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Abstract—Robust and accurate scale estimation of a target
object is a challenging task in visual object tracking. Most existing
tracking methods cannot accommodate large scale variation in
complex image sequences and thus result in inferior performance.
In this paper, we propose to incorporate a novel criterion
called the average peak-to-correlation energy into the multi-
resolution translation filter framework to obtain robust and
accurate scale estimation. The resulting system is named SITUP:
Scale Invariant Tracking using Average Peak-to-Correlation En-
ergy. SITUP effectively tackles the problem of fixed template
size in standard discriminative correlation filter based trackers.
Extensive empirical evaluation on the publicly available tracking
benchmark datasets demonstrates that the proposed scale search-
ing framework meets the demands of scale variation challenges
effectively while providing superior performance over other
scale adaptive variants of standard discriminative correlation
filter based trackers. Also, SITUP obtains favorable performance
compared to state-of-the-art trackers for various scenarios while
operating in real-time on a single CPU.

Index Terms—Visual object tracking, discriminative correla-
tion filter, scale estimation, average peak-to-correlation energy.

I. INTRODUCTION

V ISUAL object tracking (VOT) is a well known problem
in video analysis and computer vision with applications

ranging from video surveillance and video compression to
medical imaging [1][2][3][4][5][6]. Given the initial state of
a target object in an initial frame, the goal of tracking is to
estimate the state of the target in the following frames. Despite
significant progress in recent years, the tracking problem is
still not fully conquered as numerous complicated interfering
factors affect the performance of a tracking algorithm, such
as illumination variation, shape deformation, partial and full
occlusion, to name a few. Since VOT is the basic building
block of many time-critical systems, another major challenge
is that a visual tracker should meet the strict constraints of time
and computational budget, especially with respect to mobile
operating systems or embedded computing architectures where
real-time analysis is often desired and resources are limited.

VOT methods generally can be divided into two different
groups: generative and discriminative. Generative tracking
methods learn a model to represent the appearance of a target
object, and then the tracking problem is formulated as finding
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the object appearance most similar to the model. Examples of
generative tracking algorithms are found in [7], [8] and [44].
Instead of building a model to describe the appearance of an
object, discriminative tracking methods aim to discriminate
the target object from the background and are often found
to outperform generative methods in accuracy. Discriminative
trackers can usually run efficiently using inexpensive hand-
crafted features [9][10] and various learning methods such
as a structured output support vector machine (SVM) [12],
multi-expert entropy minimization [13], and discriminative
correlation filters [14][15][26].

Saliently, the discriminative correlation filter (DCF) is ap-
plied in a family of tracking methods characterized by both
high accuracy and high efficiency. These methods approximate
the dense sampling scheme by generating a circulant matrix,
of which each row denotes a circular shift of the base sample.
In such a case, the regression model can be computed in the
Fourier domain, which brings significant speed improvement
in both training and testing processes.

Since the DCF based tracker is template based and uses
a fixed template size, the output states include only the
vertical and horizontal locations of the target object in a
video frame in the standard setting [14][15][26]. However,
in many applications, such as video surveillance and medical
imaging, scale estimation of the target object is also important.
Variations of the target object size may occur due to changes
in the target object appearance or motion along the camera
axis. A robust and accurate scale estimation is challenging
and is further complicated by the presence of other challenging
factors such as motion blur, partial and full occlusion.

To incorporate scale estimation into a standard DCF
based tracker (to be described in Section III-A and
Section III-B), several approaches have been proposed
[16][17][18][19][42][43]. One straightforward approach is the
scale adaptive tracker with multiple features (SAMF) [42],
which tackles the scale estimation problem by applying a stan-
dard two-dimensional correlation filter at multiple resolutions.
Another approach is the joint scale spatial filter [17], which
incorporates scale estimation by proposing a three-dimensional
correlation filter in the joint spatial and scale space. This
estimation is achieved by modeling the exhaustive template
searching in the joint space as a block-circulant matrix. The
discriminative scale space tracker (DSST) [43] tackles the
scale estimation problem by learning two separate correlation
filters for explicit translation and scale estimation. Based on
the DSST, the fast discriminative scale space tracker (fDSST)
[16] further improves both accuracy and speed by way of fea-
ture dimension reduction, sub-grid interpolation of correlation
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Fig. 1. Comparison of our Scale Invariant tracker Using average Peak-to-correlation energy (SITUP) with other scale adaptive variants of standard DCF based
trackers, including scale adaptive tracker with multiple features (SAMF), discriminative scale space tracking (DSST), fast discriminative scale space tracking
(fDSST) and kenerlized correlation filter with detection proposals (KCFDP). Example frames shown are from human3 (top row), lemming (middle row) and
dudek (bottom row) sequences that are selected from online tracking benchmark datasets to involve the scale variation challenge. The bounding boxes in the
first column identify the target objects to be tracked in corresponding sequences, and the number on the upper-left corner of each image is the frame number
of corresponding image. Comparing to other scale adaptive variants of standard DCF based trackers, our approach significantly increases both the robustness
and accuracy by estimating the target object size accurately.

scores and search space expansion. A kernelized correlation
filter with detection proposals (KCFDP) is proposed in [18]
to tackle the aspect ratio variation problem in scale estimation
by incorporating a class-agnostic detection proposal method
into a standard DCF based tracker. An adjustable Gaussian
window function and a keypoint based model are proposed
in [19] to tackle the scale estimation problem. Although they
address the scale estimation problem to some degree, these
methods suffer from the inferior performance compared to the
state-of-the-art trackers.

