
1

3D Point Cloud Denoising Using Graph Laplacian
Regularization of a Low Dimensional

Manifold Model
Jin Zeng, Member, IEEE, Gene Cheung, Senior Member, IEEE, Michael Ng, Senior Member, IEEE,

Jiahao Pang, Member, IEEE, and Cheng Yang, Member, IEEE

Abstract—3D point cloud—a new signal representation of
volumetric objects—is a discrete collection of triples marking
exterior object surface locations in 3D space. Conventional
imperfect acquisition processes of 3D point cloud—e.g., stereo-
matching from multiple viewpoint images or depth data acquired
directly from active light sensors—imply non-negligible noise in
the data. In this paper, we extend a previously proposed low-
dimensional manifold model for the image patches to surface
patches in the point cloud, and seek self-similar patches to
denoise them simultaneously using the patch manifold prior.
Due to discrete observations of the patches on the manifold,
we approximate the manifold dimension computation defined
in the continuous domain with a patch-based graph Laplacian
regularizer, and propose a new discrete patch distance measure to
quantify the similarity between two same-sized surface patches
for graph construction that is robust to noise. We show that
our graph Laplacian regularizer leads to speedy implementation
and has desirable numerical stability properties given its natural
graph spectral interpretation. Extensive simulation results show
that our proposed denoising scheme outperforms state-of-the-art
methods in objective metrics and better preserves visually salient
structural features like edges.

Index Terms—graph signal processing, point cloud denoising,
low-dimensional manifold

I. INTRODUCTION

The three-dimensional (3D) point cloud has become an
important and popular signal representation of volumetric
objects in 3D space [1]–[3]. 3D point cloud can be acquired
directly using low-cost depth sensors like Microsoft Kinect
or high-resolution 3D scanners like LiDAR. Moreover, multi-
view stereo-matching techniques have been extensively studied
in recent years to recover a 3D model from images or
videos, where the typical output format is the point cloud [4].
However, in either case, the output point cloud is inherently
noisy, which has led to numerous approaches for point cloud
denoising [5]–[8].

Moving least squares (MLS)-based [9], [10] and locally
optimal projection (LOP)-based methods [11], [12] are two

Jin Zeng is with Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. Email: jzengab@connect.ust.hk

Gene Cheung and Cheng Yang are with the Department of Electrical
Engineering & Computer Science, York University, Toronto, Canada. Email:
genec@yorku.ca; cyang@eecs.yorku.ca

Michael Ng is with the Centre for Mathematical Imaging and Vision,
Department of Mathematics, Hong Kong Baptist University, Hong Kong.
Email: mng@math.hkbu.edu.hk

Jiahao Pang is with SenseTime Research, Hong Kong. Email: pangjia-
hao@sensetime.com

major categories of point cloud denoising approaches, but
are often criticized for over-smoothing [7], [8] due to the
use of local operators. Sparsity-based methods, based on the
local planarity assumption, are optimized towards a sparse
representation of certain geometric features such as surface
normals [7], [13] and point deviations from local reference
plane [6]. They were reported to provide the state-of-the-art
performance [14]. However at high noise levels, the inaccurate
estimation for normal or the local plane can lead to over-
smoothing or over-sharpening [6], [7].

Non-local methods generalize the non-local means [15]
and BM3D [16] image denoising algorithms to point cloud
denoising, and are shown to better preserve fine shape features
under high level of noise. The approaches in [17], [18] extend
the non-local means denoising approach to point clouds and
adaptively filter the points in an edge preserving manner. [5]
is inspired by BM3D and exploits the inherent self-similarity
between surface patches to preserve structural details, but the
computational complexity is too high to be practical. A more
recent method in [19] also utilizes the patch self-similarity and
denoises the local patches based on dictionary learning.

Utilizing an assumed self-similarity characteristic in images
has long been a popular strategy in image processing [15],
[16]. Extending on these earlier works, a more recent work
[20] proposed the low-dimensional manifold model (LDMM)
for image processing, assuming that similar image patches are
samples of a low-dimensional manifold in high-dimensional
space. The assumption is verified in various applications in
image processing and computer vision [21], [22]. In LDMM,
the manifold dimension is used for regularization to recover
the image, achieving state-of-the-art results in various inverse
imaging applications, e.g., denoising, inpainting, superresolu-
tion, etc..

Inspired by the LDMM work in [20], we exploit self-
similarity of the surface patches by assuming that the surface
patches in the point cloud lie on a manifold of low dimension.
However, the extension of LDMM from images to point clouds
is non-trivial. First, the computation of manifold dimension
requires a well-defined coordinate function in [20], i.e., the
extrinsic coordinates of points on the manifold, which is
straightforward for image patches but not for surface patches
due to the irregular structure of point clouds. Moreover,
the point integral method (PIM) for solving the dimension
optimization in [20] is of high complexity. In the outer
loop, the manifold and the image are iteratively updated,

ar
X

iv
:1

80
3.

07
25

2v
2

 [
cs

.C
V

]
 3

0
A

pr
 2

01
9

2

while in the inner loop, the coordinate function and pixel
values are updated until convergence. Since the linear systems
for updating coordinate function are asymmetric due to the
constraints enforced by PIM, a large number of iterations is
required to reach convergence, leading to high computational
cost [23].

To address the two issues above, we approximate the
patch-manifold dimension defined in continuous domain with
a discrete patch-based graph Laplacian regularizer (GLR).
Specifically, the main contributions of our work are as follows:

1) By adopting the LDMM, we exploit the surface self-
similarity characteristic and simultaneously denoise sim-
ilar patches to better preserve sharp features;

2) By approximating the computation of the manifold di-
mension with GLR, we avoid explicitly defining the
manifold coordinate functions and enable the LDMM
to extend to the point cloud setting;

3) By using GLR, the implementation is accelerated with
a reduced number of iterations thanks to the symmetric
structure of the graph Laplacian matrix;

4) Our GLR is shown to provide a graph spectral interpre-
tation and is guaranteed numerical stability via eigen-
analysis in the graph spectral domain [24];

5) An efficient similarity measure for discrete k-pixel patch
pairs is designed for graph construction that is robust to
noise.

Extensive simulation results show that our proposed method
outperforms the state-of-the-art methods in objective metrics
and better preserves visually salient features like edges.

The rest of the paper is organized as follows. Section II
overviews some existing works. Section III defines the patch
manifold associated with the 3D point cloud. Section IV
formulates the denoising problem by describing how the
manifold dimension is computed and approximated with the
graph Laplacian regularizer. The algorithm implementation is
discussed in Section V with graph spectral analysis to inter-
pret the algorithm and a numerical stability analysis. Finally,
Section VI and Section VII presents experimental results and
concludes the paper respectively.

II. RELATED WORK

Previous point cloud denoising works can be classified into
four categories: moving least squares (MLS)-based methods,
locally optimal projection (LOP)-based methods, sparsity-
based methods, and non-local similarity-based methods.

MLS-based methods. MLS-based methods approximate a
smooth surface from the input samples and project the points
to the resulting surface. To construct the surface, the method
in [25] first finds the local reference domain for each point
that best fits its neighboring points in terms of MLS, then
defines a function based on the reference domain by fitting a
polynomial function to neighboring data.

Several extensions, which address the unstable reconstruc-
tion problem in the case of high curvature, e.g., algebraic point
set surfaces (APSS) [9] and its variant in [26], or preserve
the shape features, e.g., robust MLS (RMLS) [27] and robust
implicit MLS (RIMLS) [10], have also been proposed. These

methods can robustly generate a smooth surface from ex-
tremely noisy input, but are often criticized for over-smoothing
[7], [8].

LOP-based methods. Unlike MLS-based methods, LOP-
based methods do not compute explicit parameters for the
surface. For example, LOP method in [11] outputs a set of
points that represent the underlying surface while enforcing a
uniform distribution over the point cloud with a repulse term
in the optimization. Its modifications include weighted LOP
(WLOP) [28], which provides a more uniformly distributed
output by adapting the repulse term to the local density,
and anisotropic WLOP (AWLOP) [12], which preserves sharp
features by modifying WLOP to use an anisotropic weighting
function. LOP-based methods also suffer from over-smoothing
due to the use of local operators, or generate extra features
caused by noise [7], [8].

Sparsity-based methods. Sparsity-based methods are based
on a local planarity assumption and optimize for sparse
representations of certain geometric features. Methods based
on the sparsity of surface normals would first obtain a sparse
reconstruction of the surface normals by solving a global
minimization problem with l1 [13] or l0 [7] regularization, then
update the point positions with the surface normals by solving
another global minimization problem based on the locally
planar assumption. A more recent method called Moving
Robust Principal Components Analysis (MRPCA) [6] uses l1
minimization of the point deviations from the local reference
plane to preserve sharp features. Sparsity-based approaches
are reported to achieve the state-of-the-art performance [14],
though at a high level of noise, the estimation of normal or
local plane can be so poor that it leads to over-smoothing or
over-sharpening [7].

Non-local methods. Non-local methods are widely adopted
in image denoising [29]–[33]. Non-local methods generalize
the notion of non-local self-similarity in the non-local means
[15] and BM3D [16] image denoising algorithms to point
cloud denoising, and are shown to better preserve structural
features under high level of noise.

Due to the lack of regular structure in a point cloud,
extending non-local image denoising schemes to point cloud
is difficult. [17] utilizes curvature-based similarity to perform
non-local filtering, so that the filtering considers the neigh-
borhood geometry structure and better preserves fine shape
features. [18] proposes to use the polynomial coefficients of
the local MLS surface as neighborhood descriptors to compute
point similarity.

Inspired by the BM3D algorithm, [5] exploits self-similarity
among surface patches in the point cloud and outperformes
the non-local means methods. However, the computational
complexity is typically too high to be practical, taking a few
hours for a point cloud of size 15,000 as reported in [5]. A
more recent method in [19] also utilizes patch self-similarity
and optimizes for a low-rank dictionary representation of the
extracted patches to impose patch smoothness. During patch
extraction, the points in each patch are projected to a regular
grid for subsequent linear operations where multiple points
can fall to the same location, leading to lose of fine structure
and over-smoothing. The method is referred to as LR for short

3

hereinafter.
Our method belongs to the fourth category, the non-local

methods. Similar to [5], [19], we also utilize the self-similarity
among patches via the low-dimensional manifold prior [20].
However, the original PIM for manifold dimension minimiza-
tion in [20] is not applicable to the point cloud setting due
to the lack of regular structure of surface patches to define
coordinate functions. Even if the coordinate functions are
provided, PIM is time-consuming because the linear systems
derived from PIM are asymmetric and inefficient to solve. In
contrast, thanks to GLR, our approach eliminates the need for
coordinate functions and can be efficiently implemented, out-
performing existing schemes with better feature preservation.

