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Abstract—Image style transfer has drawn broad attention in
recent years. However, most existing methods aim to explicitly
model the transformation between different styles, and the
learned model is thus not generalizable to new styles. We here
propose a unified style transfer framework for both character
typeface transfer and neural style transfer tasks leveraging
style and content separation. A key merit of such framework
is its generalizability to new styles and contents. The overall
framework consists of style encoder, content encoder, mixer and
decoder. The style encoder and content encoder are used to
extract the style and content representations from the corre-
sponding reference images. The mixer integrates the above two
representations and feeds it into the decoder to generate images
with the target style and content. During training, the encoder
networks learn to extract styles and contents from limited size of
style/content reference images. This learning framework allows
simultaneous style transfer among multiple styles and can be
deemed as a special ‘multi-task’ learning scenario. The encoders
are expected to capture the underlying features for different styles
and contents which is generalizable to new styles and contents.
Under this framework, we design two individual networks for
character typeface transfer and neural style transfer, respectively.
For character typeface transfer, to separate the style features
and content features, we leverage the conditional dependence of
styles and contents given an image. For neural style transfer, we
leverage the statistical information of feature maps in certain
layers to represent style. Extensive experimental results have
demonstrated the effectiveness and robustness of the proposed
methods.

Index Terms—Style and Content Separation, Character Type-
face Transfer, Neural Style Transfer

I. INTRODUCTION

IN recent years, style transfer, as an interesting application
of deep neural networks (DNNs), has attracted increasing

attention among the research community. Based on the type
of styles, style transfer may be partitioned into two types
of applications, character typeface transfer which transfers a
character from a font to another, and neural style transfer
which aims to transform a neural image into a given art style.
Character typeface transfer usually involves changes in high-
frequency features such as the object shape and outline, which
makes character typeface transfer a more difficult task than
neural style transfer. Moreover, the characters are associated
with clear semantic meaning and incorrect transformation may
lead to non-sense characters. Different from character typeface
transfer, neural style transfer is mostly about the transfer of
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texture, where the source and target images usually share high-
frequency features such as object shape and outline, namely
the contents are kept visually unchanged.

Earliest studies about character typeface transfer are usually
based on manually extracted features such as radicals and
strokes [18], [36], [38], [40]. Recently, some studies try to
automatically learn the transformation based on DNNs, and
model character typeface transfer as an image-to-image trans-
lation problem. Typically, dedicated models are built for each
source and target style pair [1], [23], making the models hardly
generalizable to new styles, i.e., additional models have to be
trained for new styles. To achieve typeface transfer without
retraining, a multi-content generative adversarial networks
(GAN) which transfers the font of English characters given
a few characters in target styles is proposed [4].

Earliest studies for neural style transfer usually adopt an
iterative optimization mechanism to generate images with
target style and content from noise images [11]. Due to its time
inefficiency, a feed-forward generator network is proposed
for this purpose [15], [31]. A set of losses are proposed for
the transfer network, such as pixel-wise loss [13], perceptual
loss [15], [37], and histogram loss [34]. Recently, variations of
GANs [21], [41] are introduced by adding a discriminator to
the transfer network which incorporates adversarial loss with
transfer loss to generate better images. However, these studies
aim to explicitly learn the transformation from a content image
to the image with a specific style, and the learned model is
thus not generalizable to new styles. So far, there is still limited
work for arbitrary neural style transfer [8], [12], [16].

In this paper, based on our previous work [39], we propose
a unified style transfer framework for both character typeface
transfer and neural style transfer, which enables the transfer
models generalizable well to new styles or contents. Different
from existing style transfer methods, where an individual
transfer network is built for each pair of style transfer, the
proposed framework represents each style or content with a
small set of reference images and attempts to learn separate
representations for styles and contents. Then, to generate
an image of a given style-content combination is simply
to mix the corresponding two representations. This learning
framework allows simultaneous style transfer among multiple
styles and can be deemed as a special ‘multi-task’ learning
scenario. Through separated style and content representations,
the framework is able to generate images of all style-content
combination given the corresponding reference sets, and is
therefore expected to generalize well to new styles and
contents. To our best knowledge, the study most resembles
to ours is the bilinear model proposed by Tenenbaum and
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TABLE I
COMPARISON OF EMD WITH EXISTING METHODS.

Methods Data format Generalizable to new styles? Requirements for new style What the model learned?
Pix2pix [13] paired

The learned model can
only transfer images to
styles which appeared in
the training set. For new
styles, the model has to be
retrained.

Retrain on a lot of
training images for a
source style and a target
style.

The translation from a certain
source style to a specific target
style.

CoGAN [21] unpaired
CycleGAN [41] unpaired

Rewrite [1] paired
Zi-to-zi [2] paired
AEGN [23] paired

Perceptual [15] unpaired Retrain on many input
content images and one
style image.

Transformation among specific
styles.TextureNet [32] unpaired

StyleBank [7] unpaired
Patch-based [8] unpaired

The learned model can be
generalized to new styles.

One or a small set of
style/content reference
images.

The swap of style/content feature maps.
AdaIn [12] unpaired The transferring of feature statistics.

Universal [16] unpaired It is based on whitening and coloring transformations.
EMD triplet/unpaired The feature representation of style/content.

Mixer
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Encoder

Decoder

…

…

Content Reference Set

Style Reference Set

Output

Fig. 1. The framework of the proposed EMD model.

