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Abstract. We present an automatic moment capture system that runs
in real-time on mobile cameras. The system is designed to run in the
viewfinder mode and capture a burst sequence of frames before and after
the shutter is pressed. For each frame, the system predicts in real-time
a “goodness” score, based on which the best moment in the burst can
be selected immediately after the shutter is released, without any user
interference. To solve the problem, we develop a highly efficient deep
neural network ranking model, which implicitly learns a “latent relative
attribute” space to capture subtle visual differences within a sequence of
burst images. Then the overall goodness is computed as a linear aggre-
gation of the goodnesses of all the latent attributes. The latent relative
attributes and the aggregation function can be seamlessly integrated in
one fully convolutional network and trained in an end-to-end fashion. To
obtain a compact model which can run on mobile devices in real-time, we
have explored and evaluated a wide range of network design choices, tak-
ing into account the constraints of model size, computational cost, and
accuracy. Extensive studies show that the best frame predicted by our
model hit users’ top-1 (out of 11 on average) choice for 64.1% cases and
top-3 choices for 86.2% cases. Moreover, the model(only 0.47M Bytes)
can run in real time on mobile devices, e.g. only 13ms on iPhone 7 for
one frame prediction.

Keywords: Burst Photography, Photo Selection, GAN

1 Introduction

This paper addresses the problem of how to take pictures of the best moment
using mobile phones. With the recent advances in hardware, such as Dual-Lens
camera on iPhone 7 Plus, the quality of the pictures taken on mobile phones
has been dramatically improved. However, capturing a great “moment” is still
quite challenging for common users, because anticipating the subject movements
patiently while keeping the scene framed in viewfinder requires lots of practices
and professional training. For example, taking spontaneous shots for children
could be extremely hard as they may easily run out of the frame by the time
you press the shutter. As a result, one may not only miss the desired moment,
but also get a blurry photo due to the camera or subject motion. Taking another
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Fig. 1. An example of burst frames and their ranking predicted by our system, which
jointly considers the relative sharpness, facial expression as well as the head pose. Note
that, even though the 8-th frame(from left to right) is very sharp, its rank is still very
low because of the head pose. Best viewed in a zoomed-in electronic version.

common example in portrait photography, keeping a perfect facial expression for
long time without blinking eyes is nearly impossible. Therefore, it is likely that
one has to replicate his pose and expression multiple times in order to capture
a perfect shot, or one can use the burst mode to shot dozens of photos and then
manually select the best one to keep and discard the rest. Although this method
works for some people, it is less efficient due to the fact of wasting storage space
and intensive manual selection.

In this paper, we introduce a real-time system that automates the best frame
(great moment) selection process “during” the capture stage without any post-
capture manual operations. Specifically, we propose to buffer a few frames before
and another few frames after the shutter press, we then apply an efficient photo
ranking model to surface the best moment and automatically remove the rest
of them to save storage space. We argue that having a real-time capture system
would dramatically lower the bar of high quality moment capture for memory
keeping or social sharing.

