
1 
 

1Abstract—The recent application of Fourier Based Iterative 
Reconstruction Method (FIRM) has made it possible to achieve 
high-quality 2D images from a fan beam Computed 
Tomography (CT) scan with a limited number of projections in 
a fast manner. The proposed methodology in this article is 
designed to provide 3D Radon space in linogram fashion to 
facilitate the use of FIRM with cone beam projections (CBP) for 
the reconstruction of 3D images in a sparse view angles Cone 
Beam CT (CBCT). For this reason, in the first phase, the 3D 
Radon space is generated using CBP data after discretization 
and optimization of the famous Grangeat's formula. The 
method used in this process involves fast Pseudo Polar Fourier 
transform (PPFT) based on 2D and 3D Discrete Radon 
Transformation (DRT) algorithms with no wraparound effects. 
In the second phase, we describe reconstruction of the objects 
with available Radon values, using direct inverse of 3D PPFT. 
The method presented in this section eliminates noises caused 
by interpolation from polar to Cartesian space and exhibits no 
thorn, V-shaped and wrinkle artifacts. This method reduces the 
complexity to  for images of size .	The 
Cone to Radon conversion (Cone2Radon) Toolbox in the first 
phase and MATLAB/ Python toolbox in the second phase were 
tested on three digital phantoms and experiments demonstrate 
fast and accurate cone beam image reconstruction due to 
proposed  modifications in all three stages of Grangeat's 
method.  

Index Terms— Cone beam, Radon, Pseudo Polar Fast 
Fourier Transform, Cone to Radon, Grangeat’s formula. 

I. INTRODUCTION 

HE growing trend in the use of Computed Tomography 
(CT) and its application in a wide range of threads, from 
biology to medicine, and even in the field of industry, adds 

to the importance of an exact image reconstruction method. 
Furthermore, increasing the speed of computation is 
necessary for the next generation real-time imaging systems. 
By considering Cone Beam CT (CBCT) as one of the most 
commonly used CTs, we explore an exact and fast 
volumetric image reconstruction method suitable for 
conventional geometry of single circular source trajectory.  
 From 1983 to 1991, Tuy [1], Smith [2] and Grangeat [3] 
introduced algorithms for an accurate reconstruction of 3D 
objects in CBCT. All of these approaches include three steps: 
1- 3D Radon space generation; 2- Assigning values to the 
first derivative data in the Radon domain by weighted 
integral along a line perpendicular to os, the distance 

 
1 N. Teyfouri, H. Rabbani, and R. Kafieh are with Medical Image & Signal 
Processing Research Center, School of Advanced Technologies in 
Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, 
Iran. E-mail: rabbani.h@ieee:org.  

between the correspondent Radon point on the detectors and 
origin of coordinate (Fig 1); and 3- Volumetric image 
reconstruction from Radon data [4]. Inspired by the 
Grangeat's work, this article will express novelties in all three 
phases to increase accuracy and speed. 
 In order to produce 3D Radon space, there are two 
common types of sampling, including sinogram or linogram. 
The sinogram sampling [3]–[5] is often used when the 
reconstruction method, in the third phase, is based on the 
Filtered Back Projection (FBP) in the time domain, while the 
linogram fashion [6], [7] is used for Fourier reconstruction 
algorithms (FRA) in the frequency domain. Of course there 
are some exceptions like [8] when FFT was applied to the 
interpolated sinogram in reconstruction stage. 

In the first phase of this paper, the Radon space will be 
allocated to a non-Cartesian point set, which is similar to 
linogram, called pseudo-polar grid [9]. This type of gridding 
removes artifacts related to interpolation from spherical to 
Cartesian coordinate system. Then, within a geometric 
relationship as the rebinning process, a line integration 
characteristic point, s (Fig 1), corresponds to the Radon 
characteristic point, ρ. After rebinning, based on the 
Grangeat's formula, Radon derivative values are calculated 
using the linear integration of weighted CBP along the line t 
and then are differentiated with respect to angular vector of 
os. 

 
Fig 1. Source-detector arrangement in Grangeat's relation; o represents the 
origin on the detector. The line of Source-o is the normal of the detector 
plane. ρ is a point on the Radon sphere that its Radon data is to be calculated. 
The point C is the projection of ρ onto the detector. The line t is 
perpendicular to s and intersects it at C. t is the line of integration which will 
be associated with the Radon transform at point ρ.  

 The integral operation is always reported as a time-
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consuming work in the second step [4].  

Table 1 
Summary of works done on radial derivative of 3D Radon Generation from CBP 

Author 
Time or 

Frequency 
Domain 

Method 
Derivative of 

Radon Space * 

Grangeat et al [3], 
Lee et al [4], Zhao et 

al [12]. 
Time 

Pre- weighting of CBP + Horizontal and vertical derivatives + Rebinning + 1D interpolation 
+ Line integration + Post weighting. 

 

Axelsson 
et al [13]. 

Frequency 
Pre- weighting of CBP + Zero padding + 1D FFT + Chirp-z transform + Filtering + Zero 
filling + Radial inverse FFT + Truncate the zeroes + Put together the linograms + Weighting 
with l/cas2α and l/sin2α + Post-weighting. 

 

Tam 
et al [5]. 

Time 
The Radon data generation directly on the polar grid lines on a set of coaxial vertical planes 
in the Radon space + only 1-dimensional interpolation in the Radon space. 

 

Kudo 
et al [7] 

Frequency 
Pre-weighting of CBP + Rotation and bilinear interpolation + FFT + Inverse chirp-z 
transform + Derivative filtering + Inverse FFT + Post-weighting and rebinning. 

 
*The shapes of this column should be 3D by rotating this area 360 degrees around the vertical axis, Z. For easy demonstration they are shown 2D. 

Axelsson et al. [10], proposed an alternative method for 
integral computation to compensate for the loss of time. They 
considered the integral as a Radon transformation with 
respect to Fourier slice theory (FST). Radon values were 
estimated by radial inverse Fast Fourier transform (FFT) of 
2D FFT from an image. Axelsson utilized Chirp-z transform 
instead of applying FFT in the second stage of 2D FFT, to 
achieve linogram sampling on the detector. Accordingly, we 
convert the integral operator to a 2D Radon transformation. 
However in this paper using rapid 2D DRT [11] based on 
PPFT, we achieved an increased speed and accuracy in the 
computation of the integral. 