Freeman [30], which obtained independent style and content
representations through matrix decomposition. However, to
obtain accurate decomposition of new styles and contents, the
bilinear model requires an exhaustive enumeration of examples
which may not be readily available for some styles/contents.

As shown in Figure 1, the proposed style transfer frame-
work, denoted as EMD thereafter, consists of a style encoder,
a content encoder, a mixer, and a decoder. Given one or a
set of reference images, the style encoder and content encoder
are used to extract the style and content factors from the style
reference images and content reference images, respectively.
The mixer then combines the corresponding style and con-
tent representations. Finally, the decoder generates the target
images based on the combined representations. Under this
framework, we design two individual networks for character
typeface transfer and neural style transfer, respectively. For
character typeface transfer, to separate the style features and
content features, we leverage the conditional dependence of
styles and contents given an image and employ a bilinear
model to mix the two factors. For neural style transfer, we
leverage the prior knowledge that the statistical information of
feature maps in certain layers can represent style information
and mix the two factors through statistic matching.

During training, each training example for the proposed
network is provided as a style-content pair <RSi

, RCj
>,

where RSi and RCj are the style and content reference sets
respectively, each consisting of r images of the corresponding
style Si and content Cj . For character typeface transfer, the
entire network is trained end-to-end with a weighted L1 loss
measuring the difference between the generated images and
the target images. For neural style transfer, due to the absence
of target images for supervision, we calculate the content loss
and style loss respectively by comparing the feature maps of
generated images with those of style/content reference image.
Therefore, neural style transfer is unsupervised. Moreover, due

to the difficulty of obtaining images of the same content or
style, only one style and content reference image is used
as input (namely r=1). Extensive experimental results have
demonstrated the effectiveness and robustness of our method
for style transfer.

The main contributions of our study are summarized as
follows.
• We propose a unified style transfer framework for both

character typeface transfer and neural style transfer,
which learns separate style and content representations.

• The framework enables the transfer models generalizable
to any unseen style/content given a few reference images.

• Under this framework, we design two individual networks
for character typeface transfer and neural style transfer,
respectively, which have shown promising results in ex-
perimental validation.

• This learning framework allows simultaneous style trans-
fer among multiple styles and can be deemed as a special
‘multi-task’ learning scenario.

II. RELATED WORK

Neural Style Transfer. DeepDream [25] may be considered
as the first attempt to generate artistic work using Convolution
Neural Networks (CNNs). Gatys et. al later successfully
applied CNNs to neural style transfer [11]. The target im-
ages are generated by iteratively optimizing a noise image
through a pre-trained network, which is time-consuming. To
directly learn a feed-forward generator network for neural style
transfer, the perceptual loss is proposed [15]. Ulyanov et. al
proposed a texture network for both texture synthesis and
style transfer [31]. Further, Chen et. al proposed the stylebank
to represent each style by a convolution filter, which can
simultaneously learn numerous styles [7]. For arbitrary neural
style transfer, [8] proposed a patch-based method to replace
each content feature patch with the nearest style feature.
Further, [12] proposed a faster method based on adaptive
instance normalization which performed style transfer in the
feature space by transferring feature statistics. Li et. al [16]
proposed a universal style transfer model which is based on
the whitening and coloring transforms but this model is not
effective at producing sharp details and fine strokes.
Image-to-Image Translation. Image-to-image translation is
to learn the mapping from the input image to output image,
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Fig. 2. The detailed architecture of the proposed generalized EMD model for character typeface transfer.

such as from edges to real objects. Pix2pix [13] used a
conditional GAN based network which requires paired data
for training. However, paired data are hard to collect in many
applications. Therefore, methods requiring non-paired data are
explored. Liu and Tuzel proposed the coupled GAN (Co-
GAN) [21] to learn a joint distribution of two domains through
weight sharing. Later, Liu [20] extended the CoGAN to unsu-
pervised image-to-image translation. Some other studies [5],
[28], [29] encourage the input and output to share certain
content even though they may differ in style by enforcing the
output to be close to the input in a predefined metric space
such as class label space. Recently, Zhu et. al proposed the
cycle-consistent adversarial network (CycleGAN) [41] which
performs well for many vision and graphics tasks.
Character Typeface Transfer. Most existing studies model
character typeface transfer as an image translation task. The
“Rewrite” project uses a simple top-down CNNs structure and
transfers a typographic font to another stylized typographic
font [1]. As the improvement version, the “zi-to-zi” project can
transfer multiple styles by assigning each style an one-hot cat-
egory label and training the network in a supervised way [2].
The recent work “From A to Z” also adopts a supervised
method and assigns each character an one-hot label [33]. Lyu
et. al proposed an auto-encoder guided GAN network (AEGN)
which can synthesize calligraphy images with specified style
from standard Chinese font images [23]. [4] proposed a multi-
content GAN which could achieve typeface transfer on English
characters with a few examples of target style.

However, existing work usually studies character typeface
transfer and neural style transfer individually, while the pro-
posed EMD provides a unified framework which is applicable
to both tasks. In addition, most of the methods reviewed above
can only transfer styles in the training set and the network must
be retrained for new styles. In contrast, the proposed EMD
framework can generate images with new styles/contents given
only a few of reference images. We present a comparison of
the methods in Table I.

