
1

Understanding and Predicting the Memorability of
Outdoor Natural Scenes
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Abstract—Memorability measures how easily an image is to
be memorized after glancing, which may contribute to designing
magazine covers, tourism publicity materials, and so forth.
Recent works have shed light on the visual features that make
generic images, object images or face photographs memorable.
However, these methods are not able to effectively predict the
memorability of outdoor natural scene images. To overcome this
shortcoming of previous works, in this paper, we provide an
attempt to answer: “what exactly makes outdoor natural scenes
memorable”. To this end, we first establish a large-scale outdoor
natural scene image memorability (LNSIM) database, containing
2,632 outdoor natural scene images with their ground truth
memorability scores and the multi-label scene category annota-
tions. Then, similar to previous works, we mine our database to
investigate how low-, middle- and high-level handcrafted features
affect the memorability of outdoor natural scenes. In particular,
we find that the high-level feature of scene category is rather
correlated with outdoor natural scene memorability, and the deep
features learnt by deep neural network (DNN) are also effective
in predicting the memorability scores. Moreover, combining the
deep features with the category feature can further boost the
performance of memorability prediction. Therefore, we propose
an end-to-end DNN based outdoor natural scene memorability
(DeepNSM) predictor, which takes advantage of the learned
category-related features. Then, the experimental results validate
the effectiveness of our DeepNSM model, exceeding the state-of-
the-art methods. Finally, we try to understand the reason of the
good performance for our DeepNSM model, and also study the
cases that our DeepNSM model succeeds or fails to accurately
predict the memorability of outdoor natural scenes.

Our LNSIM dataset is available at https://github.com/
JiaxinLu-home/Natural-Scene-Memorability-Dataset. The test
code of the proposed DeepNSM method is publicly released at
https://github.com/RenYang-home/Natural-Scene-Memorability.

Index Terms—Memorability; Outdoor natural scenes; Com-
puter vision.

I. INTRODUCTION

One hallmark of human cognition is the splendid capacity
of recalling thousands of different images, some in details,
after only a single view [1], [2]. In fact, not all images
are remembered equally in human brain. Some images stick
in our minds, while others fade away in a short time [1],
[2]. Memorability measures how easily an image is to be
memorized after glancing. This kind of capacity is likely to
be influenced by individual experiences, and is also subject
to some degree of inter-subject variability, similar to some
subjective image properties. This paper focuses on studying
the image memorability of outdoor natural scenes, which
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(a) Object-centric image [10] (b) Outdoor natural scene

Fig. 1. An example of (a) object-centric image and (b) outdoor natural scene
image. Note that the numbers in (a) indicate the memorability score of each
object.

frequently appear in human life. Understanding and predict-
ing the memorability of outdoor natural scenes may have
some potential applications. For example, we can use more
memorable cover images for geography magazines or tourism
advertisements to leave a deeper impression on readers, and
we may chose a more impressive background or cover photo
in social media profile to facilitate social communication, etc.

Recent works [3]–[11] analyze the fact that images are not
equally remembered by humans, and provide reliable solutions
for ranking images by memorability scores. These works are
proposed for generic images. For example, as shown in Fig.
1-(a), Dubey et al. [10] explored the memorability of different
objects in an image, and studied the contribution of each
object to the memorability of the whole image. In other words,
according to [10], the features of the object compositions in a
memorable image are different from those in an image that is
hard to be memorized. However, understanding and predicting
the memorability of the image background (beach and sea)
in Fig. 1-(a) are neglected in [10]. That is, the method of
[10] is not effective for the outdoor natural scene image1

shown in Fig. 1-(b), which is not an object-centric image,
and has no obvious cue to clarify which part sticks in mind or
fades away. Therefore, in this paper, we exclude the object-
related features and explore the effective features, especially
the macroscopic features describing the whole image, for
predicting the memorability of outdoor natural scenes.

Fortunately, Fig. 2 shows that scene category, as a high-
level feature describing the content of the whole image, has
correlation with the outdoor natural scene memorability. More-
over, deep neural network (DNN) is widely used in computer
vision tasks, including predicting generic image memorability
[6], [11]. Inspired by this, we further investigate the influence
of the scene category feature when combining with the base-

1In this paper, we refer outdoor natural images as the natural images, which
are without any salient object such as people, animals, and man-made objects.
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Fig. 2. Image samples from different outdoor natural scene categories. The
ground truth memorability score is annotated in each image. The number in
the bracket represents average score of each category.

line deep network, and further propose an end-to-end DNN
method utilizing the category-related feature to predict the
memorability of outdoor natural scenes. More importantly,
thanks to the attempt for studying the memorability of images
without salient objects, this paper advances the understanding
of memorability in previous works. For example, we find that
the word frequency might be the intrinsic factor making scene
category an effective feature to predict memorability, since the
most memorable categories have the least word frequencies.
That is, the outdoor natural scenes, which people have rarely
seen, e.g., aurora in Fig. 2, tend to leave deep impression in
mind.

Besides, the existing methods for generic images fail to
accurately predict the memorability of outdoor natural scenes.
For example, the method of [4] achieves ρ = 0.54 on generic
images, but only has ρ = 0.32 on the outdoor natural subset of
[4] and ρ = 0.33 on the outdoor natural scene dataset LNSIM,
established in this paper. Similarly, MemNet [6] and MemoNet
[11] reach the performance of ρ = 0.64 and ρ = 0.636 for
generic images, but only have ρ = 0.43 and ρ = 0.39 on
our LNSIM database for outdoor natural scenes. These also
motivate our work.

This paper significantly extends our conference paper [12].
Specifically, the extensions mainly include: (1) the discus-
sion for our motivation, (2) the analysis on the influence
of combining different non-deep features with deep features
for predicting memorability (the motivation for designing
our DeepNSM model), (3) understanding the effectiveness of
scene category from the aspect of word frequency, (4) un-
derstanding how deep features work by investigating internal
representation learnt by our DNN model, (5) the case study
demonstrating the successful cases of the models utilizing non-
deep features, deep features and our final model DeepNSM,
and analyzing the failure cases of these three models. We
also utilize the gray-level co-occurrence matrix (GLCM) to
analyze the cases that our DeepNSM model is successful

or unsuccessful for accurate memorability prediction, and (6)
we add more experiments including utilizing more metrics to
evaluate the prediction performance and the performance of
the scene classifier. The main contributions of this paper are
as follows.

(1) For understanding and predicting the memorability of
outdoor natural scenes, we establish a large-scale outdoor
natural scene database (LNSIM) with 2,632 outdoor natural
images, which has 10 times number of images than the
NSIM database [13]. Also, the number of images in our
LNSIM database is much more than the number of outdoor
natural scene images in generic datasets [3], [4], [6], [11]. In
our LNSIM database, all images are with the memorability
scores, obtained from the memory game with more than 100
volunteers. Differing from other previous works, all images in
our database have multi-label scene category annotations, for
investigating the relationship between scene category and the
memorability of outdoor natural scenes.