In [23], PIM is approximated with the weighted nonlocal
graph Laplacian (WNLL) to reduce computational complexity.
The WNLL also preserves the symmetry of the linear systems
with a graph Laplacian to speed up the implementation, but
the Laplacian matrix is derived from the Laplace-Beltrami
equation in PIM thus different from our GLR. Nevertheless,
similar to PIM, the WNLL approach is designed for image
restoration and solves each coordinate function separately, thus
cannot be directly applicable to point clouds.

III. PATCH MANIFOLD

We first define the notion of patch manifold given a point
cloud V = {vi}Ni=1, vi ∈ R3, which is a (roughly uniform)
discrete sampling of a 2D surface of a 3D object. Let V =
[v1, . . . ,vN]> ∈ RN×3 be the position matrix for the point
cloud. Noise-corrupted V can be simply modeled as:

V = U + E, (1)

where U contains the true 3D positions, E is a zero-mean
signal-independent noise (we assume Gaussian noise in our
experiments), and U,E ∈ RN×3. To recover the true position
U, we consider the low-dimensional manifold model prior
(LDMM) [20] as a regularization term for this ill-posed
problem.

A. Surface Patch

We first define a surface patch in a point cloud. We select
a subset of M points from V as the patch centers, i.e.,
{cm}Mm=1 ⊂ V . Then, patch pm centered at a given center
cm is defined as the set of k nearest neighbors of cm in V , in
terms of Euclidean distance.

The union of the patches should cover the whole point
cloud, i.e.,

⋃M
m=1 pm = V . There can be different choices

of patch centers, and the degree of freedom can be used to
trade off computation cost and denoising performance. Let
pm ∈ R3k be the patch coordinates, composed of the k points
in pm.

B. Patch Manifold

Here we adopt the basic assumption in [20] that the patches
sample a low-dimensional smooth manifold embedded in R3k,
which is called the patch manifold M(U) associated with the
point cloud U. In order to evaluate similarity among patches,

we first need to align the patches; i.e., the coordinates pm
should be translated with respect to cm, so that cm lies on the
origin (0, 0, 0). Hereafter we set {pm}Mm=1 to be the translated
coordinates.

C. Low Dimensional Patch Manifold Prior

The LDMM prior assumes that the solution contains patches
that minimize the patch manifold dimension. We can thus
formulate a maximum a posteriori (MAP) problem with prior
and fidelity terms as follows:

min
U

dim(M(U)) + λ‖V −U‖2F , (2)

where λ is a parameter that trades off the prior with the fidelity
term, and ‖.‖2F is the Frobenius norm. Note that given a certain
strategy of patch selection, the patches are determined by the
point cloud U, and the patches in turn define the underlying
manifold M. Hence we view M as a function of U.

The patches can be very different and sampled from dif-
ferent manifolds of different dimensions. For example, a flat
planar patch belongs to a manifold of lower dimension than
a patch with corners. The dimension of the patch manifold,
dim(M(U)) becomes a function of the patch, and the inte-
gration of dim(M(U)) over M is used as the regularization
term,

min
U

∫
M

dim(M(U))(p)dp + λ‖V −U‖2F , (3)

where dim(M(U))(p) is the dimension of M(U) at p. Here
p ∈ R3k is a point onM. The question that remains is how to
compute dim(M(U))(p). In the next section, the dimension
computation is mathematically defined and approximated with
GLR.

IV. PROBLEM FORMULATION

In this section, we first briefly review the calculation of the
manifold dimension in continuous domain, then approximate
this computation with the GLR so as to efficiently adopt
LDMM to discrete point cloud patches.

A. Manifold Dimension Computation in Continuous Domain

Here we overview how the manifold dimension is computed
in [20]. First, let αi, where i = 1, . . . , 3k, be the coordinate
functions on the manifold M embedded in R3k, i.e.,

αi(p) = pi, ∀p = [p1, . . . , p3k]> ∈M. (4)

According to [20], the dimension of M at p is given by:

dim(M)(p) =

3k∑
i=1

‖∇Mαi(p)‖2, (5)

where ∇Mαi(p) denotes the gradient of the function αi on
M at p. Then the integration of dim(M)(p) overM is given
as, ∫

M
dim(M)(p)dp =

3k∑
i=1

∫
M
||∇Mαi(p)||2dp. (6)

4

The formula in (6) is a sum of integrals on continuous
manifold M along different dimensions, but our observations
{pm}Mm=1 of the manifold M(U) are discrete and finite. In
[20], the solution to the dimension minimization is given by a
partial derivative equation (PDE) for each αi separately, which
is discretized at the patch observations using PIM, solved via
a linear system.

However, PIM requires the patch coordinates {pm}Mm=1 to
be ordered so that the αi’s can be defined. For example,
if the patches are image patches of the same size, then the
patch coordinates are naturally ordered according to pixel
location, i.e., the i-th entry in pm is the pixel value at the
i-th location in the image patch. However, surface patches in
the 3D point cloud are unstructured, and there is no natural
way to implement global coordinate ordering for all patches.

This motivates us to discretize the manifold dimension with
GLR, eliminating the need for global ordering and can be
implemented efficiently.

B. Dimension Discretization with GLR

We first introduce the graph construction on a manifold,
which induces the GLR. Then we discuss how the GLR
approximates the manifold dimension and avoids global co-
ordinate ordering.

1) Constructing Graph on a Manifold: We construct a dis-
crete graph G whose vertex set is the observed surface patches
P = {pm}Mm=1 lying on M(U), i.e., pm ∈ M(U) ⊂ R3k.
Let E denote the edge set, where the edge between m-th and
n-th patches is weighted as,

wmn = (ρmρn)−1/γψ(dmn). (7)

The kernel ψ(·) is a thresholded Gaussian function

ψ(dmn) =

{
exp(−d

2
mn

2ε2) dmn < r

0 otherwise,
(8)

and dmn is the Euclidean distance between the two patches
pm and pn,

dmn = ||pm − pn||2. (9)

The term (ρmρn)−1/γ is the normalization term, where ρn =
ΣMm=1ψ(dmn) is the degree of pn before normalization. The
graph constructed in these settings is an r-neighborhood graph,
i.e., no edge has a distance greater than r. Here r = εCr, and
Cr is a constant.

2) Graph Laplacian Regularizer: With the edge weights
defined above, we define the symmetric adjacency matrix A ∈
RM×M , with the (m,n)-th entry given by wmn. D denotes the
diagonal degree matrix, where entry D(m,m) =

∑
n wm,n.

The combinatorial graph Laplacian matrix is L = D−A [24].
For the coordinate function αi on M defined in (4),

sampling αi at positions of P leads to its discretized version,
αi = [αi(p1) . . . αi(pM)]>. The graph Laplacian L induces
the regularizer SL(αi) = α>i Lαi. It can be shown that

SL(αi) = α>i Lαi =
∑

(m,n)∈E

wmn(αi(pm)− αi(pn))2.

(10)

3) Approximation with Graph Laplacian Regularizer: We
now show the convergence of the discrete graph Laplacian
regularizer to the dimension of the underlying continuous
manifold.

First, we declare the following theorem that relates SL(αi)
to the integral of ‖∇Mαi(p)‖22 onM on the right side of (6):

Theorem 1. Under conditions specified in Appendix A for ε,
M and function αi,

lim
M→∞,
ε→0,δ→0

SL(αi) ∼
1

|M|

∫
M
‖∇Mαi(p)‖22dp, (11)

where |M| is the volume of the manifoldM, δ is the manifold
dimension, and ∼ means there exists a constant depending on
M, Cr and γ, such that the equality holds.

In other words, as the number of samples M increases and
the neighborhood size r = εCr shrinks, SL(αi) approaches
its continuous limit. Moreover, if the manifold dimension δ is
low, we can ensure a good approximation of the continuous
regularization functional even if the manifold is embedded in a
high-dimensional space. Detailed proof for the above theorem
is provided in Appendix A.

Consequently, given a point cloud, one can approximate
the dimension of M with the αi’s and the constructed graph
Laplacian L following (6) and (11):

lim
M→∞,
ε→0,δ→0

|M|
3k∑
i=1

α>i Lαi ∼
3k∑
i=1

∫
M
‖∇Mαi(p)‖22dp

=

∫
M

dim(M)(p)dp. (12)

Note that Theorem 1 is derived based on the combinato-
rial Laplacian matrix and does not apply to other types of
Laplacian, e.g., normalized Laplacian L = D−1/2LD−1/2.
Further, a regularizer using L would penalize a constant
signal, since the eigenvector corresponding to eigenvalue 0
is not constant [34], which means it cannot handle constant
signal. Experimental comparison between combinatorial and
normalized Laplacian is provided in Section VI-B4.

C. From Global Coordinate Ordering to Local Correspon-
dence

So far, we obtain the approximation in (12), but the
above graph construction still requires the patch coordinates
{pm}Mm=1 to be ordered so that the αi’s can be defined and
the patch distance dmn in (9) determines the patch similarity.

In the following, we argue that the computation of the reg-
ularization term can be accomplished based on local pairwise
correspondence between connected patches, relieving the need
for global ordering.

5

We modify the manifold dimension formula in (12):

3k∑
i=1

α>i Lαi =

3k∑
i=1

∑
(m,n)∈E

wmn(αi(pm)− αi(pn))2 (13)

=
∑

(m,n)∈E

wmn

3k∑
i=1

(αi(pm)− αi(pn))2 (14)

=
∑

(m,n)∈E

wmnd
2
mn, (15)

where (15) follows from (14) according to the definition of
dmn in (9). From (15) we see that αi is not necessary to
compute the graph Laplacian regularizer, and hence global
coordinate ordering is not required. Moreover, since wmn is
itself a function of dmn via (7), we can obtain the manifold
dimension as long as dmn is given by finding the local pairwise
correspondence between neighboring patches.

To reformulate (15) into matrix form, we first consider the
subgraphs composed of connected patch pair to reformulate
wmnd

2
mn, then sum up the weights between patch pairs to

give the final GLR.
For a connected patch pair pm and pn, let pΘ

mn =[
p>m,Θ p>n,Θ

]>
be the concatenation of pm and pn coordi-

nates, where Θ ∈ {x, y, z} denotes the 3D coordinates. Given
the local correspondence between pm and pn, we connect
corresponding points to construct the subgraph and multiply
the edge weights with wmn, resulting in the graph Laplacian
matrix Lmn for this subgraph. wmnd2

mn is then reformulated
as:

wmnd
2
mn =

∑
Θ∈{x,y,z}

(pΘ
mn)>LmnpΘ

mn. (16)

Let Smn ∈ {0, 1}2k×kM be the sampling matrix to extract
pΘ
mn from PΘ, where PΘ is the coordinate vector of points

in all patches, i.e., pΘ
mn = SmnPΘ, so that wmnd2

mn becomes:

wmnd
2
mn =

∑
Θ∈{x,y,z}

(SmnPΘ)>Lmn(SmnPΘ). (17)

Then the manifold dimension becomes:∑
(m,n)∈E

wmnd
2
mn (18)

=
∑

Θ∈{x,y,z}

∑
(m,n)∈E

P>Θ(S>mnLmnSmn)PΘ (19)

=
∑

Θ∈{x,y,z}

P>Θ(
∑

(m,n)∈E

S>mnLmnSmn)PΘ (20)

=
∑

Θ∈{x,y,z}

P>ΘLpPΘ, (21)

where

Lp =
∑

(m,n)∈E

S>mnLmnSmn ∈ RkM×kM (22)

is the overall graph Laplacian matrix for the point-domain
graph.

