
Discriminative multi-view Privileged Information

learning for image re-ranking

Jun Li, Chang Xu, Wankou Yang, Changyin Sun, Dacheng Tao,
Hong Zhang ∗

August 15, 2018

Abstract

Conventional multi-view re-ranking methods usually perform asym-
metrical matching between the region of interest (ROI) in the query im-
age and the whole target image for similarity computation. Due to the
inconsistency in the visual appearance, this practice tends to degrade the
retrieval accuracy particularly when the image ROI, which is usually in-
terpreted as the image objectness, accounts for a smaller region in the
image. Since Privileged Information (PI), which can be viewed as the im-
age prior, enables well characterizing the image objectness, we are aiming
at leveraging PI for further improving the performance of the multi-view
re-ranking accuracy in this paper. Towards this end, we propose a dis-
criminative multi-view re-ranking approach in which both the original
global image visual contents and the local auxiliary PI features are si-
multaneously integrated into a unified training framework for generating
the latent subspaces with sufficient discriminating power. For the on-the-
fly re-ranking, since the multi-view PI features are unavailable, we only
project the original multi-view image representations onto the latent sub-
space, and thus the re-ranking can be achieved by computing and sorting
the distances from the multi-view embeddings to the separating hyper-
plane. Extensive experimental evaluations on the two public benchmarks
Oxford5k and Paris6k reveal our approach provides further performance
boost for accurate image re-ranking, whilst the comparative study demon-
strates the advantage of our method against other multi-view re-ranking
methods.

1 Introduction

Recent years have witnessed massive efforts devoted to advancing the research
over image re-ranking which allows significantly improving the retrieval accu-
racy by refining the query model. Among all the re-ranking approaches, the
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subspace based strategy has become a promising line of research due to its
desirable property in uncovering the discriminative latent subspace underlying
the original high-dimensional feature space. In particular, multi-view re-ranking
methods are capable of exploring the visual complementarity among heteroge-
neous feature spaces, which, therefore, leads to a latent representation with
sufficient descriptive power. In order to further improve the separability of the
query model, the classification mechanism is usually encoded into the subspace
learning based re-ranking method for producing a generic and discriminative
framework[12, 21].

Despite their success in image re-ranking, conventional subspace based ap-
proaches directly leverage the visual features generated from the whole image
for training the query model while ignores the important role of image object-
ness in similarity matching. In many cases, actually, it is the region of inter-
est (ROI) characterizing the image objectness that captures the users’ query
intention rather than the whole image region containing complex background
contents. In this sense, training the query model without considering the ob-
jectness tends to introduce the query-irrelevant noise, which leads to the biased
re-ranking results and thus adversely affects the retrieval performance. There-
fore, it is crucial for incorporating the objectness into the trained query model
for further improving the re-ranking accuracy.

It is well known that Privileged Information (PI) gives the supplementary
cues about the training examples [2, 22]. Since PI is typically more informative
about the task at hand than the raw data per se, it is usually combined with
the original training examples for further improving the accuracy of the trained
model. Recent research substantially demonstrates the beneficial effect of PI
learning in a wide range of vision tasks. Without loss of generality, PI can be
defined as four different modalities in the context of object classification, namely
attributes, annotator rationales, bounding boxes and textual descriptions [22].
In particular, the PI translated into the bounding boxes can be viewed as the
image prior, since it is capable of highlighting the object region and encoding
the principal visual cues in the image. Besides, it is also available with easy-to-
implement ROI annotation, which is tailored for the user interaction in image
re-ranking. Therefore, in this paper, we only focus on the PI formulated as the
bounding box, whilst aim to exploit both the original and the supplementary PI
features to train the re-ranking model for accurate retrieval. More specifically,
inspired by the unified subspace based re-ranking framework proposed in [12],
we propose a discriminative PI-aware multi-view re-ranking method in which
multi-view local PI features are also integrated into the query model training
along with their global counterparts.

Fig. 1 gives the processing pipeline of the proposed method. Analogous to
the DMINTIR re-ranking method in [12], our approach comprises two steps,
namely query model training and on-the-fly re-ranking. In the model train-
ing, we first identify the query-relevant images from the top returned shortlist,
whilst annotate the PI regions in these positive examples with cropped ROI
bounding boxes via user interaction. In addition, the low-scored images in the
original ranking list are automatically recognized as the negative training ex-
amples, and their corresponding PI regions can be obtained by the off-the-shelf
saliency detector [23]. Thus, the training data consisting of both global contents
and additional local PI regions can be handled in the original and the privileged
spaces respectively. Then, we compute the multi-view features in both spaces
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Figure 1: The system flowchart of the proposed approach. In our method,
two major steps are involved, namely model training and on-the-fly re-ranking.
With the original training data and the annotated PI regions derived from user
interaction, the former integrates the global multi-view embedding and its PI-
based counterpart into a unified framework, which produces a PI-aware latent
subspace with sufficient discriminating power. For on-the-fly re-ranking, the
latent representations of the target images are obtained by projecting the multi-
view features onto the PI-aware subspace, and thus the images are re-ranked by
the signed distances from the separating hyperplane accordingly.
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Figure 2: Some difficult query examples on Oxford5k and Paris6k. The left
image with a red box is the query with the annotated image ROI while the
right image is the corresponding target image in the dataset. The numbers be-
side the target images denote the image ranks in the returned list. Note that
the DMINTIR proposed in [12] is closest to our method except excluding the
PI features in training the query model. Apparently, our method significantly
outperforms the DMINTIR when there exists dramatic variances in visual ap-
pearances of query object and background contents, which sufficiently suggests
the benefits of PI for accurate re-ranking.

and project them onto the respective latent subspaces for uncovering the under-
lying low-dimensional representations. Meanwhile, a PI-aware latent subspace
with sufficient discriminating power can be obtained by jointly optimizing the
separating hyperplanes of the dual subspaces. For the on-the-fly re-ranking,
due to the unavailability of the PI in the target images, we directly project the
multi-view features onto the PI-aware latent subspace for generating the dis-
criminative representations, and thus the database images can be re-ranked by
computing and sorting the distances from the separating hyperplane for perfor-
mance improvement.