III. GENERALIZED STYLE TRANSFER FRAMEWORK

The generalized style transfer framework EMD is an
encoder-decoder network which consists of four subnets:

Style Encoder, Content Encoder, Mixer and Decoder, as
shown in Figure 1. First, the Style/Content Encoder extracts
style/content representations given style/content reference im-
ages. Next, the Mixer integrates the style feature and content
feature, and the combined feature is then fed into the Decoder.
Finally, the Decoder generates the image with the target style
and content.

The input of the Style Encoder and Content Encoder are
style reference set RSi

and content reference set RCj
, re-

spectively. RSi
consists of r reference images with the same

style Si but different contents Cj1 , Cj2 , . . . , Cjr

RSi
= {Iij1 , Iij2 , . . . , Iijr}, (1)

where Iij represents the image with style Si and content
Cj . For example, in character typeface transfer tasks, RSi

contains r images with the same font Si such as serif,
sanserif, and blackletter, but different characters. Similarly,
RCj

is for content Cj (j = 1, 2, . . . ,m) which consists of
r reference images of the same character Cj but in different
styles Si1 , Si2 , . . . , Sir

RCj
= {Ii1j , Ii2j , . . . , Iirj}. (2)

The whole framework is trained end-to-end by trying to finish
a series of tasks: generate images with target style and content
given the style and content reference images. By such a way,
we expect the framework to summarize from these similar
tasks and learn to extract style and content representations,
and then transfer this ability to new styles and contents.

It is worth noting that the proposed EMD learning frame-
work is quite flexible and the Style Encoder, Content Encoder,
Mixer, and Decoder can be tailored based on specific tasks. In
the rest of the section, under this framework, we demonstrate
with two individual networks for character typeface transfer
and neural style transfer, respectively.

IV. CHARACTER TYPEFACE TRANSFER

The detailed network architecture employed for character
typeface transfer is shown in Figure 2.
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A. Encoder Network

The two encoder networks used for character typeface
transfer have the same architecture and consist of a se-
ries of Convolution-BatchNorm-LeakyReLU down-sampling
blocks which yield 1×1 feature representations of the input
style/content reference images. The first convolution layer is
with 5×5 kernel and stride 1 and the rest are with 3×3
kernel and stride 2. All ReLUs are leaky, with slope 0.2.
The r input reference images are concatenated in the channel
dimension to feed into the encoders. This allows the encoders
to capture the common characteristics among images of the
same style/content.

B. Mixer Network

Given the style representations and content representations
obtained by the Style Encoder and Content Encoder, we em-
ploy a bilinear model as the Mixer to combine the two
factors. The bilinear models are two-factor models with the
mathematical property of separability: their outputs are linear
in either factor when the other is held constant. It has been
demonstrated that the influences of the two factors can be
efficiently separated and combined in a flexible representation
that can be naturally generalized to unfamiliar factor classes
such as new styles [30]. Furthermore, the bilinear model has
also been successfully used in zero-shot learning as a compat-
ibility function to associate visual representation and auxiliary
class text description [6], [10], [35]. The learned compatibility
function can be seen as the shared knowledge and transferred
to new classes. Here, we take the bilinear model to integrate
styles and contents together which is formulated as

Fij = SiWCj , (3)

where W is a tensor with size R × K × B, Si is the R-
dimensional style feature and Cj is the B-dimensional content
feature. Fij can be seen as the K-dimensional feature vector
of image Iij which is further taken as the input of the Decoder
to generate the image with style Si and content Cj .

C. Decoder Network

The image generator is a typical decoder network which is
symmetrical to the encoder and maps the combined feature
representation to output images with target style and content.
The Decoder roughly follows the architectural guidelines set
forth by Radford et. al [26] and consists of a series of
Deconvolution-BatchNorm-ReLU up-sampling blocks except
that the last layer is the deconvolution layer. Other than the last
layer which uses 5×5 kernels and stride 1, all deconvolution
layers use 3×3 kernels and stride 2. The outputs are finally
transformed into [0,1] by the sigmoid function.

In addition, because the stride convolution in Style Encoder
and Content Encoder is detrimental to the extraction of spatial
information, we adopt the skip-connection which has been
commonly used in semantic segmentation tasks [14], [22],
[27] to refine the segmentation using spatial information from
different resolutions. Although the content inputs and outputs
differ in appearance, they share the same structure. Hence,

we concatenate the input feature map of each up-sampling
block with the corresponding output of the symmetrical down-
sampling block in Content Encoder to allow the Decoder to
learn back the relevant structure information lost during the
down-sampling process.

D. Loss Function

For character typeface transfer tasks, it is possible to obtain
a reasonable set of the target images. Therefore, we leverage
the target images to train the network. Given a training set Dt,
the training objective is defined as

θ = argmin
θ

∑
Iij∈Dt

L(Îij , Iij |RSi
,RCj

; θ), (4)

where θ represents the model parameters, Îij is the generated
image and L(Îij , Iij |RSi

,RCj
; θ) is the generation loss which

is formulated as

L(Îij , Iij |RSi ,RCj ; θ) =W ij
st ×W

ij
d × ||Îij − Iij ||. (5)

The pixel-wise L1 loss is employed as the generation loss for
character typeface transfer problem rather than L2 loss because
L1 loss tends to yield sharper and cleaner images [13], [23].