In the derivation stage, Grangeat [3] transformed the 
derivation in the direction of s (Fig 1) into a summation of 
two components in the horizontal and vertical directions. 
This action made the appearance of an artifact known as V-
shaped [4]. Due to the use of Radon transform instead of 
integral, we could differentiate in the same direction s and 
thus V-shaped artifact was removed. Differentiation with 
respect to s can also be done in the Frequency domain by 
multiplying jω [13]. Table 1 summarizes the available 
methods for the computerized generation of the radial 
derivative of 3D Radon space from CBP. 

In the second phase, volumetric image reconstruction 
will be done. We may classify the 3D reconstruction Radon 
based approaches into two distinct groups according to the 
Radon domain. Generally these methods are based on FBP 
and FRA in time and frequency domains respectively. 
 There are some limitations with exact image 
reconstruction methods implemented in the time domain, the 
most significant of which pertains to noise and artifacts. 
Three types of artifacts associated with the Grangeat's 

formula are reported; they are referred to as thorn, wrinkle, 
and V-shaped artifacts [4]. 
 Thorn is caused by backprojection of the second 
derivative of the Radon data on the meridian planes. The 
proposed algorithm in this paper applies 3D inverse DRT to 
the Radon data in the reconstruction stage without any 
additional derivative of the Radon data. It will be shown that 
the image is free of this type of noise using our proposed 
method. The second derivative of the Radon data is precisely 
the reason of wrinkle and V-shaped artifact appearance that 
would be also eliminated by our proposed algorithm. 
Another group of artifacts stem from the discrete nature of 
numerical implementation. Lee et al [4] displayed these 
artifacts in their implementation of the Grangeat’s formula. 
Providing a successful method to remove this type of 
artifacts and therefore a fast reconstruction of an object from 
continuous projections is the objective sought by this article.  

In the present work, Direct Fourier reconstruction Method 
(DFM), which potentially enjoys high speed implementation 
in the frequency domain, has been selected. DFM is closely 
linked to the FST which states that the 1D FFT of a projection 
at angle θ is a radial slice through the 2D FFT of the object 
at direction θ. Accordingly, DFM is composed of following 
steps: applying FFT to padded projections; interpolation of 
2D Cartesian FFT grid from the polar grid; and 
reconstruction of the image by a 2D inverse FFT [14].  
In FRAs, a major challenge is the provision of data on 
spherical coordinates by the FST. That is while FFT 
inversion requires the data in Cartesian coordinates. 
Meanwhile, the frequency domain needs accurate 
interpolation in order to convert the spherical to Cartesian 
lattice. 
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Table 2 
Summary of Works Done on Volumetric Image Reconstruction from Radial Derivative of 3D Radon. 

Author 
Time or 

Frequency 
Domain 

Method 

Grangeat et 
al [3], Lee et, 

al [4]. 
Time 

FBP: Derivative filtering of derivative Radon data in the radial direction + 2nd derivatives of Radon data on a meridian 
plane + backprojection on a meridian plane + 2nd backprojection on an axial plane. 

Tam et, al 
[15]. 

Time 
FBP of the Radon transform of the object residing on a set of coaxial planes + FBP operates on parallel beam projection 
images of the object on the same set of coaxial planes. 

Dusaussoy et 
al [14]. 

Frequency 
Calculation of the concentric cubes + Interpolation along the sides of concentric rectangles to calculate a Cartesian grid in 
each meridian plane + Interpolation along the sides of concentric squares to calculate a Cartesian grid in each horizontal 
plane + 3D inverse FFT 

Axelsson et 
al [6]. 

Frequency 
Sampling the Radon space on a number of vertical planes in a modified 2D linogram fashion (as a result of the interpolation) 
+ Reconstruction of the vertical planes with the 2D linogram method + Filling up Fourier cube + Reconstruction of the 
horizontal planes directly with the linogram. 

Schaller et, 
al [8]. 

Frequency 
FFT along radial lines in the Radon space + Interpolation from the spherical to a Cartesian grid using a 3D gridding step in 
the frequency domain + 3D inverse FFT. 

Zhao et al 
[12]. 

Frequency 
Filtered backprojection in Fourier domain: Calculates the contributions to the three dimensional Fourier transform of the 
3D object by derivative of Radon related to each projection separately + Add up all contributions from all projections in 
Fourier domain + Average the contributions from source geometries + 3D Inverse FFT. 

Kudo et al 
[7]. 

Frequency 
Apply radial FFT on the derivative Radon sampling + First derivative filtering + 2D Chirp z-transform + Inverse FFT + 
Rotation and trilinear interpolation + addition of component images 

Numerical performance of this task is difficult when there 
is only a finite number of samples available. The reason is 
that the slightest error in the frequency domain would have 
impacts on the entire image [14]. 

A review of surveys conducted on implementing this 
phase is available in Table 2. CT reconstruction from CBP is 
a natural extension of the 2D case. Already, Averbuch et al. 
[11] reconstructed 2D images by applying 2D inverse DRT 
on the 2D Radon data obtained from fan beam projections. 
Our research demonstrates the ability of 2D and 3D DRT in 
the generation of 3D Radon data from CBP in a fast and exact 
manner. Moreover, inverse 3D DRT is a powerful tool for 
volumetric image reconstruction from 3D Radon data. 
Compared with the reviewed works, the main advantages of 
this paper are as follows: 
o Discretization and verification of the Grangeat's 

formula which works well for continuous objects and 
detectors with non-unit pixel size. 

o Fast implementation of the Grangeat's formula.  
o No noise due to discretization and reconstruction 

method. 
o Proof of applicability of inverse 3D DRT to 

reconstruct a volumetric object from continuous 
projections. 

This paper is structured as follows. In Section II, the 
theoretical background of 2D and 3D FST and DRT are 
described. This section provides all necessary details to 
understand the implementation of the Grangeat's formula. 
Section III involves different stages of the method including 
step-by-step implementation and verification of the 
Grangeat's formula. In Section IV, the criteria and data used 
to evaluate the algorithm will be expressed. Section V is then 
dedicated to experiments. We show the results obtained from 
computer simulations to illustrate the performances of the 
formula. Discussions and conclusions are given in Sections 
VI and VII respectively. 

II. PRELIMINARIES 
 In this section, we review some theories and techniques 
that will be used in the next sections to develop the exact 
reconstruction method. We provide an overview of FST, 
PPFT and rapid DRT in 2D and 3D. 

