0.760 (26%) 0.901 (58%) 0.894 (19%) 0.800 (14%)**
DIFA [22] 0.897 (32%) 0.897 (43%) 0.923 (28%) -

MCDDA [23] 0.962 (43%) 0.941 (48%) 0.942 (23%) -
PFAN [40] 0.939 (56%) - 0.950 (26%) -
TPN [41] 0.930 (55%) 0.941 (60%) 0.921 (22%) -

Proposed
no target reg. 0.918 (43%) 0.941 (58%) 0.895 (19%) 0.962 (36%)

target reg. 0.972 (51%) 0.967 (62%) 0.928 (23%) 0.955 (35%)
averaged 0.964 (50%) 0.966 (62%) 0.925 (23%) 0.960 (36%)

classes is more uniform and the target encoder loss would be
smaller in magnitude, potentially unfavourably biasing towards
the discriminator. There is negative transfer around the origin,
which is most noticeable for the ‘0’ digit class (pale red
points), which is misclassified as ‘1’ (green) or ‘2’ (blue),
and is worst for feature matching. This corresponds to the
accuracies reported in Table III, where feature matching is
shown to perform the worst on 3 classes.

Having validated the performance gain from our proposed
target encoder loss function, we now switch the discriminator
loss function from LJOINT

D to our proposed reconstruction
loss LREC

D , with z = 0.7. Combining our two proposed loss
formulations for adversarial training, LREC

D and LMMD
T (PS →

QT ), we are able to achieve the best performance on 3 and 10
classes. This is due to a combination of increased separability
between the source and target domains in RKHS, and the fixed
source distribution and hard zero constraint on the ‘target’
class that minimizes the internal covariate shift when training
to align the distribution over target discriminator posteriors
QT . In order to isolate the detriment from internal covariate
shift, we also consider aligning the distributions over source
and target discriminator posteriors (QS → QT ) in LMMD

T .
The penultimate row of the table shows the performance
if we align QT to QS in our encoder loss function; our
accuracy drops substantially to 87.8% and 80.4% for 3 and 10
classes respectively, which illustrates the effect of the internal
covariate shift, as in feature matching.5

3) Adaptation on digits datasets: Finally, we report accuracy
for our proposed models with and without target regularization

5Whilst feature matching also suffers from internal covariate shift, it is
also only aligning the empirical means between distributions, as discussed in
Section IV.

with source examples (as discussed in Section V) and after
averaging the model logits. In order to isolate the performance
gain from domain adaptation for the most competitive meth-
ods, we compute the percentage increase (relative) over the
source only accuracy reported in the paper (shown in paren-
theses in Table IV). On average, our proposal provides the best
balance in performance over all datasets. The combination of
target regularization and our proposed loss formulations lead
to an accuracy of 97.2% and 96.7% on SVHN→ MNIST and
USPS → MNIST respectively, surpassing all other methods
and surpassing the recently proposed MCDDA by up to 2.6%.
(with a 51% percentage increase over source training only
on SVHN → MNIST). Our method also outperforms recent
prototypical network-based alignment methods, TPN [41] and
PFAN [40], on the same datasets. However, we do note the
one case where adding target regularization has a negative
effect is MNIST → MNISTM; it is most likely that this is
an instance of expansion mapping, as discussed in Section
V, but on 10 classes. Nonetheless, by performing a weighted
averaging between the logits of models with and without target
regularization (bottom row of Table IV), with the weights
defined by the maximum ‘confidence’ in the predicted class,
we are able to provide good generalization and improvement
over the default setting of no target regularization for all
datasets. While RAAN does perform 2.5% better on MNIST
→ MNISTM, we note that the training process is more
complex, with 10 times the number of training iterations as
in our implementation, and their final model is averaged over
many different parameter selections and runs.
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TABLE V: Accuracy for proposed configurations, when av-
eraging over models with and without target regularization,
compared to state-of-the-art on the Office-31 dataset.