(a) (b)

Fig. 1. Distance measure with continuous surfaces with reference plane
perpendicular to :(a) surface normal nm at center of patch m, and (b) surface
normal nn at center of patch n.

D. Objective Formulation with GLR Prior

With Lp calculated as described above, the optimization is
reformulated as:

min
U

∑
Θ∈{x,y,z}

P>ΘLpPΘ + µ ‖V −U‖2F , (23)

Let P = [Px,Py,Pz] ∈ RkM×3, and
∑

Θ∈{x,y,z}P>ΘLpPΘ

can be combined as tr(P>LpP). P is related to denoised 3D
samples U ∈ RN×3 as follows:

P = SU−C, (24)

where S ∈ {0, 1}kM×N is a sampling matrix to select points
from point cloud V to form M patches of k 3D points each,
and C ∈ RkM×3 is for patch centering. Hence, the objective
function can be rewritten as:

min
U

tr((SU−C)>Lp(SU−C)) + µ ‖V −U‖2F . (25)

Now the questions that remain are: i) how to find local corre-
spondence between connected patch pairs for graph construc-
tion, and ii) how to implement the numerical optimization.
They are addressed in the next section.

V. ALGORITHM DEVELOPMENT

In this section, we first propose a patch distance measure
for graph construction, and then discuss the algorithm im-
plementation. Then we show that, with GLR, the algorithm
is guaranteed with numerical stability and can be solved
efficiently.

A. Patch Distance Measure

1) Distance Measure in Continuous Domain: To measure
the distance between the m-th patch and n-th patch, ideally the
two patches can be interpolated to two continuous surfaces,
and the distance is calculated as the integral of the surface
distance over a local domain around the patch center.

To define the underlying surface, we first define a reference
plane. In Fig. 1(a), we examine a 2D case for illustration. The
reference plane is tangent to the center cm of patch m (origin
point) and perpendicular to the surface normal nm at cm.
Then the surface distance for patch m with respect to normal
nm is defined as a function fmm (x), where x is a point on
the reference plane, superscript m indicates that the reference
plane is perpendicular to nm, while the subscript m indicates
the function defines patch m. fmm (x) is then the perpendicular

6

(a) (b)

Fig. 2. Distance measure with discrete patches with reference plane perpen-
dicular to surface normal nm at center of patch m. (a) Ideal case where
the points with the same projection is connected. (b) A point in patch m is
connected with the closest point in patch n in terms of projection distance.

distance from x to surface m with respect to normal nm.
Surface n is similarly defined as fmn (x). Note that because
the patches are centered, cm = cn which is the origin, but
their surface normals nm and nn are typically different.

The patch distance is then computed as

d−→mn =

√
1

|Ωm|

∫
x∈Ωm

(fmm (x)− fmn (x))2dx, (26)

where Ωm is the local neighborhood at cm. |Ωm| is the area of
Ωm. d−→mn denotes the distance measured with reference plane
perpendicular to nm.

Note that different reference planes lead to different distance
values, so we alternately use nm and nn to define the
reference plane. Fig. 1(b) illustrates the computation of d−→nm
with reference plane perpendicular to nn.

d−→nm =

√
1

|Ωn|

∫
x∈Ωn

(fnm(x)− fnn (x))2dx, (27)

where functions fnm and fnn define surfaces m and n, respec-
tively, and Ωn the local neighborhood at cn.
dmn is then given as,

dmn =

√
d2−→mn + d2−→nm

2
. (28)

2) Distance Measure with Discrete Point Observation:
Since we only have discrete observations of the points on the
patches, we instead measure the sum of the distances between
points with the same projection on the reference plane.

First, we compute d−→mn, where reference plane is perpen-
dicular to the surface normal nm at cm. Specifically, patch m
is composed of points {vim}ki=1, while patch n is composed
of {vin}ki=1. The surface normal nm is given by,

min
nm

k∑
i=1

((vim)>nm)2. (29)

It can be shown via Principal Component Analysis [35] that
the solution is the normalized eigenvector according to the
smallest eigenvalue of the covariance matrix Q given by,

Q =
1

k

k∑
i=1

vim(vim)>. (30)

(a) (b)

Fig. 3. (a) Interpolation for v on the plane abc. (b) Patch connection based
on projection (in blue) vs euclidean distance (in orange).

The same normal estimation method is used in PCL Library
[1]. We then project both {vim}ki=1 and {vin}ki=1 to the refer-
ence plane, and the projections are {xim,m}ki=1 and {xin,m}ki=1

respectively, where the second index in subscript indicates
that the reference plane is perpendicular to nm. The distances
between vim and xim,m give the surface distance fmm (vim), and
the distances between vin and xin,m give fmn (vin).

Ideally, for any vim in patch m, there exists a point vin in
patch n whose projection xin,m = xim,m as shown in Fig. 2(a).
However, in real dataset, vim usually does not have a match
in patch n with exactly the same projection, as illustrated
in Fig. 2(b). In this case, we replace the displacement value
of v′

i
n (the green point in Fig. 2(b)), which has the same

projection xim,m as vim, with the value of its nearest neighbor
vin in patch n in terms of the distance between their projections
xim,m and xin,m. Then d−→mn is computed as,

d−→mn =

√√√√1

k

k∑
i=1

(fmm (vim)− fmn (vin))2. (31)

Similarly, to compute d−→nm, we define reference plane with
nn, then compute the projections {xim,n}ki=1 and {xin,n}ki=1

and displacements fnm(vim), fnn (vin). For each vin in patch
n, we match it to the closest point in patch m in terms of
projection distance. Then d−→nm is computed as,

d−→nm =

√√√√1

k

k∑
i=1

(fnm(vim)− fnn (vin))2. (32)

The final distance is given as (28).
3) Planar Interpolation: The pairwise correspondence is

based on nearest neighbor replacement, though more accurate
interpolation can be adopted. However, due to the large size of
the point cloud, implementing interpolation for all the points
can be expensive. Thus we use nearest-neighbor replacement
when the distance between point pair is under a threshold τ .
When the distance goes above τ , we apply the interpolation
method described as follows.

As shown in Fig. 3(a), for a point v, to find its correspond-
ing interpolation on the other patch, we find the three nearest
points (also in terms of projection distance) to form a plane,
and the interpolation v′ is given by its projection along the
normal vector n on the plane. It can be easily derived that the
distance between v and v′ is n>v+d

n>n0
where n0 = ~ab× ~ac is

the normal vector for the plane abc, and d = −n>0 a.

7

4) Relation to Hausdorff Distance: Hausdorff distance [36]
is a widely used measure for comparing point clouds, which is
derived from the Hausdorff distance for comparing the metric
spaces of two manifolds and extended to deal with point clouds
[37]. The proposed patch distance measure is closely related
to the modified Hausdorff distance (MHD) [38], which is
a variant of Hausdorff distance. It decreases the impact of
outliers and is more suitable for pattern recognition tasks.
Specifically, MHD from the m-th patch and n-th patch is given
as:

MHD−→mn =
1

k

k∑
i=1

‖vim − vin‖, (33)

where ‖·‖ is the Euclidean distance, vin is the nearest neighbor
of vim in patch n in terms of point position. The major
difference between MHD and our patch distance measure is
that, we choose to use projection on the reference plane (e.g.
xim in Fig. 2(a)) to find the correspondence, while MHD uses
the point position (e.g. vim in Fig. 2(a)).

Due to the use of projection, the proposed measure is more
robust to noise than MHD. For example in Fig. 3(b), the
underlying surfaces for two patches are both planar, where
the circle points belong to one patch and the star points
belong to the other. The correct connections are between
points along the vertical lines (in blue). This is accomplished
by using projection on the reference plane. On the other
hand, if the connection is decided by point position, then the
resulting connections are erroneous (in orange) and thus lead
to inefficient denoising. Therefore point connection based on
projection is closer to the ground truth and more robust to
noise.

B. Graph Construction

Based on the above patch distance measure strategy, the
connection between m-th and n-th patch is implemented as
follows. If no interpolation is involved, the points in the m-th
patch are connected with the nearest points in the n-th patch
in terms of their projections on the reference plane decided
by surface normal of patch m. Also, the points in the n-th
patch are connected with the nearest points in the m-th patch
in terms of their projections on the reference plane decided
by surface normal of patch n. The edges are undirected and
assigned the same weight wmn decided by dmn in (7).

If interpolation is involved, for example in Fig. 3(a), the
weight wva between v and a is given by,

wva =
wmndva

dva + dvb + dvc
, (34)

where wmn is the weight between patch m and n. Point v lies
on patch m and points a, b, c lie on patch n. dva is distance
between v and a, and similarly for dvb and dvc. To simplify
the implementation, we limit the search range to be patches
centered at the K-nearest patch centers, and evaluate patch
distance between these K-nearest patches instead of all the
patches in the point cloud.

In this way, the local correspondence is generated and the
point domain graph is constructed, giving the graph Laplacian
Lp in (25).

Algorithm 1 Graph Laplacian Regularized Point Cloud De-
noising
Input: Noisy point cloud V, patch center sampling rate s%, patch

size k, threshold τ , max iteration number r
Output: Denoised point cloud U

1: Initialize U0 ← V
2: for i = 1 to r do
3: Sample s% points from Ui as patch centers
4: Find k nearest neighbors of each patch center to form surface

patches
5: Connect each patch center with K nearest neighboring patch

centers to give E
6: for (m,n) ∈ E do
7: Connect corresponding points between m-th and n-th

patches and compute Lmn

8: end for
9: Lp ←

∑
(m,n)∈E S

>
mnLmnSmn

10: Ui
Θ ← (S>LpS + µI)−1(µUi−1

Θ + S>LpCΘ), Θ ∈
{x, y, z}

11: End if Ui converges
12: end for

C. Denoising Algorithm
The optimization in (25) is non-convex because of Lp’s

dependency on patches in P. To solve (25) approximately,
we take an alternating approach, where in each iteration, we
fix Lp and solve for U, then update Lp given U, and repeat
until convergence.

