
JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 1

Real-Time Correlation Tracking via Joint Model
Compression and Transfer

Ning Wang, Wengang Zhou, Yibing Song, Chao Ma and Houqiang Li

Abstract—Correlation filters (CF) have received considerable
attention in visual tracking because of their computational
efficiency. Leveraging deep features via off-the-shelf CNN models
(e.g., VGG), CF trackers achieve state-of-the-art performance
while consuming a large number of computing resources. This
limits deep CF trackers to be deployed to many mobile platforms
on which only a single-core CPU is available. In this paper,
we propose to jointly compress and transfer off-the-shelf CNN
models within a knowledge distillation framework. We formulate
a CNN model pretrained from the image classification task
as a teacher network, and distill this teacher network into a
lightweight student network as the feature extractor to speed up
CF trackers. In the distillation process, we propose a fidelity loss
to enable the student network to maintain the representation
capability of the teacher network. Meanwhile, we design a
tracking loss to adapt the objective of the student network from
object recognition to visual tracking. The distillation process
is performed offline on multiple layers and adaptively updates
the student network using a background-aware online learn-
ing scheme. Extensive experiments on five challenging datasets
demonstrate that the lightweight student network accelerates the
speed of state-of-the-art deep CF trackers to real-time on a single-
core CPU while maintaining almost the same tracking accuracy.

Index Terms—Long-term tracking, tracking-by-detection, re-
detection, feature combination.

I. INTRODUCTION

THERE has been an increasing demand for visual ob-
ject tracking algorithms in numerous vision applications.

Typical examples include video surveillance, human-computer
interaction, and autonomous driving. As a key component,
tracking target objects in real-time plays a critical role in
improving the overall efficiency of vision applications. The
visual tracking framework based on Correlation Filters (CF)
has been widely investigated in [1]–[3] because of the effi-
cient correlation computation in the Fourier domain. When
integrated with CNN features, CF trackers [4]–[6] achieve
state-of-the-art tracking accuracy. However, extracting high-
dimensional deep features brings in a huge computational cost
and limits CF trackers to achieve real-time speed. Although
deep operations can be always accelerated by GPUs, deep

Ning Wang, Wengang Zhou, and Houqiang Li are with the CAS Key
Laboratory of Technology in Geo-spatial Information Processing and Applica-
tion System, Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Hefei, China.
E-mail: wn6149@mail.ustc.edu.cn, {zhwg, lihq}@ustc.edu.cn.

Yibing Song is with the Tencent AI Lab, Shenzhen, China.
E-mail: dynamicstevenson@gmail.com.

Ma Chao is with the MoE Key Lab of Artificial Intelligence, AI Institute,
Shanghai Jiao Tong University, Shanghai, China.
E-mail: chaoma@sjtu.edu.cn.

Corresponding authors: Wengang Zhou and Houqiang Li.

SiamRPN (CVPR 18)

RT-MDNet
(ECCV 18)BACF (ICCV 17)

TRACA (CVPR 18)

SiamFC (ECCV 16)

StructSiam (ECCV 18)

SA-Siam (CVPR 18)

fECO (Ours)

fDeepSTRCF (Ours)

55

60

65

70

75

75 80 85 90 95

VITAL (CVPR 18)

LSART (CVPR 18)

ADNet (CVPR 17)

DSLT (ECCV 18)

MDNet (CVPR 16)

ECO (CVPR 17)

FlowTrack
(CVPR 18)

fECO (Ours)

fDeepSTRCF
(Ours)

DeepSTRCF (CVPR 18)

60

65

70

75

80 85 90 95 100

Comparison with Real-time Trackers Comparison with Non-realtime Trackers

X-axis: distance precision (DP) scores Y-axis: area-under-curve (AUC) scores

Fig. 1. Tracking results on the OTB-2015 dataset [8]. The proposed method
accelerates state-of-the-art deep CF trackers (i.e., ECO [5] and DeepSTRCF
[9]) through joint CNN model compression and transfer. The improved CF
trackers (i.e., fECO and fDeepSTRCF) perform favorably against existing
methods and achieves real-time speed (more than 20 FPS) on a single-core
CPU. It is worth mentioning that most existing real-time trackers as shown on
the left cannot achieve real-time speed on a CPU, while the recent performance
leaders shown on the right are far from real-time even on a GPU.

CF trackers cannot be deployed on CPU-only devices, e.g.,
most intelligent mobile phones do not have GPUs. Let alone
the huge power consumption and memory storage required
by existing pretrained CNN models (e.g., VGG [7]). The
challenges of using off-the-shelf CNN models (e.g., VGG [7])
include huge demand for memory storage, heavy computa-
tional burden, and high power consumption. It is therefore
non-trivial to investigate how to accelerate deep CF trackers on
a CPU platform to achieve real-time speed without suffering
a significant drop in tracking accuracy.

In this paper, we jointly compress and transfer off-the-
shelf CNN models into a lightweight feature extractor. The
lightweight feature extractor enables deep CF trackers to
achieve real-time speed as well as consume less memory.
The model compression and transfer are from the perspec-
tive of knowledge distillation [10], [11]. We take the off-
the-shelf model as a teacher network, which is pretrained
for the object recognition task. On the other side, a low
capacity student network is used to learn from the teacher
network. In the distillation process, we propose two types
of losses. The first one is a fidelity loss and the second
one is a correlation tracking loss. The fidelity loss ensures
the student network to convey the representation from the
teacher network, while the correlation tracking loss transfers
the objective of the student network from object recognition
to visual tracking. we take the hierarchies of deep models into
account and perform the distillation process on multiple CNN

ar
X

iv
:1

90
7.

09
83

1v
1

 [
cs

.C
V

]
 2

3
Ju

l 2
01

9

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 2

layers offline. After distillation, the student network maintains
the high-level semantic discrimination from the fidelity loss.
Besides, the tracking loss helps the student network to produce
target-specific CNN representations. During online tracking,
we propose a background-aware adaptation method to update
the student network for further performance improvement.