In all the aforementioned scale estimation methods, the
criterion used to obtain the scale estimation is the naı̈ve
maximum response value. In contrast, we argue that the
robustness of the maximum response value will be heavily
degraded due to the presence of some other challenging factors
such as motion blur, partial and full occlusion. Here, in

SITUP, instead of using the naı̈ve maximum response value
to obtain both the translation and scale estimation as in the
aforementioned methods, we propose to use the average peak-
to-correlation energy (APCE) as the criterion to obtain the
scale estimation. The exhaustive scale searching strategy is
employed in our tracker. First, at the training stage, a two-
dimensional correlation filter is trained in the standard DCF
setting. At the testing stage, we obtain the sample patches
centered around the estimated target location of the previous
frame with different scales and resize them into a fixed size.
The correlation filter response maps are obtained by comparing
the resized sample patches with the learned model. The APCE
measure of the response map at each scale is computed and the
response map with the largest APCE measure is selected as the
one with the best scale estimation. The translation estimation
is obtained by searching for the position of the maximum
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response value within the response map with the largest APCE
measure. After obtaining the translation and scale estimation,
we update the learned model using the interpolation update
strategy.

To validate the performance of our tracker, comprehensive
quantitative and qualitative evaluations are performed on full
online tracking benchmark (OTB) datasets: OTB2013, OTB50
and OTB100 [20][21]. First, we show the effectiveness and
robustness of our scale searching strategy by comparing our
tracker SITUP with other scale adaptive variants of stan-
dard DCF based trackers. Fig. 1 shows a qualitative com-
parison of our approach with other scale adaptive variants
of standard DCF based trackers. It can be seen that our
approach accurately estimates the target size and thereby
significantly improves the robustness and accuracy. Further,
we compare our tracker with 10 state-of-the-art trackers and
analyze both the overall and attribute-based performance to
demonstrate the robustness of our tracker when dealing with
different scenarios. It is worth mentioning that our proposed
scale estimation scheme is generic and can be incorporated
into any DCF based tracker. For future development, the
results and Matlab code will be available to the public at
https://github.com/haoyihaoyi/Scale-adaptive-tracker.

The rest of this paper is organized as follows. Section
II gives an overview of the prior works most relevant to
our proposed approach. In Section III-A and Section III-B,
we introduce the multi-channel kernelized correlation filter,
which we adopt as the baseline tracker. Our scale searching
strategy is described in Section III-C. In Section IV-A, the
implementation details are presented so that our results can be
reproduced. The benchmark datasets and evaluation protocols
are described in Section IV-B. The comparison results of the
performed experiments are presented in Section IV-C and
Section IV-D. Finally, Section V concludes the paper.

II. RELATED WORK

VOT is one of the fundamental problems in image and video
processing. Here, we consider the single object tracking task
where the target object is identified in the first video frame
and is to be tracked in the following frames. This problem
is challenging since the target object is class-agnostic and is
defined solely by its initial location and scale.

Typically, VOT methods work by building a target appear-
ance model from the observed image information by way of a
generative [7][8][45] or a discriminative model [14][15][26].
Generative appearance models describe the target appearance
with statistical models or templates. Discriminative tracking
methods instead implement machine learning techniques to
discriminate the target appearance from the surrounding back-
ground by formulating VOT as a classification problem.

DCF based methods have been successfully applied to visual
tracking [14][15][26] and have achieved high efficiency and
high accuracy. These methods have shown to provide excellent
results on tracking benchmark datasets [20][21][22], while
maintaining real-time speed. The DCF based trackers locate
the target object in the new frame by learning a discriminative
correlation filter to discriminate the target object from the

background. Bolme et al. [14] proposed to train the correlation
filter via minimizing the total squared error between the actual
and the desired correlation outputs on a set of grayscale sample
patches. By utilizing circular correlation, the authors showed
that the resulting correlation can be computed efficiently in
the Fourier domain, which brings hundreds of time speed
improvement in both the training and testing stages. Henriques
et al. [26] [15] further showed that the DCF framework can
be equivalently formulated as a regression problem on the set
of all cyclic shifts of the training sample patches.

To generalize the DCF framework to include multi-
dimensional features, several solutions have been proposed
that attempt to learn an exact multi-channel filter from the
set of the training samples. However, computational cost has
plagued such approaches. To remediate, approximate formu-
lations for learning multi-channel filters [15][27] have been
proposed for visual object tracking that have proven to be
robust while scaling linearly with the number of channels.