A. 2D FST 
 According to 2D FST, the 1D FFT ( ) of the parallel 
projection (P1) of a 2D image I(x, y) in a direction equals the 
slice (S1) of the 2D FFT ( ) of I in the same direction (Fig 
2).  

 P1 = S1  (1) 

 
Fig 2. Illustration of 2D FST 

B. 3D FST 
According to 3D FST, the radial Fourier transform ( ) of 

a projection (P1) of a 3D image I(x, y, z) in a direction, i.e. 
the Fourier transform of data along a line through the origin 
in the Radon space, equals an 1D slice (S1) of the 3D Fourier 
transform ( ) of I in the same direction (Fig 3). 

 P1 = S1  (2) 
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Fig 3. Illustration of 3D FST. 

C. Pseudo Polar Fourier Transform (PPFT)   
 The spherically sampled Fourier space achieved by 3D 
sinogram sampled Radon space requires 3D-interpolation to 
obtain the 3D FFT of the object. 
 Pseudo-polar or linogram sampling would be beneficial 
in removing the interpolation stage. Two-dimensional 
linogram sampling of 2D Radon space delivers samples on 
concentric quadrates in 2D Fourier space (Fig 4).  

 
Fig 4. 2D PPFT 

 Generalization of the Fourier quadrate to 3D is the 
Fourier cube (Fig 5). PPFT evaluates the Fourier transform 
on a non-Cartesian pseudo-polar grid. The rapid exact 
evaluation of the Fourier transform at these non-Cartesian 
grid points is possible using the fractional Fourier transform 
or chirp z-transform [16]. 

 
Fig 5. 3D PPFT. 

 The set ≜ ∪ ∪ 		(Fig 5) is called the 
pseudo-polar grid [16].  

D. Rapid 2D DRT, 	 . 
 We consider a 2D continuous object, I(u, v) as n×n image 
with the pixel size of du in both directions of u and v axis, 
such that I(u, v)=0 outside [-su/2, su/2]× [-su/2, su/2] and su= 
n× du.  
 A 2D DRT is defined by summing the interpolated 
samples of I lying on lines with absolute slope less than one 
(3). 
 There are two types of lines. The first is the basically 
horizontal line having the form of , where | |
1, (Fig 6.a) and the second is the basically vertical line that 
is a line of the form  , where	| | 1 (Fig 6.b). 

/2, . . . , /2 1 ,	 3 	
/2, . . . , /2 1 ,	 (4)	

	 	 , … , ,	 (5)	

	
2
, … ,

2
/2 .	 (6)	

 

(a) 

 

(b) 

Fig 6. The black square is 2D image I(u, v) with the pixel number of 4 and 
du = 0.5. (a) Basically horizontal lines for n = 4. (b) Basically vertical lines 
for n = 4.  

	 Finally,	the notion used for 2D DRT is . 

,
, : 	
, : 	

 

(7) 

 2D FST proves the relation between the 2D DRT, and the 
2D discrete PPFT,	 , corresponding to image I, as shown 
in (8).		F1 1 is the 1D inverse FFT and o is the operator. 

	F 	 							 1,2  (8) 

The set , ≜ ∪  is called 2D DRT. 

E. Rapid 3D DRT, . 
 Inspired by the definition of the 2D DRT given in 
section II.D above, the 3D discrete Radon transform is 
defined by summing the interpolated samples of a continuous 
3D image I(u, v, w) (with pixel size of du in directions of u, 
v and w axis) lying on planes with certain constraints. The 
available planes may be considered in three types. The 
equation of the planes is in accordance with (9). 

v
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, (9) 

, (10) 

. (11) 

 Considering the first set of planes, the following relations 
are proposed for 3D DRT in the x- direction, ( . 

, , , . (12) 
Where 

x	 	 n/2, . . . , n/2 1 dx,				y	 	x,							z	 	x,	 (13) 

p 3n/2,… ,3	/2n dx, (14) 

	
n
2
, … ,

n
2

n
2
,												 	  (15) 

u	 	
n
2
, … ,

n
2

1 ,																v	 	u,								w u (16) 

 Similarly, the 3D DRT referred y-, z-direction are defined 
as (17) and (18): 

, , , .	 (17) 

, , , . (18) 

The notion used for 3D DRT is , , . 
, , ≜ ∪ ∪  (19) 

III. METHOD 

 Grangeat [3] proposed a formula that links CBP on virtual 
detector to 3D Radon data. In this paper, the discrete version 
of this method is optimized by several fast and accurate 
algorithms. We demonstrate the applicability of the inverse 
DRT for the reconstruction of a 3D object from continuous 
projections. 
A. The Grangeat's Formula 

 The Grangeat's Formula can be expressed as follows: 

, ,
1

	 	 ,  (20) 

  is the continuous Radon transform defined in (21). 

, , , , sin cos

sin sin cos
 

(21) 

, ,  is the 3D object in the Cartesian coordinate. SO 
signifies the distance between the source S and the origin O, 
SA denotes the distance between the source and an arbitrary 
pixel of 	along t. Based on (20), each characteristic point 
of the 3D Radon space C:(ρ, θ, φ) (Fig 7 a) is mapped to a 
pixel of a detector at angle  from the projection 
D:(s, α, ψ 	 Fig	7.b), where OC line is perpendicular to 
integration plane (Fig 7.a). 

 is the virtual detector at angle  of projection. Fig 8 
shows that each detector located at a constant distance of SP 
from source, S, is convertible to virtual detector by 
multiplying its side length at (SO/SP). It's clear that there is 
no difference between the pixel number of the detector and 
its virtual correspondent. 

 

(a) (b) 

Fig 7. (a) 3D Radon space on sphere coordinate. (b) Detector on polar 
coordinate. 

 
Fig 8. Virtual detector in CBCT 

As Fig 9 shows, ,  is the detector value a distance 
of s away from the center of detector O along the line t in a 
perpendicular position to OD. OC is perpendicular to SD. β 
is the angle between the line SO and SD. 

 
Fig 9. Relationship between a characteristic point of 3D Radon space, C, and 
its mapping, D, on the virtual detector 

B. Mapping 3D Radon Space on detectors 
 Assuming that all the integral planes passing through the 
object f(x) cross the X-ray source, S, located at the angle of 
ψ with x- axis, the locus of the normal vector to these planes 
will be located on a sphere known as the Radon shell of 
diameter SO [10] (Fig 10). 
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Fig 10. Relation between Radon shell and spherical coordinate 

 The equation of Radon shell at angle 	is in accordance 
with (22). 

