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ABSTRACT 

With the development of deep learning, many state-of-the-

art natural image scene classification methods have 

demonstrated impressive performance. While the current 

convolution neural network tends to extract global features 

and global semantic information in a scene, the geo-spatial 

objects can be located at anywhere in an aerial image scene 

and their spatial arrangement tends to be more complicated. 

One possible solution is to preserve more local semantic 

information and enhance feature propagation. In this paper, 

an end to end multiple instance dense connected convolution 

neural network (MIDCCNN) is proposed for aerial image 

scene classification. First, a 23 layer dense connected 

convolution neural network (DCCNN) is built and served as 

a backbone to extract convolution features. It is capable of 

preserving middle and low level convolution features. Then, 

an attention based multiple instance pooling is proposed to 

highlight the local semantics in an aerial image scene. 

Finally, we minimize the loss between the bag-level 

predictions and the ground truth labels so that the whole 

framework can be trained directly. Experiments on three 

aerial image datasets demonstrate that our proposed 

methods can outperform current baselines by a large margin. 

 

Index Terms— Scene classification, convolution neural 

network, dense connection, multiple instance learning, aerial 

image. 

 

1. INTRODUCTION 

Earth vision, also known as earth observation and remote 

sensing, is an important field of computer vision and image 

understanding [1,2]. Aerial image scene classification, also 

known as remote sensing image scene classification, is a 

basic task in Earth vision and aerial image interpretation and 

is important for a series of aerial image applications, such as 

land use and land cover (LULC) classification and urban 

planning. Due to the highly complex geometric structures 

and spatial patterns in aerial images [3], how to effectively 

identify the semantic label of an aerial image scene is still a 

challenging problem for remote sensing community. 

Before the development of deep learning, low-level 

feature based methods [4] and middle-level feature based 

methods [5–7] are widely used in aerial image scene 

classification. However, due to the intra-class similarity, 

inter-class variety and complex spatial arrangement in aerial 

image, these low and middle level feature based methods 

lack flexibility and adaptiveness to different scenes. 

Since 2012, deep learning methods, also known as the 

high-level feature based methods, have largely 

outperformed the aforementioned low-level and middle-

level feature based methods in a series of visual tasks 

including aerial image scene classification [2,8]. Among 

these deep learning methods, CNN is widely used. Its 

effectiveness can be explained by its multiple stage feature 

extraction and its end-to-end framework. Deep learning 

methods for aerial image scene classification can be mainly 

divided into three categories, that is, fine tuning, using 

CNNs as a feature extractor, and full training on aerial 

image datasets [9,10]. 

Although these strategies can outperform the traditional 

hand-crafted feature based methods significantly, several 

problems still remain. The first problem is that since geo-

spatial objects can be located at any corner and at any 

orientation in aerial image, high-level feature based methods 

should highlight the local semantics relevant to the scene 

label [11]. However, current CNNs mainly focus on global 

semantic features, since in natural image scenes, objects are 

concentrated and have a more stable context relationship. 

The second problem is that, gradient vanishing and the loss 

of middle and low level features can hardly be avoided 

when training large CNNs [2], while the high variation of 

texture and structure in aerial image means such low and 

middle level features need to be well preserved and more 

discriminative features need to be extracted [12].  

The recently proposed DenseNet can preserve the 

middle and low level features and can alleviate gradient 

vanishing problems because of its dense connection 

structure [13]. The basic idea of dense connection is that 

feature maps of all the preceding layers are used as inputs 

and its own feature maps are used as inputs into all 

subsequent layers (demonstrated in Figure.1). Also, dense 

connection structure is more capable of feature reuse and it 

enables us to build a deeper CNN without severe over-

fitting problems. Meanwhile, with the current boost of deep 

learning in a series  of  pattern  recognition  tasks,  multiple 



 

 

Fig. 1: Illustration of dense connected structure. Note that in the 

left subfigure, each rectangular in this figure stands for a tensor 

outputted from a convolution layer and in the right subfigure a 

DenseNet architecture is presented. 

instance learning (MIL) has the trend to be combined with 

CNN to refine semantic labels. MIL is a weak supervised 

learning in which each of the training samples is regarded as 

a bag and each bag consists of a series of instances. The key 

to implement MIL in the visual task is to regard the densely 

sampled image patches as instances and the scene label is 

determined by the relevant instances [14,15]. 