To our best knowledge, there is no prior work in academia that directly tar-
gets at building automatic moment capture system during the capture stage, not
to say on mobile phones. This is mainly due to the following challenges. First,
such a system needs to run during the capture stage in the viewfinder, the rank-
ing model has to be compact enough to be deployed on mobile phones and fast
enough to run in real-time. Second, learning such an efficient and robust ranking
model is challenging because the visual differences within a sequence of burst
images are usually very subtle, yet the criteria for relative ranking could range
from low-level image quality assessment, such as blur and exposure, to high-level
image aesthetics, such as the attractiveness of facial expression or body pose,
requiring a holistic way of learning all such representations in one unified model.
Last but not least, due to the uniqueness of this problem, there is no available
burst image sequences to serve as our training data, and it is also unclear how
to collect such supervision signals in an effective way. For the same reasons,
we cannot leverage related works developed for automatic photo selection from
personal photo albums, because their photo selection criteria primarily focus on
absolute attributes such as low-level image quality [1], memorability [2], popular-
ity [3], interestingness [4], and aesthetics [5]. In contrast, we are more interested
in learning relative attributes that can rank a sequence of burst images with
subtle differences.
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To address these challenges, we first created a novel burst dataset by man-
ually capturing 15k bursts covering a rich set of common categories including
selfies, portrait, landscaping, pets, action shots and so on. We sample image pairs
from each burst and then conducted crowd-sourcing through Amazon Mechan-
ical Turk (AMT) to get their overall relative goodness label (i.e., which looks
better?) for each image pair. We consolidate the label information by a simple
average voting. Second, considering a pair of images sampled from a burst, the
visual content is largely overlapped, indicating the high-level features of a convo-
lution network pre-trained for image classification may not be suitable for relative
ranking, because classification network generally tries to achieve certain trans-
lation and rotation invariance and be robust to certain degree of image quality
variations for the same object. However, those variances are the key information
used for photo ranking. Therefore, in order to leverage the transfer learning from
an existing classification net, one can only borrow the weights of the backbone
net1 and must re-design a new head to tailer for our photo ranking problem. In
addition to this, we observed that the relative ranking between a pair of images
is determined by a few relative attributes such as sharpness, eye close or open,
attractiveness of body pose or overall composition. And the overall ranker should
be an aggregation of all such relative attributes. To enforce this observation, also
inspired by recent advances in Generative Adversarial Networks(GANs)[6,7,8],
we introduce another generator (denoted as “G”) that can enhance the represen-
tation of the latent attributes so as to augment more training pairs in the feature
space for improving the ranking model. Although we do not have the attribute
level label information during the training, we expect the ranking network with
a novel head can learn latent attribute values implicitly, so that it can minimize
the ranking loss more easily.

Motivated by the above facts and observations, we explored various choices
for the backbone network and head (the final multi-layer module for ranking)
design, and proposed a compact fully convolution network that can achieve good
balance among model size, runtime speed, and accuracy. To sum up, we made
the following contributions:

– We propose an automatic burst moment capture system running in real-time
on mobile devices. The system can save significant storage space and manual
operations of photo selection or editing for end users.

– We explored various network backbone and head design choices, and devel-
oped a light-head network to learn the ranking function. We further applied
the idea of Generative Adversarial Networks(GANs) into our framework to
perform feature space augmentation, which consistently improves the per-
formance for different configurations.

– We deployed and evaluated our system on several mobile phones. Extensive
ablation studies show that our model can hit 64.1% user’s top-1 accuracy(out
of 11 on average). Moreover, the model(0.47M Bytes) can run in real time
on mobile devices, e.g. only 13ms on iPhone 7 for one frame prediction.

1 Those weights in backbone will be fine-tuned when training the ranking net
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2 Related Works

Automatic Photo Triage Automatic photo selection from personal photo
collections has been actively studied for years [9,10,11,12]. The selection crite-
ria, however, are primarily focused on low-level image quality, representative-
ness, diversity, as well as coverage. Recently, there has been an increasing inter-
est in understanding and learning various high-level image attributes, including
memorability [2,13,14,15,16], popularity [3], interestingness [4,14,5,17], aesthet-
ics [5,18,19,17], importance [20] and specificity [21]. So technically, photo triage
could be alternatively solved by assessing each of those image attributes. Al-
though these prior works are relevant, our work is distinct in a number of ways:
(1) we are interested in learning the ranking function that only runs “locally”
within the burst rather than globally across all bursts. We do not expect the
ranker to perform well between different bursts, because images coming from
different bursts may not even be comparable; (2) we are interested in learning
the “relative” attribute values. For example, both image A and B are blurry,
but A is still relatively less blurry compared with B. However, all these prior
works target for learning the attributes in an absolute manner; (3) Our ranker
learns all the latent attributes (sharpness, smile, eye open/close etc) holistically
in a weakly supervised manner while prior works all deal with each individual
attribute with full supervision. There are a few interesting works along the line
of relative attribute learning, such as [22,23,24,25]. Yet they are not designed
to rank photos for moment capture and require full supervision to train each
individual attribute independently.

Technically, the automatic photo triage system proposed by Chang etc [26]
might be the only work close to ours. However, it does not support burst photos
for moment selection, as the differences are too subtle to treat each burst session
as a “photo series” as defined in their setting. Moreover, we argue that their
proposed network design is less efficient for real-time burst moment capture, as
the ranker always need to feed the feature differences of an image pair to return
the winner, and the winner is then recursively paired with the next frame until
it loops over the whole burst. Clearly, this process can’t be easily ran in parallel.
Especially, the complexity of getting the full rank is O(n2) (n is the number
of frames within the burst). In contrast, our ranker requires only one frame as
input and directly predict its goodness score for ranking.