In each iteration, graph Laplacian Lp is easy to update
using the previously discussed graph construction strategy. To
optimize U for fixed Lp, each of the (x, y, z) coordinate is
given by,

(S>LpS + µI)UΘ = µVΘ + S>LpCΘ, (35)

where Θ ∈ {x, y, z} is the index for (x, y, z) coordinates,
and I is the identity matrix of the same size as Lp. We
iteratively solve the optimization until the result converges.
The proposed algorithm is referred to as Graph Laplacian
Regularized point cloud denoising (GLR). The algorithm is
summarized in Algorithm 1.

D. Graph Spectral Analysis
To impart intuition and demonstrate stability of our com-

putation, in each iteration we can compute the optimal x-, y-
and z-coordinates in (25) separately, resulting in the system of
linear equations in (35). In Section III, we assume that union
of all M patches covers all points in the point cloud V , hence
we can safely assume that kM > N .

Because S is a sampling matrix, we can define L = S>LpS
as a N×N principal sub-matrix1 of Lp. Denote by λµ1 ≤ . . . ≤
λµN the eigenvalues of matrix L+µI. The solution to (35) can
thus be written as:

U∗Θ = ΦΣ−1ΦT
(
µ VΘ + S>LpCΘ

)
, (36)

where ΦΣΦT is an eigen-decomposition2 of matrix L + µI;
i.e., Φ contains as columns eigenvectors φ1, . . . ,φN , and

1A principal sub-matrix B of an original larger matrix A is one where the
i-th row and column of A are removed iteratively for different i.

2Eigen-decomposition is possible because the target matrix L+ µI is real
and symmetric.

8

Σ is a diagonal matrix containing eigenvalues on its diag-
onal. In graph signal processing (GSP) [24], eigenvalues and
eigenvectors of a variational operator—L + µI in our case—
are commonly interpreted as graph frequencies and frequency
components. Φ> is thus an operator (called graph Fourier
basis) that maps a graph-signal x to its GFT coefficients
ζ = Φ>x.

Observing that Σ−1 in (36) is a diagonal matrix:

Σ−1 = diag (1/(λµ1 + µ), . . . , 1/(λµN + µ)) , (37)

we can thus interpret the solution U∗Θ in (36) as follows.
The noisy observation VΘ (offset by centering vector CΘ)
is transformed to the GFT domain via Φ> and low-pass
filtered per coefficient according to (37)—low-pass because
weights 1/(λµi + µ) for low frequencies are larger than large
frequencies 1/(λµj + µ), for i < j. The fact that we are
performing 3D point cloud denoising via graph spectral low-
pass filtering should not be surprising.

E. Numerical Stability via Eigen-Analysis

We can also estimate the stability of the system of linear
equations in (36) via the following eigen-analysis. During
graph construction, an edge weight wi,j is computed using (7),
which is upper-bounded by 1. Denote by ρmax the maximum
degree of a node in the graph, which in general ρmax � N .
According to the Gershgorin circle theorem [35], given a
matrix A, a Gershgorin disc i has radius ri =

∑
j|j 6=i|Ai,j |

and center at Ai,i. For a combinatorial graph Laplacian Lp,
the maximum Gershgorin disc radius is the maximum node
degree multiplied by the maximum edge weight, which is
ρmax. Further, the diagonal entry Li,i = −

∑
j|j 6=i Li,j for

positive edge weights, which equals ri. Thus all Gershgorin
discs for a combinatorial graph Laplacian matrix have left-ends
located at 0. By the Gershgorin circle theorem, all eigenvalues
have to locate inside the union of all Gershgorin discs. This
means that the maximum eigenvalue λpmax for Lp is upper-
bounded by twice the radius of the largest possible disc, which
is 2ρmax.

Now consider principal sub-matrix L of original matrix Lp.
By the eigenvalue interlacing theorem, large eigenvalue λmax

for L is upper-bounded by λpmax of Lp. For matrix L + µI,
the smallest eigenvalue λµmin ≥ µ, because: i) µI shifts all
eigenvalues of L to the right by µ, and ii) L is PSD due to
eigenvalue interlacing theorem and the fact that Lp is PSD.
We can thus conclude that the condition number3 C of matrix
L +µI on the left-hand side of (35) can be upper-bounded as
follows:

C ≤ 2ρmax + µ

µ
. (38)

Hence for sufficiently small ρmax, the linear system of equa-
tions in (35) has a stable solution, and can be efficiently solved
using indirect methods like preconditioned conjugate gradient
(PCG).

3Assuming l2-norm is used and the matrix is normal, then the condition
number is defined as the ratio λmax/λmin.

F. Complexity Analysis

The complexity of the algorithm depends on two main
procedures: one is the patch-based graph construction, and the
other is in solving the system of linear equations.

For graph construction, for the M patches, the K-nearest
patches to be connected can be found in O(KM logM) time.
Then for k-point patch distance measure, each pair takes
O(k log k); with MK pairs, the complexity is O(kMK log k)
in total. For the system of linear equations, it can be solved
efficiently with PCG based methods, with complexity of
O(kMK

√
C) [39]. Finally, if GLR runs for a maximum of r

iterations, the total time complexity will be O(r(KM logM+
kMK log k + kMK

√
C)) ≈ O(rKM(logM + k log k +

k
√
C)).

The parameters that can be adjusted for the complexity
reduction are patch center sampling density, patch graph
neighborhood size and patch size. Details about the param-
eter setting and complexity comparison with other existing
schemes are given in Section VI.

VI. EXPERIMENTAL RESULTS

The proposed scheme GLR is compared with existing
works: APSS [9], RIMLS [10], AWLOP [12], non-local de-
noising (NLD) algorithm [18] and the state-of-the-art MRPCA
[6] and LR [19]. APSS and RIMLS are implemented with
MeshLab software [40], AWLOP is implemented with EAR
software [12], MRPCA source code is provided by the author,
NLD and LR are implemented by ourselves in MATLAB. We
first empirically tune parameters on a small dataset with 8
models, then generalize the parameter setting learned from
the small dataset to a larger dataset, i.e., 100 models from the
ShapeNetCore dataset [41] for validation. Comparison with
existing methods on both dataset are detailed as follows.

A. Evaluation Metrics

Before the discussion of experimental performance, we first
introduce the three evaluation metrics for point cloud denois-
ing. Suppose the ground-truth and predicted point clouds are
U = {ui}N1

i=1, V = {vi}N2
i=1, where ui,vi ∈ R3. The point

clouds can be of different sizes, i.e., N1 and N2 may be
unequal. The metrics are defined as follows.

1) mean-square-error (MSE): We first measure the average
of the squared Euclidean distances between ground
truth points and their closest denoised points, and also
between the denoised points and their closest ground
truth points, then take the average between the two
measures to compute MSE which is given as

MSE =
1

2N1

∑
ui∈U

min
vj∈V
‖ui − vj‖22

+
1

2N2

∑
vi∈V

min
uj∈U
‖vi − uj‖22 (39)

2) signal-to-noise ratio (SNR): SNR is measured in dB
given as

SNR = 10 log
1/N2

∑
vi∈V‖vi‖

2
2

MSE
(40)

9

(a) (b) (c)

Fig. 4. Daratech model (σ = 0.02). Surface reconstruction with (a) noisy input, and denoising results of the proposed GLR after (b) iteration 1 and (c)
iteration 3 (final output), colorized by mean curvature.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Daratech model (σ = 0.02). Surface reconstruction with (a) ground truth, and denoising results of (b) APSS, (c) AWLOP, (d) NLD, (e) MRPCA
and (f) LR, colorized with mean curvature.

3) mean city-block distance (MCD): MCD is similar to
MSE with l2 norm replaced with l1 norm, given as

MCD =
1

2N1

∑
ui∈U

min
vj∈V
|ui − vj |

+
1

2N2

∑
vi∈V

min
uj∈U
|vi − uj | (41)

B. Parameter Tuning

8 models are used for parameter tuning, including An-
chor, Bimda, Bunny, Daratech, DC, Fandisk, Gargoyle and
Lordquas provided in [5] and [6]. The models are around
50000 in size. Gaussian noise with zero-mean is added to
the 3D positions of each point cloud, where the standard
deviation is set proportional to the signal scale as commonly
used in point cloud denoising works [5], [6]. We first compute
the diameter of the point cloud, which is the maximum
distance among 200 points sampled from the point cloud using
farthest point sampling [42]. Then the standard deviation of the
additive Gaussian noise is the multiplication of the diameter
and σ, where σ = 0.02, 0.03, 0.04.

1) Parameters in Optimization Formulation: For imple-
mentation of the proposed GLR, we need to tune the parameter
µ for balancing the data fidelity term and the regularization

term in (23), and ε for weighting the edge between connected
patches in (8).

In (23), the GLR regularization reflects the prior expecta-
tion of signal smoothness on the graph [24] which can be
estimated from the dataset for parameter tuning. Meanwhile,
the data term measures the noise variance, and its ratio to
expected signal smoothness is found to be similar for different
models given the same noise level σ. This is because the
noise standard variance is set proportional to signal scale as
explained above. Therefore, given noise level σ, µ is tuned on
the 8 models and generalizes to other models. Specifically,
µ = 25(exp(iteration/r) − 1) which increases along the
iterations, where r = 4, 7, 12 for σ = 0.02, 0.03, 0.04,
respectively.

From (8), we can see ε should be proportional to square
root of standard deviation of the patch distances, i.e., ξ =√

std(d2) with a moderate scale, where std is the standard
deviation, d denotes the distance of patch pair. Through testing
on the 8 models, we empirically set ε = 0.5ξ.

2) Parameters for Performance and Speed Balance: To
speed up the implementation, we take 50% of the points as the
patch centers, with the farthest point sampling [42] to assure
spatially uniform selection. The planar interpolation threshold
τ is set to 1, which is large enough to ensure most points
are connected using nearest-neighbor replacement for efficient

10

implementation. The maximum iteration number r is set to 15.
To find the proper value for the search window size K and
the patch size k, we study the performance sensitivity to K
and k. We set K = 4, 8, 12, 16, 20 and k = 15, 30, 60, 120,
and test on the 8 models. The average MSE results are shown
in Table I and II.

With larger search range K, each patch is more likely
to find similar patches to get connected, so the results get
better though the performance converges when K reaches
16. On the other hand, the runtime increases as K gets
larger, so we choose K to be 16 to balance the performance
and runtime. With small k, the patch size is too small to
capture salient features, so the filtering cannot distinguish
patch similarity and is not edge-aware; with large k, the patch
contains too many salient features and the dimension of the
patch manifold increases, thus the low-dimensional manifold
model assumption is invalid. Therefore we choose k = 30 as
a suitable patch size which provides the best results in Table
II.