In many different tracking scenarios, the DCF based ap-
proaches have demonstrated the capability of locating the
target accurately. However, the standard DCF based tracker
is restricted to translation estimation since it is a template
based method with a fixed template size. The standard DCF
based tracker will yield inferior performance when a large
scale variation of the target object is encountered. Hence,
achieving accurate scale estimation of the target object is
beneficial to tracking in many aspects by providing a more
accurate tracking result.

Recently, Danelljan et al. [43] proposed DSST method
that, by directly learning the appearance changes induced
by scale variation, trains two separate correlation filters for
translation estimation and scale estimation respectively. A two-
dimensional standard discriminative correlation filter was em-
ployed for translation estimation and another one-dimensional
discriminative correlation filter was employed for scale esti-
mation. Further, an improved version fDSST was proposed in
[16] to increase the speed and accuracy of DSST. To reduce the
computational cost, the principal component analysis (PCA)
was employed to reduce the feature dimension, leading to a
reduction of the required number of fast Fourier transform
(FFT). Sub-grid interpolation was employed to allow the
use of coarser feature grids for both the training and the
detection stages, resulting in the reduction of the size of the
performed FFTs required to reduce the computational cost.
The significant speed improvement provided the flexibility to
improve the robustness by expanding the search space of the
translation filter. However, the unreliable translation estimation
might lead to an inferior scale estimation in both DSST
and fDSST, which results in a poor generalization capability.
Alternatively, Li and Zhu proposed the SAMF method [42] to
tackle the scale estimation problem by extending a standard
DCF based tracker for translation estimation to multiple res-
olutions, and the scale and translation estimation are obtained
jointly. SAMF is incorporated into many DCF based tracking
methods due to its good generalization capability. To deal
with the aspect ratio variation problem in scale estimation,
Huang et al. [18] proposed the KCFDP method to incorporate
a class-agnostic detection proposal method into the standard
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discriminative correlation filter based tracker. EdgeBoxes [28]
is employed to enable the scale and aspect ratio adaptability
of a standard translation correlation filter with the assumption
that the number of contours that are wholly contained in a
bounding box is indicative of the objectness. The proposal
generator EdgeBoxes [28] is tuned and coupled with the
proposal rejection strategy to provide promising candidates
with different scales and aspect ratios. However, both SAMF
and KCFDP suffer from inferior performance compared to the
state-of-the-art trackers.

SAMF is the solution most closely related to our pro-
posed approach, since we also employ a multi-resolution scale
searching strategy. Here, instead of using the naı̈ve maximum
response value as in [42], we propose to employ the APCE
measure as the criterion to obtain the best scale estimation
first and the translation estimation is further obtained. Due to
the robustness of the APCE measure when facing different
scenarios, our approach obtains superior performance while
maintaining a real-time speed despite its utter simplicity.

III. SCALE INVARIANT TRACKING USING AVERAGE
PEAK-TO-CORRELATION ENERGY

In Section III-A and Section III-B, the formulation of our
baseline tracker multi-channel kernelized correlation filter is
treated. Our scale searching strategy is described in detail in
Section III-C.

A. The kernelized correlation filter tracker

SITUP leverages the kernelized correlation filter (KCF)
tracker [15]. By exploiting the structure of the circulant matrix
with high efficiency, the discriminative ability of the KCF
tracker is enhanced with the augmentation of negative samples
while maintaining high speed.

In the formulation of KCF, the generated data matrix has a
circular structure by using the cyclic shifts of the base sample
to approximate the dense samples over the base sample. For
notational simplicity, we start with one-dimensional signals.
Given one dimensional data x = [x1,x2, ...,xn]. A cyclic
shift of x will be Px = [xn,x1,x2, ...,xn−1], where P is
a permutation matrix. The full set of the cyclic shifts of
base sample can be written as {Pux|u = 0, 1, ..., n − 1},
which can further be concatenated to generate the data matrix
X = C(x). Matrix C(x) is called a circulant matrix since
the matrix is purely generated by the cyclic shifts of x. One
intriguing property of the circulant matrix is that all circulant
matrices can be diagonalized by the discrete Fourier transform
(DFT) [29], regardless of the generating vector x. This can be
expressed as

X = Fdiag(x̂)FH , (1)

where F is the DFT matrix that is independent of x, FH is
the Hermitian transpose of F and x̂ denotes the DFT of the
generating vector, x̂ = F (x).

In KCF, the goal of training is to find f(z) = wT z
that minimizes the squared error over samples xi and their
regression targets yi as follows:

min
w

n∑
i

(f(xi)− yi)
2 + λ‖w‖. (2)

The scalar λ is a regularization parameter that controls overfit-
ting. This ridge regression problem has a closed-form solution,
which can be written as

w = (XHX + λI)−1XHy. (3)

Each row of the data matrix X corresponds to one sample
xi, each element of y is a regression target yi, and I is an
identity matrix. The decomposition of the circulant matrix can
be utilized to simplify the solution of the regression problem.
Substitution of (1) in (3) results in the solution,

ŵ∗ =
x̂∗ � ŷ

x̂∗ � x̂+ λ
, (4)

where x̂∗ is the complex-conjugate of x̂. This solution reduces
the computational cost of both extracting patches explicitly and
solving a general regression problem, since it only involves the
DFT and element-wise operation.