Method A → W A → D D → A

Source only 0.707 0.720 0.581

DASH-N [43] 0.606 - -
DANN [17] 0.730 0.723 0.534

DDC [9] 0.618 0.644 0.521
DRCN [44] 0.687 0.668 0.560

JAN [11] 0.752 0.728 0.575
ADDA [1] 0.751 - -

LDADA [16] 0.781 0.767 0.683

Proposed, averaged 0.836 0.809 0.622

B. Office-31 dataset

We report results on the standard Office-31 [34] dataset
in Table V. The Office-31 dataset consists of 4,110 images
spread across 31 classes in 3 domains: Amazon, Webcam, and
DSLR. Our results focus on the three of the more difficult
domain adaptation tasks; Amazon → Webcam (A → W),
Amazon → DSLR (A → D) and DSLR → Amazon (D →
A). In order to demonstrate the strength of our proposal, we
use VGG-16 pre-trained on ImageNet and fine-tune only the
final fully-connected layer. We train with stochastic gradient
descent and a learning rate of 0.001. We set the dropout keep
probability z = 0.7 as in the digits task. Our discriminator
is restricted to only 500 hidden units per layer and we only
train adversarially for 2k iterations. We note that the number
of training parameters is 377 thousand in total, compared to
over 6 million utilized for ADDA [1]. Despite only training on
a small subset of total parameters, our proposal remains com-
petitive or surpasses the performance of other recent methods.
We additionally note that under our training setup, ADDA
consistently obtains a degenerate solution due to instability
during training.

We note that LDADA [16] outperforms our method on D
→ A. We attribute this to the insufficient amount of source
training data available for this adaptation task. The source
dataset, DSLR, is only comprised of 498 images, compared
to the target dataset, Amazon, which is comprised of 2817
images. Our framework tends to perform better when the
source examples form higher density clusters, which the target
examples can be aligned towards in RKHS - with only 498
images (on average 16 examples per class) in DSLR, we
are unable to learn a discriminative distribution over source
encoder posteriors and therefore our model is outperformed
for this particular task by LDADA. However, while LDADA
does perform well with limited source training data, it does
also suffer from negative transfer, as mentioned in the paper
- that is; when the domain discrepancy is small, LDADA
degrades the accuracy during iterative validation, such that
target examples are unavoidably misclassified. This is likely
why LDADA performs worse than our method on other
domain adaptation tasks such as A → W, where the domain
discrepancy after source pre-training is noticeably smaller.

C. NVS ASL dataset

We introduce a new sign language recognition dataset
for NVS-based unsupervised domain adaptation. The primary
motivation behind creating the dataset and validating our
framework with it is that progress in neuromorphic spike-
based event or action recognition is severely hampered from
the lack of NVS training data with reliable annotations
[45]. This is partially addressed via emulators, which convert
annotated APS video datasets into emulated NVS data in
order to train advanced discriminative models in a supervised
manner. However, beyond the unavoidable gap between the
experimental and the emulated NVS data distributions, the
NVS camera technology is in constant evolution and new
versions of hardware devices like DAVIS and ATIS [46] and
their multiple settings cause further domain shift against their
previous versions and previously-released software emulation
frameworks.

Our experimental dataset is comprised of 1200 unlabelled
real recordings and 1200 labelled emulated recordings, each
representing a different static sign of 24 letters (A-Y, excluding
J) from the American Sign Language (ASL). We note that
similar to other APS-based sign language recognition tasks
[47], letters J and Z are excluded as their ASL designation
requires motion. Fig. 6 shows the required hand pose for
each letter of the dataset. As is evident from the figure, sign
language recognition presents a substantially more difficult
task than digit recognition, considering that for some letters
(e.g., M and N) there is very little variation in fingers’
positioning.

In order to generate the emulated spike events we first
record APS video of someone performing the sign for each
letter with translational and rotational motion over the video
duration, thus increase the difficulty of the recognition task.
Next, the APS video is recorded with a standard laptop
camera, and consecutive APS frames are passed into the
PIX2NVS emulator. PIX2NVS converts the APS frames to
the corresponding emulated NVS frames, and this constitutes
our source domain. The real NVS recordings are recorded
directly with an iniLabs DAVIS240c NVS camera, again with
rotational and translational motion over the video duration.