TABLE I
MSE RESULTS AND RUNTIME (SEC) OF DIFFERENT SETTING FOR K

Noise Level K = 4 K = 8 K = 12 K = 16 K = 20

0.02 0.147 0.145 0.143 0.142 0.143
0.03 0.173 0.171 0.166 0.165 0.164
0.04 0.196 0.190 0.184 0.181 0.181

runtime 131.6 227.4 323.7 399.0 496.2

TABLE II
MSE RESULTS AND RUNTIME (SEC) OF DIFFERENT SETTING FOR k

Noise Level k = 15 k = 30 k = 60 k = 120

0.02 0.177 0.142 0.145 0.170
0.03 0.206 0.165 0.170 0.285
0.04 0.229 0.181 0.292 0.655

runtime 262.8 399.0 852.7 2535.2

3) Objective Comparison with Existing Methods: MSE,
SNR and MCD results comparison with different methods on
the 8 models are shown in Table IV, VIII, and IX, where
the numbers showing the best performance are highlighted in
bold.

For parameter settings of competing methods, NLD and LR
follow the default settings in the corresponding papers; the rest
of the methods require manual parameter tuning, and optimal
parameters vary for different models as shown in Table III.
Parameters not shown in Table III follow the default setting
in the software.

GLR achieves the best results on average in all three metrics
and all noise levels. In terms of MSE, GLR outperforms the
second best scheme by 0.009, 0.008 and 0.009 for σ = 0.02,
0.03, 0.04; for SNR, GLR outperforms the second best by 0.72
dB, 0.96 dB, 0.75 dB for σ = 0.02, 0.03, 0.04; for MCD,
GLR outperforms the second best by 0.013, 0.013, 0.011 for
σ = 0.02, 0.03, 0.04. APSS and MRPCA are usually the
second and the third best among different methods. APSS
never achieves the best result for one single model, but on
average outperforms others because the local sphere fitting
provides stable results. For MRPCA, it sometimes outperforms

GLR but on average is only ranked third because of the
unstable performance since the sparsity regularization is likely
to generate extra features [6]. In contrast, the proposed GLR
not only has stable performance due to the robustness to high
noise level, but also outperforms the other schemes overall,
validating the effectiveness of LDMM. The patch-similarity
based LR is not among the top methods because the patch
extraction procedure causes fine detail lose as discussed in
Section II, but outperforms the non-local means based NLD,
validating the effectiveness of using patch self-similarity.

4) Visual Comparison with Existing Methods: Here we
demonstrate the results using the model Daratech in Fig. 5(a)
with σ = 0.02 shown in Fig. 4(a). For better visualization,
we demonstrate surfaces created from the point clouds with
screened Poisson surface reconstruction algorithm [43], and
colorize the points using the mean curvature calculated from
APSS implemented in MeshLab software.

The surface reconstruction of GLR denoising results after
1st and 3rd iteration are shown in Fig. 4(b) and (c), which
demonstrate the iterative recovery of the point cloud. The
result converges fast and we do not show the result after
iteration 3 since it already converges.

The surface patches in black and blue rectangles are en-
larged and placed at the upper-right and lower-right corners to
show structural details. The underlying plane (with curvature
in green) and fold (with curvature in blue) are gradually recov-
ered, smoothing out the noise on the plane while maintaining
the edges.

The comparison with other schemes is shown in Fig. 5.
APSS in Fig. 5(b) generates relatively smoother surface than
others as shown in the blue rectangles. However, the under-
lying true structure is not recovered due to the limitation of
local operation, resulting in uneven planes and over-smoothed
folds. RIMLS shows similar results as APSS thus is not shown
in Fig. 5.

We observe that NLD in Fig. 5(d) has similar results as
APSS and RIMLS, since the features used for similarity
computation in NLD are based on the polynomial coefficients
of the MLS surface. Moreover, NLD only takes one pass
instead of multiple iterations since more iterations worsen its
result as reported in [18], so the noise is not satisfactorily
removed. Though NLD and GLR both belong to the non-local
category of methods, NLD is based on the non-local means
scheme and is not collaboratively denoising the patches, thus
also suffers from the drawback of local operation.

AWLOP results in Fig. 5(c) have non-negligible noise.
AWLOP is based on normal estimation, so the results indicate
that AWLOP fails to estimate the normal at high noise level,
and the noisy features may be regarded as sharp features and
preserved.

MRPCA in Fig. 5(e) is not providing satisfying results,
where the fold is already smoothed out but the plane is still
uneven as shown in the blur rectangle. LR in Fig. 5(f) generates
relatively smoother planes than others shown in the blue
rectangle but noise is still not fully removed. For the proposed
GLR in Fig. 4(c), the result is visually better, preserving the
plane and folding structures without over-smoothing.

11

TABLE III
PARAMETER SETTING OF COMPETING METHODS FOR DIFFERENT MODELS AND NOISE LEVELS

Methods Parameters
Parameter Setting for Different σ 0.02 | 0.03 | 0.04

Anchor Bimba Bunny Daratech DC Fandisk Gargoyle Lordquas
APSS filter scale 5 | 5 | 5 5 | 10 | 10 5 | 5 | 5 3 | 3 | 3 5 | 5 | 5 4 | 5 | 8 4 | 4 | 4 6 | 6 | 6
RIMLS filter scale 7 | 7 | 7 5 | 12 | 12 5 | 5 | 5 3 | 3 | 3 5 | 5 | 5 5 | 8 | 8 5 | 5 | 5 6 | 6 | 6

AWLOP
repulsion force 0.3 | 0.3 | 0.3 0.3 | 0.5 | 0.5 0.3 | 0.3 | 0.3 0.3 | 0.3 | 0.3 0.3 | 0.3 | 0.3 0.3 | 0.3 | 0.3 0.3 | 0.3 | 0.3 0.3 | 0.3 | 0.5
iteration 2 | 2 | 2 2 | 10 | 10 2 | 2 | 2 2 | 2 | 2 2 | 2 | 2 2 | 2 | 2 2 | 2 | 2 2 | 2 | 10

MRPCA
data fitting 1 | 1 | 1 1 | 4 | 4 1 | 1 | 1 1 | 1 | 1 0.01 | 0.01 | 0.01 1 | 1 | 1 1 | 1 | 1 1 | 1 | 1
iteration 6 | 6 | 6 6 | 1 | 1 6 | 6 | 6 1 | 1 | 1 2 | 2 | 2 6 | 6 | 6 2 | 2 | 2 3 | 3 | 3

TABLE IV
MSE RESULTS OF DIFFERENT METHODS ON SMALL DATASET WITH THREE NOISE LEVELS

Noise level Methods Anchor Bimba Bunny Daratech DC Fandisk Gargoyle Lordquas Average

σ = 0.02

Noisy 0.259 0.0191 0.247 0.245 0.237 0.0258 0.257 0.224 0.189
APSS 0.208 0.0131 0.198 0.203 0.186 0.0201 0.208 0.171 0.151

RIMLS 0.212 0.0169 0.208 0.209 0.198 0.0196 0.217 0.183 0.158
AWLOP 0.237 0.0110 0.223 0.228 0.211 0.0191 0.230 0.196 0.169

NLD 0.231 0.0174 0.220 0.222 0.206 0.0208 0.230 0.190 0.167
MRPCA 0.202 0.0154 0.213 0.225 0.189 0.0164 0.215 0.171 0.156

LR 0.228 0.0133 0.220 0.213 0.206 0.0173 0.240 0.180 0.165
GLR 0.189 0.0120 0.183 0.197 0.177 0.0173 0.202 0.162 0.142

σ = 0.03

Noisy 0.321 0.0257 0.309 0.304 0.292 0.0326 0.319 0.274 0.235
APSS 0.238 0.0196 0.228 0.242 0.210 0.0234 0.239 0.188 0.173

RIMLS 0.244 0.0213 0.241 0.255 0.225 0.0252 0.251 0.203 0.183
AWLOP 0.278 0.0133 0.266 0.264 0.246 0.0218 0.270 0.226 0.198

NLD 0.265 0.0245 0.255 0.258 0.235 0.0285 0.262 0.217 0.193
MRPCA 0.230 0.0233 0.238 0.262 0.210 0.0239 0.241 0.187 0.177

LR 0.246 0.0209 0.237 0.252 0.221 0.0210 0.257 0.193 0.181
GLR 0.217 0.0147 0.217 0.238 0.203 0.0190 0.233 0.176 0.165

σ = 0.04

Noisy 0.372 0.0324 0.356 0.348 0.338 0.0391 0.368 0.318 0.271
APSS 0.254 0.0200 0.244 0.282 0.227 0.0289 0.262 0.201 0.190

RIMLS 0.263 0.0250 0.266 0.308 0.254 0.0314 0.277 0.219 0.205
AWLOP 0.306 0.0151 0.291 0.286 0.270 0.0240 0.297 0.218 0.213

NLD 0.297 0.0316 0.285 0.295 0.269 0.0372 0.294 0.252 0.220
MRPCA 0.242 0.0306 0.248 0.288 0.223 0.0345 0.257 0.199 0.190

LR 0.259 0.0313 0.249 0.283 0.234 0.0297 0.269 0.204 0.195
GLR 0.228 0.0175 0.234 0.276 0.228 0.0229 0.257 0.187 0.181

Denoising results of the Fandisk model are shown in Fig. 6
with noise level σ = 0.02. The corner part is highlighted
by a black rectangle, enlarged and placed at the lower-right
corner. APSS result is over-smoothed, AWLOP and NLD do
not show competitive results, and MRPCA generates extra
surface as shown in the black rectangle. The patch-based LR
and GLR is visually better, without over-smoothing or extra
feature generated.

We further compare GLR approach using combinatorial and
normalized Laplacian matrix for the regularization. As dis-
cussed in Section IV-B3, normalized Laplacian cannot handle
constant signal, e.g., a flat surface. This is consistent with the
visual comparison in Fig. 7, where the surface reconstruction
of the resulting point cloud is colorized by distance from the
ground truth surface. Normalized Laplacian cannot even de-
noise a flat surface with obvious error (colored in blue), while
combinatorial Laplacian preserves both the smooth surface and
the sharp edges. For numerical evaluation in term of MSE,
combinatorial Laplacian outperforms normalized Laplacian by
0.014, 0.020, 0.080 for σ = 0.02, 0.03, 0.04.

C. Generalization to ShapeNetCore Dataset

We now test the parameter setting learned in Section VI-B1
and VI-B2 with ShapeNetCore dataset [41]. ShapeNetCore
dataset is a subset of ShapeNet dataset containing 55 object

categories with 52491 unique 3D models. The 10 categories
with the largest number of models are used. We then randomly
select 10 models from each category for testing, so 100 models
are used in total. Moreover, the 3D models in ShapeNetCore
dataset are low poly meshes, so we sample approximately
30000 points on each mesh to obtain the point cloud using
Poisson-disk sampling [44].

We add Gaussian noise with σ = 0.02, 0.03, 0.04 to the
models, then apply different denoising methods. The parameter
setting for GLR is the same as used in Section VI-B. For APSS
and RIMLS, we try each filter scale in {5, 6, 7, 8, 9, 10} and
choose the one with the best result. For other methods, we
empirically set the parameters as shown in Table V based on
the results of previous 8 models since it is too time-consuming
to tune parameters for each of the 100 models. Parameters not
in Table V follow the default setting.