To allow for a more powerful classifier with nonlinear
regression functions f(z), the solution w is expressed as

w =
∑
i

αiϕ(xi), (5)

where αi’s are the variables under optimization in dual space,
as opposed to the primal space w. The kernel trick can be
employed as

f(z) = wT z =

n∑
i=1

αiκ(z,xi). (6)

For the most commonly used kernels (e.g., Gaussian, linear
and polynomial), the circulant matrix trick can also be em-
ployed, since these kernels treat each dimension of the data
equally [15]. The dual space coefficients α = [α1, α2, ..., αn]
can be computed as

α̂∗ =
ŷ

k̂xx + λ
, (7)

where kxx is the kernel correlation as defined in [15]. In
SITUP, the linear kernel is adopted in consideration of both
speed and accuracy as

kxx
′

= F−1(x̂∗ � x̂
′
). (8)

Since the algorithm only requires element-wise operation
and DFT/IDFT, the computational cost is at a nearly-linear
O(n log n). A large search window is employed to enclose
more negative samples for training. Besides training, the
circulant matrix trick can also be employed to speed up the
detection process. In the next frame, the patch z at the same
location is treated as the base sample and the corresponding
response map in the Fourier domain is computed as

f̂(z) = k̂xz � α̂, (9)
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Fig. 2. Main steps of the proposed algorithm. Patches with different scales are sampled centered around the previous estimated target object location and
registered to the same size as the fixed size. The response maps are computed respectively and the response map with the highest APCE measure is chosen
as the one with the best scale estimation. The translation estimation is obtained by localizing the maximum response value within the response map with the
highest APCE measure.

where x and z correspond to the base sample and the base
patch respectively. The response map in the spatial domain is
computed through IDFT as

f(z) = F−1(f̂(z)). (10)

When using IDFT to transform f̂(z) back to the spatial
domain, the translation with respect to the maximum response
is treated as the translation of the target object. Since the
template is of fixed size, the update process is straightforward.
Two sets of coefficients should be updated, one being the dual
space coefficients α, and the other the base sample x. As
the setting in [15], the coefficients are updated through linear
interpolation using

T = θTnew + (1− θ)T, (11)

where T = [αT ,xT ]T is the template to be updated.

B. Multi-channel feature integration

Working in the dual space α instead of the primal space
w has the advantage of allowing multi-channel features. The
kernel correlation function only needs to compute norms of the
arguments. By summing the individual dot-product for each
channel in the Fourier domain, a dot-product can be computed
easily. Suppose that the multiple channels of the data represen-
tation are concatenated into a vector as x = [x1,x2...,xc], the
multi-channel extension of the linear kernel can be rewritten
as

kxx
′

= F−1

(∑
c

x̂∗
c � x̂

′

c

)
. (12)

Strong features rather than the grayscale pixel values can be
employed in the tracker. Three types of features are utilized
in the SITUP tracker including raw grayscale pixel values,
histogram of oriented gradients, and color-naming.

The histogram of oriented gradients (HoG) [9] is effective
for object detection and can be computed efficiently. The
image is divided into small connected regions named cells
and the gradient information of uniformly spaced cells is ex-
tracted. Then, the HoG counts occurrences of discrete gradient
orientation to form the histogram.

Color names (CN) or color-naming are linguistic color
labels, which are assigned by human to describe colors in the
world. Recently, CNs have been adopted in different vision
tasks such as action recognition [30] and visual object tracking
[26], and have achieved promising results. A CN provides the
perception of the target object color, which contains salient
information regarding the target object as shown in [33] and
[34].

C. Our scale searching framework

Our scale searching scheme bears some similarity to the
structure of SAMF, since we also employ a multi-resolution
translation filter framework. In contrast to the SAMF approach,
SITUP exploits the robustness of APCE criterion, which
enables robust and accurate scale estimation when facing
different scenarios. SAMF only employs a naı̈ve maximum
response value as the criterion, with which the robustness will
be heavily degraded when scale variation presents with other
challenging factors. Besides, our approach obtains a superior
performance with a reliable update of the target appearance
model since the APCE measure can reflect the confidence level
of the response map.