The student network is a lightweight feature extraction back-
bone. The model size of the student network is only 1.5 MB
while the original size of the teacher network is 95 MB (i.e.,
63× smaller). When integrated with the proposed lightweight
backbone, the state-of-the-art deep CF trackers including ECO
[5] and DeepSTRCF [9] are able to achieve real-time speed on
a single-core CPU while maintaining almost the same tracking
accuracy on prevalent tracking benchmarks.

We summarize the contributions of our work as follows:
• We compress and adapt off-the-shelf deep CNN models

into lightweight backbones by knowledge distillation. We
propose a fidelity loss and a correlation tracking loss to
jointly compress the network and transfer its objective
from object recognition to visual tracking.

• We propose to distillate student network via hierarchical
CNN representations offline. We propose a background-
aware adaption method to incrementally fine-tune the
student network to adapt to target appearance changes.

• We integrate the proposed lightweight backbone into the
state-of-the-art deep CF trackers [5], [9]. Evaluations on
the large-scale benchmark datasets indicate the effective-
ness of the proposed method in terms of the real-time
speed and tracking accuracy.

In the following of the paper, we describe the related work
in Section II, correlation tracking in Section III, the proposed
approach in Section IV, and experiments in Section V. Finally,
we conclude the paper in Section VI.

II. RELATED WORK

In this section, we briefly survey the closely related litera-
ture on three aspects: tracking by correlation filters, real-time
tracking, and network compression.

A. Correlation Tracking

Correlation filters have been widely studied in visual track-
ing since the MOSSE method [1] was proposed by Bolme
et al. in 2010. The correlation filter is trained by minimizing
a ridge regression loss for all circular shifts of the training
sample, which can be efficiently solved in the Fourier do-
main [12]. Heriques et al. exploited the circulant structure
of training patches in the kernel space [2]. The SRDCF
tracker [13] alleviates the boundary effects by penalizing
correlation filter coefficients depending on spatial locations.
The CSR-DCF algorithm [14] constructs filters with channel
and spatial reliability. The C-COT [15] adopts a continuous-
domain formulation and is further improved by an efficient
convolution operator (ECO [5]). The recent DRT tracker
[16] jointly learns the discrimination and reliability of CF.
In addition, multiple kernels [17], combination with particle
filter [18], re-detection mechanism for long-term scenario
[19], [20] and ensemble learning schemes [21]–[23] have

also been investigated in the CF family. In recent years, the
combination of CF trackers and deep features from off-the-
shelf CNN models has demonstrated impressive results [4],
[5], [24]. Even though state-of-the-art results can be obtained
by leveraging deep feature representations, the characteristic
real-time efficiency of the correlation filter has gradually
faded due to the adopted heavyweight CNN model. In this
work, different from the above approaches putting emphasis
on learning more discriminative filters, we focus on learning
a distilled lightweight backbone network that enables high-
performance real-time correlation tracking even on a single-
core CPU.

B. Real-time Tracking

The Siamese network has been widely studied for real-time
tracking. The fully convolutional Siamese Network (SiamFC)
regards the tracking task as a similarity learning problem, and
compares the template patch with the candidate patches in
the search patch in a sliding-window manner. On the basis
of the SiamFC framework [25], the correlation layer [26],
attention mechanism [27], semantic branch [28] and unsuper-
vised learning scheme [29] are widely explored. The recent
region proposal Siamese network [30], [31] achieves higher
speed compared with SiamFC [25] by discarding multiple-
scale estimation. However, the Siamese networks heavily rely
on powerful GPUs and the running speed on CPU is only 2∼3
FPS [32] due to heavyweight model complexity.

On the other hand, CF trackers can achieve real-time speed
when using lightweight hand-crafted features such as HOG
and ColorNames [2], [9], [22], [33], but they typically have
an obvious performance gap with the remarkable deep CF
trackers. Equipped with CNN features, CF trackers achieve
state-of-the-art tracking accuracy but suffer from a large
computational cost. Methods of feature dimension reduction,
such as PCA [34], factorized convolution operator [5], and
encoder network [35], can reduce the feature complexity to
some extent. However, these methods have to first extract
high-dimensional CNN features from the original heavyweight
deep models. In contrast, our method produces a lightweight
network offline for efficient feature extraction, which not only
naturally reduces the feature dimension but also greatly saves
the feature extraction time.

C. Network Compression

There are two typical network compression approaches
involving model pruning and knowledge distillation. Model
pruning [36] usually removes unimportant filter weights and
utilizes online fine-tuning to recover accuracy. Knowledge
distillation [10], [11] is based on the observation that a
small network has similar representation capability as a large
network but is usually harder to train solely [37]. Knowledge
distillation [10], [11] uses a powerful teacher network to guide
a smaller student network. The student is forced to mimic the
feature representation [11], [37] or classification probabilities
[10] of its teacher. However, previous methods usually com-
press models directly on the same vision task (e.g., image
classification). In contrast, our method not only compresses

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 3

M
od

el
C

om
pr

es
si

on

Template

Search

Te
ac

he
r

Te
ac

he
r

St
ud

en
t

St
ud

en
t

 Fidelity
 Loss

Tracking
 Loss

Loss

X

Z

 Multi-level Filter
Learning & Tracking 

 Fidelity
 Loss

M
od

el
C

om
pr

es
si

on
 M

od
el

Tr
an

sf
er

Offline Lightweight Backbone Network Learning Process Online Tracking

CF tracker
e.g., ECO, STRCF

Lightweight Backbone

CPU real-time speed
 & accurate results

Tracking Video
2)()(xx  

)(x

)(z

)(z
2)()(zz  

)(x

Fig. 2. Pipeline of knowledge distillation and online prediction. We learn to offline compress the teacher network by using the proposed fidelity loss and
correlation tracking loss. In the online stage, the distilled student network adapts to the target object of each input video sequence and helps track the target
object real-time on a single-core CPU.

the deep models but also transfers the objective to the tracking
task. Therefore, the distillation and tracking processes are
jointly optimized in an end-to-end manner. Unlike existing
methods that usually compress the model by 4× or 8× with
limited speed acceleration [10], [11], by virtue of collaborative
training, we achieve a much larger compression rate of 63×
while maintaining almost the same tracking accuracy. In [38],
the classic knowledge distillation scheme is used to compress
off-the-shelf CNN networks in the tracking framework. We
note that how to bridge the gap between object recognition and
visual tracking is not fully explored. In this work, we propose
to simultaneously distill the pretrained networks and narrow
the task gap, which helps our method to achieve a much
higher compression rate and a real-time speed on CPU. To
further reduce the model degradation caused by compression,
we propose multiple-level knowledge transfer and employ a
background-aware online adaption scheme to fine-tune the
student network for each sequence.