0.	 (22) 

2
, 

(23) 

, ,
2
cos , 	

2
sin , 0 . 

(24) 

	 cos sin . (25) 
 Considering the characteristic point of the 3D Radon 
space C in sphere coordinates,  

	 cos sin . (26) 
sin cos , (27) 
sin sin , (28) 
cos . (29) 

 The geometric relation between C:	 , ,  and 
D: , ,  will be defined in (30)- (32)  

	
 (30) 

tan
| |

	
1

cos 1

 
(31) 

cos
	 sin

 (32) 

 Fig 7 and Fig 9 clearly demonstrate this relation. The 
triangle of Fig 11 should be established in each source 
position. 

 
Fig 11. The geometric relation between a Radon characteristic point, C and 

correspondent detector pixel, D. 

 Therefore, using an interpolation step, all Radon space 
points are mapped to the points on the detectors. 
 Due to the timing of the interpolation command in the 
MATLAB programming language, this part of the program 
was written in Python, and then the output was transmitted to 
MATLAB. 

C. The Discrete Grangeat's formula 

 The goal of this paper is to utilize 2D and 3D DRT to 
improve the speed and accuracy of the discrete version of the 
Grangeat's formula [3]. Equation (33) is the discrete form of 
(20).  

, ,

∆ ∆
	∆

,
	∆ 	 

(33) 

where the pixel size of the cubic object is ∆m, and ∆  is the 
distance between two consecutive s in the diameter 
direction (θ, φ) of 3D Radon linogram sampling. SO is the 
distance between the source S and the origin O. 

,  and , ,  are the difference 

between two consecutive (with a same angular direction and 
consecutive radius) 2D and 3D DRT described in II.D 
and II.E sections respectively. Averbuch et al. elaborate  
[17] and  [16] in Cartesian coordinates, but in this paper 
they are used in polar and spherical coordinates respectively 
(as described in D and E of this section).  
 The line integration in (20) in the direction of t-axis (Fig 
7.b) is just the sum of pixels of detector in the same direction. 
So it is convertible to 2D Radon transform. The line equation 
related to t is defined as horizontal and vertical lines in (7). 
In that equation q is determined by the location of ,  
mapped from each , , . In detectors with the pixel size 
of ∆u, the distance between pixels along the line, ∆ , is 
computed by √∆ ∆ . For example in the horizontal 
line, ∆ ∆ . So, 

∆ ∆ ∆  (34) 

SA denotes the distance between the source and an arbitrary 
pixel of 	, A, along	 . For example if ,  is located on 
horizontal lines, then  

 

(35) 

If SO→∞, it can be said SA = SO, otherwise it is a very time-

consuming procedure to calculate 
,

 for all q and p. 

D. 2D Radon Sampling 

The notion used by Averbuch et al. [17] for 2D Radon 
transform is based on slopes, q and intercepts, t in (7) to 
specify a line. However it is conventional to use the distance 
from the origin, s and the angular direction, α, to clear the 
normal vector of line. Equations (36)-(39) describe 
converting the Cartesian coordinates to polar based on 
basically horizontal and vertical lines integration. For 
basically horizontal lines we would have: 

| |/ 1  
(36) 

tan
1

 
(37) 

and for basically vertical lines: 
| |/ 1  (38) 
tan  (39) 

Fig 12 shows the position of pseudo-polar based grid or 
linogram 2D sampling of the Radon space on the detectors. 
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Fig 12. 2D Radon sampling determining the position of normal vector to 
integration line on the detector, black square 

E. 3D Radon Sampling 
 The definition of 3D DRT described by Averbuch et al 
[16] uses slopes, ( , ), and intercepts, (p), based on (9) 
and (13) to designate a specific plane which crosses the 
object. This notation for the Radon space is less common. 
Usually, a normal vector, (ρ, θ, φ), in spherical coordinate 
used to elaborate the position of Radon characteristic point, 
(Fig 7.a). ρ is the distance of the plane from the origin and 
the angle of θ and φ are indicated in Fig 7.a. 
 The range of (ρ, θ, φ ) which defines all x-planes, satisfies 
(40)-(42). 

| |/ 1  (40)  

tan 1 /  
(41) 

	 tan  (42) 
Similarly, for y-planes, we have: 

| |/ 1  
(43) 

tan 1 /  
(44) 

	 tan 1/  (45) 
and for z-planes: 

| |

1
 (46) 

tan  
(47) 

	 tan /  (48) 

 

Fig 13. 3D Radon sampling in spherical coordinates determining the position 
of the normal vector to integration planes on the 3D object in time domain 

Fig 13 and Fig 14 show the position of pseudo- polar based 
3D sampling of the Radon space in time and the frequency 
domain respectively. 

 
Fig 14. 3D Radon sampling in the spherical coordinate determining the 
position of normal vector to the integration planes on the 3D object in 
frequency domain 

F. Numerical Integration of the Derivative of the Radon 
Transform  
 After computing Δ , numerical integration was 
performed to calculate ρ, θ, φ 	via the trapezoidal 
method. This method approximates the integration over an 
interval by breaking the area down into trapezoids with more 
easily computable areas. For integration with N+1 evenly 
spaced points, the approximation is defined as: 

1
2

 (49) 

x x  is the spacing between each consecutive pair of 
points. 

 
Fig 15. Both ends of all Radon diameters are outside the object. 

 As Fig 15 shows, the first point with any diameter of the 
Radon space is outside the support domain of the object. 
Hence, the initial value of the integral in each diameter is 
zero. This event is due to use of linogram sampling or 
pseudo- polar grid. 

G. Compensation weighting factor (1 ∆⁄ ) to radial Radon 
Transform in the linogram fashion 

 ∆  represents the sample distance for radial line in the 3D 
Radon space. Denser sampling indicates that more plane-
integrals penetrate the object and that the sum of radial line 
becomes higher than that of a more sparsely sampled line 
[10]. Now we have to make up for this difference by 
multiplying each radial line by (1 ∆⁄ ) in equation (33); 
otherwise, the denser sampled radial lines will show larger 
influence. 