Learning to Rank In the domain of image retrieval [27,28,29], the ranking
functions generally associate with a query image and the goal is to rank the
relevance of the resulting images with respect to the query. Whereas in our
setting, as there is no query or reference image associated, our ranking function
has to learn the degree of image goodness that can be determined by a few latent
relative attributes .

Generative Adversarial Networks(GANs) GAN [6] and its variants have
become hot in research due to their ability of generating new samples from train-
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ing data. However, most of the prior works[6,7,8,30] focus on realistic generating
tasks, while in our work we use the concept of GAN to perform feature space
augmentation to improve a ranking model. We will discard the Generator during
the runtime.

Burst Moment Capture To our best knowledge, there is no public prior work
that directly targets for building an automatic moment capture system during
the “capture” stage. Commercial product such as Microsoft Pix claims to have
similar feature, it is however unclear how they implemented it technically. Most
popular native cameras on smart phones such as iPhone, Google Pixel support
burst capture by letting users keep pressing the shutter or holding it down for
a while. The users then navigate to the photo album and manually compare all
frames to pick the best and discard the rest ones. Although the system usually
marks the best frame(s), the results are not always satisfactory.

3 Overview

3.1 Problem Formulation

As mentioned above, we formulate the burst moment capture as a local relative
ranking problem. Precisely, given an image burst with l frames, denoted as S =
{I0, I1, ..., Il}, our goal is to find a scoring function f(x) that only takes a single
frame as input and output its corresponding goodness score for ranking, and
the best moment can be simply found by argmaxx∈S f(x). Note that, as f(x)
is trained to rank image pairs only within the same burst, it does not need to
worry about the comparison across different burst. Therefore, f(x) is forced to
learn the relative attributes that can rank one image higher than the other in
an image pair.

3.2 Data Set

Burst Sequences As there is no public burst dataset available for our purpose,
to train the ranking function f , we have to collect our own dataset. One potential
idea is to sample continuous frames from existing videos to mimic burst sequences
which seems to be fairly easy. However, we have found it nontrivial to collect a
large video set with diverse categories to approximate the distribution of generic
photographs. Furthermore, the defects existing in burst capture mode may not
necessarily be the same as in video mode. Nevertheless, we leave this as the
future work for dataset augmentation.

To start with, we hired ten people to perform the data collection work. They
were asked to always use the burst mode to capture each moment they want.
Three mobile phones including iPhone SE, Google Pixel and Samsung S8 were
used to collect bursts that range from a rich set of categories on purpose. In
total, we have collected 14,769 bursts (246,715 images). We then randomly split
the whole burst set into three subsets for training(8627), validation(1000) and
testing(5142) respectively. On average, there are 11 images from each burst.
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Fig. 2. Different head design choices that sit on top of any backbone network layer. The
dashed box in “Head-C” indicate the component “G” only exists during training. The
“Baseline” used by [26] always requires two images as input and mainly uses stacked
fully connected layers, which is not efficient during runtime

Crowd-Scouring We sampled all the image pairs from each burst and con-
ducted an Amazon Mechanical Turk(AMT) study to get pair-wise labels. Instead
of annotating the overall image quality in absolute manner, our pair-wise com-
parison encourages Turkers to pay attention to the subtle differences. We present
one image pair side-by-side each time and ask the Turkers to select the options
from (1) “The Left(Right) image is significantly better than the Right(Left)
image” (2) “The Left(Right) image is marginally better than the Right(Left)
image” (3) “They are equally good”. Given a sample pair (A,B), we use A � B
to represent that A is equal or better than B (we can switch if B is better), then
the label information Y for A � B can be defined as

Y (A,B) =


0 if A, B are equal

1 if A is marginally better

2 if A is significantly better

(1)

Each image pair was judged by 5 different Turkers, the final label was consol-
idated by averaging Y and then rounded to 0, 1, or 2. Other more advanced
consolidation method, such as the modeling probability distribution of the an-
notations, could be explored in the future work.

