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Taking a Look at Small-Scale Pedestrians and
Occluded Pedestrians

Jiale Cao, Yanwei Pang, Senior Member, IEEE, Jungong Han, Senior Member, IEEE, Bolin Gao,
and Xuelong Li, Fellow, IEEE

Abstract—Small-scale pedestrian detection and occluded
pedestrian detection are two challenging tasks. However, most
state-of-the-art methods merely handle one single task each time,
thus giving rise to relatively poor performance when the two
tasks, in practise, are required simultaneously. In this paper,
it is found that small-scale pedestrian detection and occluded
pedestrian detection actually have a common problem, i.e.,
inaccurate location problem. Therefore, solving this problem
enables to improve the performance of both tasks. To this end,
we pay more attention to the predicted bounding box with
worse location precision and extract more contextual information
around objects, where two modules (i.e., location bootstrap
and semantic transition) are respectively proposed. The location
bootstrap is used to re-weight the regression loss, where the loss
of predicted bounding box far from the corresponding ground-
truth is up-weighted and the loss of predicted bounding box near
the corresponding ground-truth is down-weighted. Meanwhile,
the semantic transition adds more contextual information and
relieves the semantic inconsistency of skip-layer fusion. Since the
location bootstrap is not used at the test stage and the semantic
transition is light-weight, the proposed method does not add
much extra computational costs during inference. Experiments
on the challenging Citypersons and Caltech datasets show that
the proposed method outperforms the state-of-the-art methods on
the small-scale pedestrians and occluded pedestrians (e.g., 5.20%
and 4.73% improvements on the Caltech).

Index Terms—Small-scale pedestrians, occluded pedestrians,
location bootstrap, and semantic transition.

I. INTRODUCTION

Pedestrian detection aims to classify and locate pedestrians
in a given image, which can be applied to self-driving cars,
human-computer interaction, video surveillance, etc. In recent
few years, pedestrian detection based on deep convolutional
neural networks has achieved immense progress [22], [18],
[43], [26], [45]. Despite the great success, small-scale pedes-
trian detection and occluded pedestrian detection are still very
challenging. Thus, improving detection performance of small-
scale pedestrians and occluded pedestrians is very important
and necessary.

To solve small scale or occlusion problems on pedestrian
detection, many attempts have been made by the researchers in
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Fig. 1. The histogram of pedestrian height and visible ratio. It can be seen
that many occluded pedestrians are under 100 pixels tall, which can be seen
as small-scale pedestrians. It means that small-scale pedestrians and occluded
pedestrians are related in some degree.

the past few years. The related methods can be summarized as
follows: (1) small scale aspect. Some methods treat the objects
at different scales as different pedestrian subcategories and
detect them separately [23], [51], [5]. Some other methods use
the features of large-scale objects to guide the feature learning
of small-scale objects [28], [25], [40]. (2) occlusion aspect.
Most methods integrate some deep part models to improve
occluded pedestrian detection [47], [56], [56]. Alternatively,
Repulsion Loss [49] gathers the proposals belonging to the
same object for crowded pedestrian detection.

However, these methods merely focus on either small-scale
problem or occlusion problem on pedestrian detection. We
argue that small-scale pedestrians and occluded pedestrians
are related in some degree. Fig. 1 plots the histogram of
pedestrian height and visible ratio. It can be seen that many
occluded pedestrians belong to small-scale pedestrians. Mean-
while, small-scale pedestrians and occluded pedestrians both
lack visual information in some degree such that accurately
localizing them becomes problematic. When the evaluation
IoU threshold on Citypersons [54] varies from 0.5 to 0.3, we
find that the miss rates of FPN on the small-scale subset and
occlusion subset of Citypersons have 8.8% and 7.6% drops.
It means that many small-scale pedestrians and occluded
pedestrians can be found but not accurately located, which
is called inaccurate location problem.

To solve the above problem, it is believed that more at-
tention to the predicted bounding boxes with worse location
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precision and more contextual information extracted around
objects are useful. As a result, we propose two modules, i.e.,
location bootstrap and semantic transition, for both small-scale
and occluded pedestrian detections. The location bootstrap
pays more attention to the predicted bounding boxes having
relatively worse location precision. Specifically, the averaged
IoU between bounding boxes and their corresponding ground-
truths is calculated at each training iteration. After that, the
loss of bounding box which has the IoU over the averaged
IoU is down-weighted, while the loss of bounding box having
the IoU below the averaged IoU is up-weighted. The semantic
transition model uses the large kernel convolution as the lateral
connection of skip-layer fusion to extract more contextual
information and relieve the semantic inconsistency of skip-
layer fusion. The contributions and the metrics of this paper
are summarized as follows:

(1) We point out an inspiring characteristic of small-scale
pedestrian detection and occluded pedestrian detection. That
is, many small-scale pedestrians and occluded pedestrians can
be found but not accurately located.