Fig. 2 presents some difficult query examples by using different approaches.
It is shown that there exists dramatic visual variances in ROI regions and back-
ground contents between the query images and the target images. Since our
approach takes into account the PI cues in training re-ranking model, it out-
performs the state-of-the-art re-ranking method [12] which excludes PI features
in model training. This also sufficiently suggests the beneficial effect of PI for
improving the retrieval accuracy. Specifically, the advantage of exploiting PI
for re-ranking manifests itself in the following two aspects. On the one hand,
training with PI contributes to highlighting the dominant role of query object
in the re-ranking model for further enhancing its discriminating power. On the
other hand, PI-aware training somewhat allows suppressing the adverse effect
of scale variance, illumination change, perspective transformation and cluttered
background, and thus improves the robustness of the re-ranking model.

To sum up, the contributions of this paper are three-fold as follows:

• We take into account the PI clues in training re-ranking to outweigh the
objectness in the image. To our knowledge, this is the first time PI is
involved in re-ranking for further performance boost.

• We simultaneously integrate the local PI features and the original global
features into a unified PI-aware multi-view embedding framework for ac-
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curate image re-ranking.

• Extensive experimental evaluations and the comparative studies demon-
strate the advantage of our method to other state-of-the-art approaches.

The remainder of this paper is structured as follows. After reviewing the
related work in Section 2, we will introduce the problem setup in Section 3.
Subsequently, we will elaborate the mathematical formulation of our method
in Section 4 and give the optimization accordingly in Section 5. Next, we will
analyze the computational complexity in Section 6. Extensive experimental
evaluations and the comparative studies will be carried out in Section 7 before
this paper is finally concluded in Section 8.

2 Related Work

2.1 Multi-view image re-ranking

In re-ranking, the single-view feature often fails to provide a comprehensive
visual description, and thus leads to an image signature with insufficient de-
scriptive power. By contrast, multi-view feature enables take advantage of the
complementarity among multiple heterogeneous features, which, consequently,
substantially benefits the re-ranking performance improvements. Earlier multi-
view re-ranking approaches leverage the low-level features (e.g., Bag of features,
color histogram and wavelet textures) for characterizing the visual contents in
the images [17, 16, 18, 20, 19]. Then, either a linear transformation [19] or
complex hypergraph manifolds [17, 16, 18] are learned from these multi-view
features to uncover the intrinsic structure or a low-dimensional subspace for
re-ranking. Besides, more robust estimator has also been utilized for multi-view
intact space learning [15].

Low-level features encodes the visual patterns intuitively yet fails to pro-
vide higher-level image representation. Recently, deep features have been used
as desirable alternative in multi-view learning, since they encode high-level se-
mantic attributes in the image with preferable descriptive power [24, 12, 25].
Particularly, a discriminative multi-view re-ranking approach has been proposed
in [12] to integrate the deep CNN code and the best performing hand-crafted
feature TE into a generic and unified framework, which produces a latent low-
dimensional subspace maintaining sufficient separability. Thus, multi-view fea-
tures can be projected onto this subspace such that robust latent representations
can be generated for accurate re-ranking. Albeit effective, [12] directly exploits
the global features for multi-view embedding while downplays visual cues in
the query region. Therefore, it exhibits suboptimal performance when there ex-
ists complex background contents and severe geometric transformation of query
object.

2.2 Learning using privileged information

In the computer vision community, PI, which is interpreted as the auxiliary
information about the training data, can be used for learning better recognition
systems. Recently, extensive efforts are devoted to exploring PI cues for enhanc-
ing the model training in a variety of vision tasks [22, 8, 13, 14, 9, 10, 11, 6, 5, 4].
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The earliest research over PI learning integrates PI into the classic SVM algo-
rithm, which produces an extended paradigm termed Learning Using Privileged
Information (LUPI) [2]. The resulting model is also referred to SVM+ accord-
ingly. In [22], four different PI types are explored and handled in a unified
LUPI framework in the context of object classification. Besides, a novel rank
transfer approach comparable to the conventional SVM+ algorithm is also pro-
posed for solving the LUPI task. While the extensions of SVM+ algorithm to
multiclass problem are possible, PI is also incorporated into the framework of
generalized matrix learning vector for prototype-based classification [7]. In face
verification and person re-identification, the extra depth features used as PI are
utilized for improving the distance metric learning [8]. Analogously, person re-
identification is also addressed in [5] by joint distance metric learning with the
help of PI. Besides, PI is also embedded into the deep Convolutional Neural Net-
works (CNNs) and Recurrent Neural Network (RNNs) for image classification
and action recognition [4, 9, 10]. In addition to the aforementioned applications,
human-generated captions is used as PI for learning the improved representa-
tion in semantic retrieval [11]. In order to further exploit the complementary
information among multiple features sets, a new multi-view privileged SVM
model is proposed by incorporating the LUPI paradigm into multi-view learn-
ing framework, which satisfies both consensus and complementary principles for
multi-view learning [6].

Although great progress has been made in PI learning, how to make use of PI
cues in image re-ranking for further performance improvement remains an open
problem. In this paper, we propose a generic PI-aware re-ranking framework in
which the original global representations and the additional PI cues are simulta-
neously incorporated into subspace-based multi-view embedding. The resulting
PI-aware subspace preserves sufficient discrimination in the image, and thus can
be used for generating discriminative objectness-aware latent representation for
accurate re-ranking. To the best of our knowledge, this is the first time the PI
learning is explored in image re-ranking.

3 The problem formulation

Given a set of training examples S = {S+, S−} with annotated ROI bounding
boxes obtained by user interaction, the corresponding multi-view features gen-
erated from both the whole image and ROI can be denoted as Z = {Zv}mv=1 in
the original space and Z∗ = {Z∗

v}mv=1 in the privileged space, where m is the
number of views. Since both spaces share the same feature dimensionality for
single-view data, we have Zv, Z

∗
v ∈ RDv×n, where Dv is the feature dimension-

ality of the vth view while n = |S| is the size of the training set. Meanwhile,
Y ∈ {+1,−1}n×1 is the label vector denoting the query relevance of the train-
ing examples. The PI-aware multi-view re-ranking model training is aiming at
learning the dual mapping functions:

f : {Z,Y} → {X,w} (1)

f∗ : {Z∗,Y} → {X∗, w∗} (2)

where X and X∗ are the respective multi-view subspace embeddings, whilst w
and w∗ are the dual separating hyperplanes preserving sufficient discriminative
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Table 1: The annotations involved in our mathematical formulation

n the size of the training set

m the number of data view

Dv the view-specific feature dimensionality

d the dimension of the latent subspace

z
(i)
v ∈ RDv×1 the view-specific feature representation in the original space

z
∗(i)
v ∈ RDv×1 the view-specific feature representation in the privileged space