(2) Based on the previous works [3], [4], [6], [7], [9] for
memorability of generic images, our work further thoroughly
study the relationship between outdoor scene memorability
and various kinds of features, including the deep features and
the handcrafted features of low-, middle- and high-levels. Most
importantly, we investigate the influence of all handcrafted
features on combining with DNN to predict outdoor natural
scene memorability. We not only observe that the scene
category has the highest correlation with outdoor natural scene
memorability among different levels of handcrafted features,
and also find that combining the scene category feature with
our baseline deep model boosts the performance of DNN.

(3) In accordance with the above findings, we propose a
DNN based outdoor natural scene memorability (DeepNSM)
predictor, which integrates category-related features with a
conventional DNN for memorability prediction on outdoor
natural scene images. It differs from the previous works [3],
[4], [6], [7], [9], which either solely apply handcrafted visual
features or utilize a simple DNN (e.g., applying GoogleNet
in [11]). It is worth pointing out that our DeepNSM approach
automatically extracts category-related features by DNN and
does not need any manual category annotation when predicting
memorability.

(4) Moreover, we investigate the word frequency of each
scene category, and find that the images which are easy to
be memorized are with low frequency, i.e., they rarely appear
in human daily life. This is probably because these images
more easily leave deep impression in people’s mind. Then, we
provide an attempt to understand how our DeepNSM model
works to predict memorability by visualizing the internal
representation of the last convolutional layer, and observe that
our DeepNSM model is able to locate the memory region more
accurately than the compared methods, thus leading to better
performance.

(5) Finally, we demonstrate the cases that the category fea-
ture, deep features and our DeepNSM model are effecitve for
memorability prediction on outdoor natural scenes, and also
study the cases that they fail to accurately predict memorabil-
ity. To understand the successful and failure cases, we further
analyze the texture of images, and find that the memorability
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Fig. 3. Image samples from our LNSIM database. The images above are ranked by their memorability scores, which decrease from left to right.

of the images with higher contrast, lower homogeneity and
lower intra-picture correlation are more likely to be predicted
accurately by our DeepNSM method.

II. RELATED WORK

Memorability of generic images. Isola et al. [3] pioneered
on the study of image memorability for generic images, and
they have shown that memorability is an intrinsic property of
an image. They further analyzed how various visual factors
influence the memorability of generic images, and a greedy
feature-selection scheme was employed to obtain the best
feature combination for memorability prediction [7]. The
global features (i.e., pixels, GIST [14], SIFT [15], HOG2×2
[16], [17]) were verified and then combined. As a result, the
accurate prediction performance of memorability is achieved
on generic images [3], [4], [7]. Besides, Khosla et al. [5]
combined local features with global features to increase the
prediction performance. Later, Bylinskii et al. [9] investigated
the interplay between intrinsic and extrinsic factors that affect
image memorability, and then they developed a more complete
and fine-grained model for image memorability.

In addition to the hand-crafted features, visual attention
has recently received significant research interests, such as
visual attention prediction [18] and human visual behavior
modeling [19], [20]. Inspired by the studies on visual attention,
Mancas et al. [8] suggested that incorporating the attention-
related feature in [3] further improves the prediction accuracy.
Meanwhile, a visual attention-driven approach was proposed
in [21].

Recently, DNN is utilized on image memorability. For
example, Siarohin et al. [22] proposed applying a neural style
transfer algorithm to increase image memorability. Moreover,
for predicting image memorability, several DNN approaches
were proposed to significantly improve the prediction accu-
racy. Specifically, Khosla et al. [6] trained the MemNet on a
large-scale database, achieving a splendid prediction perfor-
mance close to the human consistency. In addition, Baveye
et al. [11] fine-tuned the GoogleNet on the same database
of [3], exceeding the performance of handcrafted features
mentioned above. They also cast light on the importance of
balancing emotional bias, when establishing the memorability-
related database. However, the works of [6] and [11] only re-
trained the single DNNs (e.g., AlexNet and GoogleNet), and
did not take advantage of any other features for predicting
image memorability.

Memorability of faces, objects and outdoor natural
scene. To better understand and predict image memorability,

the study of image memorability on certain targets, like faces,
objects and outdoor natural scenes, has recently attracted
the interests of computer vision researchers [10], [13], [23]–
[25]. Bainbridge et al. [24] firstly established a database for
studying the memorability of human face photographs. They
further explored the contribution of certain traits (e.g., kind-
ness, trustworthiness, etc.) to face memorability, but such traits
only partly explain facial memorability. Furthermore, [23]
proposed a method to modify the memorability of individual
face photographs.

Dubey et al. [10] were the first to study the problem of ob-
ject memorability. They assumed that object categories play an
important role in determining object memorability; therefore,
they obtained the memorability scores of all constituent objects
possibly appearing in object images by subjective experiment.
Since the splendid performance of DNN is achieved in various
recognition tasks, Dubey et al. [10] utilized the deep features
extracted by conv-net [26], [27] and ground truth scores
of objects to predict object memorability better. It is worth
pointing out that although object category and DNNs were
used in [10], they did not design an end-to-end deep network
for memorability prediction. In the DL-MCG method of [10],
object segments are generated by using a DNN, and then
they trained a support vector regressor (SVR) to map deep
features to memorability scores. Thus, it is not able to be
optimized in an end-to-end manner. Besides, Dubey et al.
[10] also provided an upper bound of their DL-MCG method,
where the ground-truth object segmentation is used to replace
the DNN before SVR. Such upper bound has to be achieved
with manual annotation of segmentation and without using
DNNs. In this paper, our DeepNSM approach, as an end-
to-end DNN, is able to automatically extract category-related
feature, and to predict the memorability of outdoor natural
scenes without using any manual annotation. Separately, [28]
learned video memorability from brain functional magnetic
resonance imaging (fMRI).

More recently, Lu et al. [13] studied the memorability of
outdoor natural scene on the subset of database in [3]. They
indicated that the HSV color features perform well on the
outdoor natural scene memorability, and then they combined
the HSV-based feature and other traditional low-level features
to predict memorability scores. Nonetheless, only handcrafted
low-level features are considered in memorability prediction,
which are limited in the prediction accuracy.
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Fig. 4. The experimental procedure of our memory game. Each level lasts about 5.5 minutes with a total of 186 images. Those 186 images are composed
of 66 targets, 30 fillers and 12 vigilance images. The specific time durations for experiment setting are labeled above.

III. OUTDOOR NATURAL SCENE MEMORABILITY
DATABASE

As a first step towards understanding and predicting the
memorability of outdoor nature scenes, we build the LNSIM
database. Our LNSIM database is specifically established for
the memorability of outdoor natural scenes, which is more
than 10 times larger than the previous NSIM database [13].
In our LNSIM database, we follow [3] and [4] to utilize
the memory game with 104 volunteers for obtaining the
ground-truth memorability score of each image. Besides, scene
category is an essential feature of outdoor natural scenes, and
may contribute to predicting the memorability. Therefore, we
also annotate each image in our LNSIM database with scene
category label.