(2) Inspired by the above characteristic, the location boot-
strap and semantic transition modules are proposed. Loca-
tion bootstrap down-weights the regression loss of bounding
box with high location precision and up-weights the loss of
bounding box with low location precision. Semantic transition
module uses the large kernel convoltion to extract more
contextual information and relieves the semantic inconsistency.

(3) Experiments on the Citypersons [54] and Caltech [15]
datasets show the effectiveness of proposed methods. Mean-
while, the proposed method does not add much computational
costs.

The rest of this paper is organized as follows. The related
works are given in Section II. After that, the proposed method
is introduced in Section III. Then, experiments are shown in
Section IV. Finally, Section V concludes this paper.

II. RELATED WORKS

With the success of deep Convolutional Neural Networks
(CNN), pedestrian detection has achieved great progress in
recent few years. In this section, a review of deep pedestrian
detection is firstly given. Afterwards, we focus on explaining
the improvements on small-scale pedestrian detection and
occluded pedestrian detection particularly.

A. A review of pedestrian detection

Pedestrian detection can be divided into two main classes:
handcrafted features based methods and CNN based methods.
Usually, handcrafted features based methods use the hand-
crafted features and the shallow classifiers (e.g., AdaBoost
and SVM) to learn pedestrian detectors. In 2009, Dallár et al.
[14] proposed Integral Channel Features (ICF), which firstly
converts the original RGB image to ten feature channels (i.e.,
histogram of gradients, gradient magnitude, and LUV color
channels) and secondly uses Cascade AdaBoost to learn the
detector based on the features extracted from the ten channels.
Based on ICF [14], many variants including the local features

(e.g., ACF [13], Checkerboards [55], and LDCF [38]) and the
non-local features (e.g., NNNF [7]) have been proposed.

In the recent few years, CNN based methods have achieved
great success on object detection and pedestrian detection
[53], [4], [31], [59], [1], [2], [3]. At first, CNN [26], [45] is
simply acted as the feature extractor for pedestrian detection,
which is fed to the shallow classifier. For example, Yang et
al. [50] proposed to use the convolutional channel features to
replace the filtered channel features. Cao et al. [8] integrated
the handcrafted feature channels and each layer of CNN into
multilayer feature channels. With the success of Faster RCNN
[43] on general object detection, many end-to-end CNN based
methods have been also proposed on pedestrian detection.
For example, Zhang et al. [54] proposed AdaptedRCNN by
modifying some network settings to better detect pedestrians.
Mao et al. [37] proposed to add semantic segmentation task to
help improve pedestrian detection. Recently, some one-stage
methods (e.g., ALFNet [36], GDFL [27], and OHNH [39])
have been also proposed for pedestrian detection.

Contextual information is important for object detection
and pedestrian detection. Zeng et al. [52] proposed a gated
bi-directional CNN to adaptively model the interactions of
contextual and local visual cues. Wang et al. [48] proposed
to use two different branches to respectively extract the body
semantic and contextual information for pedestrian detection.
Li et al. [30] proposed a novel attention module to exploit
the better context. Li et al. [29] proposed a generic context-
mining RoI operator to extract good contextual information
around the proposals. To refine the proposals, Chen et al.
[10] proposed a contextual refinement module to aggregate
the rich contextual information. These methods mainly extract
the contextual information of ROI proposals, but do not extract
context of the feature maps so that the semantic gap of feature
pyramid network [32] is still there. Contextual information is
also useful in segmentation. For example, the large kernel and
dilated convolutions [41], [9] are proposed to extract multi-
scale context.

B. Small-scale pedestrian detection
Compared with large-scale pedestrians, small-scale pedestri-

ans are relatively blurred and noisy. To improve the detection
performance of small-scale pedestrians, many attempts have
been made by the researchers. Some researchers proposed
to respectively detect the pedestrians at different scales. For
example, Li et al. [23] proposed to use two subnetworks
to respectively detect small-scale pedestrians and large-scale
pedestrians. Similarly, Yang et al. [51] proposed scale depen-
dent ROI pooling for multi-scale object detection. Cai et al.
[5] proposed to use the features of different layers to detect the
objects at different scales. To enhance the feature semantics
of different output layers, Lin et al. [32] proposed to combine
the weak semantic features with the strong semantic features
by top-down structure. Among the single-stage methods, SSD
[35] and YOLOv3 [42] use the layers of different spatial
resolutions to detect objects at different scales. DSSD [17]
uses the top-down structure to enhance the features of SSD.
Meanwhile, some researchers proposed to narrow the differ-
ence between the features of pedestrians at different scales. For
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Fig. 2. Some examples of inaccurate location on small-scale pedestrians or
occluded pedestrians. The number in the image means the overlap between
detected bounding box (blue) and ground-truth (red). Namely, many small-
scale pedestrians and occluded pedestrians can be found but not well located.