Pv ∈ RDv×d the view-specific generation matrix in the original space

P ∗
v ∈ RDv×d the view-specific generation matrix in the privileged space

xi ∈ Rd×1 the sample-specific latent representation in the original space

x∗i ∈ Rd×1 the sample-specific latent representation in the privileged space

w ∈ Rd×1 the separating hyperplane in the original space

w∗ ∈ Rd×1 the separating hyperplane in the privileged space

yi ∈ {1,−1} the sample label

power in both underlying subspaces. For the sake of consistency, we learn the
function h(w,w∗) such that the two subspaces are mutually interlinked and a
PI-aware low-dimensional subspace can be produced.

For the on-the-fly re-ranking, since the PI data is unavailable, we directly
project the multiple features of the target images {Z̃v}mv=1 on the trained PI-
aware subspace for generating the latent representations X̃. Thus, the image
ranks can be refined by computing the signed distance of X̃ from the decision
boundary w for accurate re-ranking. All the mathematical notations involved
in our formulation are summarized in Table 1.

4 DMVPIR: Discriminative Multi-view PI-aware
Re-ranking

In the state-of-the-art subspace-based multi-view embedding methods, it is as-
sumed that the image feature of a single view zv ∈ RDv×1 can be recovered from
a shared underlying subspace via a view-specific generation matrix Pv ∈ RDv×d

such that:
zv = Pv · x+ εv (3)

where x ∈ Rd×1 is the low-dimensional subspace representation, whilst εv is the
view-dependent mapping error. Thus, the latent subspace can be obtained by
minimizing the following formulation:

J(Pv, x) =

m∑
v=1

‖zv − Pv · x‖2 + λ

m∑
v=1

‖Pv‖2F + β‖x‖2 (4)

where λ and β are the tradeoff parameters compromising between the two reg-
ularization terms.

In our case, we impose the multi-view embedding on all the training examples
in both the original and the privileged feature spaces, and thus we have the
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following formulations to minimize:

J(Pv, xi) =

n∑
i=1

m∑
v=1

‖z(i)v − Pv · xi‖2 + λ

m∑
v=1

‖Pv‖2F + β

n∑
i=1

‖xi‖2 (5)

J(P ∗
v , x

∗
i ) =

n∑
i=1

m∑
v=1

‖z∗(i)v − P ∗
v · x∗i ‖2 + λ∗

m∑
v=1

‖P ∗
v ‖2F + β∗

n∑
i=1

‖x∗i ‖2 (6)

To ensure the model discrimination capability, learning separating hyper-
plane w and w∗ in the dual subspaces should also be also encoded in the for-
mulation to distinguish between query-relevant and irrelevant examples. Be-
sides, w∗ learning should play a dominant and leading role, since the privileged
features are more informative and confident in discriminatively separating the
examples. As a result, simultaneous learning of w and w∗ can be formulated as:

min
w,w∗,b,b∗

1

2
(‖w‖2 + γ‖w∗‖2) + C

n∑
i=1

w∗Tx∗i + b∗

s.t. yi(w
Txi + b) ≥ 1− (w∗Tx∗i + b∗), w∗Tx∗i + b∗ ≥ 0, ∀i = 1, ..., n

(7)

Note that Equ.(7) is actually the formulation of SVM+ algorithm which
uses the PI as a proxy to the slack oracle in the traditional SVM classifier [22].
Thus, we have the mathematical formulation of our Discriminative Multi-View
PI aware Re-ranking (DMVPIR) model by integrating (5), (6) and (7) into a
unified framework as follows:

L(xi, x
∗
i , Pv, P

∗
v , w, w

∗) = minJ(Pv, xi) + J(P ∗
v , x

∗
i )

+
1

2
(‖w‖2 + γ‖w∗‖2) + C

n∑
i=1

w∗Tx∗i + b∗

s.t. yi(w
Txi + b) ≥ 1− (w∗Tx∗i + b∗), w∗Tx∗i + b∗ ≥ 0, ∀i = 1, ..., n

(8)

where

J(Pv, xi) =

n∑
i=1

m∑
v=1

‖z(i)v − Pvxi‖2 + λ

m∑
v=1

‖Pv‖2F + β

n∑
i=1

‖xi‖2 (9)

J(P ∗
v , x

∗
i ) =

n∑
i=1

m∑
v=1

‖z∗(i)v − P ∗
v x

∗
i ‖2 + λ∗

m∑
v=1

‖P ∗
v ‖2F + β∗

n∑
i=1

‖x∗i ‖2 (10)

As shown in Equ. (8), our DMVPIR re-ranking model aims to learn a PI-
aware subspace with sufficient discriminative power encoded by decision bound-
ary w. For the on-the-fly re-ranking, we project the multi-view feature repre-
sentations of the target images {Z̃v}mv=1 onto the PI-aware latent subspace via
the optimal learned view-dependent generation matrix {P̂v}mv=1, which results
in the low-dimensional subspace representations X̃ for the subsequent similarity
measure and re-ranking. Mathematically, X̃ can be obtained by solving for the
following minimization problem:

min
X̃
L(X̃) = min

X̃

m∑
v=1

‖Z̃v − P̂vX̃‖2F + β‖X̃‖2F (11)
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5 Optimization

To solve the problem in Equ. (8), we develop an efficient iterative alternating
optimization algorithm in which the following five alternating optimization steps
iteratively minimize the empirical loss.