In each learning iteration, the size, thickness, and darkness
of the characters in the target set may vary significantly.
Due to the way the loss is defined, the model tends to
optimize for characters with more pixels, i.e., big and thick
characters. Moreover, models trained using L1 loss tend to
pay more attention to darker characters and perform poorly
on lighter characters. To alleviate the above imbalance, we
add two weights to the generation loss: W ij

st about the size
and thickness of characters, and W ij

d about the darkness of
characters.

As for W ij
st , we first calculate the number of black pixels,

i.e., pixels whose values are less than 0.5 after normalized into
[0,1]. Then W ij

st is defined as the reciprocal of the number of
black pixels in each target image

W ij
st = 1/N ij

b , (6)

where N ij
b is the number of black pixels of target image Iij .

As for W ij
d , we calculate the mean value of black pixels

for each target image and set a softmax weight

W ij
d =

exp(meanij)∑
Iij∈Dt

exp(meanij)
, (7)

where meanij is the mean value of the black pixels of the
target image Iij .

V. NEURAL STYLE TRANSFER

We further apply the EMD framework to neural style
transfer. Due to the difficulty of finding neural images with
the same style or content, the input to the Style Encoder and
Content Encoder is one image. For simplicity, we denote the
style image Isty and the content image Icon.

Many existing neural style transfer methods employ the
Gram matrix to represent styles [11], [15] and style transfer
is achieved by matching the Gram matrix of generated images



5

Statistic 
Matching

Style Reference Image

Content Reference Image

Output

Co
nv

Bl
oc

k,
5,

 1
, 6

4

Content Encoder

Style Encoder

Mixer

Decoder

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠

𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐

𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐

𝐼𝐼𝑔𝑔𝑔𝑔𝑐𝑐

Co
nv

Bl
oc

k,
3,

 2
, 1

28

Co
nv

Bl
oc

k,
3,

 2
, 2

56

Re
sB

lo
ck

, 3
,2

56

Re
sB

lo
ck

, 3
,2

56

Re
sB

lo
ck

,3
, 2

56

Re
sB

lo
ck

,3
,2

56

Co
nv

Bl
oc

k,
5,

 1
, 6

4

Co
nv

Bl
oc

k,
3,

 2
, 1

28

Co
nv

Bl
oc

k,
3,

 2
, 2

56

Co
nv

Bl
oc

k,
3,

 2
, 2

56

Gl
ob

al
 P

oo
lin

g

FC
, 5

12

Re
sB

lo
ck

,3
, 2

56

Re
sB

lo
ck

, 3
,2

56

Re
sB

lo
ck

, 3
,2

56

Re
sB

lo
ck

,3
,2

56

Up
sa

m
pl

e

Co
nv

Bl
oc

k,
3,

 1
, 1

28

Up
sa

m
pl

e

Co
nv

Bl
oc

k,
3,

 1
, 6

4

Co
nv

Bl
oc

k,
5,

 1
, 3

4
Re

sB
lo

ck
,3

, 2
56

𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠

Fig. 3. The detailed architecture of the proposed generalized EMD model for neural style transfer.

with that of style images. It has been theoretically proved
that if we consider the activation at each position of feature
maps as individual samples, then matching Gram matrix can be
reformulated as minimizing the Maximum Mean Discrepancy
(MMD) [17]. Therefore, neural style transfer can be seen as
distribution alignment from the content image to the style
image [17].

Based on above foundation, the Conditional Instance Nor-
malization (CIN) method proposes to learn a set of affine
parameters (γs and βs) for each style and transfers style with
an affine transformation [9]

F̂ =
Fcon − µ(Fcon)

σ(Fcon)
γs + βs, (8)

where Fcon are the feature maps of the content reference
image, µ(Fcon) and σ(Fcon) are the mean and standard devi-
ation of Fcon across the spatial axis. Despite of its promising
performance, this method is restricted to styles in the training
set. To solve this problem, [12] designed an Adaptive Instance
Normalization (AdaIN) layer where the affine parameters are
directly calculated from the style feature maps of a cer-
tain layer in pre-trained VGG-19, namely γs=σ(Fsty) and
βs=µ(Fsty). But this is not as accurate as CIN because the
calculated affine parameters are indeed estimation of the real
statistics. Borrowing ideas from the above two studies, our
method learns the affine parameters from the style image by
the Style Encoder, which is both flexible and accurate.

A. Network Architecture

For neural style transfer, the Style Encoder consists of a
stack of Convolution Blocks and Residual Blocks, a Global
Pooling layer and a Fully-Connected layer. Each Convolu-
tion Block <ConvBlock,k,s,c> is composed of a convo-
lution layer with kernel size k, stride s and filter number
c and a LeakyReLU layer with slope 0.2. Each Residual
block <ResBlock,k,c> consists of two convolution blocks
<ConvBlock,k,1,c>. Then the Global Pooling layer (here
we use Global Average Pooling) produces a feature map
of size 1 × 1. The final Fully-Connected layer <FC,c> is
used to generate the c-dimensional statistic vectors (mean
and standard deviation). For Content Encoder, we use three
Convolution Blocks followed by four Residual Blocks. The
detailed network architecture is displayed in Figure 3.

