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Unsupervised Single Image Dehazing Using Dark
Channel Prior Loss

Alona Golts, Daniel Freedman, and Michael Elad, Fellow

Abstract—Single image dehazing is a critical stage in many
modern-day autonomous vision applications. Early prior-based
methods often involved a time-consuming minimization of a hand-
crafted energy function. Recent learning-based approaches utilize
the representational power of deep neural networks (DNNs) to
learn the underlying transformation between hazy and clear
images. Due to inherent limitations in collecting matching clear
and hazy images, these methods resort to training on synthetic
data; constructed from indoor images and corresponding depth
information. This may result in a possible domain shift when
treating outdoor scenes. We propose a completely unsupervised
method of training via minimization of the well-known, Dark
Channel Prior (DCP) energy function. Instead of feeding the
network with synthetic data, we solely use real-world outdoor
images and tune the network’s parameters by directly minimizing
the DCP. Although our “Deep DCP” technique can be regarded
as a fast approximator of DCP, it actually improves its results
significantly. This suggests an additional regularization obtained
via the network and learning process. Experiments show that our
method performs on par with large-scale supervised methods.

Index Terms—Energy functions, deep neural networks, unsu-
pervised learning, single image dehazing, dark channel prior.

I. INTRODUCTION

Haze is an atmospheric phenomenon where small particles,
called aerosols, obstruct the clarity of an outdoor scene and
lead to poor contrast and loss of detail. The existence of haze
affects an image in two aspects. It attenuates the scene radiance
with correspondence to an object’s distance from the camera.
Moreover, it introduces an additional ambient light component,
called the airlight, which causes a “veiling effect” over the
clear image. The formation of a hazy image is often described
as a linear per-pixel combination of the clear scene radiance
and the airlight; the effect of each component is controlled by
the transmission map. To recover the scene radiance image,
one has to solve a system of 3N linear equations with 4N + 3
unknowns (where N is the number of image pixels).

In order to handle the under-constrained haze creation
model, many researchers suggested hand-crafted image priors,
shedding additional light on the behaviour of hazy versus clean
images [1], [2], [3], [4], [5], [6], [7], [8], [9]. These prior-
based methods often formulate the problem of dehazing as an
energy minimization task, where obtaining the solution of each
image is called “inference”, requiring a non-trivial optimization
scheme. With the increasing importance of image dehazing
as an initial pre-processing stage in many computer-vision
tasks (e.g., object detection, autonomous car navigation), large-
scale learning-based techniques have been deployed to solve it
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[10], [11], [12], [13], [14]. These methods, however, require
thousands of input and output examples.

Since clean and hazy images of the exact same scene and
lighting conditions are hard to obtain, learning-based methods
commonly resort to synthetic dataset creation. Given a clean
image and a corresponding depth map, one can calculate
the transmission map and use the haze creation model to
obtain hazy images with varying amounts of haze and airlight
components. These pairs of hazy and clear images are later
fed as inputs and labels in a supervised training of a DNN.
Outdoor depth information, however, is incredibly imprecise.
For instance, the depth information of the outdoor Make3D
[15] and KITTI [16] datasets suffers from over 4 meters of
average root-Mean-Square-Error (rMSE), while the rMSE of
the indoor NYU2 [17] is only 0.5. Consequently, large-scale
methods either use the more reliable indoor depth information
[12], [10], [13], [14], or draw the depth map at random [6],
[11]. Either of these practices creates a domain shift when
addressing real-world outdoor images.