In summary, our dataset consists of 838,038 pairs as well as their corre-
sponding labels. Overall, around 35% of the pairs have equal relative goodness
(∆(y) == 0), which is not surprising, because when there is no camera motion
or subject motion, such as in still landscape photography, the frames within the
same burst tend to be very close to each other.
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3.3 Margin Rescaling Based Ranking Model

We propose to use a fully convolution network to learn both the discriminative
features as well as the scoring function f for ranking. As discussed in Sec. 3.1,
we need to learn f(x) that can predict the overall goodness score for an input
frame x. Although we do not have the direct score label to train a regression
function for f(x), we have the pair-wise label that collected though AMT as
discussed above. For a given pair (A,B) from the training set, let us denote xiA
(xiB) as the feature of image A (B) in the i-th pair, and ∆(yi) = Y (A,B) as
its pair-wise label ground-truth. Then we need to learn the function f so that
for f(xiA)− f(xiB) ≥ ∆(yi) if ∆(yi) 6= 0, otherwise |f(xiA)− f(xiB)| ≤ γi where
γi > 0. Then the loss for the ranking model Rφ of each pair can be defined as

Rφ(A � B,∆(y)) = max(0, ∆(yi)− (f(xiA)− f(xiB))) + |f(xjA)− f(xjB)| (2)

Note that, different from the traditional rank SVM (i.e., [22]), we use the
margin rescaling technique ([31,32]) to enforce the ranking function to respect
the degree of difference represented as ∆(y). In our experiments, we observe a
slight improvement on our current test set.

4 Attribute-Aware Head Design

Intuitively, as we have discussed before, the relative goodness of a pair (A,B) is
attributed to a combination of a few relative attributes. For example, from the
sharpness perspective, A is slightly better than B, but from the facial expression
and image composition perspectives, B is more preferred. Depending on the
degree of gap between A and B for each relative attribute, the final relative
goodness is determined by a linear combination of multiple relative attributes.
Mathematically, f(xiA)− f(xiB) = WT (xiA − xiB) =

∑
wk(xikA − xikB ), where xikA

is the k-th attribute value of image A in the i-th pair and W is the combination
weighting vector. Even though, in the context of a fully convolution network,
the attribute feature vector (i.e., xA, xB) and its weighting vector (i.e.,W ) are
naturally integrated and can be trained end-to-end, we still expect the network
design to be able to respect this simple intuition. We argue that, by adhering to
the attribute-aware design guideline, it will be more feasible to learn the intrinsic
relative attributes even with a network of small capacity and less computational
overhead, which is crucial for real-time moment capture.

One straightforward idea we could try is to customize the head of a typical
classification network to output a single score. Following the design principle of
several successful fully convolution networks, such as SqueezeNet [33], Network
in Network [34], one can apply 1x1 point-wise convolution filter first to reduce
all the feature maps into one single map with the same spatial size, and then
conduct global average pooling to get the final score, as can be illustrated as
“Head-A” in Figure 2. Alternatively, we can flip the operations by first doing
global average pooling and then conduct a 1x1 point-wise convolution (same as
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a fully connected layer) to output the final score2. Such design is also popular
in classification networks such as Xception [35] and ResNet [36]. We call this
design as “Head-B” as shown in the middle of Figure 2. Intuitively speaking,
the design of “Head-A” encourages to encode spatial features whereas “Head-B”
encodes the channel features. However, both “Head-A” and “Head-B” reduce
their spatial feature or channel feature too quickly, which potentially lead to the
loss of certain informative features that represent the relative attributes used for
subsequent comparison.

4.1 Adversarial Ranking Loss Regularization

To learn a better ranker, the network needs to output a compact set of attribute
features before reducing to one final score. Inspired by the prior works on latent
topic modeling[37] and Generative Adversarial Networks(GANs) [6,7], we pro-
pose a third head design that specially tailored for our relative ranking problem,
which is called “Head-C” as illustrated in Figure 2. Compared with “Head-A”
and “Head-B”, we first add an extra layer (Conv: C ′×1×1) to project the orig-
inal features into a low-dimensional subspace (denoted as x in Head-C of Figure
2) which can be regarded as a topic space or attribute space. Our hypothesis is
that having an intermediate layer before outputting the final score would pre-
serve more informative attribute features. We argue that one can safely assume
the final convolution layer (equivalent to a FC layer) in Head-C serves as a linear
ranker for all the attribute features from x. If we can learn discriminative and
robust attribute features, then the ranker becomes easier to train.