The MSE, SNR and MCD results are compared with com-
peting methods in Table X, XI and XII where GLR provides
the best results, and the patch-based LR is the second best.
At high noise level, e.g., Fig. 8(b), the points distract from the
surface and tend to fill the bulk of the object, so for methods
based on plane fitting, the denoising leads to erroneous results,
e.g., APSS in Fig. 8(c). RIMLS provides similar results as
APSS thus is not shown in Fig. 8. The noise in results of
AWLOP and MRPCA in Fig. 8(d) and (f) is not fully removed

12

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Fandisk model (σ = 0.02) illustration. Surface reconstruction with (a) noisy input, denoising results of (b) APSS, (c) AWLOP, (d) NLD, (e) MRPCA,
(f) LR, (g) proposed GLR, and (h) ground truth, colorized by mean curvature.

(a) (b)

Fig. 7. Surface reconstruction of denoising results of (a) normalized Laplacian
regularization and (b) combinatorial Laplacian regularization, where the
surface is colorized by the distance from the ground truth surface (green
means zero error, while blue means large error).

TABLE V
PARAMETER SETTING OF COMPETING METHODS FOR SHAPENETCORE

DATASET WITH DIFFERENT NOISE LEVELS

Methods Parameters σ 0.02 | 0.03 | 0.04
APSS filter scale exhaustive search {5,6,7,8,9,10}
RIMLS filter scale exhaustive search {5,6,7,8,9,10}

AWLOP
repulsion force 0.3 | 0.3 | 0.3
iteration 2 | 2 | 2

MRPCA
data fitting 1 | 1 | 1
iteration 6 | 6 | 6

with noticeable outliers. NLD in Fig. 8(e) provides smooth
results without outliers, which demonstrates the robustness
of non-local means filtering against the above approaches at
high noise level. Patch-based LR and GLR in Fig. 8(g) and (h)
provide the best results, where the shape of the rifle model is
well preserved, validating the effectiveness of patch-similarity
based filtering. However, LR tends to over-smooth the model
and fine details are lost during patch extraction procedure,
while the proposed GLR preserves the salient features without
over-smoothing. In sum, the generalization to ShapeNetCore
dataset validates the robustness of parameter setting in Section
VI-B as well as the superiority of patch-based filtering over
other approaches.

D. Complexity Analysis

The computational complexity of different algorithms are
summarized in Table VI. N is the number of points, r is
the number of iterations of implementing the algorithm since
all algorithms except NLD and LR adopt iterative restoration,
K is the neighborhood size chosen for different operation in
different schemes. Parameters used in specific methods are
explained along with the complexity. The parameter ranges in
Table VI are suggested in the original papers.

As shown in Table VI, APSS, RIMLS and NLD have
the lowest complexity. MRPCA and GLR are of similar
complexity; MRPCA’s can be higher due to large K and t. The
complexity of LR is high due to complexity in solving low-
rank matrix factorization for dictionary learning. GLR have
relatively high complexity, but provides the best performance
as shown in the above evaluation, so GLR is favorable if the
requirement for denoising accuracy is high.

We additional include the runtime of different methods
implemented on Intel i7-8550U CPU at 1.80GHz and 8GB
RAM. Since the methods are implemented with different
programming language and C++ is known to far surpass the
speed of Matlab [45], we cannot directly use the runtime for
complexity comparison. Nevertheless, the runtime of NLD is
more than 10 times that of APSS while the complexity is
approximately the same as APSS, thus if implemented in C++,
the runtime of GLR can be reduced by 10 times potentially.

VII. CONCLUSION

In this paper, we propose a graph Laplacian regularization
based 3D point cloud denoising algorithm. To utilize the
self-similarity among surface patches, we adopt the low-
dimensional manifold prior, and collaboratively denoise the
patches by minimizing the manifold dimension. To compute
manifold dimension with discrete patch observations, we ap-
proximate the manifold dimension with a graph Laplacian
regularizer, and construct the patch graph with a new measure
for the discrete patch distance. The proposed scheme is shown
to have graph spectral low-pass filtering interpretation and
numerical stability in solving the linear equation system, and
efficient to solve with methods like PCG. Experimental results

13

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Rifle model from ShapeNetCore dataset. (a) ground truth, (b) noisy input with σ = 0.04, denoising results of (c) APSS, (d) AWLOP, (e) NLD, (f)
MRPCA, (g) LR, (h) GLR.

TABLE VI
TIME COMPLEXITY SUMMARY OF DIFFERENT SCHEMES

Method Complexity
APSS O(rKN logN), r ≤ 15, K ∈ (16, 100)

RIMLS Same as above
AWLOP O(r(σpN2 + kN logN)), r ≈ 3

σp for neighborhood radius
k = 6 for PCA-based normal estimation

NLD O(N + 2KN logN), K ≈ 20
MRPCA O(r(KN logN +N logN + tKN))

r ≤ 20, K ∈ (30, 100),
t ∈ (50, 100) is the RPCA solver iteration number

LR O(l/τ(h2 +M)), l = 50 is dictionary atom number
h2 = 162 is patch grid size, M is patch number
τ = 10−5 is proximal gradient descent step size

GLR O(rKM(logM + k log k + k
√
C)), r ≤ 15,

M = N/2, K = 16, k = 30, C ≤ 1 + 2/µ ≤ 1.921
(µ ≥ 25(exp(1/12)− 1) ≈ 2.173)

TABLE VII
AVERAGE RUNTIME (SEC) ON SHAPENETCORE DATASET AND

PROGRAMMING LANGUAGE FOR DIFFERENT METHODS

APSS RIMLS AWLOP NLD MRPCA LR GLR
C++ C++ C++ Matlab C++ Matlab Matlab
13.8 18.1 21.2 156.4 18.0 464.7 372.2

suggest that our proposal outperforms existing schemes with
better structural detail preservation.

APPENDIX A

Assume that M is a Riemannian manifold with boundary,
equipped with the probability density function (PDF) h(p)
describing the distribution of the vertices on M, and that
αi belongs to the class of κ-Hölder functions [46] on M.
Then according to the proof in [47], there exists a constant c
depending only on Cr such that for κ ≥ 3 and the weight
parameter ε = O

(
M
− κ

2κ+2δ+δ2+δκ

)
, where δ denotes the

manifold dimension, such that4

4We refer readers to [46] for the uniform convergence result in a more
general setting and its corresponding assumptions on M, ε, and the graph
weight kernel function ψ(·).

sup

∣∣∣∣ cM2γ−1

ε4(1−γ)(M − 1)
SL(αi)− S∆(αi)

∣∣∣∣
= O

(
M
− κ

2κ+2δ+δ2+δκ

)
, (42)

where S∆(αi) is induced by the 2(1−γ)-th weighted Laplace-
Beltrami operator on M, which is given as

S∆(αi) =

∫
M
‖∇Mαi(p)‖22h(p)2(1−γ)dp. (43)

Assuming that the vertices are uniformly distributed onM,
then ∫

M
h(p)dp = 1, h(p) =

1

|M|
, (44)

where |M| is the volume of the manifold M. For implemen-
tation, similar to the setting in [47], we set γ = 0.5, then
S∆(αi) becomes

S∆(αi) =
1

|M|

∫
M
‖∇Mαi(p)‖22dp. (45)

From (42) and (45), the convergence in (11) is readily obtained
by weakening the uniform convergence of (42) to point-wise
convergence.

REFERENCES

[1] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1–4.

[2] D. Thanou, P. A. Chou, and P. Frossard, “Graph-based compression
of dynamic 3d point cloud sequences,” IEEE Transactions on Image
Processing, vol. 25, no. 4, pp. 1765–1778, 2016.

[3] S. Chen, D. Tian, C. Feng, A. Vetro, and J. Kovačević, “Fast resampling
of three-dimensional point clouds via graphs,” IEEE Transactions on
Signal Processing, vol. 66, no. 3, pp. 666–681, 2018.

[4] M. Ji, J. Gall, H. Zheng, Y. Liu, and L. Fang, “Surfacenet: An end-to-end
3D neural network for multiview stereopsis,” 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 2326–2334, 2017.

[5] G. Rosman, A. Dubrovina, and R. Kimmel, “Patch-collaborative spectral
point-cloud denoising,” Computer Graphics Forum, vol. 32, no. 8, pp.
1–12, 2013.

[6] E. Mattei and A. Castrodad, “Point cloud denoising via moving rpca,”
Computer Graphics Forum, pp. 1–15, 2016.

14

TABLE VIII
SNR (DB) RESULTS OF DIFFERENT METHODS ON SMALL DATASET WITH THREE NOISE LEVELS

Noise level Methods Anchor Bimba Bunny Daratech DC Fandisk Gargoyle Lordquas Average

σ = 0.02

Noisy 47.41 41.40 51.99 45.85 46.42 34.06 46.91 46.61 45.08
APSS 49.61 45.13 54.20 47.71 48.83 36.52 49.01 49.27 47.53

RIMLS 49.41 42.60 53.70 47.44 48.23 36.80 48.57 48.60 46.92
AWLOP 48.31 46.91 52.98 46.56 47.59 37.06 48.01 47.92 46.92

NLD 48.53 42.30 53.14 46.82 47.82 36.16 48.01 48.22 46.38
MRPCA 49.88 43.53 53.45 46.72 48.68 38.55 48.66 49.27 47.34

LD 48.69 45.06 53.15 47.27 47.83 38.00 47.57 48.78 47.04
GLR 50.55 46.00 54.95 48.02 49.34 38.05 49.30 49.81 48.25

σ = 0.03

Noisy 45.25 38.42 49.72 43.70 44.32 31.75 44.75 44.58 42.81
APSS 48.24 41.17 52.77 46.00 47.64 35.07 47.63 48.34 45.86

RIMLS 48.00 40.36 52.22 45.46 46.94 34.38 47.12 47.57 45.26
AWLOP 46.69 45.02 51.24 45.12 46.04 35.71 46.39 46.53 45.34

NLD 47.16 38.91 51.67 45.34 46.49 33.07 46.68 46.89 44.53
MRPCA 48.60 39.40 52.32 45.18 47.62 34.83 47.52 48.40 45.48

LD 47.91 40.52 52.38 45.59 47.10 36.12 46.88 48.09 45.57
GLR 49.20 44.03 53.28 46.13 47.94 37.09 47.87 49.00 46.82

σ = 0.04

Noisy 43.78 36.13 48.31 42.34 42.86 29.95 43.31 43.09 41.22
APSS 47.60 40.94 52.09 44.46 46.84 33.02 46.69 47.68 44.92