First, we update xi by fixing the other parameters, and thus the
problem is reduced to the following formulation:

min
xi

L = min
xi

m∑
v=1

‖z(i)v − Pvxi‖2 + β‖xi‖2

s.t. yiw
Txi ≥ c

(12)

where c = 1− (x∗Ti w∗ + b∗)− yib.
Furthermore, the objective function in Equ. (12) can be simplified as:

min
x
L = min

x

m∑
v=1

‖zv − Pvx‖2 + β‖x‖2

= min
x

m∑
v=1

(zv
T − xTPT

v )(zv − Pvx) + βxTx

= min
x

m∑
v=1

(xTPT
v Pvx− 2zTv Pvx) + βxTx

= min
x
xT

m∑
v=1

PT
v Pvx+ βxTx− 2

m∑
v=1

zTv Pvx

= min
x
xT (

m∑
v=1

PT
v Pv + βI)x− (2

m∑
v=1

zTv Pv)x

(13)

Thus, the problem is formulated as:

min
x

1

2
xT (2

m∑
v=1

PT
v Pv + 2βI)x+ (−2

m∑
v=1

zTv Pv)x

s.t. ywTx ≥ c
(14)

where c = 1− (x∗Tw∗ + b∗)− yb.
Note that Equ. (14) is the classic quadratic programming (QP) problem:

min
x

1

2
xTUx+ V Tx

s.t. Ax ≤ g
(15)

where:

U = 2

m∑
v=1

PT
v Pv + 2βI, V = −2

m∑
v=1

PT
v zv

A = −ywT , g = −c
(16)

Thus, Equ. (15) can be solved by using the QP solver at hand.
Second, we update x∗i by fixing the other parameters, and thus the

problem is reduced to the following formulation:

9



min
x∗
i

L = min
x∗
i

m∑
v=1

‖z∗(i)v − P ∗
v x

∗
i ‖2 + β∗‖x∗i ‖2 + Cw∗Tx∗i

s.t. x∗Ti w∗ ≥ c
x∗Ti w∗ ≥ −b∗

(17)

where c = 1− yi(wTxi + b)− b∗.
For the sake of simplicity, the objective function in Equ. (17) can be ex-

pressed as:

min
x∗
L = min

x∗

m∑
v=1

‖z∗v − P ∗
v x

∗‖2 + β∗‖x∗‖2 + Cw∗Tx∗

= min
x∗

m∑
v=1

(x∗TP ∗
v
TP ∗

v x
∗ − 2z∗v

TP ∗
v x

∗) + β∗x∗Tx∗ + Cw∗Tx∗

= min
x∗

(
m∑

v=1

x∗TP ∗
v
TP ∗

v x
∗ + β∗x∗Tx∗)−

m∑
v=1

2z∗v
TP ∗

v x
∗ + Cw∗Tx∗

= min
x∗

x∗T (

m∑
v=1

P ∗
v
TP ∗

v + β∗I)x∗ + (−
m∑

v=1

2z∗v
TP ∗

v x
∗ + Cw∗Tx∗)

(18)

Thus, the problem can be formulated as:

min
x∗

x∗T (

m∑
v=1

P ∗
v
TP ∗

v + β∗I)x∗ + (−
m∑

v=1

2z∗v
TP ∗

v + Cw∗T )x∗

s.t. w∗Tx∗ ≥ c, w∗Tx∗ ≥ −b∗
(19)

Apparently, the problem in Equ. (19) can be also interpreted as a QP
problem formulated as

min
x∗

1

2
x∗TUx∗ + V Tx∗

s.t. Ax∗ ≤ g
(20)

where:

U = 2

m∑
v=1

P ∗
v
TP ∗

v + 2β∗I, V = Cw∗ −
m∑

v=1

2P ∗
v
T z∗v

A = −w∗T , g = −max(c,−b∗)

(21)

Analogously, the problem in Equ. (20) can also be solved by an off-the-shelf
QP solver.

Third, we update Pv by fixing the other parameters, and thus the
problem is reduced to the following formulation:

min
Pv

L = min
Pv

m∑
v=1

‖Zv − PvX‖2F + λ‖Pv‖2F (22)

Equ. (21) is a unconstrained ridge regression optimization, which could be
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transformed into:

min
Pv

L = min
Pv

m∑
v=1

‖Zv − PvX‖2F + λ‖Pv‖2F

= min
Pv

‖Zv − PvX‖2F + λ‖Pv‖2F

= min
Pv

tr(Zv − PvX)T (Zv − PvX) + λtr(PT
v Pv)

= min
Pv

tr(−XTPT
v Zv − ZT

v PvX +XTPT
v PvX) + λtr(PT

v Pv)

(23)

Thus, we take the derivatives of L w.r.t. Pv and have:

∇Pv
L = −∇Pv

trXTPT
v Zv −∇Pv

trZT
v PvX +∇Pv

trXTPT
v PvX + λ∇Pv

tr(PT
v Pv)

= −(XZT
v )T − (XZT

v )T + 2PvXX
T + 2λPv

= −2ZvX
T + 2PvXX

T + 2λPv

= 0
(24)

Therefore, we obtain the close-form of Pv as follows:

Pv = ZvX
T (XXT + λI)−1 (25)

Next, we update P ∗
v by fixing the other parameters, and thus the

problem is reduced to the following formulation:

min
P∗

v

L = min
P∗

v

m∑
v=1

‖Z∗
v − P ∗

vX
∗‖2F + λ∗‖P ∗

v ‖2F (26)

Resembling solving for Pv, we derive the close-form solution of P ∗
v as follows:

P ∗
v = Z∗

vX
∗T (X∗X∗T + λ∗I)−1 (27)

Finally, we update w,w∗, b, b∗ by fixing the other parameters, and
thus the problem is reduced to solving for a classic SVM+ problem:

min
w,w∗,b,b∗

L = min
w,w∗,b,b∗

1

2
(‖w‖2 + γ‖w∗‖2) + C

n∑
i=1

w∗Tx∗i + b∗

s.t. yi(w
Txi + b) ≥ 1− (w∗Tx∗i + b∗), w∗Tx∗i + b∗ ≥ 0, ∀i = 1, ..., n

(28)

which can be solved by a fast algorithm in [1].
We iteratively alternate between the five steps until the objective function

(8) converges with global optimal solutions. The corresponding training process
is summarized in Algorithm 1.