Through the Content Encoder, we obtain the feature maps
Fcon of the content reference image Icon. In addition, the
distribution statistics of the style reference image Isty are
learned by the Style Encoder and we denote the mean by
µsty and the standard deviation by σsty . Then based on
the foundation that neural style transfer can be seen as a
distribution alignment process from the content image to the
style image, we mix these two factors by statistic matching
between style and content images

F̂ c =
F ccon − µ(F ccon)

σ(F ccon)
σcsty + µcsty, (9)

where F̂ c is the statistic aligned feature map for the c-th
channel. µ(F ccon) and σ(F ccon) are the mean and standard
deviation computed across all positions of feature map F ccon

µ(F ccon) =
1

HW

H∑
h=1

W∑
w=1

Fhwccon , (10)

σ(F ccon) =

[
1

HW

H∑
h=1

W∑
w=1

(Fhwccon − µ(F ccon))2
] 1

2

, (11)

where we suppose the size of Fcon is H ×W × C.
The Decoder takes the feature maps F̂ as the input and

generates the image Igen with target style and content. The
architecture of the Decoder mostly mirrors the layers of
Content Encoder except that the stride-2 convolution is re-
placed by stride-1 convolution and each convolution layer is
followed by a ReLU rectifier except the last layer. Besides,
we upsample the feature maps by nearest neighbor method
in up-sample layers to reduce checkerboard effects as done
in [12].

B. Loss Function

Similar to [31], we use a pretrained VGG-19 model to
calculate the loss function

L(Igen|Isty, Icon) = λcLc + λsLs + λtvLtv, (12)

which is a weighted combination of the content loss Lc, the
style loss Ls and the total variation regularizer Ltv .

The content loss Lc is the squared and normalized Euclidean
distance between the feature maps of generated images and
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Fig. 4. The illustration of data set partition, target images selection and
reference set construction (best viewed in color).

content reference images. Suppose the content loss is cal-
culated for the l-th layer and the feature maps are of size
Hl ×Wl × Cl, then the content loss can be formulated as

Lc =
1

HlWlCl
‖ F lgen − F lcon ‖22, (13)

where F lgen and F lcon are feature maps in the l-th layer for the
generated image Igen and the content reference image Icon.

The style loss Ls is constructed by aligning the Batch
Normalization (BN) statistics (mean and standard deviation)
[12], [17] of the feature maps of the generated image Igen
and the style reference image Isty

Ls =
∑
l

‖ µ(F lgen)− µ(F lsty) ‖22

+ ‖ σ(F lgen)− σ(F lsty) ‖22 . (14)

In addition, following [15], [24], we add the total variation
regularizer Ltv to encourage the smooth of generated images.

VI. EXPERIMENTS

A. Character Typeface Transfer

1) Data Set: To evaluate the proposed EMD model with
Chinese Typeface transfer tasks, we construct a data set of 832
fonts (styles), each font with 1732 commonly used Chinese
characters (contents). All images are in the size of 80 × 80
pixels. We randomly select 75% of the styles and contents as
known styles and contents (i.e. 624 train styles and 1299 train
contents) and leave the rest 25% as novel styles and contents
(i.e. 208 novel styles and 433 novel contents). The entire data
set is accordingly partitioned into four subsets as shown in
Figure 4: D1, images with known styles and contents, D2,
images with known styles but novel contents, D3, images with
known contents but novel styles, and D4, images with both
novel styles and novel contents. The training set is selected
from D1, and four test sets are selected from D1, D2, D3, and
D4, respectively. The four test sets represent different levels
of style transfer challenges.

2) Implementation Details: In our experiment, the out-
put channels of convolution layers in the Style Encoder and
Content Encoder are 1, 2, 4, 8, 8, 8, 8, 8 times of C
respectively, where C=64. And for the Mixer, we set R=B=K
in our implementation. The output channels of the first seven
deconvolution layers in Decoder are 8, 8, 8, 8, 4, 2, 1 times
of C respectively. We set the initial learning rate as 0.0002

TG:

O1:

O2:

O3:

O4:

O5:

TG:

O1:

O2:

O3:

O4:

O5:
Fig. 5. Generation results for D1, D2, D3, D4 (from upper left to lower right)
with different training set size. TG: Target image, O1: Output for Nt=20k,
O2: Output for Nt=50k, O3: Output for Nt=100k, O4: Output for Nt=300k,
O5: Output for Nt=500k. In all cases, r=10.

and train the model end-to-end with the Adam optimization
method until the output is stable.

In each experiment, we first randomly sample Nt target
images with known content and known styles from D1 as
training examples. We then construct the two reference sets
for each target image by randomly sampling r images of
the corresponding style/content from D1. Figure 4 provides
an illustration of target images selection and reference set
construction. Each row represents one style and each column
represents a content. The target images are represented by
randomly scattered red “x” marks. The reference images for
the target image are selected from corresponding style/content,
shown as the orange circles for the style reference images and
green circles for content reference images.

3) Experimental Results: Influence of the Training Set
Size To evaluate the influence of the training set size on style
transfer, we conduct experiments for Nt=20k, 50k, 100k, 300k
and 500k. The generation results for D1, D2, D3 and D4 are
shown in Figure 5. As we can see, the larger the training
set, the better the performance, which is consistent with our
intuition. The generated images with Nt=300k and 500k are
clearly better than images generated with Nt=20k, 50k and
100k. Besides, the performance of Nt=300k and Nt=500k
is close which implies that with more training images, the
network performance tends to be saturated and Nt=300k is
enough for good results. Therefore, we take Nt=300k for the
rest of experiments.
Influence of the Reference Set Size In addition, we conduct
experiments with different number of reference images. Fig-
ure 6 displays the image generation results of Nt=300k with
r=5, r=10 and r=15 respectively. As can be seen from the
figure, more reference images lead to better detail generation
for characters. Besides, characters generated with r=5 are
overall okay, meaning that our model can generalize to novel
styles using only a few reference images. The generation
results of r=10 and r=15 are close, therefore we take r=10
in our other experiments. Intuitively, more reference images
supply more information about strokes and styles of characters,
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TG:

O1:

O2:

O3:

TG:

O1:

O2:

O3:

TG:

O1:

O2:

O3:

TG:

O1:

O2:

O3:
Fig. 6. The impact of the number of reference images on the generation of
images in D1, D2, D3, D4, respectively (from upper left to lower right).
TG: Target image, O1: Output for r=5, O2: Output for r=10, O3: Output for
r=15. In all cases, Nt=300k.