We propose to leverage the representational power of DNNs,
but instead of feeding them with inaccurate synthetic pairs
of hazy and clean images, we train them in an unsupervised
fashion using real-world hazy images only. We optimize the
network’s weights by minimizing an unsupervised loss function,
essentially the Dark Channel Prior (DCP) [3] energy function.
Our network can be regarded as a fast feed-forward approx-
imator of the DCP. However, by stopping the optimization
early, we get a significant boost in results over the classic
DCP. This implies an added regularization, stemming from
the network architecture and learning process. Our network,
based on the Context Aggregation Network (CAN) architecture
[18], is trained end-to-end from scratch without relying on
any external data apart from raw hazy images. It provides the
predicted transmission maps as output, from which the dehazed
image can be easily reconstructed. We perform a comprehensive
quantitative evaluation of our method and present state-of-the-
art results on SOTS-outdoor in the recently released RESIDE
dataset [19]. We show qualitative results on real-world images,
demonstrating that the additional regularization provided by
the network reduces common artifacts of prior-based methods,
such as over-saturation and high-contrast.

Our “Deep-DCP” method offers the following contributions:
1) It provides state-of-the-art results in outdoor single image

dehazing, outperforming both prior-based and fully-
supervised DNN methods.

2) It achieves an impressive ∼ 6.5dB boost in outdoor
PSNR over classical DCP, validating an effective regu-
larization.

3) It treats the sky successfully where DCP typically fails.
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4) It is the first to perform unsupervised training in single
image dehazing, reducing the need in synthetic data.

5) It does not require an explicit optimization for each image
as DCP, but rather learns the underlying transformation
during training, requiring a fast forward-pass during test.

6) It offers a generic methodology of unsupervised train-
ing with energy functions and can be applied to any
successful energy function.

The remainder of this paper is structured as follows: Section
II provides a survey of previous prior-based and data-driven
approaches for dehazing; Section III describes the DCP, its use
as a loss function and our CAN-based architecture; Section
IV provides quantitative, qualitative and runtime experimental
results; Section V includes discussions and further analysis;
finally, Section VI concludes this work.

II. RELATED WORK

A. Prior-Based Approaches

Early attempts at image dehazing have incorporated several
images of the same scene, taken at different bad weather
conditions [20], or using different polarization filters [21].
Kopf et al. [22] later performed dehazing of outdoor images
by utilizing existing geo-referenced terrain and urban models
including depth, texture and GIS data.

In [2], Tan et al. unveiled the haze from a single image by
maximizing the local contrast of each patch in the image
using a Markov Random Field (MRF) framework. In [1],
Fattal et al. suggested utilizing the lack of correlation between
the transmission and shading in a localized set of pixels, as
a prior to resolve the ambiguity between the scene albedo
and the airlight. Tarel et al. [4] provided a fast calculation
of the “atmosperic veil” using a series of edge-preserving
linear filter operations. In [23], Nishino et al. exploited the
statistical independence between the scene albedo and depth and
factorized both quantities into an MRF-based energy function.

In [3], He et al. proposed the now widely used DCP and
demonstrated that in clear images the darkest pixel in an image
patch is close to zero (this, however, does not hold in sky-
regions). Using this and the assumption that the transmission
map within a small image patch is constant, a coarse map can be
easily derived. They further suggested a computationally costly
soft matting operation for smoothing out the transmission and
reconstructing the final dehazed image. Follow-up works have
improved both the quality and efficiency of DCP. Specifically,
in [8], the authors proposed a general boundary constraint for
the transmission map for which the DCP is a special case.

Several color-based priors have been suggested as well for
boosting dehazing performance [5], [24], [7]. In [5], Fattal used
the “color-lines” assumption, stating that pixels in small image
patches have a one-dimensional distribution in RGB-space [25].
The offset of these straight lines from the origin in hazy images
allow to estimate the transmission map. Berman et al. proposed
a global approach, called non-local dehazing (NLD) [7]. They
observed that a haze-free image contains only several hundreds
of distinct colors, clustered as points in RGB-space. In the
presence of haze, these color clusters form a “haze-line” where

the position of a certain pixel along the line corresponds to its
initial radiance color and distance from the camera.