In order to generate the latent representations X̃ for on-the-fly re-ranking,
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Algorithm 1 Summary of our optimization procedure

Input: {z(i)v }mv=1, {z∗(i)v }mv=1, yi, λ, λ∗, β, β∗, γ, C, ∀i = 1, ..., n
Output: {xi}ni=1, {x∗i }ni=1, {Pv}mv=1, {P ∗

v }mv=1, w, w∗

1: Initialize: {x∗i }ni=1, {Pv}mv=1, {P ∗
v }mv=1, w, w∗, b, b∗

2: Repeat
3: {xi}n

i=1 update through solving Equ. (15) by QP algorithm
4: {x∗

i }n
i=1 update through solving Equ. (20) by QP algorithm

5: {Pv}m
v=1 update by Equ. (25)

6: {P ∗
v }m

v=1 update by Equ. (27)
7: w,w∗, b, b∗ update by SVM+ algorithm [1]
8: Until Convergence

we take the derivative of Equ. (11) w.r.t. X̃ and have:

∇X̃L(X̃) =

m∑
v=1

∇X̃‖Z̃v − P̂vX̃‖2F + β∇X̃‖X̃‖
2
F

=

m∑
v=1

∇X̃tr(Z̃
T
v − X̃T P̂T

v )(Z̃v − P̂vX̃) + β∇X̃tr(X̃
T X̃)

=

m∑
v=1

∇X̃tr(−X̃
T P̂T

v Z̃v − Z̃T
v P̂vX̃ + X̃T P̂T

v P̂vX̃) + β∇X̃tr(X̃
T X̃)

=

m∑
v=1

(−2P̂T
v Z̃v + 2P̂T

v P̂vX̃) + 2βX̃

= 0
(29)

Thus, we have the close-form solution of X̃ as follows:

X̃ = (

m∑
v=1

P̂T
v P̂v + βI)−1

m∑
v=1

P̂T
v Z̃v (30)

6 Analysis of the computational complexity

We now discuss the computational complexity of our DMVPIR algorithm for
separate phases.

In the model training, the overall computational overhead consists of three
main parts, i.e., solving for x and x∗ in Equ. (15) and (20), computing Pv and
P ∗
v in Equ. (25) and (27) as well as updating w,w∗, b, b∗ with SVM+ algorithm.

Since both x and x∗ are estimated by an off-the-shelf QP solver in practice, the
corresponding time complexity can be computed as O(d3), and thus the total
cost for the whole training set in dual spaces accounts for 2n·O(d3). In Equ. (25)
and (27), computing Pv and P ∗

v requires O(Dv ·n·d)+O(d2·n)+O(d3)+O(Dv ·d2)
time complexity. It can be approximated by O(Dv · n · d) + O(Dv · d2), since
Dv � d in our case. Thus, updating all the view-specific generation matrices
in dual spaces takes 2

∑m
v=1O(Dv · n · d) + O(Dv · d2). As for the w,w∗, b, b∗

update, we directly use the fast linear SVM+ algorithm implemented in [1],
and the time complexity is roughly O(2d) + O(d)[1]. Therefore, the total cost
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amounts to 2n ·O(d3) + 2
∑m

v=1O(Dv ·n ·d) +O(Dv ·d2) +O(2d) +O(d), which
is thus reduced to 2n ·O(d3) + 2

∑m
v=1O(Dv ·n · d) +O(Dv · d2) approximately.

During the re-ranking stage, the computational cost comprises the multi-
view embedding for generating the latent representations shown in Equ. (30)
and the subsequent cosine similarity. The former is calculated as

∑m
v=1O(d2 ·

Dv) + O(d3) +
∑m

v=1O(d · Dv · n) + O(d2 · n) which can be approximated by∑m
v=1O(d2 · Dv) + O(d · Dv · n), while the latter accounts for O(n · d) time

complexity for efficient similarity measure.

7 Experiments

In this section, we will evaluate our DMVPIR method for image re-ranking.
First, we will introduce the public benchmark datasets as well as the experi-
mental setup and the performance measure. Subsequently, thorough qualitative
and quantitative evaluations will be carried out to demonstrate the performance
of our approach. Besides, we also conduct a comparative study for showing the
superiority of our method to the state-of-the-arts.

7.1 benchmark datasets and performance measure

We evaluate our DMVPIR re-ranking approach on two public datasets, Ox-
ford5k [27] and Paris6k [28], both of which are usually used as evaluation
benchmarks for instance-level image retrieval. The two datasets include 5,063
and 6,392 images of 11 famous landmarks in Oxford and Paris respectively, and
each landmark is represented by five query instances, which results in a total
of 55 query groups used for querying the whole dataset. All the images in the
dataset fall into four groups according to the query-specific relevance. Average
Precision (AP) score is computed as the evaluation protocol for a single query,
and thus mean Average Precision (mAP) is obtained by averaging all the AP
scores for the overall performance measure. Besides, we also adopt the Nor-
malized Discounted Cumulative Gain (NDCG) for evaluation [29]. The NDCG
score at position P for a specific query can be computed as:

NDCG@P = ZP

P∑
i=1

2l(i) − 1

log(i+ 1)
(31)

where P is the ranking depth, l(i) denotes the relevance of the ith ranked image
to the specific query, and ZP is the normalization constant that makes the
optimal NDCG@P equal 1. Similar to mAP, mean NDCG (mNDCG) score is
also used for the overall performance evaluation.

7.2 Multi-view features

Following [12], we leverage three complementary image signatures for multi-
view feature representations in our approach, namely CNN, TE and VLAD+.
CNN feature is a 4,096-dimensional vector which consists in the activations of
the upper layer of the deep VGG-16 architecture pretrained for the large-scale
classification task [30]. Known as the best shallow image signature thus far,
TE referred to as triangulation embedding is viewed as a promising alternative
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to FV vector [31], whilst VLAD+ developed from RootSIFT descriptor is more
computationally efficient for fast retrieval [32]. In implementation, we use the
same vocabulary sizes for TE and VLAD+ as in [12], which leads to 8,064 and
16,384-dimensional vectors for respective representations. The complementarity
among the three heterogeneous features can be fully exploited for multiple fea-
ture embedding, since deep CNN feature enables high-level image description,
whilst TE and VLAD+ inherit desirable invariant property from robust local
descriptors.

7.3 Interactive relevance feedback with PI annotation

Analogous to [12], given the ranking images obtained in the first place, we utilize
the user relevance feedback (URF) performed once for assembling the positive
query-relevant images while automatically recognize the low-scored examples as
the negative distractors for training our re-ranking model. Different from the
conventional URF methods [33, 12, 34], however, not only a click indicating the
query-relevance of an image but also the object ROI capturing the user query
is required for obtaining the auxiliary PI data our scenario. To be specific, we
annotate the image ROIs in the positive examples while adopt the off-the-shelf
saliency detector [23] for generating the PI regions in the negative images. Thus,
the original set of training images alongside the corresponding supplementary PI
data are delivered to the subsequent module for extracting multi-view features.
Since the user interaction with PI annotation is performed on the shortlisted
images relatively accounting for a small proportion of the top returned results,
this practice incurs affordable overhead on the system.