Collecting images. In our LNSIM database, there are in
total 2,632 outdoor natural scene images. For obtaining these
images, we first selected 6,886 images, which contain outdoor
natural scenes from the existing databases, including MIR
Flickr [29], MIT1003 [30], NUSEF [31], SUN [32], affective
image database [33], and AVA database [34]. Since the outdoor
natural scene images are hard to be distinguished, 5 volunteers
were asked to select the outdoor natural scene images from
6,886 images with the following two criteria [13]:

(1) Each image is with outdoor natural scenes.
(2) Each image is only composed of outdoor natural scenes,

not having any human, animal and man-made object.
Afterwards, the images, chosen by at least four volunteers,

were included in our LNSIM database. As a result, 2,632
outdoor natural scene images were obtained for the LNSIM
database, to be scored with memorability. Note that the reso-
lution of these images ranges from 238×168 to 3776×2517.
Fig. 3 shows some example images from our LNSIM database,
and Fig. 5 illustrates the images which are not selected from
the 6,880 candidates.

Memorability scores. In our experiment, we set up a
memory game, which was used to quantify the memorability
of each image in our LNSIM database. The memory game
is crowdsourced with totally 104 volunteers (47 females and
57 males). They do not overlap with the volunteers who
participated in the image selection. As shown in Fig. 4, the
procedure of our memory game is similar with that in [6].
Note that compared to [6], more time is allowed for a subject

Fig. 5. Examples of candidate images which are not selected to our LNSIM
database. It can seen that these images contain humans or man-made objects,
thus not matching our definition of outdoor natural scene images.

to decide whether the image has been seen before. The reason
is that it normally takes more time for human to memorize
outdoor natural scenes for lack of salient objects [4].

In our experiment, there were 2,632 target images, 488
vigilance images and 1,200 filler images, which were unknown
to all subjects. Vigilance and filler images were randomly
sampled from the rest of 6,886 images. Target images, as
stimuli for our experiment, were randomly repeated with a
spacing of 35-150 images. Vigilance images were repeated
within 7 images, in attempt to ensure that the subjects were
paying attention to the game. Filler images were presented
once, such that spacing between the same target or vigilance
images can be inserted.

On average, we obtained over 80 valid memory results
per target image. The average hit rate on target images
was 73.7% with standard deviation (SD) of 14.2%, running
on the experimental results of 104 subjects. Compared with
the database of generic images (average score: 67.5%, SD:
13.6%), this implies that the subjects indeed concentrated on
the game. The average false alarm rate was 8.14% (SD of
0.81%). As the false alarm rate was low in comparison with
the hit rate, it eliminates the possibility of hitting correct
images only by chance. Thus, our data can reliably reflect the
memorability of outdoor natural scene images. After collecting
the data, we assigned a memorability score to quantify how
memorable each image is, following the way of [6]. Since
the time intervals of repeat on target images were various in
our experiment, we follow the method of [6] to regularize the
various time intervals to a certain time T . In this paper, we
set T to be the time duration of displaying 100 images, as the
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TABLE I
THE NUMERS OF IMAGES IN EACH SCENE CATEGORY.

Category Image no. Category Image no. Category Image no. Category Image no.
arch 33 desert road 54 ice shelf 11 river 261
aurora 4 dew 3 islet 38 rock arch 20
badlands 121 farm 58 lagoon 80 ruin 10
bamboo forest 12 field-cultivated 131 lake-natural 271 sea 353
beach 123 field-wild 275 lawn 144 sky 1401
beach house 6 field road 61 lighthouse 5 snowfield 113
boat desk 42 fishpond 1 lightning 6 star 47
botanical garden 24 flower 127 marsh 109 sun 216
butte 131 forest 669 moon 46 swamp 44
canal-natural 24 forest path 95 mountain 656 topiary garden 4
canyon 52 forest road 19 mountain cloudy 81 tree 378
cliff 115 glacier 13 mountain path 65 tree farm 32
coast 287 golf course 9 mountain snowy 198 tree hole 4
creek 128 grotto 27 pasture 20 valley 70
crevasse 4 hayfield 7 pier 14 volcano 10
dam 2 highway 24 pond 94 waterfall 54
desert-sand 121 iceberg 4 rainbow 25 wave 138
desert-vegetation 75 ice floe 19 rainforest 121

0.1 0 500 1000 1500 2000 2500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

   
  A

ve
ra

ge
 %

 m
em

or
ab

ili
ty

,  
   

   
   

of
 2

5 
im

ag
es

 c
en

tr
oi

d 
ab

ou
t 

ra
nk

 N

Image rank N, according to Group 1 

Group 1 
Group 2 
Chance level

Fig. 6. Measure of human consistency in outdoor natural scene memorability.
The memorability scores are derived from two groups of subjects. Images are
ranked by memorability scores of subjects in Group 1, and then the curves
plot the average memorability scores of Group 1 vs. Group 2. For clarity, we
convolve the resulting plots with a length-6 box filter along with the horizontal
axis. The chance line is provided by allocating random prediction scores as
a reference.

repeat spacing of targets ranges from 35 to 150.
Human consistency. Next, we follow [3] and [4] to quan-

tify the human-to-human consistency of memorability over
our LSNIM database. To evaluate human consistency, we
randomly split subjects into two independent halves, and
then measured the correlation between memorability scores
of these two halves. We examined consistency with a variant
of correlation measurement: We sorted all the 2,632 images
by their scores of the first half of subjects, and calculated
the corresponding cumulative average memorability scores,
according to the second half of subjects. In this fashion, Fig.
6 plots the memorability scores measured by independent two
sets of subjects and averaged over 25 random splits, in which
the scores of Group 1 are set as benchmark. Note that the
horizontal axis ranks the images with the memorability scores
of the first half (denoted as Group 1) in the decreasing order.
As shown in Fig. 6, there exists high consistency between two

groups of subjects, especially compared to that of the random
prediction.

We further quantified the human-to-human consistency by
measuring the Spearman rank correlation coefficient (SRCC,
denoted by ρ). The SRCC on the LSNIM database is 0.78
between two sets of scores measured over 25 random splits.
Compared with [4], SRCC measured on outdoor natural scene
image set is a little higher than that calculated in generic image
set (ρ = 0.75). Furthermore, we selected the top 100 most
memorable images with average score of 83.5% marked by
Group 1, and then we obtained an average score of 79.4%
from second half of subjects (denoted as Group 2). The above
results indicate that the individual differences add noise to
estimation; nonetheless, different subjects tend to remember
or forget the same images.

To conclude, humans are highly consistent in remembering
outdoor natural scene images. This replicates prior findings in
[3], [4] that the memory game generates effective ground truth
memorability scores. This also indicates that the memorability
of outdoor natural scenes can potentially be predicted with
high accuracy. Note that, as aforementioned, the memora-
bility scores of our LNSIM database are annotated by 104
volunteers, and we do not use the Amazon Mechanical Turk
(MTurk) workers as in [3] and [4]. However, the human
consistency of our LNSIM database (ρ = 0.78) is comparable
to that of [3] and [4] (ρ = 0.75). Besides, it is worth pointing
out that the slight difference between ρ = 0.75 and ρ = 0.78
may be due to the difference of image sets and participants of
the memory games.

Scene category labels. According to WordNet taxonomy
[35], our LNSIM database includes 71 scene categories (bad-
lands, coast, desert, etc.), which are non-overlapped with each
other. The names of the 71 scene categories are shown in
Fig. 8 in Section IV. Note that, in our LNSIM database, each
image may belong to multiple categories, i.e., it is a multi-
label scene category database. To obtain the ground truth of
scene category, we follow [36] to conduct two experiments to
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annotate the 2,632 scene category images in our database.
• Task 1 (Classification Judgment): We asked 5 participants

to indicate which scene categories an image has. A
random image query was generated for each participant.
We showed an image and all scene categories at a time.
Participants had to choose proper scene category labels
to interpret scene stuff for each image.