While prior-based methods reveal fine image details, they
often suffer from increased saturation and contrast, unrealistic
colors and difficulty in handling sky regions. This is due in
part to assumptions not suited for all hazy image patches. In
addition, each image requires a separate non-trivial optimization
and solution which can be prohibitive for real-time applications.

B. Data-Driven Approaches
In [6], a Color Attenuation Prior (CAP) is suggested, mixing

hand-crafted observations with a data-driven approach. CAP
assumes that the image depth, the amount of haze and the
difference between the brightness and saturation are linearly
correlated. To find the exact correlation, the authors opt for
supervised regression between synthesized hazy patches and
their corresponding depth maps. This results in fast inference
at test time.

One of the first works to propose single image dehazing
using CNNs is [12]. The method, called MSCNN, is trained
by feeding a two-stage network with pairs of hazy images
and corresponding transmission maps. In DehazeNet [11],
Cai et al. create a novel CNN architecture (featuring maxout
and BReLU layers), inspired by popular prior-based methods
[3], [2], [6], [9]. AOD-Net [10] in turn, proposes a joint
estimation of both the transmission map and the airlight via a
unified representation. Using this representation, one can easily
reconstruct the scene radiance directly in an end-to-end forward-
pass computation. This helps reduce errors accumulated in the
separate calculation of the two quantities.

In the recent Gated Fusion Network (GFN) [13], a dehazed
image is produced as a fusion of the white balance, contrast
enhanced and gamma corrected images (all derived from the
hazy image). The network outputs three confidence maps
which determine the effect of each component. To combat
halo effects of a single scale encoder-decoder structure, a
multi-scale architecture is used where a coarse output is first
produced, then added as input to a finer scale network. This
method provides impressive results on RESIDE’s SOTS-indoor,
but quadruples the size of the input during training and test,
making evaluation inefficient in terms of memory. Finally, in a
recent work reported in [14], the authors utilize the pre-trained
VGG [26] network as encoder and only train the symmetric
decoder via a combination of MSE and perceptual loss.

While learning-based methods achieve impressive results,
they are trained in a supervised way, relying on synthetic
datasets. Some methods use more accurate indoor depth
information to create labelled inputs [12], [10], [13], [14].
This practice, however, directs increasing research effort to
optimizing indoor performance, while the predominant need
for dehazing is actually outdoors. Other methods use real-
world outdoor images, but compromise the accuracy of the
depth information. For example, [6] draws each pixel in the
depth map at random from a (0, 1) uniform distribution and
[11] enforces an additional constraint of constant depth within
16× 16 patches. These assumptions result in block and halo
artifacts in the reconstructed image and require additional post-
processing.
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III. OUR METHOD

In the following we will describe our method for single image
dehazing, including the driving force of our unsupervised loss
function, the Dark Channel Prior [3], its implementation as
a loss function for training a CNN and the architecture we
choose for the task at hand.

A. Haze Model

The popular haze formation model in [27] is given as:

I(x) = t(x)J(x) + (1− t(x))A,

t(x) = e−βd(x).
(1)

According to the above, the observed hazy image, I(x) ∈
RN×3, is a convex linear combination of the haze-free scene
radiance, J(x), and the atmospheric light component, A, called
the airlight; usually represented as a constant 3-vector in RGB-
space, A =

(
Ar, Ag, Ab

)
. The transmission map coefficients,

t(x) ∈ RN control the relative force of each component,
in each pixel in the image, x ∈ RN . The transmission is
a function of the depth, d(x), of the scene from the observer.
Our goal in single-image-dehazing is to obtain the haze-free
scene radiance, J(x). To do so, however, one needs to solve
a set of 3N equations (only I(x) is given), with 4N + 3
unknowns (J(x), t(x),A). Thus, additional prior knowledge
of the images in question is needed.