5

-5

3D Radon sampling in time domain

0

5

5

0
x

0
y

-5-5
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H. Shadow zone 

 Cone-beam consistency conditions are mathematical 
relationships between different CBP, and therefore they 
describe the redundancy or overlap of information between 
projections [18].  
 Necessary consistency conditions are any description of 
the redundancy in ideal projection data. They result from 
mathematical relationships between the unknown object and 
its projections. Sufficient consistency conditions are required 
to ensure that they are compatible with some object 
functions. We say that a set of conditions is full if the 
conditions are both necessary and sufficient. 
 One of the most important sufficient conditions states that 
one can reconstruct the object if on every plane intersecting 
the object there exists at least one cone-beam source point. 

 

 

(a) (b) 
Fig 16. (a)The torus is obtained by moving the Radon shells on the circular 
source path. (b) Display of shadow zone in the center of torus. 

 In this study, a single circular source trajectory was 
adopted. This trajectory does not satisfy the sufficient 
condition for exact reconstruction. As a result, there exists a 
shadow zone in the Radon domain, as shown in Fig 16. This 
zone is defined by 
| | |sin | (50) 

 With only a single circular orbit, we must fill in this 
shadow zone, where linear interpolation was selected for this 
filling.  

I. Volumetric Image Reconstruction 

 Averbuch et al [11] showed that 3D DRT is invertible. 
Given the 3D DRT , ,  on PP grid, it is possible to 
uniquely recover volumetric image, I(x, y, z) via fast direct  
inversion of the 3D PPFT (Fig 17) [19]. The pseudo code of 
the proposed recovery is shown in Algorithm 1. 

Algorithm 1: Algorithm of rapid 3D inverse DRT for volumetric image 
reconstruction from 3D linogram sampling. 

Initialize: axis=[x, y, z] for i=1:3{ 
 For each k, l and j, , 	, 1 	 	 	 , ,  

[20]} 
 Direct Inversion of the 3D PPFT on  [19]:{ 

 Resampling the pseudo-polar grid to an intermediate 
Cartesian grid. 

 Recovering I from the samples of .} 

To reconstruction an image of size n×n×n, Radon space, 
, , ,	will be a four dimensional array of size 

3×(3×n+1)×(n+1)×(n+1). For example k, l, j indices in 

, ,  mean pseudo-radius (unit steps) in x-
direction, pseudo-angle in y-direction and pseudo-angle in z-
direction, respectively. 

 

(a)	 , , , 1, 2, 3  

  

(b)	 , ,  (c)	 , ,  (d)	 , ,  

                                           

(e)	 , 	,  (f)	 , 	,  (g)	 , 	,  

	

(n)	I(x,	y,z)	

Fig 17. The process of recovering 3D object from 3D Radon space. 

J. Computational Complexity 

One of the overriding motives for this work is to find 
faster (Fourier) methods for reconstruction. In order to 
evaluate the computational complexity of our method, the 
total number of Floating Point Operations (FLOPs) is 
estimated. Addition, subtraction, multiplication and division 
are considered each as one FLOP in our estimations.  

Assume a  volume is to be reconstructed, the 
detector size is  and we use M projections. 

FDK is a generalization of the popular filtered 
backprojection method for the 2D case and its complexity is 	

	or 	since  [6], [21]. 
As mentioned in section I, the process of image 

reconstruction from CBP involves two phases of Radon 
space and then image generation. The computational 
complexities for the various reconstruction steps are as 
follows: 
1. 1st phase: Radon Generation. 
 Pre-weighting: The cost for the pre-weighting of  

detector values in M projections is  FLOP, then 
the time complexity of pre-weighting is ). 

 2D DRT: The cost for computing 2D DRT (	 ) for 
each  detector is log  operations [17], 



9 
 

and for all detectors is log . So, the total 
complexity of 	  is log . 

 Differentiation in the s direction: The cost for one line 
numerical gradient which involves  points and 
requires 2 1  subtractions in the numerator and 
denominator, ( 1  divisions and ( 1  additions 
is 4 1  FLOP. Each detector includes 2 1  
lines with 2 1  points. So, 2 1 8  
FLOP yields the log  as the time complexity of 
the derivative in s directions. 

 Post-weighting: The cost for the post-weighting of 
2 1 2 1  points in  detector plane is 
2 1 2 1  FLOPs or  operations. 

 Interpolation: The desired Radon data points for the 
reconstruction are positioned on PP grid, which do not 
coincide exactly with the data on a Radon shell of any 
source position. Therefore, interpolation between the 
two closest Radon shells is necessary. In our 
experiments, we have used tri-linear interpolation, 
which consists of seven linear interpolations (Fig 18).  

 
Fig 18: Tri linear interpolation. 

Equation (51) is understood by Fig 19 related to linear 
interpolation. 

 (51) 

 
Fig 19: Linear interpolation plot. 

Thus for one linear interpolation one subtraction, one 
multiplication and one addition are required, which 
makes 3 FLOP for one linear interpolation and 7*3 = 21 
FLOP for one tri-linear interpolation. Considering the 
3×(3×n+1)×(n+1)×(n+1) Radon data points, the cost 
for this steps is 21×(3×n+1)×(n+1)×(n+1) FLOPs or 

log  operations. 
 Computation of Radon values from derivatives: Based 

on trapezoidal numerical integration, the integral of 
3×(n+1)×(n+1) lines with (3×n+1) points includes 
3×(3×n)×(n+1)×(n+1) summations, 3×(n+1)×(n+1) 
multiplications and 3×(n+1)×(n+1) subtractions. The 
total time complexity is log . 

2. 2nd phase: Image reconstruction from 3D Radon space. 

 Resampling: a total of log  operations are 
needed for the resampling step [19]. 

 Recovering the 3D image from samples of  takes 
log  operations [19]. 

In short, we proposed an O(N3 log N) method for 3D 
reconstruction from CBPs. 

K. Flowchart of the proposed method 

 We demonstrate the complete process using a block 
diagram in Table 3. 

Table 3 
Block Diagram of the Complete Process 

 

IV. MATERIALS AND EVALUATION INDEXES 
 Three synthetic phantoms are utilized to validate the 

proposed method: The Shepp-Logan [22], Compressive 
Sensing (CS) phantom [23] and Zubal Head [24].  

Fig 22 shows a representative slice of three mentioned 
phantoms. The digital phantom was projected by CBCT 
geometry with single circular source trajectory using TIGRE 
toolbox [24]. 