7.4 Model selection

In DMVPIR, six hyperparamters in Equ. (8) need to be carefully tuned, i.e., λ,
λ∗, β, β∗, γ, C. To this end, we perform model selection on a single query, and
the optimal parameters obtained accordingly are used for evaluating the other
query groups on the two benchmark datasets. In implementation, we select the
query “all souls 1” for model training with varying parameters.

7.5 Experimental results

7.5.1 Comparison of baseline methods

In our baseline retrieval systems, a global image signature is combined with
efficient cosine similarity for generating a set of ranking images in the first
place. In our case, we evaluate three image representations introduced in section
7.2, which leads to different baseline methods respectively denoted as TE cos,
CNN cos and VLAD+ cos. Table 2 gives the performance of different base-
lines. It is clearly shown that TE cos consistently outperforms the other two
approaches by achieving highest mAP at 61.76% and 62.04% on the respective
datasets as well as higher mNDCG scores. Surprisingly, CNN cos exhibits the
suboptimal performance inferior to TE cos, which can be attributed to the pre-
trained deep model with insufficient descriptive power. Although fine-tuning
allows further improving the retrieval performance of CNN cos, we still use the
TE cos as the baseline for the subsequent re-ranking, since in our work we only
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Table 2: Comparison of the three baseline methods on Oxford5k and Paris6k
(%).

Performance
Measure

Paris6k Oxford5k

TE cos CNN cos VLAD+ cos TE cos CNN cos VLAD+ cos

mAP 61.76 58.75 49.15 62.04 45.05 46.98

mNDCG@50 87.70 83.99 80.02 70.27 59.88 59.71

mNDCG@100 77.96 74.23 67.50 70.16 60.49 59.47

Figure 3: Comparison of the baseline and our re-ranking method on Oxford5k
(left) and Paris6k (right) in terms of AP score.

focus on the image re-ranking which operates independently of the baseline
method.

7.5.2 The performance of our DMVPIR method

We impose our DMVPIR method on the baseline TE cos for accurate re-ranking.
Fig. 3 presents the comparison of the baseline and our re-ranking approach in
terms of AP score. It is observed that DMVPIR provides significant performance
gains ranging from 1.9% on “invalides” to 56% on “bodleian” for different query
groups. In particular, DMVPIR reports respective mAP scores at 81.51% and
77.83% on two datasets and outperforms the baseline system by approximately
20% and 16%, which substantially suggests the beneficial effect of the proposed
re-ranking approach. The only exceptions come from the queries “notredame”
and “sacrecoeur” when slight performance drop occurs. This implies the gener-
alization capability of DMVPIR is somewhat prone to the high nonlinearity of
our model and the redundancy occasionally present in the training examples.

In addition, we compare the baseline and DMVPIR methods by computing
NDCG scores. As shown in Table 3 and 4, DMVPIR dramatically boosts the
baseline results from 70.27% to 79.30% on Oxford5k while the performance
gains also reach 7% on Paris 6k in terms of mNDCG@50. Similar trend can also
be observed for mNDCG@100 score on both datasets, which demonstrates our
re-ranking method considerably benefits the performance improvement.
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Table 3: Comparison of baseline and DMVPIR with NDCG scores on Oxford5k.

Query
Baseline Re-ranking

NDCG@50 NDCG@100 NDCG@50 NDCG@100

all souls 0.7206 0.6683 0.7261 0.6843

ashmolean 0.6617 0.6825 0.7858 0.7954

balliol 0.6561 0.6860 0.7220 0.7305

bodleian 0.5847 0.6297 0.9030 0.9133

christ church 0.6259 0.6033 0.8136 0.7482

cornmarket 0.8137 0.8137 0.9188 0.9252

hertford 0.7462 0.7740 0.8318 0.8288

keble 0.9486 0.9511 0.8775 0.8775

magdalen 0.2492 0.2385 0.4471 0.4148

pitt rivers 0.8830 0.8902 0.9161 0.9161

radcliffe camera 0.8400 0.7803 0.7806 0.7656

mean 0.7027 0.7016 0.7930 0.7818

Table 4: Comparison of baseline and DMVPIR with NDCG scores on Paris6k.

Query
Baseline Re-ranking

NDCG@50 NDCG@100 NDCG@50 NDCG@100

defense 0.7482 0.5309 0.9592 0.7936

eiffel 0.8872 0.8002 0.9260 0.8643

invalides 0.9852 0.9378 0.9884 0.9473

louvre 0.8224 0.7279 0.8674 0.7566

moulinrouge 0.7690 0.6163 0.9882 0.9627

museedorsay 0.6485 0.5262 0.8407 0.6952

notredame 0.9910 0.8956 0.9860 0.8883

pantheon 0.9941 0.9355 0.9982 0.9559

pompidou 0.8641 0.8234 0.9008 0.8874

sacrecoeur 0.9647 0.9084 0.9780 0.9257

triomphe 0.9727 0.8734 0.9907 0.9745

mean 0.8770 0.7796 0.9476 0.8774
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7.5.3 The comparative studies

In comparative studies, we compare our approach DMVPIR with other multi-
view re-ranking methods as follows:

1) DMINTIR. We directly reproduce the algorithm in [12] with the analogous
parameter setting adopted in our method.

2) DMINTIR-PI. For this approach, we leverage the local multi-view PI
features for learning the separating hyperplane w without taking into account
the original multiple global feature representations. The online re-ranking is
achieved by computing and sorting the distances from the global multi-view
projections of the target images to the hyperplane w.

3) DQE by Concatenating Averaged Reduced-size Multi-View features for
Re-ranking (DQE-CAR-MVR). We first impose PCA on the multi-view features
for dimension reduction in both original and privileged space. Thus, we fuse
the compressed view-specific features in the two spaces by average pooling and
concatenate the pooled features of different views for the holistic representation.
Subsequently, analogous to [21], we train a linear SVM model on the resulting
representation and compute the signed distance from the separating hyperplane
for re-ranking. Note that the reduced feature dimensionality in this method is
also set to be 128, which is consistent with the setting in our approach.