B. Dark Channel Prior

The dark channel prior is an image statistical property,
indicating that in small patches of haze-free outdoor images,
the darkest pixel across all color channels is very dark, and
close to zero. The “dark channel” of the image is defined as

Jdark(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

(Jc(y))), (2)

where Ω(x) is a small patch, centered around x. This observa-
tion is contributed by three factors which appear in outdoor
images: (1) shadows – induced by cars, buildings and trees;
(2) colorful objects – where one color channel is dominant,
and the others are close to zero, e.g., red flowers, green leaves,
blue sea; and (3) naturally dark objects – such as tree trunks
and rocks.

Assuming that A is known and the transmission within a
small image patch, denoted as t̃(x), is constant, one can apply
a minimum operation across channels and pixels in the haze
formation equation in (1) (effectively zeroing Jc(y)) and get
a prediction for the transmittance [3]:

t̃(x) = 1− ω ·min
c

(
min

y∈Ω(x)

(
Ic(y)

Ac

))
, (3)

where ω = 0.95 leaves a small amount of haze for natural-
looking results. In sky regions although the dark channel does
not always hold, it is assumed that I/A→ 1, thus t̃(x)→ 0.
The resulting coarse transmission map requires an additional
step of refinement.

C. Soft Matting

The haze formation model in (1) is very similar to the
composition model in image matting [28], where an output
image is a convex linear combination of foreground and
background images; controlled by the alpha matte, α. If one
replaces the α-matte with the coarse transmission map, t̃(x),
the following energy function suggested in [28] can be used
to acquire the refined map, t(x):

E(t, t̃) = tTLt + λ(t− t̃)T (t− t̃), (4)

where the first term promotes successful image matting, and
the second, fidelity to the dark channel solution. The parameter
λ, controlling the force between the two, is set to λ = 10−4 [3].
The matrix L is a Laplacian-like matrix, dedicated to image
matting and given by [28]:

Lij =
∑

n|(i,j)∈pn

(δij − wnij), ∀i, j = 1...N

wnij = 1
|pn| (1+(Ii−µn)T (Σn+ ε

|pn|
U3)−1(Ij−µn)),

(5)

where i, j are two pixels within a small patch pn around pixel
n; |pn| is the size of the patch and equal to 3 × 3 = 9 as
suggested in [28]; µn ∈ R3 and Σn ∈ R3×3 are the mean and
covariance of the patch; U3 is the identitly matrix; and ε is a
smoothing parameter set to ε = 10−6 [28].

D. Implementation as a Loss Function

We rewrite the energy function in equation (4) in a tensor-
friendly format by using a known decomposition of Laplacian
matrices via their weights, given in (5). Rephrasing the first
term in (4) in terms of weights, we have that

E1(t, t̃) = tTLt =

N∑
n=1

9∑
i=1

9∑
j=1

wnij(ti − tj)2, (6)

where we sum over all overlapping patches around N pixels in
the resulting transmission map, t, as well as over all possible
combinations of pixel pairs, i, j, in a given 3× 3 patch. The
maximum number of combinations is (32) · (32) = 81. We can
vectorize this term, along with the data fidelity term

E(t, t̃) =

N∑
n=1

K∑
k=1

W � (TI −TJ)2 + λ

N∑
n=1

(t− t̃)2, (7)

where � denotes elementwise multiplication; k ∈ [1..81]
indexes all possible pairs of pixels in a 3× 3 patch, and W ∈
RN×81 is the vectorized version of the weights. TI ,TJ ∈
RN×81 are repetitions of the output transmission map. The first
representing the transmission patches (9 pixels in total) arranged
in I → (1, .., 1, 2, ..., 2, ..., 9, ..., 9) ∈ R81, and the second
arranged in J → (1, 2, ..., 9, 1, 2, ..., 9, ..., 1, 2, ...9) ∈ R81.