TG:

O1:

O2:

TG:

O1:

O2:

TG:

O1:

O2:

TG:

O1:

O2:
Fig. 7. The impact of the skip-connection on generation of images in D1,
D2, D3, D4, respectively (from upper left to lower right). TG is the target
image, O1 and O2 are outputs of models without and with skip-connection.
In all cases Nt=300k, r=10.

making the common points in the reference sets more obvious.
Therefore, given r > 1, our model can achieve co-learning of
images with the same style/content. Moreover, with r > 1 we
can learn more images at once which improves the learning
efficiency, i.e., if we split the <r, r, 1> triplets to be r2 <1, 1,
1> triplets, the learning time increases nearly r2 times under
the same condition.
Effect of the Skip-connection To evaluate the effectiveness
of the skip-connection during image generation, we compare
the results with and without skip-connection in Figure 7.
As shown in the figure, images in D1 are generated best,
next is D3 and last is D2 and D4, which conforms to the
difficulty level and indicates that novel contents are more
challenging to extract than novel styles. For known contents,

TG:

O1:

O2:

O3:

CR:

SR1:

SR2:

SR3:

CR:

SR1:

SR2:

SR3:

TG:

O1:

O2:

O3:

Fig. 8. Validation of pure style extraction. CR: the content reference set, TG:
the target image, O1, O2 and O3 are generated by CR and three different
style reference sets SR1, SR2 and SR3.

TG:

O1:

O2:

O3:

SR:

CR1:

CR2:

CR3:

SR:

CR1:

CR2:

CR3:

TG:

O1:

O2:

O3:

Fig. 9. Validation of pure content extraction. SR: the style reference set, TG:
the target image, O1, O2 and O3 are generated using SR but three different
content reference sets CR1, CR2 and CR3.

models with and without skip-connection perform closely. But
for novel contents, images generated with skip-connection
are much better in details. Besides, the model without skip-
connection may generate images of novel characters to be
similar characters which it has seen before. This is because the
structure of novel characters is more challenging to extract and
the loss of structure information during down-sampling makes
the model generate blurry even wrong characters. However,
with content skip-connection, the loss in location and structure
information is recaptured by the Decoder network.
Validation of Style and Content Separation Separating style
and content is the key feature of the proposed EMD model.
To validate the clear separation of style and content, we
combine one content representation with style representations
from a few disjoint style reference sets for one style and
check whether the generated images are the same. For better
validation, the target images are selected from D4, and the
content reference sets and style reference sets are all selected
from novel styles and novel contents. Similarly, we combine
one style representation with content representations from a
few disjoint content reference sets. The results are displayed
in Figure 8 and Figure 9, respectively. As shown in Figure 8,
the generated O1, O2 and O3 are similar although the style
reference sets used are quite different, demonstrating that the
Style Encoder is able to accurately extract style representations
as the only thing the three style reference sets share is the style.
Similar results can be found in Figure 9, showing that the
Content Encoder accurately extracts content representations.
Comparison with Baseline Methods In the following, we
compare our method with the following baselines for character
style transfer.
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Source:

Pix2pix:

AEGN:

Zitozi:

C-GAN:

EMD:

Target:

L1 loss RMSE PDAR

0.0105 0.0202 0.17

0.0112 0.0202 0.3001

0.0091 0.0184 0.1659

0.0112 0.02 0.3685

0.0087 0.0184 0.1332

Fig. 10. Comparison of image generation for known styles and novel contents. Equal number of image pairs with source and target styles are used to train
the baselines.

• Pix2pix [13]: Pix2pix is a conditional GAN based image
translation network, which consists of encoder, decoder
and a discriminator. It also adopts the skip-connection to
connect encoder and decoder. Pix2pix is optimized by L1
distance loss and adversarial loss.

• Auto-encoder guided GAN [23]: Auto-encoder guided
GAN consists of two encoder-decoder networks, one for
image transfer and another acting as an auto-encoder to
guide the transfer to learn detailed stroke information.

• Zi-to-zi [2]: Zi-to-zi is proposed for Chinese typeface
transfer which is based on the encoder-decoder architec-
ture followed by a discriminator. In discriminator, there
are two fully connected layers to predict the real/fake and
the style category respectively.

• CycleGAN [41]: CycleGAN consists of two mapping
networks which translate images from style A to B
and from style B to A, respectively and construct a
cycle process. The CycleGAN model is optimized by the
adversarial loss and cycle consistency loss.

For comparison, we use the font Song as the source font
which is simple and commonly used and transfer it to target
fonts. Our model is trained with Nt=300k and r=10 and as
an average, we use less than 500 images for each style. We
compare our method with baselines on generating images with
known styles and novel styles, respectively. For novel style,
the baselines need to be re-trained from scratch.