example, based on the technique of Generative Adversarial
Networks (GAN) [19], Li et al. [28] proposed to learn the
residual between the features of small-scale objects and the
features of large-scale objects. Kim et al. [25] proposed a scale
aware network, which maps the features at different scales into
a scale-invariant subspace. Except for these methods, Song et
al. [46] proposed to detect small-scale pedestrians by using
somatic topological line localization.

C. Occluded pedestrian detection

Occluded pedestrian detection is also challenging due to
the visual information loss in object parts. To solve occlusion
problem, the researchers proposed to pay more attention to the
visible parts of objects [47], [56], [57], [39]. For example, Tian
et al. [47] proposed to train multiple deep part detectors and
integrate their detection scores together by the linear SVM.
Zhang et al. [56] proposed a part occlusion-aware region of
interest (PORoI) pooling to detect occluded pedestrians. Zhou
et al. [60] proposed to use the visible part label to reduce
the effect of occlusion and help improve occluded pedestrian
detection. Zhang et al. [57] proposed to apply the channel-wise
attention to handle different occlusion patterns for pedestrian
detection. Alternatively, Wang et al. [49] proposed a repulsion
loss which can better gather the candidate proposals belonging
to the same object in the crowded scenes.

III. THE PROPOSED METHOD

In this section, we give a detailed description about the
proposed method. Firstly of all, the motivation and the overall
architecture of proposed method are given. After that, two
main modules (i.e., location bootstrap module and semantic
transition module) are described in detail.

A. Overview

Motivation: Small-scale pedestrian detection and occluded
pedestrian detection are two challenging tasks. We argue that

small-scale pedestrians and occluded pedestrians are very
related. Based on Fig. 1, it can be seen that many occluded
pedestrians belong to small-scale pedestrians. As a result,
solving the common problem of small-scale pedestrians and
occluded pedestrians can largely improve detection perfor-
mance of pedestrian detection.

In fact, the visual information on both small-scale pedestri-
ans and occluded pedestrians is not as adequate as the normal
pedestrians, so that it is difficult to accurately detect them.
By loosening the evaluation metric between bounding boxes
and ground-truth from 0.5 to 0.3, the detection performance
of many small-scale pedestrians and occluded pedestrians
on Citypersons [54] both have about 8% improvement. It
means that to some degree many small-scale pedestrians and
occluded pedestrians can be found but not accurately located.
For simplification, this problem is called inaccurate location
problem. Fig. 2 further shows some examples of inaccurate
location on small-scale pedestrians or occluded pedestrians.

Solution: To solve the location inaccuracy problem and
improve pedestrian detection, we think that two aspects can be
considered. (1) More attention should be paid to the predicted
bounding boxes with relatively worse location precision, which
aims to force them learn more accurate locations. Unlike
cascade regression [24], [6], the proposed method does not
need extra network modules. (2) More contextual information
around the objects should be extracted. Because small-scale
pedestrians and occluded pedestrians have limited visual in-
formation, context can provide more useful features for the
better location and classification of small-scale pedestrians
and occluded pedestrians. Based on the above observation and
analysis, we propose two modules (i.e., location bootstrap and
semantic transition) for pedestrian detection.

Architecture: As a successful architecture of object de-
tection, Feature Pyramid Network (FPN) [32] is effective to
solve scale variance problem. Thus, FPN is chosen as the
basic architecture of the proposed method. The main process
of FPN is introduced as follows: given an input image, it
firstly goes through a backbone network (e.g., VGG16 [45] and
ResNet50 [21]) to generate the feature maps of different spatial
resolutions. After that, a top-down structure with the skip-layer
fusion is used to generate the output feature maps which have
strong semantics. Finally, object proposals are firstly generated
by the multiple output feature maps and secondly classified by
Fast RCNN headnetwork.

Based on FPN, the framework of proposed method is shown
in Fig. 3, which incorporates two new modules (i.e., location
bootstrap module and semantic transition module). The loca-
tion bootstrap module is added after the ROI pooling layer,
which is used to re-weight the regression loss of candidate
proposals at the training stage. Specifically, it up-weights
the regression loss of bounding box which has low location
precision and down-weights the regression loss of bounding
box which has high location precision.