Inspired by these studies, we propose a new approach 

for aerial image scene classification. We list our work and 

contribution as follows. 

(1) We propose a multiple instance dense connected 

convolutional neural network (MIDCCNN) for aerial image 

scene classification.  

(2) We build a 23-layer dense connected convolutional 

neural network (DCCNN) served as the backbone in our 

framework.  

(3) We propose an attention-based MIL pooling to 

highlight the relevant local semantics and it can be directly 

optimized along with the CNN structure under the 

supervision of bag label. 

 

2. METHODOLOGY 

2.1. Dense Connected Convolution Neural Network 

Let h  denote a composite function of operations and 

1 2 1, , ,l l lx x x x− −  and 1x  denote the output of the 

( ) ( )
th thth th, 1 , 2 1l l l− − , ,  and th0  layer respectively. The 

dense connection can be expressed as Equation (1). 

  ( )0 1 1, , ,l l lx H x x x −=  (1) 

In DenseNet, the first three dense blocks are followed 

by a transition layer and the fourth dense block is followed 

by the classification layers, as is demonstrated in Figure 1. 

In each dense block, there are a series of 1×1 convolution 

layer followed by 3×3 convolution layer. In each transition 

layer, the channel of 1×1 convolution layer are usually less 

than the channel of inputted feature maps in the hope of 

feature reduction. However, the DenseNet has hundreds of 

layers and is too large to train on small aerial image datasets. 

Table 1: Network structure of DenseNet and the proposed DCCNN 

Layers Output Size DenseNet121 DCCNN 

Convolution 112 112 7 7 conv, stride 2 

Pooling 56 56 3 3 max pool, stride 2 

Dense Block 1 56 56 
1 1 conv

6
3 3 conv

 
 

 

 1 1 conv
3

3 3 conv

 
 

 

 

Transition Layer 

1 

56 56 1 1 conv 

28 28 2×2 average pool, stride 2 

Dense Block 2 28 28 
1 1 conv

12
3 3 conv

 
 

 

 1 1 conv
3

3 3 conv

 
 

 

 

Transition Layer 

2 

28 28 1 1 conv 

14 14 2 2 average pool, stride 2 

Dense Block 3 14 14 
1 1 conv

24
3 3 conv

 
 

 

 1 1 conv
3

3 3 conv

 
 

 

 

Transition Layer 

3 

14 14 1 1 conv 

7 7 2 2 average pool, stride 2 

Dense Block 4 7 7 
1 1 conv

16
3 3 conv

 
 

 

 None 

Convolution 7 7 None 1 1 conv 

Classification 

Layer 

1 1 7 7 global average pool 

 Fully connected, softmax 

In this paper, we build a 23-layer dense connected 

convolutional neural network (DCCNN) as a backbone. The 

difference between our DCCNN and the original DenseNet 

mainly lies in three aspects: 

(1) In each dense block, the number of 3×3 

convolutional layers are significantly reduced.  

(2) The transition layers serve as the function of feature 

refinement rather than feature reduction. It is realized by the 

setting that the number of convolution filters in each 

transition layer is equal to the number of input feature maps.  

(3) The fourth dense block is removed, and instead we 

add an additional 1×1 convolution layer to further refine the 

extracted convolution features before classification. 

The network structure of DCCNN and DenseNet121 is 

demonstrated in Table 1 for comparison. 

2.2. Multiple Instance Learning Pooling 

To adapt CNN to multiple instance scenarios, the key idea is 

to design a MIL pooling layer, which aggregates instance 

feature vectors into a bag feature vector [16,17]. In this 

paper, an attention based MIL pooling is proposed to 

transform CNN into MIL framework and it allows the whole 

model to be trained directly under the supervision of scene   

labels (bag labels). 
Before MIL pooling, we need to build an instance level 

classifier for local scene patches. In a CNN, we can obtain a 

downscaled multi-channel feature map F  through multiple 

convolution layers and pooling layers. Later, the activation 

ijF  of each position ( , )i j   is computed through convolution 

and each activation ijF  forms a feature vector to represent a 

local patch. Since instance-level classifier outputs the class 

predictions ijp  of local patches, the dimension of ijF  need 

to match with the number of scene categories.  