Fig. 7 shows a selection of emulated and real NVS frames
from the dataset. There is a discernible domain shift between
the emulated and real spike events, with the real NVS events
exhibiting a substantially higher spike density that increases
the visibility of the signed letter, despite also carrying some
background ‘salt & pepper’ noise. Nonetheless, we are able
to demonstrate that our proposed method can reduce this
domain shift. As the recordings represent static signs we train
on individual frames and remove a subset of frames from
the start and end of the recording where there may be no
sign distinguishable. As such, we have ∼ 80, 000 emulated
NVS frames for source training and ∼ 50, 000 real NVS
frames. We use ∼ 40000 of the real NVS frames for domain
adaptation and ∼ 10000 for inference. The frame resolution
in both domains is 240 × 180. Our source encoder is VGG-
16 [48], which we train in step 1 on the emulated NVS
frames using stochastic gradient descent with momentum set
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Fig. 6: Signs for letters A-Z from the American Sign Language dataset. Note that some letters such as M and N only have
subtle differences. Letters J and Z are excluded given that they are not static signs and require a particular gesture.

(a) Emulated (source domain) (b) Real (target domain)

Fig. 7: (Best viewed in color) Select frames from the NVS American Sign Language recognition dataset for a) emulated NVS
frames (source domain) and b) real NVS camera frames (target domain). The green/purple points correspond to the +1/-1 (or
ON/OFF) spike polarity.

TABLE VI: Overall and per-letter recognition accuracy for select letters of the NVS ASL dataset. We evaluate on the source-only
and our proposed method, when averaging over models with and without target regularization.

Letter A B E F M N S T U V overall

Source only 0.925 0.745 0.809 0.163 0.164 0.376 0.837 0.162 0.277 0.992 0.638

ADDA [1] 0.988 0.962 0.261 0.865 0.152 0.808 0.810 0.562 0.954 1.000 0.837
MCDDA [23] 0.988 0.954 0.010 0.923 0.693 0.642 0.893 0.107 0.961 1.000 0.793

DIFA [22] 0.974 0.958 0.912 0.884 0.373 0.571 0.726 0.631 0.937 1.000 0.854

MULTI−MAX 0.988 0.962 0.868 0.869 0.361 0.646 0.770 0.643 0.942 1.000 0.850
JOINT− PSEUDO 0.964 0.954 0.549 0.919 0.066 0.469 0.740 0.445 0.959 0.996 0.759

REC−MMD(QS → QT ) 0.981 0.970 0.814 0.880 0.212 0.571 0.189 0.593 0.949 0.996 0.823

Proposed, averaged 1.000 0.966 0.895 0.938 0.361 0.699 0.818 0.650 0.953 1.000 0.873

to 0.9. The learning rate is set to 0.001, the batch size to
24 and we complete training at 15k iterations. In terms of
data augmentation, we first resize the input such that the
smaller side is 256 and keep the aspect ratio. We then use
a multi-scale random cropping of the resized RGB frame;
the cropped volume is subsequently randomly flipped, and
normalized according to its mean. In step 2, we initialize the
target encoder from the source pre-trained weights and follow
the same procedure with data augmentation on both input
domains, but only train the target encoder fully connected
layers adversarially for 10k iterations and fix all convolutional
layers. Contrary to the APS datasets, the discriminator is again
restricted to 500 hidden units per layer. We infer on the target
dataset by extracting a single center crop.

We present both the overall and per-letter recognition
accuracy in Table VI when evaluating on the NVS ASL
dataset. For clarity, we only include letters in the table with
subtle differences in sign configuration such as M and N. We
include results on our proposed framework (averaged with and
without target regularization), source training only, as well
as ADDA and other recent competing methods. For recent
work, we follow a similar architecture/training procedure as
in our proposal, to ensure a fair test. For the case of MCDDA,
we follow the framework in [23]. In order to keep train-
ing/inference complexity of the same order as our proposal

and other methods, we constrain each of the two classifiers
to the final two fully connected layers of VGG-16 and the
feature generator to all other VGG-16 layers. Nonetheless, we
find that MCDDA is extremely sensitive to classifier/generator
imbalance, which is presumably exacerbated by the sparsity of
the NVS data - overall it performs 4% worse than ADDA. On
the other hand, our proposal provides substantial increase in
accuracy compared to training on the source only, and also
outperforms ADDA on most letters and overall, by 3.6%.
By looking at the per-letter accuracies we can distinguish
where ADDA substantially underperforms compared to our
proposal; namely, on the set C = {E,M,N,S,T}. If we cross-
reference with Fig. 6, we note that the letters in this set are
not easily distinguishable from each other, which would be
made worse when transforming to the NVS domain. Whereas
ADDA generally performs poorly on all letters in the set, and
effectively misclassifies the majority of instances of the letters
E and M in order to align the target to the source domain, our
proposal is able to better transfer some of the class separation
learned from training on the source domain with labels and
maintains consistently good accuracy across the set.