RIMLS 47.27 38.76 51.22 43.58 45.71 32.23 46.14 46.80 43.96
AWLOP 45.74 43.73 50.32 44.32 45.11 34.77 45.44 46.85 44.54

NLD 46.02 36.39 50.54 43.98 45.15 30.44 45.53 45.40 42.93
MRPCA 48.09 36.71 51.93 44.25 47.00 31.19 46.88 47.80 44.23

LD 47.41 36.50 51.89 44.41 46.54 32.68 46.44 47.52 44.17
GLR 48.67 42.22 52.51 44.64 46.80 35.20 46.89 48.40 45.67

TABLE IX
MCD RESULTS OF DIFFERENT METHODS ON SMALL DATASET WITH THREE NOISE LEVELS

Noise level Methods Anchor Bimba Bunny Daratech DC Fandisk Gargoyle Lordquas Average

σ = 0.02

Noisy 0.384 0.0268 0.366 0.364 0.350 0.0368 0.380 0.331 0.280
APSS 0.302 0.0188 0.293 0.300 0.275 0.0294 0.308 0.252 0.222

RIMLS 0.311 0.0240 0.309 0.310 0.292 0.0287 0.322 0.271 0.233
AWLOP 0.353 0.0161 0.332 0.339 0.313 0.0280 0.342 0.292 0.252

NLD 0.339 0.0247 0.325 0.327 0.304 0.0304 0.340 0.281 0.246
MRPCA 0.289 0.0219 0.316 0.331 0.278 0.0239 0.319 0.251 0.229

LD 0.330 0.0190 0.326 0.313 0.303 0.0254 0.355 0.264 0.242
GLR 0.272 0.0174 0.272 0.290 0.261 0.0252 0.299 0.238 0.209

σ = 0.03

Noisy 0.475 0.0356 0.456 0.449 0.430 0.0453 0.469 0.402 0.345
APSS 0.348 0.0274 0.338 0.358 0.309 0.0338 0.353 0.277 0.255

RIMLS 0.360 0.0297 0.357 0.379 0.333 0.0361 0.372 0.300 0.271
AWLOP 0.415 0.0194 0.395 0.392 0.365 0.0320 0.401 0.335 0.294

NLD 0.391 0.0341 0.377 0.380 0.347 0.0405 0.388 0.321 0.285
MRPCA 0.331 0.0325 0.353 0.386 0.310 0.0343 0.356 0.274 0.260

LD 0.359 0.0293 0.352 0.372 0.326 0.0304 0.379 0.284 0.266
GLR 0.312 0.0209 0.322 0.353 0.300 0.0276 0.345 0.259 0.242

σ = 0.04

Noisy 0.545 0.0445 0.521 0.510 0.494 0.0535 0.539 0.462 0.396
APSS 0.375 0.0278 0.362 0.417 0.336 0.0409 0.388 0.297 0.280

RIMLS 0.389 0.0340 0.395 0.454 0.376 0.0442 0.410 0.325 0.303
AWLOP 0.456 0.0220 0.432 0.425 0.400 0.0351 0.441 0.322 0.317

NLD 0.439 0.0433 0.421 0.435 0.397 0.0514 0.434 0.372 0.324
MRPCA 0.351 0.0421 0.367 0.424 0.330 0.0479 0.380 0.293 0.279

LD 0.380 0.0430 0.369 0.418 0.345 0.0419 0.397 0.302 0.287
GLR 0.334 0.0248 0.347 0.411 0.337 0.0330 0.379 0.277 0.268

[7] Y. Sun, S. Schaefer, and W. Wang, “Denoising point sets via l0
minimization,” Computer Aided Geometric Design, vol. 35, pp. 2–15,
2015.

[8] Y. Zheng, G. Li, S. Wu, Y. Liu, and Y. Gao, “Guided point cloud
denoising via sharp feature skeletons,” The Visual Computer, pp. 1–11,
2017.

[9] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM
Transactions on Graphics (TOG), vol. 26, no. 3, p. 23, 2007.

[10] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature preserving point
set surfaces based on non-linear kernel regression,” Computer Graphics
Forum, vol. 28, no. 2, pp. 493–501, 2009.

[11] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, “Parameterization-
free projection for geometry reconstruction,” ACM Transactions on
Graphics (TOG), vol. 26, no. 3, p. 22, 2007.

[12] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. R. Zhang,
“Edge-aware point set resampling,” ACM Transactions on Graphics
(TOG), vol. 32, no. 1, p. 9, 2013.

[13] H. Avron, A. Sharf, C. Greif, and D. Cohen-Or, “l1-sparse reconstruction
of sharp point set surfaces,” ACM Transactions on Graphics (TOG),
vol. 29, no. 5, p. 135, 2010.

[14] X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, and L. Xiao, “A
review of algorithms for filtering the 3D point cloud,” Signal Processing:
Image Communication, 2017.

[15] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Computer Vision and Pattern Recognition (CVPR), 2005
IEEE Computer Society Conference on, vol. 2. IEEE, 2005, pp. 60–65.

[16] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-D transform-domain collaborative filtering,” IEEE Transactions

15

TABLE X
MSE (×10−3) RESULTS OF DIFFERENT METHODS FOR 10 CATEGORIES OF SHAPENETCORE DATASET

Noise Level Methods plane bench car chair lamp speaker rifle sofa table vessel Average

0.02

Noisy 4.988 6.206 6.188 6.709 5.509 6.656 4.911 6.919 6.283 5.605 5.997
APSS 4.059 4.783 4.380 4.693 4.032 3.643 5.066 4.370 5.204 4.060 4.429
RIMLS 4.718 5.479 4.904 5.446 4.873 4.134 5.236 4.838 5.817 4.927 5.037
AWLOP 3.890 5.046 5.196 5.690 4.034 5.424 3.646 5.951 5.237 4.342 4.846
NLD 4.347 5.096 4.902 5.247 4.700 5.091 4.505 5.192 5.041 4.819 4.894
MRPCA 4.413 5.126 4.915 5.073 4.670 4.772 4.560 5.095 5.229 4.818 4.867
LR 3.434 4.802 4.389 5.159 3.537 3.689 3.199 4.760 4.756 3.734 4.146
GLR 3.489 4.368 4.067 4.355 3.714 3.752 3.640 4.294 4.565 3.789 4.003

0.03

Noisy 6.393 7.848 7.829 8.540 7.302 8.707 6.627 8.858 7.933 7.210 7.725
APSS 6.354 6.687 5.636 6.377 5.705 4.886 8.149 5.832 6.814 6.048 6.249
RIMLS 7.237 7.441 6.907 7.963 7.454 6.256 7.579 6.886 7.585 7.592 7.290
AWLOP 5.227 6.899 7.108 7.824 5.762 7.779 4.926 8.242 6.942 6.076 6.679
NLD 5.946 7.091 6.884 7.351 6.678 7.459 6.334 7.584 6.963 6.641 6.893
MRPCA 6.034 7.082 6.873 7.211 6.649 7.145 6.403 7.409 7.099 6.709 6.861
LR 4.229 5.252 4.638 5.498 4.636 4.357 5.144 5.412 5.495 4.545 4.920
GLR 4.274 5.234 4.808 5.496 4.518 4.709 4.553 5.452 5.297 4.650 4.899

0.04

Noisy 7.784 9.433 9.443 10.259 9.127 10.698 8.443 10.650 9.619 8.790 9.425
APSS 9.020 8.626 7.474 9.173 8.457 6.943 10.083 7.983 9.031 9.533 8.632
RIMLS 9.073 10.179 9.084 10.545 9.790 8.836 9.921 10.268 10.070 9.894 9.766
AWLOP 6.757 8.748 8.948 9.807 7.833 10.100 6.700 10.307 8.864 7.953 8.602
NLD 7.431 8.856 8.773 9.378 8.640 9.788 8.182 9.734 8.885 8.391 8.806
MRPCA 7.525 8.858 8.786 9.288 8.612 9.520 8.245 9.622 8.961 8.448 8.786
LR 5.799 6.244 5.550 6.469 6.441 5.638 7.456 6.396 6.229 6.209 6.243
GLR 5.320 6.432 6.029 6.746 5.809 5.993 5.494 6.801 6.025 5.880 6.053

TABLE XI
SNR (DB) RESULTS OF DIFFERENT METHODS FOR 10 CATEGORIES OF SHAPENETCORE DATASET

Noise Level Methods plane bench car chair lamp speaker rifle sofa table vessel Average

0.02

Noisy 36.58 38.50 38.40 37.42 40.95 38.62 38.06 37.70 39.38 37.59 38.32
APSS 38.71 41.23 41.92 41.04 44.19 44.66 37.87 42.40 41.29 40.94 41.42
RIMLS 37.16 39.90 40.78 39.55 42.22 43.39 37.49 41.37 40.17 39.01 40.10
AWLOP 39.06 40.60 40.15 39.14 44.14 40.75 41.04 39.23 41.26 40.13 40.55
NLD 37.93 40.45 40.72 39.85 42.51 41.28 38.90 40.55 41.55 39.08 40.28
MRPCA 37.78 40.40 40.69 40.19 42.56 41.92 38.77 40.75 41.18 39.08 40.33
LR 40.43 41.21 41.92 40.16 45.61 44.59 42.31 41.57 42.22 41.88 42.19
GLR 40.15 42.06 42.61 41.75 44.86 44.33 41.01 42.51 42.61 41.50 42.34

0.03

Noisy 34.13 36.17 36.06 35.02 38.14 35.94 35.10 35.24 37.05 35.11 35.80
APSS 34.27 37.97 39.42 37.99 40.73 41.76 33.26 39.53 38.60 37.02 38.05
RIMLS 33.03 36.82 37.43 35.93 38.08 39.47 33.81 37.87 37.62 34.73 36.48
AWLOP 36.14 37.47 37.02 35.93 40.58 37.11 38.11 35.96 38.46 36.79 37.36
NLD 34.83 37.17 37.34 36.49 39.02 37.45 35.53 36.78 38.34 35.92 36.89
MRPCA 34.69 37.18 37.35 36.68 39.06 37.88 35.43 37.01 38.14 35.82 36.92
LR 38.26 40.29 41.34 39.46 42.70 42.86 37.64 40.30 40.78 39.73 40.33
GLR 38.12 40.23 40.92 39.39 42.90 42.04 38.79 40.10 41.11 39.43 40.30

0.04

Noisy 32.20 34.35 34.21 33.22 35.93 33.90 32.73 33.42 35.14 33.18 33.83
APSS 30.95 35.43 36.68 34.46 36.88 38.51 31.12 36.42 35.86 32.58 34.89
RIMLS 30.78 33.69 34.76 33.11 35.32 36.05 31.18 33.92 34.87 32.10 33.58
AWLOP 33.59 35.10 34.74 33.68 37.50 34.49 35.02 33.74 35.98 34.15 34.80
NLD 32.64 34.97 34.93 34.08 36.47 34.76 33.03 34.30 35.92 33.63 34.47
MRPCA 32.52 34.97 34.92 34.18 36.50 35.03 32.95 34.42 35.83 33.56 34.49
LR 35.10 38.47 39.52 37.79 39.51 40.33 33.99 38.53 39.46 36.66 37.94
GLR 35.81 38.14 38.58 37.28 40.38 39.58 36.89 37.80 39.78 37.00 38.12

on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.
[17] R.-f. Wang, W.-z. Chen, S.-y. Zhang, Y. Zhang, and X.-z. Ye,

“Similarity-based denoising of point-sampled surfaces,” Journal of Zhe-
jiang University-Science A, vol. 9, no. 6, pp. 807–815, 2008.