 

 

 

Fig. 2: Framework of the proposed MIDCCNN 

Since the only accessible supervision information is 

bag-level labels, a MIL pooling function ( )g   is needed to 

aggregate multiple instance predictions  ijp  into a single 

bag prediction bagp , that is: 

  ( )bag ijp g p=  (2) 

Common approaches to introduce MIL into a CNN 

framework include using max pooling and average pooling 

[17]. However, such approaches can not take the 

complicated spatial arrangement and object distribution in 

an aerial image into account. To handle this challenge, we 

propose an attention based MIL pooling.  

The spatial attention mechanism [17,19] can select the 

most relevant local semantics by using a weighted average. 

Let  { }ija  denote the attention weights of instances and the 

sum of { }ija  is 1, then the MIL pooling function ( )g   can 

be represented as a convex combination of all instance 

probability distribution vectors: 

  ( )ij ij iji j
g p a p=   (3) 

In our attention model, we calculate the weights by an 

attention network, as is demonstrated in Figure 2 and in 

formula (4). It takes an instance feature vector ijF  as the 

input and it outputs an attention weight ija : 

 ( )( )2 1tanhT T

ij ija softmax w W F b= +  (4) 

Table 2: Detailed Information on Three Aerial Image Datasets 

 Category Samples 

per class 

Image 

size 

Training 

ratio 

Spatial 

resolution 

UCM 21 100 256×256 80％ 0.3 meter 

AID 30 220-400 600×600 50％ 0.5-8 meter 

NWPU 45 700 256×256 20％ 0.2-30 meter 

where 2

Lw   and 1
cL N

W


 are trainable weight 

parameter matrices of the two layers in the attention 

network, and Lb  is the bias parameter matrix. We use a 

softmax function to make the attention weights sum to one.  

If the scene contains more than one semantics, this MIL 

pooling can highlight the instances of interest while 

suppressing other instances. Otherwise, the weights of all 

the instances will be roughly equal, and the effect of the 

attention model will be similar to a global average pooling.  

2.3. MIDCCNN Framework 

The framework of the proposed multiple instance dense 

connected convolution neural network (MIDCCNN) is 

demonstrated in Figure 2. In this framework, at first we use 

DCCNN as a backbone to extract the convolution features. 

We feed the convolution features outputted from the 

additional 1x1 convolution layer into the instance classifier. 

The instance classifier consists of N 1x1 convolution filters 

(Here N is equal to the number of scene categories) to 

compute the instance-level feature vectors. Then, we use the 

proposed MIL pooling to obtain a bag-level class probability. 

Finally, we use the classic cross entropy loss function to 

minimize the loss between the bag-level predictions and the 

ground truth labels, and the whole framework can be 

optimized as a whole. It should be noted that the major 

difference between our MIL pooling and the attention based 

MIL pooling proposed in [20] is that in [21] it can not be 

supervised directly under the bag label and thus lacks the 

interpretability of a result. 

 

3. EXPERIMENT AND ANALYSIS 

3.1. Dataset 

We implement our experiments on three widely used aerial 

image scene classification datasets, that is, the UCM dataset 

[21], the AID dataset [2] and the NWPU dataset [8]. The 

basic information of these three datasets and their 

corresponding training ratios are listed in Table 2.  

3.2. Model initialization and training 

For the parameter initialization of our DCCNN and 

MIDCCNN, we use random initialization for weight 

parameters and all bias parameters are set to 0.001, 

respectively.  