Known styles as target style. Taking known styles as the
target style, baselines are trained using the same number of
paired images as the images our model used for the target
style. The results are displayed in Figure 10 where CycleGAN
is denoted as C-GAN for simplicity. We can observe that for
known styles and novel contents, our method performs much
better than pix2pix, AEGN and CycleGAN and close to or
even slightly better than zi-to-zi. This is because pix2pix and
AEGN usually need more samples to learn a style [23]. Cycle-
GAN performs poorly and only generates part of characters or
some strokes, possibly because it learns the domain mappings
without the domain knowledge. Zitozi performs well since it
learns multiple styles at the same time and the contrast among
different styles helps the model better learn styles.

For quantitative analysis, we calculate the L1 loss, Root
Mean Square Error (RMSE) and the Pixel Disagreement Ratio
(PDAR) [41] between the generated images and the target
images. PDAR is the number of pixels with different values
in the two images divided by the total image size after

image binaryzation. We conduct experiments for 10 randomly
sampled styles and the average results are displayed at the last
three columns in Figure 10 and the best performance is bold.
We can observe that our method performs best and achieves
the lowest L1 loss, RMSE and PDAR.

Novel styles as target style. Taking novel styles as the
target style, we test our model to generate images of novel
styles and contents given r=10 style/content reference images
without retraining. As for baselines, retraining is needed. Here,
we conduct two experiments for baselines. One is that we first
pretrain a model for each baseline method using the training
set our method used and then fine-tune the pretrained model
with the same 10 reference images as our method used. The
results show that all baseline methods preform poorly and it is
unfeasible to learn a style by fine-tuning on only 10 reference
images. Thus, we omit the experiment results here. The other
setting is training the baseline model from scratch. Since it
is unrealistic to train baseline models with only 10 samples,
we train them using 300, 500, 1299 images of the target style
respectively. Here we use 1299 is because the number of train
contents is 1299 in our data set. The results are presented in
Figure 11. As shown in the figure, the proposed EMD model
can generalize to novel styles from only 10 style reference
images but other methods need to be retrained with more
samples. The pix2pix, AEGN and CycleGAN perform worst
even trained with all 1299 training images, which demonstrates
that these three methods are not effective for character style
transfer especially when the training data are limited. With
only 10 style reference images, our model performs better than
zi-to-zi-300 namely zi-to-zi model learned with 300 examples
for each style, close to zi-to-zi-500 and a little worse than zi-
to-zi-1299. This may be because zi-to-zi learns multiple styles
at the same time and learning with style contrast helps model
learning better.

The quantitative comparison results for L1 loss, RMSE and
PDAR are shown at the last three columns of Figure 11.
Although given only 10 style reference images, our method
performs better than all pix2pix, AEGN and CycleGAN mod-
els and zi-to-zi-300, and close to zi-to-zi-500 and zi-to-zi-
1299, which demonstrates the effectiveness of our method.

In conclusion, these baseline methods require many images
of source styles and target styles, which may be difficult to
collect. Besides, the learned baseline model can only transfer
styles appearing in train set and they have to be retrained for
new styles. But our method can generalize to novel styles given
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Source:

Pix2pix-300:

Pix2pix-500:

Pix2pix-1299:

AEGN-300:

AEGN-500:

AEGN-1299:

Zitozi-300:

Zitozi-500:

Zitozi-1299:

C-GAN-300:

C-GAN-500:

C-GAN-1299:

EMD-10:

Target:

L1 loss RMSE PDAR

0.0109 0.0206 0.1798

0.0106 0.0202 0.1765

0.01 0.0196 0.1531

0.0117 0.02 0.3951

0.0108 0.02 0.2727

0.0105 0.0196 0.26

0.0091 0.0187 0.1612

0.009 0.0185 0.1599

0.009 0.0183 0.1624

0.0143 0.0215 0.5479

0.0126 0.0203 0.4925

0.0128 0.0203 0.4885

0.009 0.0186 0.1389

Fig. 11. Comparison of image generation for novel styles and contents given r=10. The baseline methods are trained with 300, 500, 1299 image pairs
respectively.

only a few reference images. In addition, baseline models
can only use images of target styles. However, since the
proposed EMD model learns feature representations instead of
transformation among specific styles, it can leverage images
of any styles and make the most of existing data.

B. Neural Style Transfer

1) Implementation Details: Following previous stud-
ies [12], [15], we use the MS-COCO dataset [19] as the
content images and a dataset of paintings mainly collected
from WikiArt [3] as the style images. Each dataset contains
roughly 80,000 training examples. The model is trained using
the Adam optimizer with the learning rate of 0.0001. The batch
size is set to be 8 style-content pairs. We compute the style
loss using the relu1 2, relu2 2, relu3 3, relu4 3 layers of
VGG-19 and the content loss using the relu4 1 layer. We set
λc=1, λs=5 and λtv=1e-5. During training, we first resize the
smallest dimension of both images to 512 while preserving
the aspect ratio, then randomly crop regions of size 256×256.
Since the size of the fully connected layer in Style Encoder is
only related to the filter numbers, our model can be applied
to style/content images of any size during testing.

2) Comparison Methods: We compare the proposed neural
style transfer model with the following three types of baseline
methods:
• Fast but not flexible Per-Style-Per-Model method, which

is restricted to a single style and can not be generalized
to new styles. Here we use the state-of-the-art method
TextureNet [32] as an example. TextureNet is mainly a
generator which takes a noise variable z and a content
reference image as the inputs and generates the image
with target style/content.