III. REVISITING CORRELATION TRACKING

A typical CF based tracker [1], [2] is trained using an image
patch x centered around the target. All of the circular shifts
of the target patch x are generated as training samples with
Gaussian function labels. Considering the feature embedding
ϕ(·), the filter w can be trained by minimizing the following
regularized regression objective:

min
w

∥∥∥∥∥
D∑
i=1

ϕi(x) ?wi − y

∥∥∥∥∥
2

+ λ

D∑
i=1

‖wi‖2, (1)

where λ is a regularization parameter, D is the number of
feature channel, ? denotes the circular correlation and y is

the desired Gaussian label. The correlation filter on the d-
th (d ∈ {1, · · · , D}) channel can be efficiently learned as
follows:

ŵd =
ŷ∗ � ϕ̂d(x)∑D

i=1 ϕ̂i(x)� ϕ̂∗
i (x) + λ

, (2)

where � is the element-wise product, hat notation ·̂ denotes
the Discrete Fourier Transform (DFT) and ·∗ is the complex-
conjugate operation.

In the next frame, a search patch z with the same size of
x is cropped out for predicting the target position, and the
corresponding response r is computed by

r = F−1

(
D∑
i=1

ŵ∗
i � ϕ̂i(z)

)
, (3)

where F−1(·) is the inverse DFT. Since a higher feature di-
mension D implies a larger computation burden, a lightweight
feature backbone network not only accelerates feature extrac-
tion but also expedites the correlation filter learning (Eq. 2)
and detection (Eq. 3) processes.

In this work, we aim to train a lightweight backbone
network for efficient correlation tracking. To verify the ef-
fectiveness and generality, we select a baseline and two state-
of-the-art CF frameworks as follows:

• KCF [2] (in TPAMI 2015) is a plain CF tracker with-
out bells and whistles. We use it to verify the feature
representation capability between the teacher and student
networks.

• ECO [5] (in CVPR 2017) is based on the C-COT [15]
tracker and integrates several efficient strategies. ECO
adopts the features from VGG-M. We develop the fast
version (fECO) using our distilled lightweight model.

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 4

• STRCF [9] (in CVPR 2018) is a CF tracker with a
Spatial-Temporal Regularization. STRCF shows impres-
sive performance with hand-crafted features, and Deep-
STRCF using VGG-M achieves further improvement but
the speed is greatly limited. We implement a fast version,
namely fDeepSTRCF, using our model.

IV. PROPOSED METHOD

Figure 2 shows an overview of our framework involving
offline knowledge distillation and online prediction. In the
offline knowledge distillation step, we use two teacher net-
works and two shared-weight student networks. The VGG-
M [39] is selected as the teacher network, which is widely
used in deep CF trackers [5], [9], [15], [16], [40]. We first
randomly prune the teacher network to initialize the stu-
dent network. Specifically, for one convolutional layer of the
teacher network, we randomly prune 7/8 filters in the current
layer and the corresponding 7/8 channels in each filter of the
next convolutional layer. The student networks aim to produce
similar feature representations of the teacher networks while
reducing around 63 times of the model storage. Figure 3 shows
the detailed architectures of the student and teacher networks
where the filter capacity of the student network is 64 times
smaller than that of the teacher network in each layer except
in the first layer. As a result, the teacher network without fully
connected layers is 95 MB while our lightweight model is only
1.5 MB. We denote the distilled student network as CF-VGG.

In the following, we first introduce how to offline compress
and transfer deep models for efficient tracking in Section IV-A.
Then we present the efficient online adaptation scheme in
Section IV-B.

A. Joint Model Transfer and Compression

In the offline training step, we propose two types of losses
to simultaneously compress and transfer the teacher network:
1) The fidelity loss ensures the same feature representation
capability between the student and teacher networks. 2) The
correlation tracking loss transfers the source objective of clas-
sification into the target objective of regression for tracking.
The fidelity loss mainly maintains the semantic description
in high levels, while the tracking loss learns the similarity
(or template matching) to evaluate the minor appearance
changes of target objects between frames. By joint training,
semantic features can complement the appearance features.
These two losses constitute the final objective function, which
is formulated as:

Loffline = Ltracking + λLfidelity + γ‖Θ‖2, (4)

where λ is a hyper-parameter balancing the influences of these
two losses, Θ denotes the learnable parameters of the student
network and the last term is the weight decay. In the following,
we present the details of the semantic fidelity loss Lfidelity and
the correlation tracking loss Ltracking.

96 3 7 7

256 96 5 5

512 256 3 3

512 512 3 3

512 512 3 3

ReLU, LRN, Pool

ReLU, LRN, Pool

ReLU

ReLU

Teacher Network

12 3 7 7

32 12 5 5

64 32 3 3

64 64 3 3

64 64 3 3

ReLU, LRN, Pool

ReLU, LRN, Pool

ReLU

ReLU

Student Network

FC1, FC2…

ReLU, Pool

Fig. 3. Architecture comparison between the teacher and student networks.
The numbers in each convolutional layer indicate the filter number, filter
channel, filter width and height, respectively. Notice that the student network
reduces 8 times of both filter numbers and channels, which takes around 64
times smaller than the teacher network.