Above is the loss function with which we train our network,
whose predicted transmission map is parametrized by tθ. We
tune the parameters, θ, by minimizing the loss function in (7)
over the training set of hazy images, {Im}Mm=1:

θ∗ = arg min
θ

[
1

M

M∑
m=1

E(tθ, t̃(Im))

]
, (8)
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Dark 
Channel 
Prior 
Loss

dilated conv 3x3x32
batch-norm
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batch-norm 
ReLU
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Fig. 1: System architecture. Our fully-convolutional network receives real-world hazy images. Apart from the input and output
layers, our network is a cascade of dilated residual blocks (dilation written above each block), which gradually increase the
receptive field. The network’s predicted transmission and the input image, are fed to the unsupervised, DCP loss.

Matting Term:
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Dark Channel:

+
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Fig. 2: Our loss module, which receives the prediction of the
network, tθ, along with the hazy image, I, and outputs the
value of the DCP [3] energy loss.

where M is the number of images. Note that we do not use the
“labels”, i.e., the clear images, at any point, only the original
hazy ones. A schematic diagram of the inputs and outputs of
our loss module is given in Figure. 2.

E. Computing the Scene Radiance

Once the network has finished training, the transmission map,
tθ(x), of a new hazy image can be obtained by a forward-pass
operation. This is used to recover the scene radiance via the
haze formation model in (1):

J(x) =
I(x)−A

max(tθ(x), t0)
+ A, (9)

where t0, which discourages division by numbers close to zero,
is set to t0 = 0.1 as suggested in [3]. In order to recover
the missing airlight component, A, we follow the method
suggested in [3]: we first pick the 0.1% brightest pixels in the
dark channel of the hazy image. Then, out of these locations
we pick the brightest pixel in the hazy image, I. That is the
final chosen atmospheric light, A.

F. Architecture

Our fully-convolutional, “Dilated Residual Network”, shown
in Figure 1, is inspired by the Context Aggregation Network
(CAN) [18], which has shown impressive results in dense-
output applications. Similarly to CAN, we keep the resolution
of all layers intact and identical to that of the input and
output. In order to get an accurate prediction we avoid pooling
and upsampling, and instead increase the receptive field via
dilated convolutions with exponentially increasing dilation
factors. Contrary to [18], between each dilated convolution we
add another two regular convolution layers to create a richer
nonlinear representation.

Our network is thus built as a cascade of 6 dilated residual
blocks; each made up of two regular convolutions, followed
by a single dilated convolution. The dilation factors increase
by a power of two from one block to the next. The filter size
and width of all convolution layers (apart from the output) is
3 × 3 × 32. All regular convolutions are followed by batch
normalization [29] and ReLU nonlinearity [30], and all dilated
ones are followed by batch-norm only. The final layer is a linear
transformation to the output dimension of the transmission map
1× 1× 1. To improve gradient flow and propagate finer details
to the output, we incorporate additional Resnet-style [31] skip
connections between the input and output of each block. The
skip connection is a simple addition of the input to the output
of each block.

IV. EXPERIMENTAL RESULTS

A. Dataset

In order to train and evaluate the performance of our network,
we use the recent large-scale RESIDE (REalistic Single Image
DEhazing) dataset [19]. RESIDE’s training set, called “ITS”,
includes 13, 990 synthetic indoor images, created from the
NYU2 [17] and Middlebury stereo datasets [32]. The test set
includes both indoor and outdoor sections, called “SOTS-indoor”
and “SOTS-outdoor”1, each containing 500 synthetic images.

1Although in the latest published paper of RESIDE, SOTS-outdoor is not of-
ficially featured, the selection of 500 specific outdoor images are still available
(as well as in earlier Arxiv versions) in RESIDE’s website in: https://www.
dropbox.com/s/y6jupfvitv0dx5w/SOTS.zip?dl=0&file_subpath=%2FSOTS