In all stages of computerized implementation, we assume 
that the object and the detector are continuous and their pixel 
sizes are not unit. So, the customizable parameters are the 

1- Generating the CBP on 
square detector with side 
length su and pixel 
number nu×nu. 

2- Converting to virtual 
detector with 
multiplication su by 
(SO/SP). 

5- Building 3D Radon 
space on pseudo-polar 
grid with ( , , ) 
components related to a 
cubic object with side 
length sx and pixel 
number nx×nx×nx. 

6- Building 2D Radon 
space on PP grid with 
(s, α) components for a 
square detector with 
side length su and pixel 
number nu×nu. 

7- Mapping 3D Radon 
space to 2D Radon 
space via equation (30). 
 

3- Computing 2D Radon 
values related to weighted 
detectors via 2D DRT. 

4- Multiplying ∆ , and 
then derivative 
calculation with respect 
to s. 

8- Allocation of Radon derivative value to any point in 
3D Radon space based on the corresponding value 
computed in block (4). 

Start 

9- Radon derivation integration. 

10- Applying 1D FFT on Radon diameters and then 
direct 3D iPPFT to reconstruct 3D object. 
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following: 
o The length of each side of the cubic object in mm: sx. 
o The voxel number of the object: nx×nx×nx. 
o The length of each side of the real detector located at 

the distance of SP in Fig 8 in mm: su×su. 
o The pixel number of the detector: nu×nu. 
o The distance between the source and the real detector 

in mm: SP. 
o The distance between the source and the middle plane 

of the object in mm: SO 
Details of the different phantoms are summarized in Table 

4. Considering the last paragraph of subsection III.C, to save 
the run time, SO is considered a large value.  

Table 4 
Customized parameters in two selected phantoms 

No Phantom sx nx su nu SP SO 
1 Shepp-Logan 16 32 128 256 1500 1000 
2 Shepp-Logan 64 64 128 256 1500 1000 
2 Head 48 64 128 256 1500 1000 
3 CS  32 64 128 256 1500 1000 

To quantitatively evaluate the quality of reconstructed 
images, the peak signal-to-noise ratio (PSNR), contrast-to-
noise ratio (CNR), structural similarity (SSIM) [25] are 
selected as performance metrics. 

PSNR is defined as: 

10  
(52) 

Where MSE is the mean-squared error between the 
reconstructed image and the reference image and max is the 
maximum possible value of the image.    
CNR is defined as: 

	 	 	 σROI
2 	 σRef

2  (53) 

 Where  and  are the mean intensity of a selected 
ROI and the reference uniform background region,  and 

 are the standard deviation of the ROI and the reference 
region. 
 The SSIM metric is defined as: 

, 	
2 2

 (54) 

Where a and b are two local windows of size 8 × 8 pixels in 
two images with the same position. a and a, b and b are 
mean and standard deviation in each window, respectively. 

ab is the covariance between the two windows. C1 and C2 are 
two constants to avoid instability. In this study, C1 and C2 

were chosen as: 

C 	 0.01 max and	C 	 0.03 max  (55) 

 SSIM is used to measure similarity in the structure 
between the two windows. As the two windows move pixel-
by-pixel over the reconstructed image and the reference 
image, we obtain a SSIM map. In practice, we use a single 
Mean-SSIM (MSSIM) value to evaluate the overall image 
quality by simply averaging SSIM values. 

V. RESULTS 

A. Quantitative Comparison 

 In this section, the performance of the proposed method 
is assessed by expressing the values of evaluation indexes. In 
this appraisal, the impact of some parameters on the 
reconstructed image quality is determined by the number of 
detector pixels, and the type of interpolation in shadow zone. 
In order to express the impact of the samples of continuous 
projections after conversion to discrete projections, Table 5 
shows a fixed length detector with the different choice of 
pixel number (360 is the number of projections). So, 3D DRT 
and its inverse are able to model accurately the continuum in 
parallel with the increase in the number of samples. 

Table 5 
Comparing different pixel numbers in a detector with su=64 related to CS 

phantom 
Pixel 

Number 
PSNR CNR SSIM 

16 11.56 0.15 0.072 
128 27.7 0.31 0.6 
256 30.96 13.8 0.92 

 In order to investigate the impact of the method of data 
filling in the shadow zone, we chose three different 
strategies; zero padding, linear interpolation in θ direction 
and using the Radon value with applying 3D DRT on the 
phantom. Due to the limited number points in the shadow 
zone, the method's impact is insignificant. In Table 6, CS 
phantom is considered with nx=64 and sx=32. 

Table 6 
Comparing different methods in shadow zone filling 

Method of Filling Shadow Zone PSNR 
Zero Padding 29.95 
Linear Interpolation 30.96 
Radon Value Of Phantom 30.99 

To quantify the reconstruction image with FDK method, 
PSNR and SSIM of the whole slice and CNR of the ROI 
(yellow square in the Fig 22) of three phantoms were listed 
in Table 7. The valuation indexes of our proposed method 
were found to be close to FDK.  

Variations in the max and the MSE of the images result 
in a differences between PSNRs obtained from various 
phantoms. 

Table 7 
PSNR, SSIM and CNR of different phantoms by FDK and the proposed 

method 
 Shepp-Logan Head CS 

PSNR 
FDK 19.73 25.63 29.85 

The proposed 
method 

20.15 22.72 30.96 

SSIM 
FDK 0.49 0.90 0.93 

The proposed 
method 

0.46 0.62 0.92 

CNR 
FDK .03 0.12 25.5 

The proposed 
method 

0.44 0.41 13.8 

B. Visually Comparison  

Compared to [4], Fig 20 (first row) shows that there is no 
artifact in the sinogram obtained from the proposed method. 
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While Lee et al [4] found three types of artifacts associated 
with the Grangeat’s formula, which are respectively called 
wrinkle, V-shaped and thorn artifacts. In Fig 20, we 
compared the sinogram and reconstructed images of Lee’s 
study with ours. 

    
(a) (b)  (c) (d) 

   

(e) (f) (g) 

(h) (i) (j) 

   
(k) (l) (m) 

Fig 20. Sinogram obtained on a meridian plane of Shepp- Logan 
phantom of size 64×64×64 by our method. (a)	 : , ∶, 35 ,
b)	 : , ∶, 25 , (c)	 : , ∶, 5 , d)	 : , ∶, 25 , (e, f, g) 

Wrinkle, V-shaped and thorn artifacts in the second derivative Radon in [4] 
respectively, (h, i, j) Representative slices of the reconstructed image with 
the proposed method, (k, l, m) Reconstructed image with Wrinkle, V-shaped 
and thorn artifacts in [4] respectively. 