• Task 2 (Verification Judgment): We further ran a separate
task on the same set of images by recruiting another 5
participants after Task 1. For a given category name, a
single image was shown centered in the screen, with a
question like “is this a coast scene?” The participants
were asked to provide a binary answer to the question
for each image. The default answer was set to “No”, and
the participants can check the box of image index to set
“No” to “Yes”.

We annotated all images with categories through the ma-
jority voting over Task 1 and Task 2. Specifically, Task
1 completed the outdoor natural scene category annotation
initially, while Task 2 amended the results of Task 1. For each
image of our database, we determined its scene categories
according to the results of Task 2. In this way, the scene
categories of all 2,632 images in the LNSIM database were
obtained, taking account of 10 participants’ selection. Note
that all 10 participants did not attend the memory game,
and one image may have more than one category in our
database. Additionally, the rate of choosing “Yes” in Task 2
is 81% among the 5 participants. This indicates that different
annotators are consistent in classifying scene category. Table I
shows the names of the 71 categories and the image numbers
of each category.

Training and test sets. In this paper, we refer to the scores
collected by the aforementioned memory game as the “ground
truth” memorability for each image, and refer to the multi-
label annotation as the “ground truth” scene category of each
outdoor natural scene. The 2,632 outdoor natural scene images
with their ground truth memorability scores and category
labels are randomly divided into the non-overlapping training
and test sets. The training set contains 2,200 images, and the
remaining 432 images are used for test.

IV. ANALYSIS ON OUTDOOR NATURAL SCENE
MEMORABILITY

In this section, we mine our LNSIM database to better un-
derstand how outdoor natural scene memorability is influenced
by the low-, middle- and high-level handcrafted features.

A. Low-level feature vs. memorability

On the basis of predecessors [3], [4], [6], it has been verified
that low-level features, like pixels, SIFT [15] and HOG2×2
[16], [17], have impact on memorability of generic images.
Here, we investigate whether these low-level features still work
on purely outdoor natural scene image set as well. To this end,
we train an SVR for each low-level feature on our training set
for memorability prediction, and then evaluate the SRCC of
these low-level features with memorability on the test set. The

TABLE II
THE CORRELATION ρ BETWEEN LOW-LEVEL FEATURES AND OUTDOOR

NATURAL SCENE MEMORABILITY.

Database pixels SIFT [15] HOG [16] Combination Human

Our LNSIM 0.08 0.28 0.29 0.33 0.78

Generic images [4] 0.22 0.41 0.43 0.45 0.75

histogram intersection kernels2 are utilized for these features.
Note that, these low-level features are extracted in the same
manner as [37].

Table II reports the results of SRCC on outdoor natural
scenes, with SRCC on generic images [4] as the baseline.
It is evident that pixels (ρ = 0.08), SIFT (ρ = 0.28) and
HOG2×2 (ρ = 0.29) are not as effective as expected on out-
door natural scene images, especially compared with generic
images. For example, the feature of SIFT has capacity to
reflect the memorability of generic images to a certain degree
with ρ = 0.41, but its SRCC decreases to 0.28 on outdoor
natural scene images. This suggests that the low-level features
have decent performance on predicting the memorability of
generic images; however, they cannot effectively characterize
the visual information for remembering outdoor natural scenes.
Then, we additionally train an SVR on a kernel sum of these
low-level features, achieving a rank correlation of ρ = 0.33.
This is a bit far from the SRCC result (ρ = 0.45) of feature
combination for generic images.

Moreover, color is another low-level feature, which is ana-
lyzed in [3], [4] and utilized in [13] for outdoor natural scene
memorability prediction. To address whether it still works, we
calculate the mean and variance of each HSV color channel
for all images in our database. We also measure the SRCC
of each color channel with the corresponding memorability
scores. As reported in [13], the HSV-based feature reaches
ρ = 0.27 on their small scale (258 images) NSIM database
[13]. Nevertheless, on our LNSIM database, which is more
than 10 times larger than the NSIM database, the HSV-based
feature only has the SRCC of ρ = 0.10. This indicates that
the color features cannot well explain outdoor natural scene
memorability.

Besides, we also evaluate the p-values [38] of the predicted
memorability by these low-level features. The p-values for the
features of pixels, SIFT and HOG are 0.1053, 3.8493× 10−9

and 7.3470 × 10−10, respectively. The combination of these
features has the p-value of 4.3129 × 10−12. For HSV fea-
tures, the p-values for the mean of H, S, and V channels
are 0.0494, 0.6999, 0.7814, respectively. The p-values for
the variance of H, S, and V channels are 0.5609, 0.2830,
8.6898 × 10−4, respectively. Note that only if the p-value is
less than 1.67 × 10−3, the predicted values are statistically
significant3. Therefore, these further verify that directly us-

2Note that we traverse all possible kernels for each feature, and select the
one with the best performance.

3In this paper, there are totally 30 statistical experiments conducted,
including low-, middle-, high-level features, deep features, combination of
deep features and other features, the DeepNSM model and the four compared
methods. Therefore, according to the Bonferroni Correction, the threshold of
p-value is set to 0.05/30 ≈ 1.67× 10−3.
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TABLE III
THE CORRELATION ρ BETWEEN MIDDLE-LEVEL FEATURES AND OUTDOOR

NATURAL SCENE MEMORABILITY.

Database GIST PQFT SalGAN DVA SALICON
[14] [39] [40] [41] [42]

Our LNSIM 0.23 0.25 0.20 0.20 0.14

Generic images [4] 0.38 0.15 0.27 0.30 0.16

PQFT

SalGAN

DVA

 High memorability Medium memorability    Low memorability

SALICON

Fig. 7. Averaged saliency maps on images of high, medium and low
memorability in our LNSIM database.

ing pixel values/colors is not able to effectively predict the
memorability.

B. Middle-level feature vs. memorability

The middle-level feature of GIST [14] describes the spatial
structure of an image. Previous work [3], [4] mentioned
that GIST is correlated with memorability on generic images
(ρ = 0.38, see Table III). In view of this observation, we
train an SVR predictor with a RBF kernel for quantifying
the correlation between the GIST feature and memorability
of outdoor natural scenes. Note that the training set is used
to tune the hyper-parameters for the kernels. Table III shows
that the SRCC of GIST is 0.23, much less than ρ = 0.38
of generic images. This illustrates that structural information
provided by the GIST feature is less effective for predicting
memorability scores on outdoor natural scenes.

Intuitively, the region that attracts visual attention [39]–
[41], [43], [44] in an outdoor natural scene may affect image
memorability. The work of [8], [21] attempted to explain
memorability of generic images using visual attention-driven
features. To quantify the correlation of visual attention with
memorability on outdoor natural scenes, we apply four state-

of-the-art models of visual attention (i.e., PQFT [39], SalGAN
[40], DVA [41] and SALICON [42]) to extract saliency maps.
Similar to other features, we utilize an SVR predictor to
measure the SRCC of the saliency features. Note that the RBF
kernel is chosen for the saliency features. We further split our
LNSIM database into three classes: high memorability (score
≥ 0.7), medium memorability (0.7 > score ≥ 0.4) and low
memorability (score < 0.4). Fig. 7 demonstrates the averaged
saliency maps of each class.