To extract more contextual information around the objects,
the semantic transition module uses the large kernel convolu-
tion as a lateral connection for skip-layer fusion. Meanwhile, it
relieves the semantic inconsistency of two input feature maps
in skip-layer fusion.
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Fig. 3. The framework of proposed method for object detection based on feature pyramid network, which consists of two new modules (i.e., the location
bootstrap and semantic transition module).

Algorithm 1 The process of location bootstrap.
Input:

The candidate object proposals (i.e., Bo
1 , B

o
2 , ..., B

o
N ) gen-

erated by RPN, N is the number of bounding boxes;
The ROI feature map of each bounding box;
The ground-truth of each bounding box (i.e.,
G1, G2, .., GN ) ;

Output:
The updated weight of the regression loss for each bound-
ing box;

1: Generate the predicted offset for each proposal Bo
i by Fast

RCNN head-network with ROI feature map;
2: Calculate the predicted bounding box Bp

i for each pro-
posal Bo

i ;
3: Calculate the overlap Oi (i.e., intersection over union)

between predicted bounding box Bp
i and corresponding

ground-truth Gi for each proposal Bo
i ;

4: Calculate the averaged overlap by the overlaps between
candidate proposals and corresponding ground-truths;

5: Update the loss weight of each proposal for training.

B. Location Bootstrap Module

Because small-scale pedestrians and occluded pedestrians
are much harder to be located very well, we argue that it should
pay more attention to the bounding boxes with worse location
precision during training. Thus, the location bootstrap module
is proposed to re-weight the regression loss of bounding boxes,
which up-weights the loss of the bounding box far from
the corresponding ground-truth and down-weights the loss
of the bounding box near the corresponding ground-truth at
the training stage. As shown in Fig. 3, a location bootstrap
module is added after the ROI pooling layer. Though the idea
is similar to OHEM [44] and Focal Loss [34], our method
is different from them. OHEM [44] and Focal Loss [34] pay
more attention to the hard samples which are difficult to be
well classified. Different from OHEM and Focal Loss, our
method pays more attention to the samples which are difficult
to be accurately regressed.

The detailed process of location bootstrap at each training
iteration can be summarized in Algorithm 1. Given the can-
didate object proposals (i.e., Bo

1 , Bo
2 ,..., Bo

N ) generated by
Region Proposal Network (RPN), Fast RCNN head-network
can output the regression offsets of all the candidate proposals

based on the ROI features. After that, the predicted bounding
boxes of candidate proposals can be calculated. With the
predicted bounding boxes Bp

i and their corresponding ground-
truths Gi, the overlap Oi between the predicted bounding box
Bp

i and corresponding ground-truth Gi can be calculated as
follows:

Oi =
Bp

i

⋂
Gi

Bp
i

⋃
Gi
, i = 1, ..., N, (1)

where N is the number of predicted candidate proposals in a
mini-batch which belong to objects. The mini-batch contains
the proposals of all the images at each iteration. Then, the
averaged overlap Om over a mini-batch can be written as
follows:

Om =
1

N

N∑
i=1

Oi. (2)

With the averaged overlap Om and the overlaps between
the predicted bounding boxes and corresponding ground-truths
(i.e., O1, O2,..., ON ), the updated weight of each bounding
box wu

i can be finally calculated as

wu
i =

2

1 + exp(−α× (Om −Oi))
, (3)

where α is a parameter which is set as 2.0 by cross-validation.
If the predicted bounding box is far from corresponding
ground-truth, then Oi < Om and wu

i > 1. As a result, the loss
will be up-weighted. If the predicted bounding box is near the
corresponding ground-truth, then Oi > Om and wu

i < 1. As
a result, the loss will be down-weighted.

Because the location bootstrap module is used to change
the weight of the regression loss, it can be removed at the test
stage. As a result, the proposed module does not increase any
computational costs at the test stage.

C. Semantic Transition Module

Because small-scale pedestrians and occluded pedestrians
lack some useful visual information, we think that context
features around the objects become more import. Though FPN
[32] incorporates some contextual information by the skip-
layer fusion (see Fig. 4(a), we argue that it is still not good
enough. On the one hand, using a simple 1× 1 convolutional
layer as skip-layer connection to combine the feature maps
with weak semantics and those with strong semantics exists
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Fig. 4. The structure of semantic transition module. (a) Skip-layer fusion in FPN, (b) Skip-layer fusion in our semantic transition module, which aims to
extract more contextual information.

the semantic inconsistency. On the other hand, the contextual
information around the objects are not adequately added.