Another observation is, for any given image pair (A,B) sampled from a burst,
assume A � B (f(xA) ≥ f(xB)), if the learned intermediate layer in x is indeed
attribute aware, it is likely that by tweaking some attribute values in xB to get
x′B , one could flip the ranking relationship to B′ � A (f(x′B) ≥ f(xA)). An
intuitive interpretation is that if the reason why A � B is only caused by the
degree of blurriness, then one can just reduce the value of the corresponding
blurriness attribute in xB so that to flip their rank. This inspires us to synthe-
size more pairs in the attribute space as additional regularization to train the
final ranking (scoring) network. To do this, we introduce another network which
is called “G” during the training to synthesize a new attribute feature x′ for
each x, as shown in Figure 2, by asking G to output a sparse residual vector e
so that x′ = x + e. Like conditional-GAN [8], G takes both x and a randomly
generated Gaussian noise vector as input, and then feed into a MLP subnet to
output a residual vector e. During the training, we add a L1 norm loss constraint
to encourage sparsity in e to reduce the risk of over-fitting when training G. So
the enhanced x′B can be regarded as the corresponding attribute feature for a
new synthesized image B′. If G is well trained, we want to inject a new pair-wise
loss for B′ � B when training the main network in Head-C. Compared with tra-
ditional Generative Adversarial Network(GAN)[6,7,8], we use a ranker instead

2 In our current experiment, except the last scoring layer, there is always a “ReLu”
operation followed after each convolution layer.
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of a discriminator to drive how we learn the enhanced feature, so training an
accurate ranker is our final objective. The purpose of the generator is primarily
feature augmentation during the training to help the ranker, whereas in tradi-
tional GAN the generator is the major learning objective. Nevertheless, as in
traditional GAN, we train both our ranker and G iteratively. Specifically, for
each pair A � B, when we train G, we want to minimize the loss for enforcing
both f(x′B) ≥ f(xA) and the sparsity in e; when we train the ranker, in addition
to original loss for f(xA) ≥ f(xB) , we have to add two more losses that enforce
both f(x′B) ≥ f(xB) and f(xA) ≥ f(x′B). Mathematically, we will iteratively
minimize the following two losses, namely L(Rφ) and L(Gθ) for ranker and G
respectively:

min
φ
L(Rφ) = E(A,B)∼P [Rφ(A � B,∆(y)) +Rφ(B′ � B, 2) + γRφ(A � B′, 2)]

(3)

min
θ
L(Gθ) = E(A,B′)∼Gθ [Rφ(B′ � A, 2) + λ‖e‖1] (4)

where P represents the set of all real pairs in our dataset. λ is empirically
set to 0.1, γ is initialized to 1 at beginning. We will first train ranker for several
epochs without adding the synthetic pairs(i.e.,(A � B′) or (B′ � B)), and train
another few epochs for G while fixing the ranker by minimizing Equ. 4. We then
start to train both ranker and G iteratively in a more frequent way, say each 25
mini-batch iterations. In our current experiment, we only take the lower-quality
image, i.e, image B, in the pair and feed into G to get an enhanced B′. Note
that, to enforce the margin, we set ∆(y) to 2 for all pairs that involved with a
synthetic feature. After convergent, we discard G, and continue to fine-tune Rφ
by setting γ to zero, assuming B′ can be safely ranker higher than B.

We argue that our proposed “Head-C” with GAN loss is general enough that
can sit on top of any backbone, even though we are more interested in studying
its effectiveness for small backbone models considering the piratical applications.

5 Experiments

5.1 Evaluation Metric

Pair-wise Level Since we train our system using pair-wise loss, we first measure
the pair-wise level accuracy. For each pair (xAi , x

B
i ) and its ground-truth label

∆(yi) in the test set, if (f(xAi )− f(xBi )) ∗∆(yi) > 0 we regard the prediction as
correct. Note that we have not taken the pairs with equal label into evaluation,
as numerically it is infeasible to let f(xAi ) = f(xBi ). We care more about the
pairs whose ∆(yi) 6= 0.

Burst Level The goal of our system is to predict the best frame from the burst
sequence, thus the most interesting metric is to measure the ranking position
of our predicted best frame in the list that is sorted based on user’s pair-wise
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label. This motivates us to use Top-K accuracy (with K = 1, 2, 3 in our current
experiment). Intuitively, for each burst, according to the labeling, our prediction
hits the Top-K accuracy if its rank is less or equal to K in the list sorted based on
user label. Specifically, for a burst that contains l frames, the Top-K accuracy
is hit, if and only if

∑
Ai 6=Abest 1{Y (Ai, ABest) > 0} ≤ (K − 1), where Abest

represents the predicted best frame and 1{·} is the indicator function. We show
the percentage of bursts among the whole test set that hit Top-K respectively.