[18] J.-E. Deschaud and F. Goulette, “Point cloud non local denoising using
local surface descriptor similarity,” IAPRS, vol. 38, no. 3A, pp. 109–114,
2010.

[19] K. Sarkar, F. Bernard, K. Varanasi, C. Theobalt, and D. Stricker,
“Structured low-rank matrix factorization for point-cloud denoising,” in
2018 International Conference on 3D Vision (3DV). IEEE, 2018, pp.
444–453.

[20] S. Osher, Z. Shi, and W. Zhu, “Low dimensional manifold model for
image processing,” SIAM Journal on Imaging Sciences, vol. 10, no. 4,
pp. 1669–1690, 2017.

[21] G. Peyré, “Manifold models for signals and images,” Computer Vision
and Image Understanding, vol. 113, no. 2, pp. 249–260, 2009.

[22] ——, “A review of adaptive image representations,” IEEE Journal of
Selected Topics in Signal Processing, vol. 5, no. 5, pp. 896–911, 2011.

[23] Z. Shi, S. Osher, and W. Zhu, “Generalization of the weighted nonlocal
laplacian in low dimensional manifold model,” Journal of Scientific
Computing, vol. 75, no. 2, pp. 638–656, 2018.

[24] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,
May 2013.

[25] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva, “Computing and rendering point set surfaces,” IEEE Transactions

16

TABLE XII
MCD (×10−3) RESULTS OF DIFFERENT METHODS FOR 10 CATEGORIES OF SHAPENETCORE DATASET

Noise Level Methods plane bench car chair lamp speaker rifle sofa table vessel Average

0.02

Noisy 6.84 8.54 8.63 9.28 7.54 9.16 6.51 9.58 8.69 7.65 8.24
APSS 5.73 6.83 6.35 6.78 5.69 5.34 6.77 6.40 7.42 5.78 6.31
RIMLS 6.56 7.71 7.06 7.77 6.76 6.02 6.98 7.05 8.19 6.89 7.10
AWLOP 5.51 7.15 7.43 8.07 5.71 7.70 4.99 8.45 7.45 6.14 6.86
NLD 6.09 7.24 7.07 7.52 6.56 7.28 6.05 7.51 7.21 6.74 6.93
MRPCA 6.16 7.25 7.06 7.27 6.51 6.84 6.11 7.36 7.43 6.72 6.87
LR 4.92 6.84 6.34 7.35 5.05 5.36 4.45 6.89 6.82 5.35 5.94
GLR 4.98 6.26 5.93 6.31 5.27 5.47 4.97 6.28 6.57 5.41 5.75

0.03

Noisy 8.54 10.47 10.61 11.45 9.74 11.59 8.58 11.83 10.63 9.57 10.30
APSS 8.60 9.17 7.98 8.92 7.80 6.96 10.52 8.29 9.37 8.25 8.59
RIMLS 9.66 10.06 9.59 10.87 10.00 8.66 9.83 9.62 10.34 10.15 9.88
AWLOP 7.15 9.38 9.76 10.62 7.86 10.52 6.53 11.15 9.50 8.24 9.07
NLD 8.03 9.65 9.55 10.10 9.02 10.20 8.25 10.44 9.57 8.94 9.37
MRPCA 8.13 9.61 9.50 9.91 8.97 9.78 8.33 10.18 9.70 9.01 9.31
LR 5.93 7.39 6.69 7.77 6.45 6.25 6.83 7.72 7.76 6.37 6.92
GLR 5.96 7.34 6.90 7.75 6.28 6.71 6.07 7.76 7.48 6.48 6.87

0.04

Noisy 10.23 12.32 12.53 13.47 11.98 13.93 10.78 13.89 12.61 11.45 12.32
APSS 11.87 11.46 10.30 12.33 11.24 9.48 12.88 10.92 12.01 12.51 11.50
RIMLS 11.92 13.36 12.25 13.95 12.89 11.78 12.68 13.62 13.23 12.88 12.86
AWLOP 9.01 11.55 11.95 12.96 10.40 13.25 8.68 13.52 11.76 10.47 11.35
NLD 9.83 11.71 11.81 12.52 11.42 12.96 10.48 12.94 11.81 11.01 11.65
MRPCA 9.94 11.70 11.81 12.39 11.38 12.62 10.56 12.78 11.88 11.08 11.61
LR 7.87 8.60 7.86 8.98 8.70 7.88 9.64 8.93 8.65 8.41 8.55
GLR 7.25 8.79 8.43 9.29 7.88 8.31 7.20 9.40 8.38 7.96 8.29

on Visualization and Computer Graphics, vol. 9, no. 1, pp. 3–15, 2003.
[26] G. Guennebaud, M. Germann, and M. Gross, “Dynamic sampling and

rendering of algebraic point set surfaces,” Computer Graphics Forum,
vol. 27, no. 2, pp. 653–662, 2008.

[27] R. B. Rusu, N. Blodow, Z. Marton, A. Soos, and M. Beetz, “Towards 3D
object maps for autonomous household robots,” in Intelligent Robots and
Systems (IROS), 2007 IEEE/RSJ International Conference on. IEEE,
2007, pp. 3191–3198.

[28] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, “Consol-
idation of unorganized point clouds for surface reconstruction,” ACM
Transactions on Graphics (TOG), vol. 28, no. 5, p. 176, 2009.

[29] Z. Zha, X. Yuan, T. Yue, and J. Zhou, “From rank estimation to rank
approximation: Rank residual constraint for image denoising,” arXiv
preprint arXiv:1807.02504, 2018.

[30] Z. Zha, X. Zhang, Q. Wang, Y. Bai, L. Tang, and X. Yuan, “Group
sparsity residual with non-local samples for image denoising,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2018 IEEE International
Conference on. IEEE, 2018, pp. 1353–1357.

[31] Z. Zha, X. Zhang, Q. Wang, Y. Bai, and L. Tang, “Image denoising
using group sparsity residual and external nonlocal self-similarity prior,”
in Image Processing (ICIP), 2017 IEEE International Conference on.
IEEE, 2017, pp. 2956–2960.

[32] Z. Zha, X. Liu, Z. Zhou, X. Huang, J. Shi, Z. Shang, L. Tang, Y. Bai,
Q. Wang, and X. Zhang, “Image denoising via group sparsity residual
constraint,” in Acoustics, Speech and Signal Processing (ICASSP), 2017
IEEE International Conference on. IEEE, 2017, pp. 1787–1791.

[33] Q. Wang, X. Zhang, Y. Wu, L. Tang, and Z. Zha, “Nonconvex weighted
`p minimization based group sparse representation framework for image
denoising,” IEEE Signal Processing Letters, vol. 24, no. 11, pp. 1686–
1690, 2017.

[34] X. Liu, G. Cheung, X. Wu, and D. Zhao, “Random walk graph laplacian-
based smoothness prior for soft decoding of JPEG images,” IEEE
Transactions on Image Processing, vol. 26, no. 2, pp. 509–524, 2017.

[35] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press,
2012.

[36] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh: Measuring errors
between surfaces using the hausdorff distance,” in Proceedings. IEEE
International Conference on Multimedia and Expo, vol. 1. IEEE, 2002,
pp. 705–708.

[37] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis. Springer
Science & Business Media, 2009, vol. 317.

[38] M.-P. Dubuisson and A. K. Jain, “A modified hausdorff distance for
object matching,” in Proceedings of 12th International Conference on
Pattern Recognition, vol. 1. IEEE, 1994, pp. 566–568.

[39] J. R. Shewchuk et al., “An introduction to the conjugate gradient method
without the agonizing pain,” 1994.

[40] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “Meshlab: An open-source mesh processing tool.” in
Eurographics Italian Chapter Conference, vol. 2008, 2008, pp. 129–
136.

[41] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,” Stan-
ford University–Princeton University–Toyota Technological Institute at
Chicago, Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

[42] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest point
strategy for progressive image sampling,” IEEE Transactions on Image
Processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[43] M. Kazhdan and H. Hoppe, “Screened Poisson surface reconstruction,”
ACM Transactions on Graphics (ToG), vol. 32, no. 3, p. 29, 2013.

[44] M. Corsini, P. Cignoni, and R. Scopigno, “Efficient and flexible sampling
with blue noise properties of triangular meshes,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 6, pp. 914–924, 2012.

[45] T. Andrews, “Computation time comparison between matlab and c++
using launch windows,” 2012.

[46] M. Hein, “Uniform convergence of adaptive graph-based regularization,”
Lecture Notes in Computer Science, vol. 4005, p. 50, 2006.

[47] J. Pang and G. Cheung, “Graph Laplacian regularization for image
denoising: Analysis in the continuous domain,” IEEE Transactions on
Image Processing, vol. 26, no. 4, pp. 1770–1785, 2017.

http://arxiv.org/abs/1807.02504
http://arxiv.org/abs/1512.03012

	I Introduction
	II Related Work
	III Patch Manifold
	III-A Surface Patch
	III-B Patch Manifold
	III-C Low Dimensional Patch Manifold Prior

	IV Problem Formulation
	IV-A Manifold Dimension Computation in Continuous Domain
	IV-B Dimension Discretization with GLR
	IV-B1 Constructing Graph on a Manifold
	IV-B2 Graph Laplacian Regularizer
	IV-B3 Approximation with Graph Laplacian Regularizer

	IV-C From Global Coordinate Ordering to Local Correspondence
	IV-D Objective Formulation with GLR Prior

	V Algorithm Development
	V-A Patch Distance Measure
	V-A1 Distance Measure in Continuous Domain
	V-A2 Distance Measure with Discrete Point Observation
	V-A3 Planar Interpolation
	V-A4 Relation to Hausdorff Distance

	V-B Graph Construction
	V-C Denoising Algorithm
	V-D Graph Spectral Analysis
	V-E Numerical Stability via Eigen-Analysis
	V-F Complexity Analysis

	VI Experimental Results
	VI-A Evaluation Metrics
	VI-B Parameter Tuning
	VI-B1 Parameters in Optimization Formulation
	VI-B2 Parameters for Performance and Speed Balance
	VI-B3 Objective Comparison with Existing Methods
	VI-B4 Visual Comparison with Existing Methods

	VI-C Generalization to ShapeNetCore Dataset
	VI-D Complexity Analysis

	VII Conclusion
	Appendix A
	References