Additionally, Table III compares the correlation of saliency
features with memorability of outdoor natural scene images
and generic images. It can be seen from Table III that
SALICON [42], which is the best saliency detection method
among the four methods, has the least correlation with outdoor
natural scene memorability. However, PQFT [39]4, which has
the worst saliency detection performance, is the most effective
one for predicting the memorability of outdoor natural scene
images. Such conclusion can also be found from Fig. 7.
These results indicate that the effectiveness of the saliency
feature for predicting memorability is not correlated with
the saliency detection accuracy. Besides, this also suggests
that when predicting outdoor natural scene memorability,
frequency domain saliency model (PQFT) performs better than
other pixel domain models.

C. High-level feature vs. memorability

There is no salient object, animal or person in outdoor
natural scenes, such that scene category, as a high-level feature,
may be effective to interpret outdoor natural scene images.
Similar to object detection, we use scene category attribute
to characterize scene semantics of each outdoor natural scene
image. For generic images, Bylinskii et al., [9] showed that
the memorability has correlation with object cattery. In the fol-
lowing, we explore the relationship between the memorability
of outdoor natural scenes and the scene category.

As mentioned in Section III, we annotated each image
with scene category labels in our LSNIM database. Now,
we test the memorability prediction performance of scene
category on the LNSIM database. An SVR predictor with
the histogram intersection kernel is trained for scene category.
The scene category attribute achieves a good performance of
SRCC (ρ = 0.38, p-value = 2.4516 × 10−14), outperforming
the results of low- and middle-level features. This suggests
that scene category, as a high-level feature, is an obvious
cue of quantifying the outdoor natural scene memorability.
We further analyze the connection between different scene
categories and outdoor natural scene memorability. To this end,
we use the mean and SD values of memorability scores in each
category to quantify such relationship. As shown in Fig. 8, the
horizontal axis represents scene categories in the descending
order of the corresponding average memorability scores. The
average score ranges from 0.79 to 0.36, giving a sense of how
memorability changes across different scene categories. The

4As Fig. 7 shows, there are some boundary artifacts in the PQFT saliency
maps. To reduce the boundary artifacts, we crop the boundary or weight the
saliency map with a Gaussian filter to reduce the boundary artifacts. However,
this leads to performance degradation of memorability prediction. Hence, we
keep the boundary in the saliency maps generated by the PQFT method.
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Fig. 8. Comparison of average memorability score and standard deviation of each scene category.

TABLE IV
THE SRCC (ρ) OF THE COMBINATION OF DIFFERENT HAND-CRAFTED FEATURES WITH THE DEEP FEATURE.

DF + low-level DF + middle-level DF+high-level
DF DF+pixels DF+SIFT DF+HOG DF+HSV DF+GIST DF+PQFT DF+SalGAN DF+DVA DF+category

ρ 0.4406 0.4431 0.4430 0.4420 0.4407 0.4413 0.4419 0.4413 0.4440 0.4610

distribution in Fig. 8 indicates that some unusual classes like
aurora tend to be more memorable, while usual classes like
mountain are more likely to be forgotten. This is possibly due
to the frequency of each category appears in daily life.

V. PREDICTING OUTDOOR NATURAL SCENE
MEMORABILITY

In above, we have analyzed how low-, middle- and high-
level visual features affect the memorability of outdoor natural
scenes. Now, we focus on the prediction of outdoor natural
scene memorability in this section. Since DNN models have
shown splendid performance in various computer vision tasks,
in Section V-A, we first discover the effectiveness of the fea-
tures extracted by DNN (i.e., deep features) on estimating the
memorability of outdoor natural scenes. Then, in Section V-B,
an end-to-end DNN method, called DeepNSM, is proposed to
predict outdoor natural scene memorability.

A. Deep features vs. memorability

In recent years, DNN is utilized to predict generic image
memorability [6], [10], [11]. For outdoor natural scene images,
to dig out how deep features influence their memorability, we
fine-tuned MemNet5 [6] on the training set of our LNSIM
database, using the Euclidean distance between the predicted
and ground truth memorability scores as the loss function. We
extract the output of the last hidden layer as the deep features
(dimension: 4096). Due to the strong ability of DNN to extract
spatial features, the learned deep features may consist of
hierarchical features from low- to high-level.

To evaluate the correlation between the deep features and
outdoor natural scene memorability, similar to above hand-
crafted features, an SVR predictor with histogram intersection

5MemNet is proposed to predict the memorability scores of generic images.

kernel is trained for the deep features. The SRCC of deep
features is 0.44 (p-value = 3.8547 × 10−22), exceeding all
handcrafted features. It is observed that DNN indeed works
well on predicting the memorability of outdoor natural scenes,
as the deep features show a rather high prediction accuracy.
Nonetheless, there is no doubt that the fine-tuned MemNet also
has its limitation, since it still has gap to human consistency
(ρ = 0.78).

We further combine the deep features with each of the afore-
mentioned low-, middle- and high-level feature, to explore
whether such combination is able to improve the prediction
accuracy. The SRCC values of these combinations are shown
in Table IV. Unfortunately, it can be seen that low- and middle-
level features do not boost the SRCC of the deep features. It is
probably because DNN has the ability to extract hierarchical
features of different levels, leading to the ineffectiveness of
low- and middle-level features. However, the scene category,
as a high-level feature, helps to increase the SRCC of the deep
features from ρ = 0.4406 to ρ = 0.4610. This may be due
to the fact that the architecture of MemNet is too simple to
adequately learn the high-level feature, so that combining with
the high-level feature is advantageous for the deep features to
predict outdoor natural scene memorability. Motivated by this,
we propose a scene category based DNN approach to predict
the memorability of outdoor natural scene images in the next
section.

B. DeepNSM: DNN for outdoor natural scene memorability

As aforementioned, MemNet, which is fine-tuned on our
training set, outperforms all the low-, middle- and high-
level visual features. Hence, the fine-tuned MemNet model
serves as the baseline model on predicting outdoor natural
scene memorability. Furthermore, according to the analysis
above, the deep features combined with scene category are
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Fig. 9. Architecture of our DeepNSM model.

the most effective in predicting the memorability of outdoor
natural scenes. Therefore, we propose an end-to-end Deep-
NSM method, which exploits both deep and category-related
features for predicting the outdoor natural scene memorability.
Note that, in this paper, the “deep features” particularly refer
to the 4096 output numbers of the last hidden layer in the
baseline model.

Extracting category-related features. In DeepNSM,
ResNet [45] is applied to extract the category-related features.
We first initialize ResNet with the pre-trained model on
ImageNet [46]. Then, 33,000 outdoor natural scene images
selected from the database of Places [36] are adopted to
fine-tune the ResNet model. Finally, it is further fine-tuned
on our training set according to the ground truth labels of
scene category. Note that, different from the databases of
ImageNet and Places, whose labels are one-hot, each image
in our LNSIM database may contain the scenes of several
categories. As such, it is a multi-label classification task.
Thus, the weighted sigmoid cross entropy is utilized as the
loss function, instead of softmax loss in [45]. The fine-tuned
ResNet can be seen as an extractor of category-related features.
The output of the hidden fully-connected layer in ResNet is
used as the extracted category-related features. See Fig. 9 for
more details.