The fluctuation and the peak value of the response map
can reveal the confidence level of the tracking result. In the
extreme case, the ideal response map should have only one
sharp peak at the true target object location while being smooth
and close to zero in all other areas when the detected target
object is perfectly matched to the correct target object location
and scale. A sharper peak will result in a higher localization
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Fig. 3. Comparison of our tracker (in red) with the tracker which employs
the maximum response value as the criterion within the same framework (in
green). Benefiting from the robustness of the APCE measure, SITUP can
accurately estimate the target size and location. Example frames shown are
from the BlurOwl sequence, which involves four challenges with regard to
scale variation, motion blur, fast motion and in-plane rotation.

accuracy. On the contrary, the response map will fluctuate
fiercely, and the APCE measure will significantly decrease
when challenged with severe occlusion and motion blur. Wang
et al. [36] proposed to employ the maximum response value
and an APCE measure to provide a high-confidence update
strategy for robustness. The APCE measure is defined as

APCE =
|fmax − fmin|2

mean(
∑

w,h(fw,h − fmin)2)
, (13)

where fmax, fmin, and fw,h denote the maximum, the minimum
and the w-th row h-th column elements of the response map
f respectively. The APCE criterion is more robust than the
maximum response value criterion, which is noticeable when
scale variation and other challenges such as motion blur and
occlusion occur at the same time. See Fig. 3, where example
frames are from the BlurOwl sequence, which involves the four
challenges of scale variation, motion blur, fast motion and in-
plane rotation. SITUP obtains accurate scale and translation
estimation with the robust APCE measure. However, a tracker
that employs the maximum response value as the criterion
within the same framework cannot handle the scale variation
due to the presence of other challenging factors, and thus
yields poor performance.

As shown in Fig. 2, a standard two-dimensional discrimi-
native correlation filter is trained first to provide preliminary
translation estimation. Then, several patches centered around
the estimated target location with different scale perturbations
are sampled. All extracted patches are registered to the fixed
template size. The response map of each patch is computed
individually with the translation filter. The APCE measure of
each response map is computed and the response map with the
highest APCE measure is chosen as the one with the best scale
estimation. The translation estimation is obtained by localizing
the maximum response value within the response map with
the highest APCE measure. With the new translation and scale
estimation, the corresponding patch is extracted and employed
to update the coefficient matrix and the target appearance
model.

The template size is fixed as sT = (sx, sy). The scaling
pool is defined as S = {t1, t2, ..., tk}. Assume that the target
searching window size of the last frame is sj−1. For the
current jth frame, k patches with their sizes in {tisj−1|ti ∈
S} are sampled and resized through bilinear-interpolation to
the fixed template size sT. The response map of a resized

patch is defined as fti and computed using (9) and (10).
The corresponding APCE measure is defined as APCEti

and is computed by (13). The scale estimation is obtained
by searching for the response map with the highest APCE
measure as

t = argmax
ti

(APCEti). (14)

The translation estimation is obtained by searching for the
location of the highest response value within the response
map ft. Since the target movement is implied in the response
map, the final displacement should be tuned by t to obtain
the real translation bias. The update procedure will be
implemented following (11). The main steps of SITUP are
summarized in Algorithm 1.

Algorithm 1 Iteration on the jth frame in SITUP.
Require:

Image Ij ;
Previous target position, pj−1;
Previous target searching window size sj−1;
The template for the tracked target, x;
The dual space coefficient, α.

Ensure:
The new target position, pj ;
The new target searching window size sj ;
The updated template for the tracked target, x;
The updated dual space coefficient, α.

1: for every ti in S do
2: Sample the new patch zti centered in pj−1 with size

tisj−1 and resize it to sT.
3: Compute the response map fti using (9) and (10).
4: Calculate the APCE measure APCEti using (13).
5: end for
6: Obtain the new position pj and searching window size sj

according to (14).
7: Compute xnew based on the new position pj and searching

window size tisj−1, and calculate αnew with (7).
8: Update x and α with xnew and αnew.
9: return updated x, α with pj and sj .

IV. EXPERIMENT

Extensive evaluation is performed on three benchmark
datasets to validate our approach. The implementation details
are presented in Section IV-A. The benchmark datasets and
evaluation protocols are described in Section IV-B. A compar-
ison between our approach and other scale adaptive variants of
standard DCF based trackers are presented in Section IV-C. To
demonstrate contributions in performance, SITUP is compared
to 10 state-of-the-art trackers in Section IV-D.

A. Implementation details

The regularization parameter is set as λ = 0.0003, and the
learning rate is set as θ = 0.004. The standard deviation of the
desired correlation output is set to be 1/10 of the target size.
The padding ratio is set as 1.5 to make the search window 2.5
times the target size in terms of both width and height, which
is typical in the existing literature.
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Fig. 4. The precision plots and success plots of our tracker SITUP and other scale adaptive variants of standard DCF based trackers. From left to right, the
plots correspond to OTB2013, OTB50, OTB100. The top row are the precision plots and the bottom row are the success plots.

TABLE I
Comparisons with other scale adaptive variants of standard DCF based

trackers on OTB2013, OTB50 and OTB100 benchmark sequences. SITUP
achieves the best performance in terms of the area-under-curve (AUC) score
and the precision score at a standard threshold used in the literature of 20

pixels. The first and the second best values are highlighted in bold and
underlined.