https://www.dropbox.com/s/y6jupfvitv0dx5w/SOTS.zip?dl=0&file_subpath=%2FSOTS
https://www.dropbox.com/s/y6jupfvitv0dx5w/SOTS.zip?dl=0&file_subpath=%2FSOTS
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DCP [3] BCCR [8] NLD [7] CAP [6] MSCNN [12] DehazeNet [11] AOD-Net [10] GFN [13] Ours
HSTS 17.22/0.798 15.09/0.738 17.62/0.792 21.54/0.867 18.29/0.841 24.49/0.915 21.58/0.922 22.94/0.874 24.44/0.933
SOTS-outdoor 17.56/0.822 15.49/0.781 18.07/0.802 22.30/0.914 19.56/0.863 22.72/0.858 21.34/0.924 21.49/0.838 24.08/0.933
SOTS-indoor 20.15/0.872 16.88/0.791 17.29/0.749 19.05/0.836 17.11/0.805 21.14/0.847 19.38/0.849 22.32/0.880 19.25/0.832

TABLE I: Quantitative PSNR/SSIM results of our approach (higher is better). For both SOTS-outdoor and HSTS we report the
result of epoch 27, whereas in SOTS-indoor we report the result of epoch 30.

A smaller test set of 20 outdoor images, called “HSTS”, is
also suggested. HSTS has a mix of 10 synthetic images (where
ground truth is known) and 10 real-world images. All synthetic
hazy images are created by first collecting ground-truth clean
images with their corresponding depth maps and applying
the haze formation model with different configurations of the
A, β parameters in (1). The beta version of RESIDE provides
an additional collection of 4, 322 real-world images, mined
from the web, called “RTTS”. Instead of using the synthetic
indoor database of ITS (or its variations based on NYU2 and
Middlebury), as in [13], [12], [10], [14], we train our network
on the real-world images of RTTS. For the evaluation of PSNR
(Peak Signal to Noise Ratio) and SSIM (Structural Similarity)
criteria during training, we use as validation a subset of 500
images from RESIDE beta’s “OTS” synthetic outdoor training
set. The 500 images are selected at random from Part-I of OTS,
where we make sure that no images from the SOTS-outdoor
and HSTS test sets are selected for validation.

B. Implementation Details

To enrich the RTTS training set, we perform data augmen-
tation. The first augmentation is simply resizing the original
hazy images to size 128 × 128 using bilinear interpolation.
The second, third and fourth augmentations are performed
randomly. Each image can be flipped horizontally or kept as
is; randomly cropped to 256× 256 or 512× 512, and rotated
at 0, 45, 90, or 135 degrees. If rotated, only the valid center of
the image is taken. All augmented images are then resized to
128× 128. The final number of training images is therefore:
4322× 4 = 17, 288.

The parameters of our loss function are taken exactly (no
additional tuning) as suggested in [3], [28]: λ = 10−4, ω =
0.95, t0 = 0.1, ε = 10−6, DCP patch size: 15× 15, and soft
matting patch size: 3 × 3. We use the Adam optimizer [33]
with batch size of 24; initial learning rate of lr = 3 · 10−4,
and exponential decay with factor 0.96 every 3 epochs. The
network weights are initialized using random initialization with
zero mean and variance of 0.1. Our method is implemented in
TensorFlow on a GTX Titan-X Nvidia GPU. Training time to
get the optimal solution (about 30 epochs) takes 8 hours. For
outdoor results we stop the training at epoch 27, whereas for
SOTS-indoor, we keep training until we reach 30 epochs. Our
stopping criterion is explained further in section V-B.

C. Quantitative Evaluation

We evaluate the performance of our method on the SOTS-
indoor, SOTS-outdoor and HSTS test sets. These test sets
are created synthetically, therefore featuring both the clean
images and their hazy versions. We measure the quality of our

solution in terms of the PSNR and SSIM metrics. We obtain
the original code and compare our results to the following
prior-based approaches: DCP [3]2, BCCR [8] and NLD [7],
and the following data-driven methods: CAP [6], MSCNN [12],
DehazeNet [11], AOD-Net [10] and GFN [13]. In case the
dehazed images are out of the range [0, 1], we normalize them
to [0, 1] only if it improves PSNR and SSIM values.