4) DQE by Concatenating Averaged Full-size Multi-View features for Re-
ranking (DQE-CAF-MVR). This method is essentially the same with DQE-
CAR-MVR except the original dimensionalities of the multi-view features are
maintained without dimension reduction.

5) DQE by Averaging Reduced-size Multi-view features for Re-ranking (DQE-
AR-MVR). Different from DQE-CAR-MVP and DQE-CAF-MVP, this approach
directly utilizes average pooling for fusing all the multi-view features with re-
duced size in both spaces, which leads to the final image representation delivered
to the linear SVM model. The reduced feature size is also set to be 128 for the
sake of consistency.

6) Late Fusion on DQE with Averaged Reduced-size Multi-view features
for Re-ranking (LFDQE-AR-MVR). In this method, the size of the multi-view
features in dual spaces are firstly reduced by PCA and view-specific average
pooling is also performed for generating fused representation similar to DQE-
CAR-MVR. Then, we derive multiple DQE models from respective fused fea-
tures and combine the output for the relevance score in re-ranking.

7) Late Fusion on DQE with Averaged Full-size Multi-view features for Re-
ranking (LFDQE-AF-MVR). Different from LFDQE-AR-MVR, this approach
adopts the full size of the multiple features without dimension reduction for
respective DQE model training.

To sum up, both DMINTIR and DMINTIR-PI simply take into account
the visual information in a single space, whilst our approach along with the
other competing methods combine the visual contents from both spaces. In
particular, DQE-CAR-MVR, DQE-CAF-MVR as well as DQE-AR-MVR can
be viewed as early fusion multi-view re-ranking strategies, whilst LFDQE-AR-
MVR and LFDQE-AF-MVR fall into the category of late fusion techniques.

Table. 5 and 6 present the performance of different multi-view re-ranking
methods on the two benchmarks. Overall, our scheme demonstrates the unri-
valled performance superior to the other competing approaches. In particular,
the proposed method performs better than both DMINTIR and DMINTIR-PI,
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Table 5: Comparison of different classification-based multi-view re-ranking
methods on Oxford5k (%).

Methods mAP mNDCG@50 mNDCG@100

DMINTIR 80.34 82.82 81.13

DMINTIR-PI 61.56 66.83 66.72

DQE-CAR-MVR 77.39 79.23 77.91

DQE-CAF-MVR 78.72 79.72 78.01

DQE-AR-MVR 40.37 49.47 49.36

LFDQE-AR-MVR 74.42 77.43 75.80

LFDQE-AF-MVR 79.48 80.89 78.89

Ours 81.51 79.30 78.18

Table 6: Comparison of different classification-based multi-view re-ranking
methods on Paris6k (%).

Methods mAP mNDCG@50 mNDCG@100

DMINTIR 77.09 94.64 87.28

DMINTIR-PI 61.91 85.88 76.22

DQE-CAR-MVR 72.36 92.22 83.85

DQE-CAF-MVR 74.90 93.85 85.13

DQE-AR-MVR 46.89 63.70 58.04

LFDQE-AR-MVR 64.54 83.00 75.69

LFDQE-AF-MVR 74.57 93.80 85.23

Ours 77.83 94.76 87.74

which implies the considerable benefit in combining the original visual clues
with supplementary PI data for re-ranking. More specifically, DMVPIR re-
ports higher mAP scores surpassing DMINTIR by 1.2% and 0.7% respectively
on two datasets. Since there exists the asymmetry between the training and
the testing information in DMINTIR-PI, DMVPIR exhibits more dramatic per-
formance advantage against DMINTIR-PI with significant improvements over
15%. In addition, our method also beats the other fusion-based re-ranking
method by achieving substantial performance gains. This sufficiently suggests
our subspace-based scheme allows learning the discriminative representation
from heterogeneous multi-view features while works better then the methods
which perform straightforward fusion strategies. Note that our scheme does not
achieve the best mNDCG results on Oxford5k. We argue this results from the
evaluation mechanism of NDCG where the junk images with certain ambigu-
ity are also taken into consideration in computing the query-relevance, whereas
they are discarded in evaluating mAP score. In this sense, our scheme enables
having clear groundtruth images returned at higher ranks than those ambiguous
examples.

Besides, we also compare the proposed DMVPIR method with the state-
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of-the-arts in recent years. As illustrated in Table 7, DMVPIR achieves per-
formance on par with both traditional BoW-based and recent CNN-based re-
ranking approaches, which substantially suggests the promise of the proposed
framework. In particular, compared with CNN-based methods, our approach
significantly surpasses [39] on Oxford5k by over 14% and reports comparable
result on Paris6k with the same feature size. Additionally, DMVPIR consis-
tently beats Faster R-CNN+CA-SR+QE which also makes use of the deep
model pre-trained with VGG16 architecture [30] while enjoys a more compact
representation. Although fine-tuning the VGG16 network brings further per-
formance gains, DMVPIR still achieves higher re-ranking accuracy than Faster
R-CNN+CS-SR+QE on Oxford5k and rivals the performance on Paris6k.

Table 7: Comparison of our approach and the state-of-the-art re-ranking methods
on two datasets(mAP). d and K refers to the feature dimensionality and the
vocabulary size respectively.

BoW-based Methods K Oxford5k Paris6k

Recoprocal NN [35] 500k 81.4 80.3

Database Saliency [36] 1024 0.835 0.814

HE+MA+PGM [37] 100k 0.737 -

LS+R+LQE [38] 25k 0.788 0.848

CNN-based Methods d Oxford5k Paris6k

CroW + QE [39]

128 0.670 0.793

256 0.718 0.815

512 0.749 0.848

R-MAC+AML+QE [40] 512 0.773 0.865

Faster R-CNN+CA-SR+QE [41] 512 0.647 0.732

Faster R-CNN+CS-SR+QE?[41]
512 0.678 0.784

512 0.786 0.842

Ours 128 0.8151 0.7783
?achieved with two different fine-tuning strategies

In addition to the above quantitative evaluations, we also present the qual-
itative results of different methods as shown in Fig. 4. It is observed that our
scheme not only significantly improves the retrieval accuracy of the baseline
but also demonstrates better performance than the-state-of-the-art DMINTIR
method. Specifically, with the help of PI learning, our approach enables return-
ing more top ranked ground-truth images even when the query-related instances
only account for small regions with the surrounding complex visual background
or are partially occluded by other objects (e.g., tree, person, lamp post) in
the image. This sufficiently suggests incorporating PI learning in re-ranking
contributes to further improving the retrieval performance.