The proposed architecture. Finally, the architecture of our
DeepNSM model is presented in Fig. 9. In our DeepNSM
model, the aforementioned category-related features are con-
catenated with the deep features obtained from the baseline
model. Based on such concatenated features, additional fully-
connected layers (including one hidden layer with dimension
of 4096) are designed to predict the memorability scores
of outdoor natural scene images. Note that although some
existing memorability prediction works [3], [4] also take image
category into consideration, they only apply the manually
classified ground truth category information. To the best of

our knowledge, our work is the first attempt to automatically
extract the category-related features by DNN in predicting
memorability. The advantage is two fold: (1) The image
memorability can be predicted without any manual annotation;
(2) It is able to achieve the end-to-end training of the DNN
model.

VI. EXPERIMENTS

A. Settings

The experimental results are presented to validate the
effectiveness of our DeepNSM approach in predicting the
memorability of outdoor natural scene images. Recall that all
2,632 outdoor natural scene images with their ground truth
memorability scores in our LNSIM database introduced in
Section III are randomly divided into the training set (2,200
images) and the test set (432 images). When training the
DeepNSM, the layers of the baseline and ResNet models
are initialized by the individually pre-trained models, and the
additional fully-connected layers are randomly initialized. The
whole network is jointly trained in an end-to-end manner,
using the Adam [47] optimizer with the Euclidean distance
adopted as the loss function.

B. Performance evaluation

Now, we evaluate the performance of our DeepNSM model
on predicting outdoor natural scene memorability in terms of
SRCC (ρ). Our DeepNSM model is tested on both the test set
of our LNSIM database and the NSIM database introduced
in [13]. The SRCC performance of our DeepNSM model
is compared with the state-of-the-art memorability prediction
methods, including Isola et al. [3], [4], MemNet [6], MemoNet
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TABLE V
THE SRCC (ρ) OF OUR DEEPNSM AND COMPARED METHODS.

Database
MemNet MemoNet Lu et al. Isola et al. Our

[6] [11] [13] [3], [4] DeepNSM

Our LNSIM 0.43 0.39 0.19 0.15 0.58

NSIM [13] 0.40 -* 0.47 0.42 0.55

* MemoNet is not tested on the NSIM database, since the NSIM database is
completely included in the training set of MemoNet.

TABLE VI
THE SRCC (ρ) OF OUR DEEPNSM AND COMPARED METHODS

RE-TRAINED BY LNSIM TRAINING SET.

Database
MemNet MemoNet Lu et al. Isola et al. Our

[6] [11] [13] [3], [4] DeepNSM

Our LNSIM 0.50 0.42 0.33 0.33 0.58

NSIM [13] 0.44 0.43 0.18 0.16 0.55

[11] and Lu et al. [13]6. Among them, Isola et al. [4], MemNet
[6] and MemoNet [11] are the latest methods for generic
images. Lu et al. [13] is a state-of-the-art method for predicting
outdoor natural scene memorability.

Comparison with latest generic methods. Table V shows
the SRCC performance of our DeepNSM and the three
compared methods. Our DeepNSM successfully achieves the
outstanding SRCC performance, i.e., ρ = 0.58 and 0.55,
over the LNSIM and NSIM [13] databases, respectively. It
significantly outperforms [3], [4], and also achieves better
performance than the state-of-the-art DNN methods, MemNet
[6] and MemoNet [11]. Besides, the p-values of our DeepNSM
method are 4.7045×10−39 and 7.4548×10−13 on the LNSIM
and NSIM databases, respectively. This validates that our
predicted memorability scores (p-value � 1.67 × 10−3) are
statistically significant.

The above results demonstrate the effectiveness of our
DeepNSM model in predicting outdoor natural scene mem-
orability. It is worth pointing out that as claimed in [6]
and [11], both MemNet and MemoNet methods are able
to reach ρ = 0.64 on generic images. Nevertheless, their
performance severely degrades on outdoor natural scenes,
and thus validates the difference of factors influencing the
memorability of generic and outdoor natural scene images.
Besides, it also reflects the difficulty to accurately predict
outdoor natural scene memorability. In summary, our Deep-
NSM model outperforms the state-of-the-art generic methods
on predicting outdoor natural scene memorability, making up
the shortcomings of these generic image methods.

Comparison with the latest outdoor natural scene
method. We compare our DeepNSM model with the latest
method [13], which is designed for predicting outdoor natural
scene memorability. As shown in Table V, our DeepNSM
model outperforms the method of [13] on both LNSIM and

6Some features of Isola et al. [3], [4] are annotation labels which are hard
to be obtained on other datasets, so we only use their reproducible features
for the results of [3], [4], [13] on our LNSIM database in Tables V and VII
and for their results of the models re-trained by LNSIM in Tables VI and
VIII. Note that, the results of [3], [4], [13] on the NSIM dataset [13] are fully
re-implemented with all features in Tables V and VII, since NSIM is a part
of the dataset in Isola et al. [3], [4] with all features available.

TABLE VII
THE MAE / MSE OF OUR DEEPNSM AND COMPARED METHODS.

Database
MemNet MemoNet Lu et al. Isola et al. Our

[6] [11] [13] [3], [4] DeepNSM

Our LNSIM 0.1081 / 0.0183 0.1152 / 0.0211 0.1206 / 0.0220 0.1369 / 0.0294 0.0998 / 0.0153

NSIM [13] 0.1093 / 0.0199 -* 0.1110 / 0.0187 0.1121 / 0.0191 0.0916 / 0.0145

* MemoNet is not tested on the NSIM database, since the NSIM database is completely included in the training set
of MemoNet.

TABLE VIII
THE MAE / MSE OF OUR DEEPNSM AND COMPARED METHODS

RE-TRAINED BY LNSIM DATABASE.

Database
MemNet MemoNet Lu et al. Isola et al. Our

[6] [11] [13] [3], [4] DeepNSM

Our LNSIM 0.1098 / 0.0191 0.1090 / 0.0186 0.1133 / 0.0199 0.1140 / 0.0201 0.0998 / 0.0153

NSIM [13] 0.1045 / 0.0192 0.1028 / 0.0176 0.1696 / 0.0422 0.1676 / 0.0414 0.0916 / 0.0145

NSIM databases. Moreover, compared with the database of
NSIM [13] (ρ = 0.47), the SRCC of [13] obviously reduces
on our LNSIM database (ρ = 0.19). On the contrary, our
DeepNSM model achieves comparable performance on both
databases. This shows the good generalization capacity of our
DeepNSM model, which benefits from the large scale training
set of our LNSIM database.

Re-training the compared methods by LSNIM. For fair
comparison, we also re-trained all compared methods over
our LNSIM training set, making our DeepNSM and compared
methods share the same training data. The SRCC (ρ) perfor-
mance of our DeepNSM method and the re-trained compared
methods are reported in Table VI. It can be seen from Tables
V and VI that the performance of the four compared methods
increase after re-training. However, our DeepNSM methods
still significantly outperforms all other methods for predicting
the memorability of outdoor natural scenes.