We also evaluate on the NVS ASL dataset with the best
performing variants (outside of our proposal) from Table
III; namely, MULTI − MAX, JOINT − PSEUDO and
REC − MMD(QS → QT ). As expected, the additional
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classification head and the minimax objective for MULTI −
MAX results in slightly improved performance over standard
ADDA trained with the inverted label setting. Converesly,
the method JOINT − PSEUDO experiences more negative
transfer between M and N than ADDA or our proposal,
which we attribute to the instance-based nature of pseudo-label
assignment (so is far more prone to noise between examples).
Conversely, the effects of internal covariate shift are apparent
in C for REC−MMD(QS → QT ); in particular, the method
only achieves 18.9% on letter S.

VII. CONCLUSION

We extend adversarial discriminative domain adaptation
for image classification by explicitly accounting for task
knowledge in the discriminator during adversarial training
and leveraging on the fixed distribution over source encoder
posteriors. In our proposal, we derive reconstruction and MMD
loss formulations for adversarial training by considering the
discriminator as a denoising autoencoder with a reconstruction
loss function and minimizing the maximum mean discrepancy
between the discriminator posterior and source encoder poste-
rior distribution, in order to train the encoder. We compare and
analyze in detail how our method improves over conventional
semi-supervised GAN loss formulations. We also introduce a
simple regularization technique for reducing overfitting to the
source domain for contraction mappings, which we intend on
making adaptive to the domain adaptation scenario in future
work. Our framework is shown to compete or outperform the
state-of-the-art in unsupervised transfer learning on standard
datasets, while remaining simple and intuitive to use. Finally,
we show that our proposal minimizes the domain shift between
emulated and real neuromorphic spike events on sign language
recognition, improving substantially over source training only.

APPENDIX A
ANALYSIS OF KERNEL CHOICE FOR LMMD

T (PS → QT )

We validate our choice of RBF kernel function by consid-
ering other generalized variants. The generalized RBF kernel
can be expressed as follows:

kG = exp{−ρD2(x,y)} (16)

The constant ρ is set to 1
2σr

and D2 is any (conditionally)
positive definite and symmetric distance. In the paper, we set
D2 = ‖x− y‖22, the squared Euclidean (L2) distance, which
gives the standard RBF formulation. Given that our kernel
function operates on discrete probability distributions (i.e., the
K + 1-dimensional source encoder and target discriminator
posteriors), this motivates testing generalized RBF kernels
with probabilistic analogs for Euclidean distance. Namely, we
consider the generalized RBF kernel with chi-squared distance
(D2 =

∑
i

(xi−yi)2
(xi+yi+ε)

) and squared Hellinger’s distance (D2 =∑
i(
√
xi + ε −

√
yi + ε)2) - both generalized variants satisfy

Mercer’s condition and are typically used in conjunction with
SVMs as a non-linear mapping. We set ε = 10−8, as a fixed
term to avoid division by 0 or undefined gradients at

√
0

for chi-squared and squared Hellinger’s distance respectively.

TABLE VII: Accuracy on SVHN → MNIST and MNIST →
MNISTM tasks with varying D2

D2 MNIST → MNISTM SVHN → MNIST

Chi-squared 0.918 0.898
Sq. Hellinger 0.890 0.909
Absolute (L1) 0.931 0.894

Sq. Euclidean (L2) 0.955 0.918

Finally, for completeness, we also consider the L1 distance,
with D2 = |x− y|, as utilized in the Laplacian kernel.

We present the results with varying kernel function in Table
on SVHN → MNIST and MNIST → MNIST-M. We use
a summation over five kernels as in the paper, with σr =
10−r, r ∈ {0, . . . , 4}, in order to constrain the computational
cost. All other parameters are fixed and we disable target
regularization. As is evident from the Table VII, all kernels
perform comparably but the standard RBF kernel with squared
Euclidean distance achieves the best performance on both
datasets.
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