7.5.4 Quantitative computational cost

We quantitatively evaluate the time cost of the proposed DMVPIR algorithm in
separate steps, i.e., the model training and on-the-fly re-ranking. As illustrated
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Figure 4: Comparison of qualitative retrieval results achieved by baseline (the
first row), DMINTIR [12] (the second row) and our scheme (the last row). Given
an image with the annotated query region outlined by the red dashed box shown
on the left, the top returned results are displayed accordingly on the right. Note
that the junk images and the false alarms are highlighted in green and red boxes,
respectively. It is observed that our approach significantly improves the baseline
result and exhibits performance advantage against DMINTIR by returning more
top ranked query-related images.
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Table 8: Time cost of our scheme on two datasets(s).

Datasets model training re-ranking

Oxford5k 79.35 0.14

Paris6k 78.66 0.18

in table 8, training query-specific model costs approximately 80s while fast on-
the-fly re-ranking can be achieved with not more than 0.2s, which indicates
that our scheme lends itself to the real-time scenarios. In practice, all the
experiments are conducted using Matlab on a machine with 3.20GHz Intel Core
i5-6500 CPU and 8GB memory.

7.6 Parameter analysis

We now thoroughly discuss the impact of various parameters in the proposed
DMVPIR framework on the re-ranking performance, including the vocabulary
size k for generating the TE and VLAD+ features, the six hyperparameters
to tune in Equ. (8), the length of the shortlist K for user interaction and the
subspace dimensionality d.

7.6.1 The impact of the vocabulary size

In our method, the re-ranking performance largely depends on the multiple fea-
tures including TE and VLAD+ both of which need a well-trained vocabulary.
As for the TE signature, we follow the standard practice [31, 42, 43] to set the
vocabulary size k as 64 for generating a 8,064 dimensional feature with low fre-
quency dimensions removed, since further increasing k yields limited boost in
performance while severely compromises the computational efficiency [31]. In
terms of VLAD+, we use the vocabulary of the same size as in [12]. In order to
explore the impact of k on the performance, we further increase k to 256 and
1024 respectively. Consistent with [12], the resulting performance gains consist
in less than 1% and 1.5% at the cost of considerable growth in memory footprint
and computational overhead. Therefore, we use k = 256 for VLAD+ in all tests
for the tradeoff between accuracy and efficiency.

7.6.2 The impact of tradeoff hyperparameters

For model selection, we evaluate different combinations of hyperparameters
{λ, λ∗, β, β∗, γ, C} on a single query group “all souls 1” to obtain the optimal
ones. As illustrated in Fig. 5, the highest AP score is achieved at 90.42% when
the hyperparameters take the values of {0.6, 0.6, 0.1, 0.1, 1.0, 1.3}. Thus, we
use the set {0.6, 0.6, 0.1, 0.1, 1.0, 1.3} for evaluations on both datasets. Overall,
the performance with different hyperparameter combinations fluctuates slightly
from 88.72% to 90.42%, which, to some extent, implies the desirable property
of DMVPIR in hyperparameter insensitivity. This can be explained by the fact
that introducing PI into our framework brings the performance boost varying
within a certain range dependent on the tradeoff between respective regulariza-
tion terms.
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Figure 5: The parameter analysis on query group “all souls 1”.

7.6.3 The influence of the user interaction

Analogous to [12], user interaction is involved in training DMVPIR model for
obtaining the query-relevant positive images with annotated PI regions from
the top returned shortlist. Thus, it is essential to explore the effect of the
shortlist size K on the re-ranking performance. Fig. 6 gives the DMVPIR
performance with varying K on the query “all souls”. It is shown that the re-
ranking accuracy improves with an increase in K, yet the growth declines, which
implies further increasing K leads to limited performance improvements at the
cost of more user interaction and human workload. In practise, we do not take
into account the case when K takes the value greater than 50, since not only
a user click indicating the query-relevance but also annotating the PI region is
required in our case. Therefore, larger K tends to incur unaffordable burden
and thus adversely affect the efficiency of the whole system. In implementation,
we assume K = 40 is a reasonable choice with desirable compromise between
accuracy and efficiency. Since the images with low ranks are recognized as
the negative training data without using any user interaction, the size of the
negative set is empirically set to be 100. Thus, we use this parameter setting
(40/100) for all query groups.

7.6.4 The effect of the subspace dimension

Fig. 7 illustrates the performance of our approach with different low-dimensional
subspaces on query “all souls”. Overall, the retrieval performance grows with an
increase in d when the highest mAP score is reported at 72.09% with d = 128.
Besides, a slight performance drop is observed when the subspace dimension
exceeds 128. Interestingly, increasing the subspace dimension does not bring
further performance boost, which sufficiently implies the feature redundancy
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Figure 6: The effect of the user interaction on the query “all souls”.

present in the original multi-view spaces. As a result, we use the 128-dimensional
subspace in our scenario.

8 Conclusion and future work

In this paper, we propose a discriminative multi-view PI-aware image re-ranking
method termed as DMINTIR. Different from the conventional multi-view re-
ranking approaches, we take into consideration the supplementary PI cues, since
they are capable of characterising the dominant information in the image that
captures the query intention. In model training, the auxiliary PI data and the
original training data are simultaneously delivered to the unified multi-view em-
bedding framework for producing a PI-aware subspace with sufficient discrimi-
nating power. For accurate re-ranking, the PI-aware latent representations can
be obtained by projecting the multi-view features of the target images onto
the underlying space for efficient similarity measure. Extensive evaluations on
the public datasets for landmark retrieval task demonstrate our scheme outper-
forms the classical multi-view re-ranking strategies and achieves the comparable
results on par with the state-of-the-arts.

Despite effective, DMINTIR somewhat relies on the user interaction for PI
annotation. In the future, we will further study the generalization capability
of the re-ranking model when the PI cues are limited. Besides, improving the
efficiency and the scalability of our algorithm is another line of research in our
future work.
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Figure 7: The performance of DMVPIR with different subspace dimensions d.
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