To alleviate semantic inconsistency and enrich contextual in-
formation, semantic transition module is proposed, which uses
the separable large-kernel convolution as lateral connection.
Fig. 4(b) shows the skip-layer fusion by using the semantic
transition module. Firstly, the feature maps of weak semantics
go through three different branches. The top branch goes
through a 3 × 3 convolutional layer. The middle and bottom
branches firstly share a 1×1 convolutional layer to reduce the
channel number. After that, the middle branch goes through a
1×k convolutional layer and a 1×k convolutional layer, and
the bottom branch goes through a k × 1 convolutional layer
and a 1× k convolutional layer. In this paper, k = 7. Finally,
the feature maps generated by three branches are concatenated
together and fed to a 1× 1 convolutional layer for final skip-
layer fusion. The top branch of 3 × 3 convolution aims to
extract local features and two bottom branches of large kernel
convolutions are used to extract more contextual information.
To reduce computational cost and network parameters, sepa-
rable large kernel covolution is used.

Compared to the simple skip-layer fusion in Fig. 4(a) of
FPN, the proposed semantic transform model in Fig. 4(b) can
relieve the semantic inconsistency of skip-layer fusion and add
more contextual information. Meanwhile, with the separable
convolution, it does not increase much computational cost.

IV. EXPERIMENTS

In this section, some experiments on two famous pedestrian
datasets (i.e., the Citypersons dataset [54] and the Caltech
pedestrian dataset [15]) are conducted to demonstrate the
effectiveness of proposed methods and compare with some
state-of-the-art methods.

A. Datasets and Evaluation

The Citypersons dataset [54] is an extended pedestrian
dataset by using the instance information of the Cityscapes
benchmark [11], which consists of three subsets (i.e.,
trainval, val, and test). The trainval set has 2975
images for training, the val set has 500 images for ablation
study, and the test set has 1525 images for performance
evaluation.

The Caltech pedestrian dataset [15] is a very famous pedes-
trian dataset, which is captured on the vehicle car in the urban

TABLE I
ABLATION EXPERIMENTS ON CITYPERSONS. R MEANS THE REASONABLE

SET, RS MEANS THE SMALL SET, HO MEANS THE HEAVY OCCLUSION
SET, R+HO MEANS THE REASONABLE+HEAVY SET, AND A MEANS THE

ALL SET.

method training pedestrians R RS HO R+HO A
FPN [32] h50o5: h>50, occ<0.5 14.0 20.4 50.2 31.0 42.9
+LB h50o05: h>50, occ<0.5 13.0 19.7 49.3 29.8 42.0
+ST h50o05: h>50, occ<0.5 13.7 19.6 48.9 30.2 42.1
LBST h50o05: h>50, occ<0.5 12.6 18.6 48.7 29.1 41.5

FPN [32] h30o05: h>30, occ<0.5 14.9 19.6 50.3 31.5 40.8
+LB h30o05: h>30, occ<0.5 14.0 19.1 49.3 30.4 39.8
+ST h30o05: h>30, occ<0.5 14.3 18.7 49.0 30.2 40.1
LBST h30o05: h>30, occ<0.5 13.6 18.6 48.2 29.7 38.8

street. It consists of 11 videos, where the first 6 videos are used
for training and the last 5 videos are used for test. To enlarge
the training data, the training images are densely sampled per
three frames from the training videos. Thus, there are 42782
images for training. The standard test images are sampled per
thirty frames from the test videos. Thus, there are 4024 images
for performance evaluation.

Evaluation: For performance evaluation on the Cityscapes
[54] and Caltech [15] pedestrian datasets, the log-averaged
miss rate under FPPI=[0.01,1] is used. FPPI means false
positive per image.

B. Experiments on the Citypersons dataset

Settings: The backbone is the famous ResNet50 [20] which
is pre-trained on ImageNet [12]. The total number of iterations
is 30k. The initial learning rate is 0.003. After that, it decreases
by a factor of 10 at the 20k and 25k iterations. At the test stage,
four different evaluation metrics are both used. Specifically,
the reasonable (50-∞ pixels tall and 0-0.35 occ), small
(50-75 pixels tall and 0-0.35 occ), heavy (50-∞ pixels tall
and 0.35-0.8 occ), and all (20-∞ pixels tall and 0-0.8 occ)
sets are used.

Ablation: Table I demonstrates the effectiveness of the
proposed two modules (i.e., location bootstrap and semantic
transition). The baseline FPN [32] uses the 1×1 convolution as
the skip-layer connection. At the training stage, the pedestrians
at least 50 pixels tall and less than 50% occlusion (h50o05)
and pedestrians at least 30 pixels tall and less than 50%
occlusion (h30o05) are respectively used. Based on Table I, it
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(a) some missed positives can be detected. 