OTB2013 OTB50 OTB100
Method Speed AUC Prec. AUC Prec. AUC Prec.
DSST 23.43 0.557 0.747 0.457 0.620 0.517 0.689
fDSST 85.30 0.595 0.802 0.495 0.676 0.549 0.722
KCFDP 30.27 0.575 0.786 0.483 0.670 0.543 0.736
SAMF 27.19 0.579 0.785 0.472 0.656 0.554 0.754
SITUP 32.35 0.605 0.812 0.507 0.708 0.576 0.782

For the scaling pool, we employ the same setting S =
{0.985, 0.99, 0.995, 1.0, 1.005, 1.01, 1.015} as in SAMF [42].
The features we employ are computed by augmenting HoG,
CN, and grayscale pixel values. To reduce computational cost,
a 31-dimensional variant of HoG is employed as in [42] and
[15]. The RGB space is transformed into a color-naming space,
which is an 11-dimensional color representation. The grayscale
features are normalized to the range [− 1

2 ,
1
2 ]. Each extracted

feature channel of the sample patch is weighted by a cosine
window to address the boundary effect. Also, we employ the
linear kernel in consideration of both speed and accuracy in
our tracker.

All tracking algorithms are implemented with Matlab on
an Intel Core i7-7700K 4.5 GHz CPU with 16 GB RAM.
A GeForce GTX 1080 GPU and MatConvNet 1.0-beta25 are
used to reproduce the results of the trackers that require GPU
implementation. Parameters of our tracking algorithm are fixed
in all experiments. The parameters of other trackers are set
according to the values in their original code.

B. Datasets and metrics

All trackers are quantitatively evaluated on the online
tracking benchmark (OTB) datasets OTB2013, OTB50 and
OTB100, following the one-pass evaluation (OPE) protocol
described in [20] and [21]. OTB2013 is proposed in [20]
for a comprehensive performance evaluation with 50 video
sequences that is fully annotated with ground truth bounding
boxes. To further address the problem of insufficient data,
OTB100 is proposed in [21] with 100 fully annotated video
sequences that contains previous 50 sequences proposed in
[20]. Since some target objects are similar or less challenging,
50 difficult and representative ones of OTB100 are selected
and represented as OTB50 for an in-depth analysis. The
sequences in OTB datasets are categorized by way of 11
attributes. The 11 attributes in the OTB datasets are: illu-
mination variation (IV), out-of-plane rotation (OPR), scale
variation (SV), occlusion (OCC), deformation (DEF), motion
blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-
view (OV), background clutter (BC), and low resolution (LR).

To quantitatively evaluate the tracking results on OTB
datasets, three standard evaluation metrics are exploited in-
cluding precision, success rate and tracking speed in frames
per second (fps). The precision is the relative number of
frames in a video sequence for which the estimated location
is within the specified threshold distance of the ground truth.
The precision plot can be obtained by evaluating the precision
at different defined thresholds. The representative precision
score for each tracker is reported at the threshold of 20
pixels as the setting in the standard OTB toolkit. The success
rate is computed as the percentage of frames where the
intersection-over-union between the tracked bounding box and
the groundtruth bounding box exceeds the given threshold. The
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Fig. 5. The precision plots and success plots of our tracker SITUP and other scale adaptive variants of standard DCF based trackers on the scale variation
attribute. From left to right, the plots correspond to the scale variation attribute of OTB2013, OTB50, OTB100. The top row are the precision plots and the
bottom row are the success plots.

TABLE II
Attributed-based comparisons with other scale adaptive variants of standard

DCF based trackers on the scale variation (SV) attribute of OTB2013,
OTB50 and OTB100 benchmark sequences. The first and the second best

values are highlighted in bold and underlined.

OTB2013 OTB50 OTB100
Method AUC Prec. AUC Prec. AUC Prec.
DSST 0.544 0.736 0.421 0.580 0.482 0.654
fDSST 0.564 0.765 0.465 0.632 0.507 0.673

SV KCFDP 0.540 0.744 0.463 0.640 0.510 0.701
SAMF 0.507 0.723 0.449 0.637 0.507 0.719
SITUP 0.560 0.767 0.495 0.695 0.542 0.756

success plots show that the ratios of successful frames at the
thresholds vary from 0 to 1. In terms of success plots, we use
area-under-curve (AUC) scores to summarize the trackers. All
the numbers and plots are obtained using the standard OTB
toolkit.

C. DCF-based scale estimation comparison

1) Overall performance: To compare the overall perfor-
mance of SITUP to other DCF based trackers, we executed
five trackers on the OTB benchmark datasets (DSST, fDSST,
KCFDP, SAMF and our tracker SITUP). Table I summarizes
the overall performance of the trackers in terms of AUC score
and precision score for a threshold of 20 pixels (a typical
parameter used in the literature). For completeness, the success
plots and precision plots are given in Fig. 4. As shown in Table
I and Fig. 4, the best results are obtained using SITUP.

In comparison with fDSST, which obtains the second best
performance on OTB2013 and OTB50, SITUP improves the

AUC score by 1.0%, 1.2% and 2.7% and the precision score
by 1.0%, 3.2% and 6.0% on OTB2013, OTB50, and OTB100
respectively.