Performance in terms of mean absolute error (MAE)
and mean square error (MSE). Moreover, we also evaluate
the prediction accuracy of our DeepNSM approach and the
compared approaches in terms of the MAE and MSE between
the predicted memorability scores and the ground-truth. The
results are shown in Tables VII and VIII. Note that, in
Table VII, the compared methods are trained on their original
training data. In Table VIII, we re-train all compared methods
on our LNSIM database. As Tables VII and VIII show, our
DeepNSM approach achieves MAE = 0.0998 and MSE =
0.0153 on our LNISM test set, both lower than all compared
methods. Besides, on the NSIM test set [13], our approach
also outperforms all compared methods in terms of MAE and
MSE. These validates that our DeepNSM approach has the
highest accuracy for predicting both the memorability score
(MAE/MSE) and memorability rank (ρ) of outdoor natural
scenes.

C. Ablation analysis

In ablation experiments, we analyze the performance of
our category-feature extractor, our baseline model and the
improvement of combining category-related features.

Ablation studies on scene classification. On our LNSIM
test set, the fine-tuned ResNet has the mean average precision



11

Ground

-truth

MemNet

Our 

DeepNSM

0.8188 | 260.4309 | 3690.3941 | 391 0.4482 | 361 0.5069 | 3130.3772 | 398 0.7445 | 740.5611 | 267

0.5795 | 2080.5466 | 2730.5709 | 224 0.5389 | 286 0.6067 | 1520.6091 | 147 0.6257 | 1120.5003 | 371

0.6802 | 540.5348 | 3120.5147 | 355 0.5189 | 344 0.5235 | 3360.4912 | 386 0.6430 | 920.5366 | 306

Low memorability Medium memorability High memorability

Legend：Memorability score | Memorability rank

Saliency

map

Fig. 10. Feature visualization of the last convolutional layer and the predicted saliency maps.

(mAP) of 70.63% for the multi-label scene classification, thus
verifying the effectiveness of our category-feature extractor.
Besides, we also evaluate the performance of the solely
category feature, by replacing the ground-truth label with the
estimated category. It has ρ = 0.35, which is only slightly
lower than applying the ground-truth labels (ρ = 0.38 in
Section IV-C). This can be seen as the baseline performance
of the category feature, without using human annotations.

Ablation studies of our DeepNSM model. Then, the SRCC
of our baseline model on the test set of LNSIM database
reaches ρ = 0.50, higher than all three compared methods.
Hence, our baseline model serves as a solid cornerstone to
predict outdoor natural scene memorability. As Table V shows,
after combining the category-related feature, the performance
of our DeepNSM model increases to ρ = 0.58. It convincingly
verifies the effectiveness of scene category on outdoor natural
scene memorability prediction. Furthermore, as discussed in
Section V-A, the SVR predictor trained by the 4096-dimension
deep feature of the baseline model yields ρ = 0.44. Adding
scene category feature to the SVR predictor only slightly
improves the SRCC to ρ = 0.46 (∆ρ = 0.46 − 0.44 = 0.02).
However, taking advantage of DNN, the SRCC increase is
significantly enlarged (∆ρ = 0.58 − 0.50 = 0.08) in our
DeepNSM model, when concatenating category-related feature
extracted from ResNet. This shows the remarkable ability of
our DeepNSM model in learning to predict outdoor natural
scene memorability from the above concatenated features.

Parameter number and time complexity. Our baseline
model has 62.4 M parameters, and consumes 0.0056 second to
predict the memorability score of one image on the computer
with one GeForce GTX TITAN X GPU. After combining
the category-feature extractor, the parameter number of our
DeepNSM model increases to 105.5 M, which is 1.69 times
of the baseline model. Besides, our DeepNSM model takes
0.0296 second to calculate the memorability score of one

TABLE IX
THE WORD FREQUENCIES (%) OF SCENE CATEGORIES.

High memo. Medium memo. Low memo.
Memorability rank 1-20 21-50 51-71
Average frequency 4.036×10−4 13.589×10−4 10.313×10−4

image. That is, our DeepNSM approach is able to predict the
memorability of more than 33 images in one second.

D. Understanding the memorability and our DeepNSM model

In this section, we first focus on understanding the memora-
bility of outdoor natural scenes. That is, we analyze the reason
why scene category is an effective feature for memorability
prediction and what makes an outdoor natural scene image
memorable. Then, we investigate and visualize the internal
representation learned by our DeepNSM model to understand
how our DeepNSM model works to predict memorability.

Scene category. Brown et al., [48] investigated that the
memorability of items has relationship with word frequency.
The memorability of outdoor natural scenes may be also
related to the frequency of scenes to appear in daily life.
Therefore, we make statistics of the word frequencies for
the 71 scene categories shown in Fig. 8 using Google Books
Ngram Viewer7. We follow the Fig. 8 to rank the categories in
descending order of their memorability, and the average word
frequencies are shown in Table IX. We can see from Table IX
that the 20 categories of the highest memorability scores occur
with the least frequency of 4.036×10−4%. That is, the scenes
that rarely occurs are easiest to be memorized. For example, in
Fig. 3, aurora is uncommon (word frequency = 0.337×10−4%)
compared with desert (word frequency = 17.672 × 10−4%),
lake (word frequency = 20.747 × 10−4%), etc., and it is also
rarely seen in daily life, making it more memorable than

7https://books.google.com/ngrams/

https://books.google.com/ngrams/
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(b) Deep features are more effective than the category feature.
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(c) The category feature and deep features both perform well.
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(d) The category feature and deep features both perform bad.

Fig. 11. Example performances of the category feature, deep features and our DeepNSM model.

other three categories. In conclusion, the effectiveness of the
scene category feature for predicting memorability is probably
because that different categories of scenes appear in human life
with different frequency. As a result, the outdoor natural scenes
which appear with low frequency do not collide with previous
similar memory, and thus they are easy to be memorized by
human brain. Hence, when designing the magazine covers or
posters, it is helpful to use images with the natural scenes that
are infrequently seen in daily life, for leaving deep impression
in people’s mind.

Visualization of DNN models. We investigate the internal
representation learned by DeepNSM, and we set MemNet as
the baseline. We apply a data-driven receptive field method

[49] to visualize segmentation produced by the last convolu-
tional layer of both MemNet and DeepNSM, and utilize the
saliency detection method SALICON [42] to predict saliency
maps. Fig. 10 shows the visualization results, where the light
regions make main contribution to memorability prediction
of outdoor natural scenes. We observe that light regions
are highly correlated with whether the image is easy to be
memorized or not. Compared with Memnet, our DeepNSM
approach is learned to allocate memory regions better. For
example, in the second image of the low memorability group,
in accordance with the saliency map, the orange clouds and
the sky in the middle of the images are likely to attract people
attention when looking through this image. The MemNet,
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designed for generic images, fails to predict memorability
depending on this region. In contrast, our DeepNSM model
successfully learns to focus on the orange clouds, leading to
better perdition result. In the third image of medium mem-
orability group, according to the saliency prediction results,
people are likely to pay more attention on the white cloud
and the surrounded ground and sky. It can be seen from
Fig. 10, our DeepNSM model locates the memory region
more precisely then MemNet, and therefore results in better
performance for predicting memorability. In conclusion, our
DeepNSM model is able to locate memorability region more
correctly and precisely than the generic method MemNet, and
achieves better performance on images from low-, medium-,
to high-memorability.