(b) some false positives can be removed. 

FPN zoom in LBST zoom in 

Fig. 5. Detection results of FPN and the proposed LBST. It can be seen that the proposed method can not only detect some missed positives, but also remove
some false positives.

TABLE II
RESULTS BY TRAINING AND TESTING ON ALMOST THE ALL DATA.

FPN +LB +ST LBST
44.3 43.5 43.6 43.2

is concluded that (1) Both location bootstrap (LB) module and
semantic transition module (ST) can improve detection perfor-
mance for small-scale pedestrians and occluded pedestrians.
For example, using h30o05, the proposed method with LB
outperforms the baseline (FPN) by 0.5% and 1.0% on RS and
HO; the proposed method with ST outperforms FPN by 0.9%
and 1.3% on RS and HO. (2) When integrating LB and ST
together, the proposed method can further improve detection
performance. For example, using h50o05 (or h30o05), the
proposed LBST outperforms FPN by 1.9% (or 1.8%) on
R+HO. (3) We also calculate the performance on RS+HO.
Using h50o05, the miss rates of FPN and LBST are 40.9%
and 39.2%. Namely, LBST outperforms FPN by 1.7%.

By using almost all available data in the training set and the
test set, Table II further compares the miss rates of different
methods. It can be seen that our proposed methods also
outperform FPN.

The weights in location bootstrap are calculated by Eq. 3.
For simplicity, it is called as the averaged scheme. Another
simple and direct way is using a linear and fixed scheme

TABLE III
RESULTS OF DIFFERENT LOCATION BOOTSTRAP SCHEMES.

the baseline the fixed schme the averaged scheme
31.0 30.1 29.8

(i.e., wi = 2.5 − 2 ∗ Oi). For simplicity, it is as the fixed
scheme. Table III compares the two schemes on R+HO by
using h50o05. It is seen that the two schemes are both better
than the baseline FPN and the averaged scheme is a little better
than the fixed scheme. Thus, the averaged scheme is used.

Parameter settings There are some hyper parameters in
our methods. (1) the size of large kernel. When k = 3, 5, 7, 9,
the miss rates on R+HO is 30.8%, 30.6%, 30.2%, and 30.3%.
Thus, k = 7 is used. (2) multiple branches of different large
kernel. When using three branches with the large kernel sizes
of 3,5,7, the miss rate on R+HO is 30.0%, which is a little
improvement. For simplicity, we do not use multiple branches
of different large kernel. (3) α in location bootstrap. When
α = 1.0, 2.0, 3.0, the miss rates on R+HO is 30.4%, 29.8%,
and 30.0%. Thus, α = 2 is used.

Qualitative results: Fig. 5 shows some qualitative detection
results of FPN [32] and the proposed LBST by trained on
h50o05. Fig. 5(a) shows two examples that the proposed LBST
can detect some missed small-scale pedestrians and occluded
pedestrians. For example, in the second row, LBST can detect
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TABLE IV
COMPARISON WITH SOME STATE-OF-THE-ART METHODS ON THE CITYPERSONS VAL SET. h MEANS THE PEDESTRIAN HEIGHT, occ MEANS THE

PEDESTRIAN OCCLUSION RATIO. R MEANS THE REASONABLE SET, RS MEANS THE SMALL SET, HO MEANS THE HEAVY SET, R+HO MEANS THE
REASONABLE+HEAVY SET, AND A MEANS THE ALL SET.

method scale training pedestrians R RS HO R+HO A
FRCNN+ATT [57] ×1.0 h50o035: h>50, occ<0.35 15.9 - 56.6 38.2 -
RepLoss [49] ×1.0 h50o035: h>50, occ<0.35 13.2 22.3 56.9 31.8 44.5
ORCNN [56] ×1.0 h25o05: h>25, occ<0.5 12.8 - 55.7 - -
ALFNet [36] ×1.0 h50o1: h>50, occ<1.0 12.0 - 51.9 - -
TTL(MRF) [46] ×1.0 - 14.4 - 52.0 - -
LBST ×1.0 h50o035: h>50, occ<0.35 12.8 18.8 53.7 30.6 43.2
LBST ×1.0 h50o05: h>50, occ<0.5 12.6 18.6 48.7 29.1 41.5
LBST ×1.0 h50o07: h>50, occ<0.7 13.4 19.6 42.0 27.9 40.7
LBST ×1.0 h30o05: h>30, occ<0.5 13.6 18.7 48.2 29.7 38.8
LBST ×1.0 h30o07: h>30, occ<0.7 13.3 19.5 43.7 28.0 38.1