1) Semantic Fidelity Loss: Once we initialize the student
network by filter pruning, the feature dimensions of the
student and teacher networks are different. We use a 1×1
fully convolutional operation to match their feature dimension.
Given a target patch x and a search patch z, the features from
the student network and the teacher network should be as
similar as possible. We propose a fidelity loss to measure the
feature differences. Formally, we define the fidelity loss as:

Lfidelity = Ltarget + Lsearch

= ‖ϕ(x)− ψ(x)‖2 + ‖ϕ(z)− ψ(z)‖2,
(5)

where ϕ(·) represents the trainable feature embedding of the
student network (its notation Θ is omitted for clarity), and
ψ(·) is the fixed embedding of the teacher network.

2) Correlation Tracking Loss: In addition to the fidelity
loss, we propose the correlation tracking loss to modify the
objective of the student network from classification to regres-
sion. We feed the search patch and the target patch into the
student network to obtain their features and use a CF to model
the response map regression. The circular correlation can be
computed in the Fourier domain with a closed-form solution
[2], [33] and the backward formulas can also be efficiently
derived. The corresponding loss function is the L2 distance
between the correlation response map r and the groundtruth
label g as follows:

Ltracking = ‖r− g‖2,
s.t. r = F−1 (ŵ∗ � ϕ̂(z)) ,

ŵ =
ŷ∗ � ϕ̂(x)

ϕ̂(x)� ϕ̂∗(x) + λ
,

(6)

where g is a Gaussian map centered at the annotated target
location. For clarity, in comparison with Eq. 2, we omit the
feature dimension D in Eq. 6 and the subsequent equations.
The back-propagation of the above loss with respect to ϕ(x)
and ϕ(z) are given by Eq. 7 below. Interested readers can refer
to [26], [41] for more details.

∇ϕ(x)L = F−1
(
∇ϕ̂∗(x)L+ (∇ϕ̂(x)L)∗

)
,

∇ϕ(z)L = F−1
(
∇ϕ̂∗(z)L

)
.

(7)

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 5

CF
 T

ra
ck

er

Low Middle High

CF

 L
os

s

Low Middle High

CF
 T

ra
ck

er

Low Middle High

CF
 L

os
s

Low Middle High

Fig. 4. Existing deep CF trackers learn correlation filters directly on multi-
layer CNN features (left). Our framework aims at distilling a lightweight CNN
backbone using back propagation to fine-tune multiple layers (right).

Furthermore, we perform the model transfer with multiple-
level feature representations. Unlike existing deep CF trackers
[4], [5], [15], [24] that simply integrate multiple CNN layers
with empirical or learnable weights to boost the performance
(see Figure 4), we separately apply the trainable constraint
to multiple CNN layers to fine-tune the student network.
This helps the student network not only fit the correlation
tracking task better but also maintain a richer representation
capability than only using the features from the last CNN
layer (see more experiments in Section V-B). In this work,
we take the first, second and last convolutional layers before
their pooling operations as the low, middle and high-level
feature representations, respectively. The final tracking loss is
formulated as:

Ltracking =
∑
l

‖rl − gl‖2,

s.t. rl = F−1 (ŵ∗
l � ϕ̂l(z)) ,

l ∈ {high, middle, low},

(8)

where l means the index of the feature representation level.
gl contains the groundtruth labels, which are all Gaussian
maps but with different spatial sizes. ϕl(·) denotes the feature
embedding of the student network on the l-th level. The CFs
with different levels of features (i.e., wl) are learned using
Eq. 2.

B. Background-Aware Online Adaptation

The offline distillation decreases the network capacity while
preserving the feature representation. In the tracking scenarios,
objects belonging to the same category may be labeled differ-
ently according to the first frame annotations. Figure 5 shows
an example where only one athlete is positively labeled while
the remaining are labeled as negative. In order to increase
the feature discrimination, we online fine-tune the student
network using the annotations in the first frame. Our idea
is motivated by the context-aware correlation filter (CACF)
[42] that regresses hard negative samples x− to the negative
labels. These hard negative samples do not overlap with the
target object. In CACF [42], the context-aware information is
learned through:

min
w
‖ϕ(x+) ?w − y‖2 + λ1‖w‖2 + λ2

k∑
i=1

‖ϕ(x−
i) ?w‖2,

(9)
where x+ is the positive training sample including the target
and x−

i collects the negative samples that do not overlap

Template
 Patch

x

Search Patch Z Search Patch Z

Fig. 5. Illustration of sample generation for background-aware online adap-
tation. Given the first frame, the template x is cropped centered at the target
position. The foreground patches z+ contain the target. We augment the
foreground patches for training. The background patches z− do not include
the target and their corresponding labels are set to zero.

with the target region. Given pretrained deep features, the
CACF method enhances the filter-level discriminative capa-
bility. However, in our work, we explore the background-
aware information in model training to boost the feature-level
representation.

In the offline distillation step, all the training samples
contain the target object, which helps discriminate the target
from the background in a limited neighborhood. During online
fine-tuning, we incorporate more negative samples to help
the student network better distinguish the target from the
background where hard negative objects may exist. To this end,
we crop both positive and negative samples online, as shown
in Figure 5. For positive samples, we augment them through
randomly flipping, shifting, increasing blur, and changing the
illumination. Finally, the target patch x is fed into the template
branch. Positive z+ and negative z− search samples are fed
into the search branch in Figure 2. For online adaptation, we
jointly exploit the multi-level transfer and background-aware
formulation. The online tracking loss L′tracking is as follows:

L
′

tracking =
∑
l

(
‖r+

l − gl‖2 + ‖r−l ‖
2
)
,

s.t. r+
l = F−1

(
ŵ∗

l � ϕ̂l(z
+)
)
,

r−l = F−1
(
ŵ∗

l � ϕ̂l(z
−)
)
,

l ∈ {high, middle, low},

(10)

where + and − on the label r and search patch z denote
the positive and negative annotations, respectively. As for the
fidelity loss, since we still want the student network to mimic
its teacher on the current video, Lfidelity is kept the same as in
Eq. 5. The online fine-tuning is only performed on the initial
frame and its loss is given as follows:

Lonline = L
′

tracking + λLfidelity + γ‖Θ‖2. (11)

C. Efficient Online Correlation Tracking
After we have the distilled lightweight backbone, we remove

the additionally added 1×1 convolutional kernel, and take
the output of the remaining convolutional layers to facilitate
existing CF frameworks for online tracking. We select three
representative methods (i.e., KCF [2], ECO [5], and STRCF
[9]) as introduced in Section III.