5.2 Implementation Detail

Our system was implemented using the Caffe framework, trained on a NVIDIA
Titan X GPU. We use standard SGD with the momentum 0.9 and weight decay
0.0005. Initial learning rate is set to 0.001, dropping by a 0.1 gamma every
12000 iterations, and a total of 100000 iterations. Each mini-batch contains 35
image pairs sampled randomly from different bursts. Aside from the layers in the
head, all other layers from the backbone network are fine-tuned from ImageNet
pre-trained weights. Following standard technique, during the training we do
random cropped sampling and augment the training set by simple mirroring.
During testing, only center cropping is used. The training typically takes 6 hours
to converge when either the learning rate drops below 1e−8 or the validation
accuracy stay the same for a few epochs.

5.3 Ablation Study

The effects of attribute-aware head design To study the efficiency and
effectiveness of “Head-C”, we need to choose a foundation layer where it sits on.
We tried three different versions of SqueezeNet [33] by varying the number of
trimmed “Fire” layers. “SqNet-4” denotes a trimmed SqueezeNet with the top
4 fire layers removed. Like-wise, “SqNet-6” only keeps the layers from bottom
to the third “Fire” layer block. We let “SqNet” denote the full SqueezeNet that
keeps the layers from bottom up to the last ‘’Fire” layer block. Clearly, because
of the max-pooling layer, the top layer of these three backbone networks are
different in terms of the shape. For example, “SqNet-4” outputs a feature map
of size [Nx256x28x28]. For each of the three SqueezeNet versions, we trained
different models for each different head. In “Head-C”, we also empirically set
4 different values for C ′ and train separate models accordingly to study the
effects of the attribute number in the intermediate layer. For this ablation3

study only, we use C+G to represent “Head-C” was trained with the adversarial
regularization loss, and use C to represent its counterpart without G.

As expected, for any attribute number C ′ and whichever backbone it sits on,
compared with “Head-A” and “Head-B”,“Head-C” only adds negligible extra
FLOPs and model size but significantly boost the performance of accuracy under
all different metrics, for both with and without GAN. This can be seen in Table
1. For example, under “SqNet-4” and when C ′ = 5, the Top-1 accuracy improves