In comparison with SAMF, which also employs a multi-
resolution translation filter framework, SITUP improves the
AUC score by 2.6%, 3.5%, and 3.3% and the precision
score by 2.7%, 5.2% and 2.8% on OTB2013, OTB50, and
OTB100 respectively. It is worth mentioning that our approach
achieves the largest performance improvement on OTB50,
which contains the most difficult 50 sequences. As mentioned
in Section III-C, the employed criterion APCE of our tracker
is more robust than the maximum response value especially
in challenging tracking scenarios, which is evidenced by the
comparison between SITUP and SAMF.

2) Attribute-based comparison: Since SITUP is specifically
designed for scale estimation, we compare SITUP with other
scale adaptive DCF variants on the scale variation attribute
of OTB2013, OTB50 and OTB100. OTB2013, OTB50 and
OTB100 contain 28, 38 and 66 scale variation sequences,
respectively, and can be used to evaluate the scale adaptability
of our tracker. Table II summarizes the performance of the
trackers in the AUC score and the precision score at a threshold
of 20 pixels on the scale variation attribute. For completeness,
the corresponding success plots and precision plots are shown
in Fig. 5.

As shown in Table II and Fig. 5, our tracker achieves the
best performance except for the AUC score on OTB2013,
which is only 0.4% lower than the best one obtained by fDSST.
Comparing to fDSST, which obtains the second best overall
performance on OTB2013 and OTB50, our approach improves
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Fig. 6. Among 10 state-of-the-art trackers, CFNet Conv2, FCNT, LCT+, MEEM and RPT, which obtain top performance on OTB100, are selected to
compare with our tracker. Example frames shown are from box (top row), skating2 1 (middle row) and girl2 (bottom row). The bounding boxes in the first
column identify the target objects to be tracked in corresponding sequences, and the number on the upper-left corner of each image is the frame number of
corresponding image. Our approach tracks the target object accurately in these challenging video sequences.

the AUC score by 3.0% and 3.5% on more challenging OTB50
and OTB100, respectively. Also, our approach improves the
precision score by 0.2%, 6.3% and 8.3% comparing to fDSST
on OTB2013, OTB50 and OTB100, respectively. Comparing
to KCFDP, which obtains the second best result on precision
score of OTB50 and AUC score of OTB100, our approach
improves the AUC score by 2.0%, 2.0% and 3.2% and the pre-
cision score by 2.3%, 5.5% and 5.5% on OTB2013, OTB50,
and OTB100, respectively. The remarkable performance of our
tracker shows that our method is superior in scale estimation
comparing to other trackers despite the utter simplicity of our
framework.

Comparing to SAMF, which also employs the multi-
resolution translation filter framework, our tracker improves
the AUC score by 5.3%, 4.6% and 3.5% and the precision
score by 4.4%, 5.8% and 3.7% on OTB2013, OTB50 and
OTB100, respectively. The comparison between our tracker
and SAMF shows the effectiveness and robustness of the

employed criterion APCE in the scale variation scenario.

D. State-of-the-art comparison

To demonstrate the superior performance of our approach,
we compare our tracker to 10 representative state-of-the-art
trackers. These trackers can be broadly categorized as follows:

• Deep learning based trackers, such as FCNT [37], which
employ deep features in correlation filter framework, and
CFNet Conv2 [38]. Such trackers train the correlation
filter end-to-end with ILSVRC15-VID containing almost
4500 videos with a total of more than one million
annotated frames.

• Trackers which are designed for long-term tracking by
employing both short-term tracker and online classifier,
including LCT+ [39] and TLD [11].

• Representative trackers that employ single or multiple
online classifiers, including MEEM [13], TGPR [40], and
Struck [12] methods.
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TABLE III
Attributed-based comparison with representative state-of-the-art trackers on 11 attributes of OTB100 benchmark sequences. The first and the second best
values are highlighted in bold and underlined. The 11 attributes in the OTB datasets are: illumination variation (IV), out-of-plane rotation (OPR), scale

variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-view (OV), background clutter
(BC), and low resolution (LR).

Overall SV MB IPR OPR FM DEF LR OV BC IV OCC
Method AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec AUC Prec

CFNet Conv2 0.568 0.748 0.544 0.720 0.567 0.687 0.573 0.771 0.537 0.711 0.553 0.695 0.470 0.638 0.590 0.787 0.414 0.533 0.538 0.715 0.526 0.677 0.540 0.720
FCNT 0.428 0.780 0.398 0.757 0.417 0.691 0.455 0.808 0.427 0.772 0.422 0.707 0.380 0.750 0.336 0.739 0.348 0.596 0.430 0.779 0.460 0.795 0.415 0.750
LCT+ 0.562 0.762 0.497 0.691 0.532 0.673 0.562 0.786 0.530 0.717 0.522 0.667 0.490 0.675 0.330 0.490 0.452 0.592 0.542 0.725 0.553 0.732 0.536 0.742
TLD 0.595 0.426 0.396 0.575 0.434 0.546 0.436 0.617 0.391 0.565 0.424 0.553 0.345 0.490 0.372 0.552 0.351 0.474 0.346 0.446 0.397 0.535 0.378 0.552