V. EXPERIMENTS

In this section, we first illustrate the implementation details
and the evaluation configurations. Then we conduct an ablation

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 6

study to demonstrate the effectiveness of our method. Finally,
we compare with state-of-the-art trackers.

A. Experimental Details

Implementation Details. We use the videos for object de-
tection from the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC 2015) [43] dataset to offline distill the stu-
dent network. During training, we use the stochastic gradient
descent (SGD) solver and set the momentum and weight decay
as 0.9 and 0.005, respectively. We train the network for 50
epochs with a learning rate exponentially decreased from 10−2

to 10−5. The multi-task weighting parameter λ in Eq. 4 and
Eq. 11 is set to 10−5. In the online adaptation stage, we fine-
tune the student network for only 8 iterations using the samples
from the first frame. In each iteration, we crop 32 positive and
negative samples as shown in Figure 5. We implement our
method using MatConvNet [44] on a PC with a 4GHz CPU
and an Nvidia GTX 1080TI GPU. The source code will be
available at: https://github.com/594422814/CF-VGG.git

Benchmarks and Evaluation Metrics. We evaluate our
tracker on the OTB-2013 [45], OTB-2015 [8], and Temple-
Color [46] datasets, which contain 50, 100 and 128 chal-
lenging videos, respectively. We report the overlap success
plots on these datasets using one-pass evaluation (OPE) [8],
[45] and take the area-under-curve (AUC) scores to evaluate
the performance. In addition, we evaluate our tracker on the
VOT-2016 [47] and VOT-2017 [48] datasets. The performance
is measured by two independent metrics: accuracy (average
overlap during successful tracking) and robustness (reset rate).

B. Ablation Study

We evaluate the effectiveness of the components of the pro-
posed algorithm in terms of computational efficiency, tracking
accuracy, and model representation capability.

Efficiency. Table I compares the efficiency and model size
of our CF-VGG with the original teacher network VGG-M.
These two networks are integrated into the state-of-the-art
CF trackers ECO and DeepSTRCF. We observe that it takes
around 76 ms for the VGG-M network to extract features on
the CPU, which is 8 times slower than that using our distilled
CF-VGG network. The distilled deep features accelerate the
ECO and DeepSTRCF trackers and are more than 5 times
faster on the CPU. The improved fECO and fDeepSTRCF
trackers take 27 FPS and 20 FPS vs. their original speed 5
FPS and 3 FPS, respectively.

In addition to the comparison with CF trackers using VGG-
M, we further analyze some other representative real-time
trackers. Figure 6 shows the comparison results of some
widely adopted backbones on FLOPs metric (only feature
extraction part). The number of float-point operations (FLOPs)
of the convolutional layer is calculated as follows,

FLOPs = (CinK
2 + 1)HWCout, (12)

where Cin is the input feature map channel, K is the kernel
width (assumed to be symmetric), +1 means the computation
of bias operation, and H , W and Cout are the height, width and

TABLE I
COMPUTATION COMPARISON BETWEEN THE ECO/DEEPSTRCF

TRACKERS AND OUR IMPROVED VERSIONS ON THE OTB-2013 DATASET.
WE USE FLOAT-POINT OPERATIONS (FLOPS) OF CONVOLUTION

OPERATION TO MEASURE THE COMPUTATIONAL COMPLEXITY, WHERE B
INDICATES BILLION. IN PRACTICE, THE ACTUAL SPEEDUP RATIO IS MUCH

SLOWER THAN FLOPS.

Backbone Model Model CPU Feature CPU GPU
Model Size FLOPs Extraction FPS FPS

ECO [5] VGG-M [39] 95 MB 1.82 B 76 ms 5 9
fECO CF-VGG 1.5 MB 0.048 B 9 ms 27 >48
DeepSTRCF [9] VGG-M [39] 95 MB 1.82 B 76 ms 3 5
fDeepSTRCF CF-VGG 1.5 MB 0.048 B 9 ms 20 >35

Float-Point Operations (FLOPs) of Convolution Operation

SiamFC (AlexNet)

ECO (VGG-M)

RT-MDNet (VGG-M)

Ours (CF-VGG)

)10(9

Fig. 6. Model computation complexity comparison. Our proposed lightweight
CF-VGG produces much fewer FLOPs, which guarantees the CPU real-time
correlation tracking.

channel number of the output feature maps, respectively. In
Table II, we exhibit the feature map sizes and feature channels
of different backbone networks. The AlexNet backbone is
typically used in Siamese trackers [25], [28] and the VGG-
M network is widely adopted in classification based trackers
[49]–[51] and CF trackers [5], [9]. After computing the FLOPs
of different backbone networks via Eq. 12, we can observe
that our tiny model is extremely efficient than modern off-the-
shelf models. The FLOPs of the feature extractor in SiamFC
and ECO are 3.12 × 109 and 1.82 × 109 while ours is only
4.79× 107, as shown in Figure 6.

The Siamese trackers [25], [28], [53], [54] adopt AlexNet-
like [52] fully-convolutional networks to predict target location
in an end-to-end manner. Their tracking speed can be signifi-
cantly accelerated to over 80 FPS by a powerful GPU because
the fully-convolutional structure adequately exploits the GPU
device. However, on a single CPU, the Siamese trackers are
unlikely to achieve real-time performance [32], whereas our
improved CF trackers can. The recent real-time MDNet tracker
[55] modifies the first three convolutional layers of VGG-
M and uses ROI Align for efficient binary classification.

TABLE II
COMPARISON OF THE FEATURE MAP SIZES AND FEATURE CHANNELS OF

DIFERENT NETWORKS INCLUDING ALEXNET [52], VGG-M [39] AND
OUR CF-VGG.