3 Unless otherwise noted, our “Head-C” is by default alway trained with “G”



Real-time Burst Photo Selection Using a Light-Head Adversarial Network 11

Backbone Head C’ Size (MB) Top 1 Top 2 Top 3 Pairwise GFlop

ResNet-152 A 0 222.5 65.5 79.1 85.6 76.7 11.4

GoogleNet A 0 39.3 65.0 79.5 86.1 76.0 1.6

SqNet

A 0 2.8 63.9 78.6 85.4 75.6

0.29

B 0 2.8 64.1 78.2 85.2 75.2
C 5 2.8 64.2 79.1 86.0 75.6

C+G 5 2.8 65.6 80.3 86.8 77.2
C 20 2.8 64.3 79.0 85.9 75.4

C+G 20 2.8 65.9 80.3 87.0 77.2
C 50 2.9 65.3 79.6 86.5 76.2

C+G 50 2.9 65.9 80.3 86.9 77.1
C 100 3.0 64.6 78.8 85.8 76.0

C+G 100 3.0 65.7 80.0 86.9 77.4

SqNet-4

A 0 0.46 60.9 76.1 83.72 72.2

0.17

B 0 0.46 60.8 75.8 83.1 73.6
C 5 0.47 62.3 77.3 85.1 74.5

C+G 5 0.47 64.1 78.8 86.2 75.9
C 20 0.48 62.8 77.4 84.9 74.3

C+G 20 0.48 63.9 78.7 86.0 75.8
C 50 0.51 63.4 78.4 85.7 74.8

C+G 50 0.51 64.0 78.8 86.0 76.0
C 100 0.56 62.5 77.1 84.7 74.1

C+G 100 0.56 64.1 78.9 86.2 75.7

SqNet-6

A 0 0.10 60.3 75.2 83.2 72.1

0.10

B 0 0.10 60.3 75.6 83.4 72.3
C 5 0.10 60.3 75.3 83.1 72.1

C+G 5 0.10 61.4 76.4 83.8 73.1
C 20 0.11 60.9 75.9 83.7 72.3

C+G 20 0.11 61.5 76.5 84.0 73.1
C 50 0.12 61.0 75.9 83.6 73.2

C+G 50 0.12 61.9 76.8 84.2 73.5
C 100 0.15 61.1 75.9 83.5 72.4

C+G 100 0.15 62.1 76.9 84.4 73.5
Table 1. Results of the detailed ablation studies for the proposed head between With
and Without adversarial regularization (G) when varying the number of relative at-
tributes C′. All the metrics are measured as percentages (%). As can be seen, adding
G always improves the performance for all backbone and all C′, indicating the effec-
tiveness of the adversarial regularization loss when training the ranking model

3.2% and 3.3% from “Head-A” and “Head-B” to “Head-C” respectively, while
only adding 2K GFlops and 5KB model size, which is negligible compared with
the backbone.

Even without the adversarial regularization loss(implemented by G), com-
pared with Head-A and Head-B, adding the intermediate layer in Head-C seems
to be always better for whichever C ′, as shown in Table 1. This validated our
hypothesis that quickly reducing the features to one final score could loss much
useful information, indicating adding the intermediate layer to preserve the rel-
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Fig. 3. A few testing examples that hit top-1 accuracy. The left(right) column represent
the best(worst) frames for each burst respectively.

ative attributes for ranking is effective. However, a larger C ′ is not necessarily
always better.

To see how important the adversarial loss for the final performance in “Head-
C”, we trained all the counterpart models without GAN. As can be seen in
Table 1, adding the adversarial loss during the training consistently improves the
performance for all three back-bone nets and all the C ′(100,50,20,5) we tried.
For example, when C ′ is fixed to 100, the gains that come from adding G are
1.1%,1.6% and 1% for SqNet, SqNet-4 and SqNet-6 respectively. Interestingly,
when C ′ is reduced to 5, the gain by adding GAN is even more, the improvements
are 1.4%, 1.8% and 1.1% respectively. All those studies indicate that GAN seems
to be more effective for small backbone models and small number of latent
attributes(C ′) in “Head-C”.

Another interesting trend we can find is that the gain coming from the head
optimization seems to be more economic compared with the gain coming by
increasing the network capacity. For example, when C ′ = 50, “SqNet-6” with
“Head-C” (61.9%) performs even better than “SqNet-4” with “Head-B”(60.8%).
However, the later model is 4 times larger and 1.7 times more computationally
costly in terms of FLOPS. Similarly, “SqNet-4” with “Head-C” also performs
slightly better than the full“SqNet” with “Head-A” (64.1% VS 63.9%), but again
the later model is 4 times larger and 1.7 times more computationally costly. This
may indicate that attribute-aware head design indeed encodes more intrinsic
relative attributes that make the ranking function easier to learn.

The effects of back-bone For big networks such as GoogleNet[38] and ResNet[36],
it seems to be infeasible to make it real-time on mobile devices not to say its
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Fig. 4. Three different clusters representing relative attributes for sharpness, eye
opened, and human pose respectively. Under each image pair (left is the best, right is
the worse), we visualize the attribute difference gap histogram.

huge model size(i.e., 222M for ResNet-152). Hence, our main focus is to study
the performance of our design on small backbone network such as SqueezeNet.
Nevertheless, we still train both GoogleNet and ResNet as the backbones for
comparisons. As shown in Table 1, when using the same “Head-A”, GoogleNet
and ResNet indeed hit higher accuracy compared with SqNet-4 and SqNet-6, the
gain however is very minor given the capacity difference. However, a SqNet with
“Head-C” can even achieve a higher accuracy than ResNet-152 with “Head-A”,
even though SqNet is only 50x smaller. We have noticed that, a deeper network
does not always generate better performance of accuracy for our photo ranking
problem. We argue that, unlike image classification task, relative attribute learn-
ing for ranking may not require very fine-grained features to distinguish between
a cat versus a dog. So a very large capacity network, such as ResNet-152 may
have high risk of over-fitting. However, when the capacity of backbone is less
than a threshold, for example 3M for SqNet, the depth of backbone starts to be
relatively important, for example, SqNet-6 is almost 4% worse than SqNet. We
argue that, 4M could be a reasonable model size for an camera application on
mobile devices, therefore, it is more critical to design a novel head to improve
the performance for the small backbone models, which is exactly our focus in
this work.
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Model
Size
(MB)