AdaptedRCNN [54] ×1.3 h50o035: h>50, occ<0.35 12.8 - - - -
RepLoss [49] ×1.3 h50o035: h>50, occ<0.35 11.6 - 55.3 - -
ORCNN [56] ×1.3 h25o05: h>25, occ<0.5 11.0 13.0 51.9 29.4 39.4
PDOE+RPN [60] ×1.3 h50o07: h>50, occ<0.7 11.2 47.4 44.2 - 43.4
LBST ×1.3 h50o035: h>50, occ<0.35 11.3 15.0 50.5 28.8 40.8
LBST ×1.3 h50o05: h>50, occ<0.5 11.4 14.3 45.2 27.1 39.3
LBST ×1.3 h50o07: h>50, occ<0.7 11.2 15.9 38.9 24.8 37.7
LBST ×1.3 h30o05: h>30, occ<0.5 11.3 14.1 42.9 26.9 35.3
LBST ×1.3 h30o07: h>30, occ<0.7 11.4 15.4 39.9 25.6 34.6

(a) 

FPN 

(b) (c) (d) 

LBST 

Input 

Fig. 6. Bounding locations of FPN and the proposed method, where the
number is the IoU between ground-truth (red) and bounding boxes (blue). (a)
The first row is image samples. (b) The second row is the location of baseline.
(c) The third row is the location of the proposed method.

two small-scale pedestrians which are missed by FPN. Fig.
5(b) shows two examples that the proposed LBST can remove
some false positives. For example, in the second row, our
LBST can remove the false positive which are mistakenly
recognized as a pedestrian by FPN.

Accurate location: Moreover, Fig. 6 further shows that
some pedestrians can be accurately detected by the proposed
LBST but not accurately located by FPN [32]. The first row is
the input images, the second row is the location results of FPN,
and the third row is the location results of the proposed LBST.
For example, in the first column, the occluded pedestrian
detected by FPN has 37% overlap with the ground-truth, while
it detected by the proposed LBST has 76% overlap with the
ground-truth.

   

 

   

 

    

   

 

    

    

    

 

 

Input 

  

FPN 

  

LBST 

  

 (a) (b) 

 

 

 

 

 

Fig. 7. Feature visualization of FPN [32] and the proposed methods. (a)
The first row is the input images. (b) The second row is the feature maps of
baseline. (c) The third row is the feature maps of the proposed method.

Feature Visualization: To better demonstrate why the
proposed method can improve detection performance, Fig.
7 visualizes the features of FPN [32] and the proposed
LBST. The feature map which has the largest response on
the pedestrians is chosen. The first row is the input images,
the second row is the feature maps of baseline, and the third
row is the feature maps of the proposed LBST. Compared with
the feature maps of FPN, the feature maps of proposed LBST
are less noisy. The reason is that semantic transition module
contains more contextual information and enhances the feature
semantic. As a result, the features are more robust.

Comparisons with others: Finally, Table IV compares
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Fig. 8. Results on the Caltech test set. For left to right, miss rates on the medium (M), heavy (HO), and all (A) sets are shown. ’-City’ means that the
extra Citypersons dataset is used for training.

the proposed LBST with some state-of-the-art methods (i.e.,
AdaptedRCNN [54], FRCNN+ATT [57], TTL [46], RepLoss
[49], ORCNN [56], and ALFNet [36]) on the Citypersons val
set. Because these state-of-the-art methods do not use the same
settings for choosing the positive pedestrians at the training
stage, the detection performance of the proposed method at
the five different subsets are given. Namely, the pedestrians of
h>50, occ<0.35 (called h50o035), the pedestrians of h>50,
occ<0.5 (called h50o05), the pedestrians of h>50, occ<0.7
(called h50o07), the pedestrians of h>30, occ<0.5 called
h30o05, and the pedestrians of h>30, occ<0.7 (called h30o07)
are used for training. It can be seen that (1) The proposed
methods achieve best performance on the HO, R+HO, and A
with the similar settings. For example, with similar settings
at the scale ×1.0, LBST outperforms RepLoss by 0.4% and
3.2% on R and HO. With the similar setting at scale ×1.3,
LBST outperforms ORCNN by 4.8% on HO and outperforms
PDOE+RPN by 5.3% on A. (2) On the R and RS, the proposed
method almost achieves state-of-the-art performance with the
similar settings, which is slightly inferior to ORCNN. Please
note that ORCNN uses the smaller-scale training pedestrians
(h>25) and dense anchor settings [58].