E. Case study

Finally, as illustrated in Fig. 11, we study the successful
and failure cases of the category feature, the deep features of
baseline DNN model and our DeepNSM model. As Fig. 11
shows, we analyze the following four cases: (a) the category
feature is effective while deep features are ineffective; (b) deep
features are effective while the category feature is ineffective;
(c) they both perform well; (d) they are both not effective.
Note that, in Figure 11, we use the absolute error between the
ground-truth and the predicted memorability ranks to evaluate
the effectiveness of each feature/method. If the rank error is
less than 10% of the total number of images, i.e., 10%×432 ≈
43, the feature/method can be seen as effective. The number
above each image is the ground-truth memorability rank, and
the left column numbers under images are the predicted ranks,
and then the right column numbers under images are the rank
errors.

Specifically, Figure 11-(a) shows the examples that the
category feature, as a non-deep feature, is effective while
deep features are not. Fortunately, our DeepNSM model takes
advantage of both deep features and the category-related
feature, thus still achieving good performance on memorability
prediction. Similarly, in Figure 11-(b), deep features are effec-
tive while the category feature does not work. Our DeepNSM
model is also able to effectively predict the memorability,
thanks to using both deep and category features. Figure
11-(c) demonstrates examples that both deep and category
features performs well, leading to the good performance of our
DeepNSM model. Finally, Figure 11-(d) shows the images that
the category and deep features both fail to accurately predict
the memorability. We can see from Figure 11-(d) that our
DeepNSM model still performs well on some images. This is
probably because the solely category feature or deep features
cannot represent the memorability well on these images, but
the effective features for memorability prediction is able to
be learnt from their combination. However, there are also
some examples shown in Figure-(d), in which our DeepNSM
model is not effective, because of the bad performances of
category and deep features. This shows that although our
DeepNSM model outperforms all previous methods, there still
exists some cases that we are not able to accurately predict
the memorability.

TABLE X
ANALYSIS OF THE GLCM FEATURES AND THE RANKING ERRORS

Image groups Group 1 Group 2 Group 3 Group 4

GLCM
features

Contrast 1196.9 487.2 247.6 89.2
Homogeneity 0.1338 0.2157 0.2875 0.4081
Correlation 0.8022 0.9119 0.9487 0.9676

Average Category 123.8 103.6 102.0 114.3
ranking Baseline DNN 87.4 107.9 114.2 106.1
errors our DeepNSM 79.5 85.4 89.0 99.7

We first investigate the prediction error of our DeepNSM
method on images with low- (ρ < 0.4), medium- (0.4 ≤
ρ < 0.7) and high-memorability (ρ ≥ 0.7). Here, we use
the absolute ranking error between predicted and ground-truth
memorability scores to evaluate the prediction error. The ex-
perimental results show that the rank error is 81.9 averaged on
all low-memorability images, and this figure is 90.8 and 84.1
for medium- and high-memorability images, respectively. This
indicates that our DeepNSM methods predict memorability
with higher accuracy on low- and high-memorability images,
and with worse performance for medium-memorability im-
ages.

Then, we also utilize the gray-level co-occurrence matrix
(GLCM) for case studies. Specifically, we use the contrast,
homogeneity and correlation of GLCM to investigate the
relationship between the image texture and the prediction
errors of the non-deep feature (i.e., scene category), deep
features (i.e., the baseline DNN) and our DeepNSM model.
As shown in Table X, we sort the 432 test images from high
to low contrast values and split them into four groups, i.e., the
images of Group 1 are with the highest contrast, and Group 4
contains the lowest contrast images. Interestingly, the average
homogeneity and correlation values increase while the contrast
reduces from Group 1 to Group 4. This indicates the images
of Group 1 are with the highest texture complexity and the
complexity decreases alongside Group 1 to Group 4.

Table X tabulates the average ranking errors of the category
feature, deep features and our DeepNSM model in each group.
It can be seen from Table XI that the category feature is with
the lowest ranking error on Groups 2 and 3, while the error of
deep features is higher on them. However, the deep features
have obviously lower prediction error than the category feature
for Group 1. This indicates that the non-deep feature of
scene category performs well on images with medium texture
complexity, and the deep features achieve the best performance
on images with high texture complexity. Therefore, the com-
plementary of the category and deep features leads to the better
performance when combining them together in our DeepNSM
model.

More importantly, our DeepNSM model outperforms both
category and deep features on all groups. This shows that in-
tegrating the category-related features to the baseline DNN in
our DeepNSM model improves the prediction accuracy of out-
door natural scene memorability, validating the effectiveness
of our DeepNSM model. Besides, it can be seen from the final
performance of our DeepNSM model that the memorability
of images with higher contrast, lower homogeneity and lower
intra-correlation are more likely to be accurately predicted by
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our DeepNSM model. This is probably because these images
are with more information and more obvious spatial features,
which facilitate our DeepNSM model to extract effective
features for predicting the memorability.

F. Future works

First, although our LNSIM database is currently the largest
one for the memorability of outdoor natural scenes, it can be
further enlarged in the future to include more various kinds of
scene categories and ensure the sufficient number of images
in each category. Besides, as shown in Table XI, for images
with low contrast, high homogeneity and intra-correlation, our
DeepNSM model fails to capture effective features. Therefore,
incorporating more features, which affect the memorability
of outdoor natural scenes, is probably a promising research
direction to break through the failure cases of our DeepNSM
model.

Furthermore, although the prediction accuracy of generic
images can be boosted by utilizing our DeepNSM model
on the sub-set images of outdoor natural scene, the current
DeepNSM model cannot be directly applied for improving the
performance on predicting the memorability of generic images.
However, the study on outdoor natural scenes may help to
understand the contribution of natural scene background (as
shown in Fig. 1) to the memorability of a whole image. Hence,
it is indeed an interesting future work that takes advantage
of the study on the memorability of outdoor natural scenes
to improve the performance on predicting generic image
memorability.

VII. CONCLUSION

In this paper, we have investigated the memorability of out-
door natural scene from data-driven perspective. Specifically,
we established the LNSIM database that helps to study and
analyze the human memorability on outdoor natural scene in
depth. In exploring the correlation of memorability with low-
, middle- and high-level features, we found that high-level
feature of scene category plays an important role in predicting
the memorability of outdoor natural scene. In addition, deep
features show a positive impact on promoting the prediction
performance on outdoor natural scenes. Accordingly, we pro-
posed the DeepNSM method for predicting outdoor natural
scene memorability in an end-to-end manner. The experimen-
tal results showed that our DeepNSM model advances the
state-of-the-art in memorability prediction of outdoor natural
scene images. Then, we also tried to understand why the
scene category is correlated to memorability, and how our
DeepNSM model works to effectively predict the memorability
of outdoor natural scenes. These help to deeply understand the
memorability and our DeepNSM model. Moreover, we studied
the effective and ineffective cases of the DeepNSM model, and
concluded the possible future works.
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