In Fig 21, the values of the three randomized Radon 
diameters in the PPFT grid, related to the phantom No.1, 
Table 4, were shown. This figure is related to the output of 
block 9 in Table 3. 

Two signals shown in Fig 21: Radon k, l, j , derived 
from applying 3D DRT on the original phantom (black line) 
and the Radon obtained from CBP by the proposed algorithm 
(red line), that 1≤i≤3, 3×nx/2≤k≤3×nx/2, 1≤l≤nx+1 and 
1≤j≤nx+1. 

In this numerical simulation, a represented slice of 
reconstructed objects introduced in section IV are shown in 

Fig 22. Comparing the original and reconstructed images 
makes clear that the proposed method effectively removed 
the three types of artifacts mentioned in [4]. 

 
(a) 

(b) 

 
(c) 

Fig 21. (a), (b) and (c) are three random Radon diameters correspond to 
, 	 	  respectively. The red signal is obtained by the proposed 

method, while the black one is obtained by applying 3D DRT to the phantom 
of No1, Table 4. 

C. Ability to Preserve Smooth Images and Edges. 

Fig 23 demonstrates a representative slice of a noise-free 
image out of the CS phantom with size of 64 64 64 
voxels. The phantom (Fig 23) with a uniform background 
contains smoothly-changed intensity, such as octahedron in 
the upper-right corner and the sphere in the lower-left corner. 
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(a) Original Phantom (b) Original Phantom (c) Original Phantom (d) Original Phantom 

    
(e) FDK method (f) FDK method (g) FDK method (h) FDK method 

(i) Reconstruction error of FDK. (j) Reconstruction error of FDK. (k) Reconstruction error of FDK. (l) Reconstruction error of FDK. 

    
(m) Reconstruction image by our 

method. 
(n) Reconstruction image by our 

method. 
(o) Reconstruction image by our 

method. 
(p) Reconstruction image by our 

method. 

    
(q) Reconstruction error of ours. (r) Reconstruction error of ours. (s) Reconstruction error of ours. (t) Reconstruction error of ours. 

Fig 22. (a, c, d) Used three phantoms of size 64 64 64. Yellow squares are selected as ROI to compare CNR. (a, b) 27th vertical slice, 28th transverse slice 
of Shepp-Logan [22], (c) 15th vertical slice of Head [24], (d) 32th vertical slice of CS, (e, f, g, h) reconstructed image by FDK method, (i, j, k, l) Reconstruction 
errors by FDK, (m, n, o, p) reconstructed image by our method and (q, r, s, t) Reconstruction errors by ours. 
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Fig 23. A representative slice of the original CS phantom 64×64×64. 

Fig 24.a and b show the comparative profiles of the 
phantom along the center of sphere and octahedron includes 
the red and yellow lines in Fig 23 respectively. The intensity 
curves along these lines exhibited numerous small and 
unnatural constant intensity artifacts in the reconstructed 
image as well as FDK indicating its capacity to preserve 
smooth images.  
Furthermore, the phantom contains a set of line objects to 
measure the resolution. 

 

(a) 

 

(b) 

Fig 24. Profiles through the red and yellow line in Fig 23; (a) Comparative 
plot of FDK and our approach along red line; (b) Comparative plot of FDK 
and our approach along yellow line 

Fig 25. Profile through the barcode (green line in Fig 23) related to 
reconstructed images by FDK and our method 

To evaluate our method in the edge area, the strip area 
(Barcode) in Fig 23 was selected. Fig 25 shows that the 
proposed method preserved the edges resembling FDK. 

D. Ability to Preserve Local Structure 

We used SSIM in our study to measure the degree of 
similarity in local structures between reconstructed images 
and the original image.  
Fig 26 shows that the SSIM map of the Shepp-Logan 
phantom in our method was very close to FDK, indicating a 
good ability in preserving structures. 

  
(a) (b) 

Fig 26. SSIM map of the head phantom using different methods. (a) FDK 
(SSIM=0.85), (b) Ours (SSIM=0.82) 

E. Reconstructed Images with Noisy Projections. 
In the case of normal clinical exposures, assuming 

monochromatic source, the X-ray CT measurements are 
often modeled as the sum of a Poisson distribution 
representing photon counting statistics and an independent 
Gaussian distribution representing additive electronic noise 
[26], i.e.,  

ɸ ,  (56) 
Where  is the attenuation coefficient map, 	denotes the 
number of X-ray photons incident on detector along the ith 
X-ray path, and  is the blank scan factor,  and  indicate 
the mean and standard deviation of electronic noise that has 
been converted to photon units. The offset mean m of 
background signals such as dark current can be estimated 
using blank measurements prior to each scan and subtracted 
from the measured intensity, so we assume mi=0 hereafter. 
In this section we assume the standard deviation is 20. 

We generally do not expect analytic methods to eliminate 
noises. The analytical methods are somehow just a mapping 
of the detectors values to the desired image and generally we 
do not expect analytic methods to eliminate noise. However, 
such methods are a means of producing an initial exact image 
to initiate iterative reconstruction (IR) methods, then IR 
methods will remove the noise and artifacts.  

To evaluate the behavior of our method in noise removal, 
we have added the Gaussian noise to the projections. After 
noise addition (Fig 27.c), PSNR of reconstructed image 
decreased from 20.15 dB to 19.98 dB. Also the CNR of the 
ROI (Fig 22. a) reduced from 0.44 to 0.24. So, the results 
show that our proposed method have no ability to remove the 
projection noises. 

 

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5
Original Phantom
FDK
Proposed method
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(a) Plot of a randomized Radon diameter with (blue) and without any 
noise in the projections, related to Shepp-Logan phantom. 

  
(b) Reconstructed images from 

noise-free projections. 
(c) Reconstructed images from 

noisy projections. 
Fig 27. Comparative results of noise-free and noisy projections 

In the next section, we explore the ability of the proposed 
method in generating an image to be useful for the 
initialization of the iterative algorithms in low-dose CBCT 
reconstruction. 