AlexNet (SiamFC [25]) VGG-M (ECO [5]) CF-VGG (fECO)
Input 255 × 255 × 3 224 × 224 × 3 224 × 224 × 3
Conv1 123 × 123 × 96 112 × 112 × 96 112 × 112 × 12
Pool1 61 × 61 × 96 56 × 56 × 96 56 × 56 × 12
Conv2 57 × 57 × 256 28 × 28 × 256 28 × 28 × 32
Pool2 28 × 28 × 256 14 × 14 × 256 14 × 14 × 32
Conv3 26 × 26 × 192 14 × 14 × 512 14 × 14 × 64
Conv4 24 × 24 × 192 14 × 14 × 512 14 × 14 × 64
Conv5 22 × 22 × 128 14 × 14 × 512 14 × 14 × 64

https://github.com/594422814/CF-VGG.git

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 7

TABLE III
PERFORMANCE AND SPEED ANALYSIS ON DIFFERENT COMPRESSION

RATIOS. THE BASELINE TRACKER IS ECO, AND IS EVALUATED ON THE
OTB-2015 BENCHMARK [8] USING AUC METRIC. TO ACHIEVE BOTH

SATISFYING CPU REAL-TIME EFFICIENCY AND PERFORMANCE, WE
CHOOSE THE COMPRESSION RATE OF 64×.

Compression Ratio Baseline 1× 16× 32× 64× 96×
Model Size (MB) 95 MB 95 MB 5.8 MB 2.9 MB 1.5 MB 0.99 MB
AUC Socre (%) 69.4 69.6 69.0 68.5 68.2 66.9
CPU Speed (FPS) 5 5 9 16 27 35

However, its backbone network still produces high FLOPs
and the further online fine-tune prevents its CPU real-time
performance. For CF trackers, only the deep feature extraction
process benefits from GPU and the tracking part just uses CPU
even without optimization. Besides, ECO [5] and STRCF [9]
methods use a time-consuming alternating direction method of
multipliers (ADMM) or Conjugate Gradient (CG) for online
algorithm optimization. Thus, existing speed comparison that
does not distinguish CPU and GPU environments is not very
fair. With only CPU, the Siamese tracker (e.g., SiamFC) of
more than 80 FPS cannot achieve real-time speed [32] but
ours can make it, which already proves the efficiency of CF
trackers using our tiny model.

Compression Ratio. In this work, we compress the off-the-
shelf model by an extremely high ratio of about 63×. In
Table III, we evaluate the performance, model size and CPU
speed under different network compression ratios. The 1×
compression ratio means that the network is not pruned, but
still fine-tuned by the fidelity loss and correlation tracking loss.
It slightly outperforms the teacher model, which shows that our
joint training scheme is effective and the tracking loss slightly
fine-tunes the uncompressed model. To achieve CPU real-time
speed, we choose the compression ratio of 64×. Except for
the better efficiency, by adopting our lightweight model, the
required storage room is also greatly saved (our 1.5 MB vs.
original 95 MB).

Tracking Accuracy. In Table IV, we show the performance
evaluation results using different configurations to distill the
student network. To obtain a tiny model, an optional choice is
directly training a tiny CF-VGG from scratch using classifica-
tion loss following VGG-M, but its performance is unsatisfied
since it may not suit the tracking task. In contrast, we propose
to jointly compress and transfer a teacher network. When
using only the fidelity loss (i.e., shown as “only fidelity
loss”), the tracking accuracy decreases by 4∼5% for ECO.
Meanwhile, using only tracking loss decreases the accuracy
by 3∼4% as well. However, equipped with both the fidelity
and tracking losses, we significantly improve the performance,
which means the high-level semantic features can complement
the multi-level appearance features trained via tracking loss.
When integrated into DeepSTRCF, we find that the improved
fDeepSTRCF tracker achieves higher accuracy on both the
OTB-2013 and OTB-2015 datasets. Our performance slightly
decreases on the Temple-Color dataset. Finally, with online
adaptation (i.e., “offline + online”), the trackers show slightly
better results and the performance gap is only about 1∼2%

TABLE IV
COMPARISON OF TRACKING ACCURACY UNDER DIFFERENT TRAINING

CONFIGURATIONS. WE REPORT AUC SCORES ON THE OTB-2013 [45],
OTB-2015 [8], AND TEMPLE-COLOR [46] DATASETS. THE VALUES IN

BRACKETS DENOTE THE PERFORMANCE GAP COMPARED WITH THE
CORRESPONDING BASELINE WITH UNCOMPRESSED DEEP MODEL.

Trackers of different variations OTB-2013 OTB-2015 TC-128
ECO (baseline) 71.0 69.4 60.3
ECOhc (hand-crafted feature) 65.6 64.6 54.7
fECO (pretrained tiny model) 66.0 (-5.0) 65.5 (-3.9) 55.4 (-4.9)
fECO (only fidelity loss) 66.1 (-4.9) 65.1 (-4.3) 55.0 (-5.3)
fECO (only tracking loss, single-scale) 65.2 (-5.8) 64.6 (-4.8) 54.6 (-5.7)
fECO (only tracking loss, multi-scale) 66.3 (-4.7) 65.9 (-3.5) 55.9 (-4.4)
fECO (fidelity + multi-scale tracking) 68.4 (-2.6) 67.9 (-1.5) 57.4 (-2.9)
fECO (offline + online fine-tune) 68.5 (-2.5) 68.2 (-1.2) 57.4 (-2.9)
DeepSTRCF (baseline) 69.2 68.5 59.9
STRCF (hand-crafted feature) 66.5 64.8 54.9
fDeepSTRCF (pretrained tiny model) 65.1 (-4.1) 65.2 (-3.3) 55.2 (-4.7)
fDeepSTRCF (only fidelity loss) 65.6 (-3.6) 65.5 (-3.0) 55.1 (-4.8)
fDeepSTRCF (only tracking loss, single-scale) 65.7 (-3.5) 65.4 (-3.1) 54.8 (-5.1)
fDeepSTRCF (only tracking loss, multi-scale) 66.9 (-2.3) 66.0 (-2.5) 55.5 (-4.4)
fDeepSTRCF (fidelity + multi-scale tracking) 69.4 (+0.2) 67.8 (-0.7) 56.9 (-3.0)
fDeepSTRCF (offline + online fine-tune) 70.3 (+1.1) 68.6 (+0.1) 57.3 (-2.6)

TABLE V
FEATURE REPRESENTATION CAPABILITY COMPARISON BETWEEN VGG-M

AND OUR COMPRESSED MODEL. WE PRESENT AUC SCORES ON THE
OTB-2015 [8] DATASET. OUR FKCF ACHIEVES COMPARABLE

PERFORMANCE ON EACH SINGLE FEATURE LAYER WITH ITS TEACHER.