Pairwise Flop

Baseline [26] VGG-16 514.2 73.2 15.5

Ours
VGG-16∗+C 47.2 73.1 15.5
SqNet-4+C 0.51 72.9 0.17

Table 2. Comparison with [26] on their dataset. VGG-16∗ represents a trimmed VGG
with all fully connected layers removed. Note that, our model is about 90x smaller than
the trimmed VGG net and 1000x smaller than the baseline model used in [26].

What features we learned? Figure 1 shows one typical burst as well as the
ranking result predicted by our model. Figure 3 shows a gallery of testing results
where our predictions all hit the Top-1 accuracy. For the sake of comparison, we
only show the best and worse frame within each burst. Clearly, our model favors
more opened eyes vs. closed eyes, more saliency subject (like the girl), better
body pose (i.e., kid), and sharpness. We chose SqNet-4, with C ′ = 5 in “Head-
C” as the final model, and visualize the attributes difference gap histogram for
image pairs of test set. In Figure 4, we show a few such examples, from where we
can find a clear clustering effect, i.e, the fifth dimension in the attribute space
looks like focuses more on the attribute of eye openness, while the second and
third dimension focus more on sharpness and human pose respectively.

5.4 Comparison with Prior Work

In photo triage work [26], they have shown that CNN-based relative learning is
very efficient, and can beat all the competitors including the ones that rely on
hand-crafted features. So we only chose to compare with their CNN approach.

Although they target a different yet related problem and they do not support
burst session data, technically, the approach can still be used for burst photo
ranking problem. Their head design can be seen as the “baseline” head in Figure
2. Although, the backbone is shared, the ranking always needs to take a feature
vector pair as input to get the result, which may not be very efficient for real-
time capture, as we cannot run all the frames within a burst in parallel. The time
complexity of getting the full rank is O(N2). Whereas in our design, during the
runtime, each image can be run independently to get the final score. Following
their design principle, we conducted side-by-side comparison by training another
model that sits on “SqNet-4” and using their header that shows in Figure 2. On
our dataset, we get 62.0% Top-1 accuracy, which is 2.1% worse compared with
our design “Head-C” as shown in Table 1.

We further trained another two models with our “Head-C” that sits on a
trimmed VGG (with FC layers removed) and “SqNet-4” respectively on their
Triage dataset. Compared with their VGG-16 baseline, our proposed model is up
to 1000x smaller in model size and 90x faster, with relatively the same accuracy,
as shown in Table 2. This again indicates that our design is both effective and
efficient, and is general for photo ranking beyond burst data.
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Fig. 5. Comparison with existing best of burst algorithms

5.5 Comparison with Native Cameras

We further conducted an informal user study though comparing our model with
the built-in best of burst algorithm in Sam-sung Galaxy S8 Plus, Google Pixel
and iPhone SE respectively We used the burst capture mode in the system
camera app to capture around 200 bursts of ten to thirty frames. Post processing
on these devices’ native camera application picks the best frame from the burst
automatically. We ran the same bursts through our technique and picked the
top scoring frame. To quantify the quality of the results of our technique, we
conducted a five person blind A/B test to find if a user likes the system default
best frame or the best frame from our technique. We averaged the responses
per image-pair and rounded to the nearest option (better, equal or worse). As
shown in Figure 5, we see that results from our technique are clearly preferred by
users when compared to the native best of burst algorithm, on both Android and
iOS. We noticed that the native algorithms mostly take into account image blur
without accounting for facial expressions and pose. We also deployed our system
into both iPhone 7 and Google Pixel phones without aggressively engineering
low level optimization. For the model “SqNet-4” and “Head-C”, the runtime
only takes 13ms on iPhone 7 and about 26ms on Google Pixel phone.

6 Conclusion

In this work, we have presented a real-time burst moment capture system based
on deep learning. We formulate the problem as a relative learning problem for
ranking. Currently, we consolidate the annotation of human label by simple
averaging. Thus we only expect the model to learn general preferences. As a
future work, one may consider to apply advanced techniques to learn personalized
models for photo ranking.
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