The model was trained by the Adam optimizer, with a 

two-stage training strategy. On AID and NPWU dataset, the 

learning rate was set to 0.001 for 100 epochs at the first 

stage. After 100 epochs, the learning rate was divided by 10 

and we continue training until the termination. On UCM 



 

dataset, the learning rate was set to 0.001 for 40 epochs at 

the first stage. After 40 epochs, the learning rate was divided 

Table 3: Overall accuracy (OA) on three aerial image datasets 

 UCM  AID NWPU 

SIFT [2] 32.10±1.95 16.76±0.65 - 

PLSA [2] 71.38±1.77 63.07±0.48 - 

BoVW [2,10] 75.52±2.13 68.37±0.40 44.97±0.28 

LDA [2] 75.98±1.60 68.96±0.58 - 

AlexNet [2,10] 95.02±0.81 89.53±0.31 79.85±0.13 

VGGNet [2,10] 95.21±1.20 89.64±0.36 79.79±0.15 

GoogLeNet[2,10] 94.31±0.89 86.39±0.55 78.48±0.26 

MIL_mean [17,20] 96.41±0.44 92.19±0.24 86.37±0.18 

MIL_max [17,20] 95.91±0.55 91.21±0.27 85.23±0.21 

DCCNN (ours) 96.21±0.67 91.49±0.22 85.63±0.18 

MIDCCNN (ours) 97.00±0.49 92.53±0.18 87.32±0.17 

by 10 and we continue training until the termination. The 

training process does not terminate until the learning rate 

drops to 1e-6. During the whole training progress, to prevent 

over fitting problem, L2 normalization is used to with a 

parameter setting of 1e-6 and dropout rate is set to be 0.2. 

Meanwhile, in accordance with number of scene 

categories, the number of convolution filters in the instance 

classifier on UCM, AID and NPWU dataset is set to be 21, 

30 and 45, respectively.  

3.3. Results and discussion 

The experimental evaluation follows the widely accepted 

evaluation protocol of aerial image scene classification [2]. 

To be specific, we compute the overall accuracy (OA) for 

ten repetitions and then compare its average and standard 

deviation with other baseline methods reported in [2] and 

[10]. Meanwhile, to validate the effectiveness of our 

proposed attention-based MIL pooling, while keeping the 

backbone (DCCNN) the same, we also compare our method 

with currently used maximum and average pooling 

operations in MIL [17,20] (denoted as MIL_mean and 

MIL_max respectively). All results are listed in Table 3.  

From these experimental results, some important   

phenomenon can be observed. 

(1) Our proposed DCCNN and MIDCCNN achieves the 

highest OA on all three aerial image datasets and can 

outperform other baseline deep learning models. Since there 

are relatively low number of samples in the UCM dataset, 

the improvement of OA is not significant. While there are a 

relatively larger amount of samples in AID and NWPU 

dataset, the middle and low level feature methods perform 

much worse and the boost of OA is significant when using 

our proposed method. It can be explained by the utilization 

of dense connection and our attention based MIL pooling. 

The dense connection structure is more capable of feature 

propagation while having much fewer parameters and the 

fact that our attention based MIL pooling help highlight the 

important local semantics in an aerial scene.  

(2) When using the same convolution feature extraction  

Samples Before attention After attention 

   

   

   

Fig. 3: Demonstration of attention based MIL pooling 

framework, our proposed attention based MIL pooling 

outperforms other currently used MIL pooling methods. It 

might be explained by the following two aspects. The first 

aspect is that compared with common used maximum and 

average pooling operations, attention based pooling 

operations are capable of highlighting the instances relevant 

to the bag label and at the same time suppressing other 

instances by assigning different weights. Feature maps of 

several samples before and after the attention pooling help 

illustrate this (Seen in Figure 3). The second aspect is that 

compared with other MIL pooling operations, our method is 

directly under the supervision of bag-level labels and thus 

has a better scene feature representation ability. 

 

4. CONCLUSION 

In this paper, we propose a multiple instance dense 

connected convolution neural network (MIDCCNN) for 

aerial image scene classification. The backbone is a 23-layer 

dense connected convolution neural network (DCCNN) and 

its effectiveness mainly lies in dense connection, little 

amount of parameters and a series of 1×1 convolutional 

layers. To implement MIL under a CNN architecture, we 

propose a MIL pooling based on spatial attention 

mechanism and it can be optimized together with CNN 

under the bag-level supervision. Experiments on three aerial 

image datasets demonstrate that the proposed method can 

outperform other state-of-the-art methods since it can 

extract more discriminative features well and highlight the 

local semantics in an aerial image scene. 

Future works include studying feature reuse in our 

MIDCCNN and introducing our framework to instance 

segmentation and object detection in aerial image. 
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