MEEM 0.530 0.781 0.479 0.744 0.545 0.722 0.534 0.798 0.521 0.782 0.525 0.728 0.484 0.746 0.355 0.605 0.488 0.685 0.514 0.737 0.504 0.725 0.526 0.775
TGPR 0.458 0.643 0.401 0.596 0.409 0.508 0.463 0.665 0.440 0.616 0.398 0.507 0.449 0.623 0.378 0.629 0.373 0.493 0.440 0.610 0.461 0.639 0.454 0.646

STRUCK 0.461 0.638 0.414 0.609 0.459 0.592 0.459 0.640 0.415 0.566 0.455 0.609 0.379 0.521 0.347 0.628 0.374 0.487 0.425 0.544 0.400 0.524 0.425 0.588
RPT 0.536 0.756 0.489 0.718 0.510 0.711 0.529 0.749 0.510 0.714 0.525 0.706 0.488 0.701 0.358 0.575 0.475 0.609 0.572 0.793 0.526 0.791 0.491 0.697
KCF 0.477 0.696 0.405 0.644 0.456 0.618 0.476 0.707 0.449 0.643 0.448 0.620 0.433 0.612 0.307 0.546 0.393 0.501 0.492 0.704 0.464 0.703 0.465 0.689
CSK 0.382 0.518 0.332 0.465 0.314 0.373 0.387 0.524 0.359 0.476 0.326 0.400 0.333 0.443 0.263 0.389 0.250 0.276 0.401 0.560 0.346 0.453 0.351 0.474

SITUP 0.576 0.782 0.542 0.756 0.579 0.725 0.545 0.744 0.552 0.739 0.537 0.701 0.513 0.708 0.464 0.709 0.520 0.669 0.564 0.769 0.542 0.727 0.572 0.780

Fig. 7. The precision plots and success plots of our tracker and other state-
of-the-art trackers for the overall performance on the OTB100 benchmark
dataset.

• Representative baseline trackers of correlation filter track-
ers KCF [15] and CSK [26].

• Representative part-based tracking (RPT) methods [41]
which exploit reliable patches.

For the sake of simplicity, all tracking algorithms in this
subsection are only evaluated on the OTB100 dataset since
OTB2013 and OTB50 are contained in the OTB100 dataset.
The overall and attribute-based AUC scores and precision
scores of all trackers are reported in Table III. The qualitative
comparison is presented in Fig. 6 and the plots for the overall
performance of all trackers on OTB100 are presented in Fig.
7.

1) Overall performance: As shown in Table III, our tracker
achieves the best performance in terms of the AUC score and
the precision score despite the utter simplicity of its framework
and its real-time running speed on a CPU. Comparing to
CFNet Conv2, which achieves the second best AUC score,
our tracker improves the AUC score by 0.8% and the precision
score by 3.4%. Our tracker improves the AUC score by 4.6%
compared to MEEM, which achieves the second best precision
score. Although MEEM and CFNet Conv2 obtain favorable
performance compared to our tracker, the speed of MEEM is
only about 20 fps, and CFNet Conv2 needs a high-end GPU

for its implementation.
2) Attribute-based comparison: For the scale variation at-

tribute, SITUP obtains the second best AUC score and the
second best precision score, which are only 0.2% and 0.1%
lower than the best ones, which are obtained by the deep learn-
ing based methods CFNet Conv2 and FCNT, respectively. It is
worth mentioning that SITUP obtains favorable performance
in 10 of 11 attributes with the exception being the low
resolution challenge. These promising results suggest that the
effectiveness of our tracking framework and the robustness of
our employed APCE measure when facing different scenarios.
In terms of the low resolution challenge, our performance
is 12.6% and 7.8% lower than the best ones obtained by
CFNet Conv2 on AUC score and precision score, respectively.
It is likely that the performance gap mainly comes from the
features employed. The features we employed are HoG, CN
and grayscale pixel values, which mainly focus on the texture
information and color information. However, the deep features
employed in CFNet Conv2 contain semantic information that
is more discriminative when low resolution is encountered.

V. CONCLUSIONS

In this paper, an effective scale estimation approach is
proposed in SITUP to address the problem of fixed template
size in standard discriminative correlation filter (DCF) based
trackers by incorporating a novel criterion named average
peak-to-correlation energy (APCE) into the multi-resolution
translation filter framework. Our generic scale estimation
approach can be incorporated into any DCF based tracker.

Extensive experiments are conducted on the OTB datasets
OTB2013, OTB50 and OTB100. The comparison between
SITUP and other scale adaptive variants of standard DCF
based trackers clearly demonstrates the effectiveness of our
scale searching strategy and the robustness of the employed
criterion APCE. Also, the comparison between SITUP and 10
state-of-the-art trackers demonstrates superior performance of
our tracker. Although our tracker is specifically designed for
the scale variation challenge, the promising results on other
challenging attributes again evidences the robustness of our
employed APCE measure when facing different scenarios.
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