• Flexible but slow optimization based method [11], which
optimizes one noise image to be with target style and
content iteratively with the help of a pretrained VGG
network.

• Flexible and fast Arbitrary-Style-Per-Model method,
which can achieve arbitrary style transfer with no need for
retraining. In this study, we compare with the following
three methods:

– Patch-based [8]: Patch-based method conducts style
transfer by swapping each content feature patch with
the nearest style patch. The network consists of a
convolution network, an inverse network and a style
swap layer.

– AdaIn [12]: AdaIn is based on the Adaptive Instance
Normalization and the network of AdaIn consists
of an encoder, a decoder and an Adaptive Instance
Normalization layer, where the encoder is fixed as
the first few layers of VGG-19.

– Universal [16]: Universal is designed based on the
whitening and coloring transformation which is em-
bedded in a series of pretrained encoder-decoder
image reconstruction networks.

Among the above baseline methods, the TextureNet is more
impressive in transfer quality than the other four baseline
methods, therefore, we take it as a benchmark. The results
of these baseline methods are all obtained by running their
released code with the default configurations.

3) Experimental Results: Comparison with Baseline
Methods As can be seen from Figure 12, the proposed method
performs better than other arbitrary style transfer methods
but a little worse than TextureNet. It is worth noting that
TextureNet is trained separately for each style but none of the
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Style Content TextureNet[32] Opt-based[11] Patch-based[8] AdaIn[12] Universal[16] EMD

Fig. 12. The comparison results for neural style transfer.
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style

content

Fig. 13. More experimental results for neural style transfer.

presented styles are observed by our model during training.
This is acceptable due to the trade-off between flexibility
and transfer quality. Patch-based method performs poorly. It
can not capture some styles when lots of content patches are
swapped with style patches lack of style elements. AdaIn per-
forms well on most styles but the generated images are a little
blurry in details. It performs not so well for some complicated
styles. Universal replaces the training process with a series of
transformations but it is not effective at producing sharp details
and fine strokes. Figure 13 displays more style transfer results
of our proposed method, which demonstrate that the proposed
EMD framework can be generalized to arbitrary new styles
without the need for model retraining.

Style-content Trade-off During training, we can control the
degree of style transfer by adjusting the weight λs in loss
function. When testing, our method also allows the style-
content trade-off by adjusting the amount of style information
mixed with the content feature. With Style Encoder, we can
obtain the original style of the content image, and then we
mix the content feature with the style which is the weighted
combination of styles from the content image and the style
image

F̂ =
Fcon − µ(Fcon)

σ(Fcon)
σnew + µnew, (15)

where Fcon is the feature map of content image and

µnew = (1− α)µcon + αµsty, (16)
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content style𝛼𝛼 = 0.25 𝛼𝛼 = 0.5 𝛼𝛼 = 0.75 𝛼𝛼 = 1.0

content style𝛼𝛼 = 0.25 𝛼𝛼 = 0.5 𝛼𝛼 = 0.75 𝛼𝛼 = 1.0

Fig. 14. Examples of style-content trade-off.

content style2𝛼𝛼 = 0.25 𝛼𝛼 = 0.5 𝛼𝛼 = 0.75 𝛼𝛼 = 1.0𝛼𝛼 = 0style1
Fig. 15. Examples of style interpolation.

σnew = (1− α)σcon + ασsty, (17)

where (µcon, σcon) and (µsty , σsty) are the learned statis-
tical information of the content image and the style image,
respectively. By adjusting the weight α, the Decoder generates
images gradually changing from the original style to the target
style. When α = 0, the Decoder tries to reconstruct the
content image and when α = 1.0, the Decoder outputs the
most stylized image. As shown in Figure 14, the stylized
image changes from slightly stylized to the most stylized with
increasing α.
Style Interpolation Similarly, our method can also be applied
for interpolation between two styles, which is achieved by
setting µnew = (1−α)µsty1+αµsty2 and σnew = (1−α)σsty1+
ασsty2 in Eq. 15. An example is presented in Figure 15. When
α = 0 and α = 1, style 1 and style 2 are used for the transfer,
respectively. When 0 < α < 1, an interpolation between the
two styles are used for the transfer.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a unified style transfer frame-
work EMD for both character typeface transfer and neural
style transfer, which enables the transfer models generalizable
to new styles and contents given a few reference images.
The main idea is that from these reference images, the
Style Encoder and Content Encoder extract style and content
representations, respectively. Then the extracted style and con-
tent representations are mixed by a Mixer and finally fed into
the Decoder to generate images with target styles and contents.
This learning framework allows simultaneous style transfer
among multiple styles and can be deemed as a special ‘multi-
task’ learning scenario. Then the learned encoders, mixer and

decoder will be taken as the shared knowledge and transferred
to new styles and contents. Under this framework, we design
two individual networks for character typeface transfer and
neural style transfer tasks. Extensive experimental results on
these two tasks demonstrate its effectiveness.

In our study, the learning process consists of a series of
image generation tasks and we try to learn a model which can
generalize to new but related tasks by learning a high-level
strategy, namely learning the style and content representations.
This resembles to “learning-to-learn” program. In the future,
we will explore more about “learning-to-learn” and integrate
it with our framework.
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