Backbone Model Low-level Middle-level High-level CPU
Model Size Conv 1 Conv 2 Conv 5 FPS

KCF VGG-M [39] 95 MB 48.0 50.6 49.2 6
fKCF CF-VGG 1.5 MB 46.8 (-1.2) 51.0 (+0.4) 47.1 (-2.1) 48

compared to the baselines with uncompressed deep features.
In addition, our improved fECO and fDeepSTRCF trackers
achieve much higher performance than ECOhc and STRCF,
which both use hand-crafted features.

For tracking speed computation, we do not include the initial
adaptation time, which will slightly reduce the average speed
(about 3∼5 FPS on a CPU). However, it is worth mentioning
that the offline pretrained CF-VGG model already works well
even without online adaptation.

Model Representation Capability. The state-of-the-art CF
trackers (i.e., ECO and DeepSTRCF) employ spatial reg-
ularization to reduce boundary effects in learning correla-
tion filters. This may leave the concern that how likely the
compressed CF-VGG model can maintain the presentation
capability of deep models. To demonstrate the effectiveness
of CF-VGG, we use the baseline KCF method [2] to evaluate
the performance on each single feature level without bells
and whistles. Table V shows that KCF with CF-VGG exhibits
comparable performance with the original teacher network.
This clearly indicates that the distilled student network almost
maintains the same feature representation capability even
though its model size is 63 times smaller than its teacher
network.

C. Comparison with State-of-the-arts

We compare our fECO and fDeepSTRCF with 20 state-
of-the-art trackers, which are mainly categorized as real-time
trackers and non-realtime trackers.

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 8

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e
Success plots of OPE

fDeepSTRCF [70.3]
fECO [68.5]
BACF [67.1]
SiamRPN [66.4]
TRACA [65.4]
Staple [62.1]
CFNet [61.5]
SiamFC [61.1]
ACFN [60.7]
SCT4 [60.5]
CSR-DCF [59.1]
KCF [52.4]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE

VITAL [71.5]
MDNet [71.2]
fDeepSTRCF [70.3]
fECO [68.5]
DSLT [68.3]
MCPF [68.2]
C-COT [68.0]
CREST [67.5]
SRDCFdecon [65.6]
ADNet [64.9]
DeepSRDCF [64.3]
HCF [61.0]

Fig. 7. Success plots of real-time trackers (left) and non-realtime trackers
(right) on the OTB-2013 [45] dataset. In the legend, we show the area-under-
curve (AUC) score.

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE

fDeepSTRCF [68.6]
fECO [68.2]
SiamRPN [63.7]
BACF [63.3]
TRACA [60.2]
Staple [59.3]
CSR-DCF [58.5]
SiamFC [58.2]
ACFN [57.0]
CFNet [56.8]
SCT4 [54.0]
KCF [48.5]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE

fDeepSTRCF [68.6]
fECO [68.2]
VITAL [68.2]
C-COT [68.1]
MDNet [67.6]
DSLT [66.3]
DeepSRDCF [64.2]
ADNet [63.6]
MCPF [63.5]
SRDCFdecon [63.4]
CREST [62.9]
HCF [57.0]

Fig. 8. Success plots of real-time trackers (left) and non-realtime trackers
(right) on the OTB-2015 [8] dataset. Our trackers obviously surpass other
real-time methods and even outperform most non-realtime deep trackers.

• Real-time Trackers: For comprehensive comparison, we
collect recent high-performance real-time trackers includ-
ing TRACA [35] (100 FPS), SiamRPN [30] (160 FPS),
BACF [56] (35 FPS), CFNet [26] (65 FPS), CSR-DCF
[14] (15 FPS), ACFN [57] (15 FPS), SiamFC [25] (86
FPS), Staple [21] (70 FPS), SCT4 [58] (50 FPS), and
KCF [2] (270 FPS). It should be noted that some of
these trackers require GPU to achieve high speed (e.g.,
TRACA, SiamRPN, CFNet, ACFN, and SiamFC). In
contrast, our methods are free of such requirement.

• Non-realtime Trackers: We compare with high accuracy
trackers including VITAL [50] (1.5 FPS), DSLT [59] (5
FPS), CREST [60] (3 FPS), MCPF [61] (2 FPS), ADNet
[62] (1 FPS), C-COT [15] (0.3 FPS), MDNet [49] (1
FPS), SRDCFdecon [63] (3 FPS), DeepSRDCF [40] (<1
FPS), and HCF [4] (12 FPS). Among these trackers,
only C-COT and SRDCFdecon are tested on CPU and
all the other trackers rely on a high-end GPU. Although
these trackers achieve state-of-the-art performance on the
benchmarks, their computational load limits the practical
usage. In the following experiments, we will show that
our CPU real-time methods still outperform most of them.