Effect of the training pedestrians: The state-of-the-art
methods use the different settings to choose the positive
pedestrians during training and do not discuss the effect of
different settings. To help us better understand their effects
on final detection performance, it is necessary and useful
to discuss their effects. Based on the results of proposed
LBST which uses five different settings (i.e., h50o035, h50o05,
h50o07, h30o05, and h30o07), it can be concluded that: (1)
On occluded pedestrian detection, more heavily occluded
pedestrians for training have the positive effect. For example,
using ×1.0 input image, LBST with h50o07 outperforms
LBST with h50o05 by 6.7% on HO. (2) On small-scale
pedestrian detection, more small-scale pedestrians for training
have positive effect. For example, using ×1.0 input image,
LBST with h30o05 outperforms LBST with h50o05 by 2.7%
on A, while LBST with h30o05 has the similar performance as
that with h50o05 on R+HO. It means that the improvement
is from small-scale pedestrians of 20-50 pixels tall. (3) On
standard pedestrian detection (reasonable), more occluded
pedestrians and small-scale pedestrians have little effect.

TABLE V
MISS RATES ON THE CALTECH TEST SET. R MEANS THE REASONABLE

SET, M MEANS THE MEDIUM SET, HO MEANS THE HEAVY SET, R+HO
MEANS THE REASONABLE+HEAVY SET, AND A MEANS THE ALL SET.

“+CITY” (OR “+COCO”) MEAN THAT THE METHOD IS LEARNED BASED
ON BOTH THE CALTECH AND CITYPERSONS (OR COCO [33]) DATASETS.

method data R M HO R+HO A
RPN+BF [53] Caltech 9.58 53.93 74.36 24.01 64.66
SA-RCNN [23] Caltech 9.68 51.83 64.35 21.92 62.59
SDS-RCNN [4] Caltech 7.36 50.88 58.55 19.72 61.50
PDOE+RPN [60] Caltech 7.6 - 44.4 - -
LBST Caltech 9.26 28.98 43.19 17.02 45.78

F-DNN-SS [16] +City 8.18 33.15 53.76 18.82 50.29
FRCNN-ATT [57] +City 10.33 40.75 45.18 18.21 54.51
GDFL [27] +City+COCO 7.85 32.50 43.18 15.64 48.14
LBST +City 8.59 27.30 38.45 15.39 43.83

C. Experiments on the Caltech pedestrian dataset

Settings: Experiments are further conducted on the Caltech
dataset [15]. The images are twice upsampled at the training
and test stages. The total number of iterations is 80k. The
initial learning rate is 0.001. After that, it decreases at the
60k iterations by a factor of 10. The standard evaluation
metric on the Caltech dataset [15] is used. Specifically, the
reasonable (50-∞ pixels tall and 0-0.35 occ), medium
(30-80 pixels tall and 0-0.35 occ), heavy (50-∞ pixels tall
and 0.35-0.8 occ), and all (20-∞ pixels tall and 0-0.8 occ)
sets are used.

Caltech: The top of Table V shows miss rates of these
methods only trained on the Caltech. It can be concluded that:
(1) The proposed LBST has best performance on the small-
scale pedestrian detection (i.e.,M) and occluded pedestrian
detection (i.e., HO). LBST outperforms SDS-RCNN [4] by
11.90% on M and 15.36% on HO. (2) Though LBST does
not achieve best performance on R, it outperforms all the other
methods on the R+HO and A sets. LBST outperforms SDS-
RCNN by 2.70% on R+HO.

Caltech+: The bottom of Table V shows miss rates of these
methods which are firstly trained on the extra dataset (e.g.,
COCO [33] or Citypersons [54]) and then fine-tuned on the
Caltech. With the extra Citypersons [54], LBST outperforms
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all the other methods on M, HO, HO, and A. For example,
LBST outperforms GDFL [27] by 5.20% on M, 4.73% on
HO, 0.25% on R+HO, and 4.31% on A. Fig. 8 further plots
the curves of these methods on M, HO, and A. The proposed
LBST steadily outperforms other methods.

V. CONCLUSION

In this paper, we realized that many small-scale pedestrians
and occluded pedestrians can be found but not well located.
To solve this problem, two simple modules (i.e., location
bootstrap and semantic transition module) are proposed for
pedestrian detection. The location bootstrap re-weights the
loss of predicted bounding boxes, while the semantic transfor-
mation module enhances the feature semantic and adds more
contextual information for skip-layer fusion. Experiments on
the challenging Citypersons and Caltech pedestrian datasets
demonstrate that the proposed methods can improve detection
accuracy for small-scale pedestrians and occluded pedestrians.
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