The numeric results3 are given in Table I. We get the highest
PSNR and SSIM scores among all other methods in the larger
SOTS-outdoor, and the highest SSIM in the smaller HSTS. Our
method, represented by a rich neural network and trained to
accommodate numerous images, obtains better results compared
to prior-based methods. Specifically, compared to DCP, our
method strives to approximate the solution of the same energy
function, but we stop it before reaching an absolute minimum
in order to get further regularization. This is particularly noticed
in outdoor images where DCP often over-saturates the sky.

With regard to data-driven approaches, our high score is
attributed to the fact that we train on real-world outdoor images,
whereas competing methods [12], [10], [13] concentrate on
synthetic indoor images and suffer from a certain domain shift
when addressing outdoor data. In addition, the synthetic hazy
and clean pairs are created from coarse depth data for which
training creates a negative bias towards data-driven approaches.
An example of an indoor training image in ITS is given in
Figure 5. Notice the rough misplaced edges in the transmission
map which later translate to inaccurate hazy images. Indeed,
our closest competitor in terms of outdoor results is DehazeNet
[11]. Recall that this method is trained on a large variety of
clean image patches of outdoor scenes, making it more robust
compared to methods trained on ITS.

We include the results of our method on SOTS-indoor in
which it performs favourably, but gets a lower score compared
to other data-driven methods and even DCP. This is expected
since we train on outdoor images, creating a tradeoff between
indoor and outdoor performance. As for DCP, it behaves more
agreeably on indoor images which coincide better with the
haze formation model and do not include sky regions.

D. Qualitative Results

We present qualitative results on HSTS in Figure 3. In the
top part of Figure 3, it can be seen that our method maintains
the true colors of the original image, whereas DCP [3], BCCR
[8] and NLD [7] tend to produce exaggerated sky regions. Our
results are similar to those produced by CAP [6], however
slightly closer to the true colors exhibited in the ground truth

2Implementation in https://github.com/sjtrny/Dark-Channel-Haze-Removal
3Our results slightly differ from [19]. We use the original DCP [3], whereas

they use the faster version [34] with worse quality.

https://github.com/sjtrny/Dark-Channel-Haze-Removal
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Hazy DCP [3] BCCR [8] NLD [7] CAP [6] Ours Clear

Hazy MSCNN [12] AOD-Net [10] GFN [13] Dehaze-Net [11] Ours Clear

Fig. 3: Qualitative results on RESIDE’s HSTS. Upper half: comparison to prior-based methods; bottom half: comparison to
deep-learning-based methods.

image. In the bottom half of Figure 3 we provide a comparison
to deep-learning based methods. In most images we maintain
the true contrast and colors, whereas MSCNN [12] and GFN
[13] provide more contrast-enhanced images. At times, we
slightly change the color of the sky, which is to be expected
since our method is unsupervised and does not witness the
clear images at any stage. In Figure 4, one can see a real-world
image comparison of our results with both prior-based and
data-driven methods. We display the output of our network
after 27 epochs (the optimal results for the OTS validation set
we use) and after 30 epochs, where the produced images are
more similar to DCP (see discussion on sec. V-A). One can
see that after 27 epochs we do not remove all of the haze,
perhaps indicating that the outdoor images in RESIDE are less
hazy than real-world hazy images. For 30 epochs, our result
is more saturated and of higher contrast.