F. Reconstruction of High-quality Images of Sparse-View 
Angle CBCT Using the Image Reconstructed by the 
Proposed Method as an Initial Image of the Iterative 
Algorithm 

We have used in all sections of this paper 360 
projections, which was good enough for the reconstruction 
of a high-quality image. Now, we want to reconstruct high-
quality images of sparse-view angle CBCT using 120 
projections around 360°. One of the most successful methods 
of reconstructing a low-dose CBCT with a limited- number 
of projections is Compression Sensing (CS). However, the 
first step in achieving a good image is to produce an accurate 
Radon space. The Radon space provides the basis for the use 
of Fourier-based iterative methods. 

The tomography operator ɸ in  =	ɸf +	 , is ill-posed 
and therefore cannot be inverted. We apply variational 
reconstruction methods wherein a solution is found through 
the convex optimization problem 

∗ ‖ɸ ‖ 	  λJ( ) 
(57) 

Where y is the measurement and J( ) is a prior energy, 
whose choice will be explained in the following sections.  

According to FST, we explore a FFT version of ɸ as it 
corresponds to the sampled FFT of the image along the 
discretized rays.  

In this study, due to the limited number of projections, 
there are only a few non-zero diameters in the 3D PPFT 
Radon space. In other words, based on FST, and due to the 
limited view angle conditions in CBCT, the generated 3D 
Radon space includes a partial Radon transform or integral 

of 3D object along a limited number of equispaced rays at 
spherical orientations corresponding to the lines of the 3D- 
PP grid. 

Recovering from tomography by ɸ  is equivalent to 
inpainting the missing Fourier frequencies. We assume the 
partial noisy Fourier measures as 

∀	 ∈ 	 ,  
(58) 

Where  is 1D radial FFT of the 3D Radon space,  denotes 
3D PPFT of 3D unknown image and  is the measured 
noise on projections in the frequency domain. 
 Iterative reconstruction algorithms have demonstrated an 
excellent performance in improving the quality of the image. 
We therefore use an optimization problem to increase the 
quality of reconstructed images. The total variation 
regularization is as follows: 

∗ argmin
1
2

∈

‖ ‖  
(59) 

The reconstruction primary results indicate the FDK 
algorithm cannot reduce the noise and therefore significant 
artifacts are created. The reconstructed images with TV look 
more natural and smoother, emphasizing the ability of TV in 
preserving smooth regions as well as suppressing the noise 

  
(a) Original Phantom (b) FDK 

  
(c) Image reconstructed 
by the proposed method 

as an initial image of TV. 

(d) Image reconstructed  
after applying TV 

Fig 28. (a) A representative slice of the original Shepp- Logan phantom; and 
reconstructed images by different reconstruction algorithms with 120 
projections (sparse view- angle). 

VI. DISCUSSION 

  Although the analytical formulations of exact 
reconstruction methods are theoretically error free, there are 
some limitations that make the use of approximate methods 
more welcome [27]. The first category pertains to the noise 
that appears in reconstructed images. Owing to the method 
presented in this article, this type of noises reported in 
previous papers has disappeared. Three types of artifacts 
associated with the Grangeat's formula were reported, known 
as thorn, wrinkle, and V-shaped artifacts [4]. 

The second limitation of these algorithms is consistency 
condition. A set of conditions is full if the conditions are both 
necessary and sufficient. Accordingly once the objects are 
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exactly rebuilt, there is a perfect condition. As an example, 
one of these conditions states that each plane of the 
intersected object should have at least a point on the source 
path [2]. If so, it would be possible to achieve an accurately 
reconstructed object, while there is no such status in the 
conventional CT with a circular source path. Furthermore, 
considering the risk of cancer due to x-ray exposes, 
researchers have moved on to propose ways to produce a 
precise, high-quality image while reducing radiation with a 
limited number of projection data. Obviously, by reducing 
the number of projections due to lower risk of x-ray, there is 
no full data requirement for an exact reconstruction. 

 The third set of problems is related to low efficiency on 
the removal of noises from the projections. These methods 
treat noise-related problems as a supplement because they 
ignore noise measurement in the problem formulation [27] 
and reconstructed objects are just a weighted mapping of 
projections value. 

In order to remove the two last classes of artifacts, it must 
be mentioned that the combination of exact reconstruction 
and iterative algorithms can result in the production of 
optimal image quality in sparse view angles and noise 
treatment conditions. One of the successful methods with 
these features is FIRM which resembles Equally Sloped 
Tomography (EST). So far, different articles have been 
presented in this area for Fan Beam CTs, all of which having 
generated 2D Radon space from fan beam projections, 
applied Fourier transforms and expressed a regularization 
function [28]–[31]. In this paper, we have sought to provide 
an accurate 3D Radon space with 3D PPFT features to 
facilitate the use of FIRM in Cone Beam CTs. The proposed 
method is also useful for developing intuition, and also for 
initializing iterative algorithms associated with statistical 
reconstruction methods. 

One of the other aims is to reduce the computational 
complexity, i.e. to produce a faster method. The most taxing 
procedure during the first phase is computation of line-
integrals in the detector plane. By applying the direct Fourier 
method in reverse for this computation, we reduce the 
complexity of phase 1 from O( ) to O( log ). The 
second Phase is performed via direct Fourier methods which 
reduces the complexity of O( ) to O( log ) as well. 
 Our code, Cone2Radon toolbox, is available open source. 
After the acceptance of the paper, we will post it on 
https://misp.mui.ac.ir/en.  

VII. CONCLUSION AND FUTURE WORK 

 In this paper, we have shown 2D and 3D DRT have been 
used for an accurate modeling of continuum in parallel with 
the increasing number of samples. Meantime, we 
demonstrated that inverse DRT could be used in 
reconstruction from CBP using equispaced detectors.  

Furthermore, we provide 3D Radon space in linogram 
fashion to allow the use of Fourier based methods with CBP 
for the reconstruction of 3D images in a sparse view angle 
CBCT with no error of interpolation. 
  The recent use of FIRM has rendered possible achieving 
high-quality two-dimensional (2D) images from a fan beam 
CT with a limited number of projections. This technology 

reduces the dosage of radiation to which a patient is exposed, 
thereby reducing the risk of cancer. In the future, our studies 
will focus on the use of Fourier based Compressive Sensing 
(CS) algorithm for CBCT image reconstruction in sparse 
view angles conditions. 

Analytical reconstruction in CT is very well-suited for 
parallel implementations on GPUs. At the interpolation 
stage, the code for the proposed algorithm is very time 
consuming. For this reason, we will intend to parallel 
implementation of this approach on GPU in the future.  
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