E. Runtime Comparison

Apart from improving the overall PSNR and SSIM perfor-
mance of DCP, we hereby show that we are as efficient as fast
implementations of DCP. Our inference procedure consists of
two parts: a forward-pass over the trained network to obtain
the predicted transmission map (performed in TensorFlow),
and reconstruction using Equation 9 (performed in Numpy).
We compare ourselves to a Matlab implementation of soft
matting DCP [3], denoted as “slow-DCP”, and guided image
filter DCP [34], denoted as “fast-DCP”. Note that fast-DCP is
an approximation of slow-DCP and though being very efficient,
achieves inferior results. Although Matlab is more efficient
than Numpy and TensorFlow, we do get the benefit of using
the GPU. Thus for fair comparison, we include both GPU
and Intel(R) i7-5930k 3.5GHz CPU runtimes of our solution.
In Table II, we report the average runtimes (lower is better)
over the 500 images in SOTS-outdoor which feature varying
widths of ∼ 500 pixels. Compared to the explicit optimization
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Hazy NLD CAP MSCNN Dehaze-Net AOD-Net GFN Ours (27) Ours (30) DCP

Fig. 4: Qualitative results of single image dehazing on real-world images. The numbers in parenthesis are the number of epochs
spent training our network.

Original Hazy Transmission

Fig. 5: Example of a synthetic image and its coarse transmission
map from RESIDE’s ITS training dataset [19].

TABLE II: Average runtime and performance of SOTS-outdoor

slow-DCP [3] fast-DCP [34] ours-CPU ours-GPU
PSNR/SSIM 17.56/0.822 14.62/0.752 24.07/0.933 24.07/0.933
runtime[sec] 21.67 1.08 1.71 0.67

of slow-DCP, our feed-forward inference is much faster (×30
in GPU and ×12 in CPU). We perform on par with fast-DCP
(faster for GPU and slower for CPU), but we supply results
of much better visual quality which translate to a ∼ 9.5 dB
increase in PSNR. Additional speed-up of our method can
be performed by joint estimation of t,A during training, but
we leave this for future work. To conclude, as efficient as
the DCP explicit solution may be, it will lack the additional
regularization obtained by our approach.

V. DISCUSSION

A. Proximity to Dark Channel Prior

During training, our network strives to approximate the DCP
energy function. Since it optimizes the loss for the entire corpus
of images, it may output different results from DCP [3]. While
DCP operates on one image at a time, our network learns
a more “universal solution”, suited for multiple images. In
addition, as the epochs evolve and the loss value decreases,
we reach closer and closer to DCP, as can be seen in the three
rightmost columns in Figure 4. At earlier epochs the output
images still contain a large amount of haze, whereas further on,
most of the haze is lifted, but the colors appear more saturated,
even non-realistic. We search for a middle-ground where most
of the haze is removed and one can see the details, but the
colors and contrast remain realistic and physically valid. The
benefit of stopping before reaching a deeper optimum of DCP
is especially noticeable in sky regions where DCP would output
an exaggerated and amped-up version of the sky, whereas we
produce a more natural color. In our case this “sweet-spot” is
reached after 27 epochs over the training data. Nonetheless,
we can keep training for a few more epochs to get more vivid
results which may be more pleasant to the human eye.

B. Unsupervised Training Regime

Although our training is completely unsupervised, we do
need a stopping criterion since reaching the minimum of the
loss function is not always beneficial in terms of the visual and
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quantitative results. To do so, we evaluate the averge loss value,
PSNR and SSIM of a small supervised set of 500 images from
OTS (not part of SOTS-outdoor or HSTS). A typical behaviour
of the results is a decrease of the average loss; an increase in
performance in PSNR and SSIM; reaching a maximum, and
then, a decrease of these criteria. We choose the epoch/model
that gave the best performance on the validation set from OTS.
The learning parameters are chosen using a similar technique.

VI. CONCLUSIONS

We have presented a method of unsupervised training of
deep neural networks for the purpose of single image dehazing.
Our method relies on the well-known Dark Channel Prior
(DCP) [3] and manages to improve it considerably. In addition
to providing state-of-the-art performance in outdoor scenarios,
our method also eliminates the need for synthetic training sets.
While our focus here is DCP, we could have incorporated any
other successful energy function, using it as our unsupervised
loss. Our future research is focused on finding an even better
combination of energy functions, or incorporating some amount
of supervision to benefit from both worlds.
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