OTB-2013 Dataset. On the OTB-2013 benchmark, our fECO
and fDeepSTRCF achieve the AUC scores of 68.7% and
70.5%, respectively. Figure 7 (left) shows that our trackers
perform better over other real-time trackers such as the recent
BACF [56], SiamRPN [30] and TRACA [35]. In Figure 7
(right), we can observe that our methods achieve comparable
or even better results compared with the recent low-efficiency
deep trackers. It should be noted that most remarkable non-
realtime trackers (e.g., VITAL [50] and MDNet [49]) cannot

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE

fECO [57.4]
fDeepSTRCF [57.3]
Staple [50.9]
SiamFC [50.5]
BACF [50.1]
CSR-DCF [47.9]
SCT4 [46.8]
CFNet [45.8]
KCF [38.9]

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

Success plots of OPE

C-COT [58.3]
fECO [57.4]
fDeepSTRCF [57.3]
MCPF [55.3]
DeepSRDCF [54.5]
SRDCFdecon [54.3]
HCF [48.2]

Fig. 9. Success plots of real-time trackers (left) and non-realtime trackers
(right) on the Temple-Color [46] dataset. Our trackers show outstanding per-
formance among real-time trackers and comparably favorable results among
non-realtime trackers.

TABLE VI
THE EXPECTED AVERAGE OVERLAP (EAO) OF STATE-OF-THE-ART

METHODS ON THE VOT-2016 [47] (LEFT) AND VOT-2017 [48] (RIGHT)
DATASETS. THE COMPARATIVE METHODS INCLUDE THE TOP PERFORMERS

ON BOTH DATASETS, OUR BASELINE METHODS (ECO [5] AND
DEEPSTRCF [9]) AND THE RECENTLY PROPOSED TRACKERS.

Trackers EAO

N
on

-r
ea

lti
m

e

ECO [5] 0.374
DSLT [59] 0.332
VITAL [50] 0.323
FlowTrack [64] 0.334
DeepSTRCF [9] 0.313
C-COT [15] 0.331
MDNet [49] 0.227

R
ea

l-
tim

e
Tr

ac
ke

rs

SiamRPN [30] 0.344
SA-Siam [28] 0.291
StructSiam [53] 0.264
MemTrack [65] 0.273
ECOhc [5] 0.238
STRCF [9] 0.279
BACF [56] 0.233
Staple [21] 0.295
SiamFC [25] 0.277
fDeepSTRCF 0.308
fECO 0.339

Trackers EAO

N
on

-r
ea

lti
m

e

LSART [66] 0.323
CFCF [67] 0.286
ECO [5] 0.280
C-COT [15] 0.267
MCPF [61] 0.248
DeepSTRCF [9] 0.227
DLST [48] 0.233

R
ea

l-
tim

e
Tr

ac
ke

rs

SiamRPN [30] 0.243
SiamDCF [48] 0.249
SA-Siam [28] 0.236
CSRDCF++ [14] 0.229
ECOhc [5] 0.238
STRCF [9] 0.162
UCT [48] 0.206
Staple [21] 0.169
SiamFC [25] 0.188
fDeepSTRCF 0.214
fECO 0.255

operate at a real-time speed even with the modern GPU device,
but ours are CPU real-time.

OTB-2015 Dataset. OTB-2015 is a popular tracking bench-
mark which extends the OTB-2013 dataset with additional 50
challenging videos. On this dataset, our fECO and fDeep-
STRCF exhibit the AUC scores of 68.2% and 68.6%, re-
spectively. Figure 8 shows that our methods outperform the
recent real-time trackers and perform favorably against non-
realtime deep trackers. The TRACA tracker [35] uses an
encoder network to reduce the feature channel and achieves
high speed on GPU. In contrast, our CF-VGG not only reduces
feature dimension but also greatly accelerates the feature
extraction time, which brings in real-time speed on the CPU
and better performance (about 8% higher in AUC). The recent
SiamRPN [30] improves the SiamFC tracker [25] and achieves
impressive performance. However, it needs GPU to achieve
high speed and our CPU real-time methods still outperform it
by about 5% in AUC score. The deep feature representation
of CF-VGG enables our trackers to surpass traditional CF
trackers using empirical features (e.g., BACF [56], Staple
[21], and CSR-DCF [14]). Furthermore, our methods even
outperform many recent deep trackers that run at only 1 FPS

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 9

TABLE VII
ATTRIBUTE-BASED EVALUATION ON THE OTB-2015 BENCHMARK [8]. THE EVALUATION METRIC IS THE AREA-UNDER-CURVE (AUC) SCORE OF THE

SUCCESS PLOT. THE FIRST AND SECOND HIGHEST VALUES ARE HIGHLIGHTED BY BOLD AND UNDERLINE.

IV SV OCC DEF MB FM IPR OPR OV BC LR Overall
TRACA [35] 61.8 56.8 57.1 56.0 58.7 57.4 58.0 59.3 56.5 60.6 50.5 60.2
SiamRPN [30] 65.7 62.0 59.4 60.8 62.6 59.8 62.3 62.3 55.8 60.9 67.8 63.7
BACF [56] 65.3 58.8 58.4 59.2 59.5 61.5 59.1 59.3 56.0 63.5 52.0 63.3
CFNet [26] 54.2 54.7 51.6 47.7 54.5 55.0 56.9 54.4 41.9 55.6 63.5 56.8
CSR-DCF [14] 54.0 52.0 53.8 53.4 58.4 57.5 51.1 51.1 51.0 52.7 44.4 58.5
ACFN [57] 56.5 56.3 54.5 53.6 56.4 57.0 54.5 54.6 51.4 54.8 52.0 57.0
SiamFC [25] 56.7 56.6 54.3 50.9 54.6 56.6 55.7 55.9 51.4 53.0 63.0 58.2
Staple [21] 60.4 54.3 55.3 55.9 55.7 55.1 56.2 54.8 51.2 59.0 40.3 59.1
SCT4 [58] 52.6 44.2 50.5 51.2 53.0 54.1 52.8 51.8 43.7 55.6 29.0 53.8
KCF [2] 48.7 39.7 44.9 44.5 46.8 46.6 47.6 45.9 39.7 50.4 28.8 48.3
fECO 69.1 65.4 66.2 64.8 67.3 64.5 62.8 65.6 63.0 68.5 54.1 68.2
fDeepSTRCF 68.5 66.9 65.6 64.9 67.9 66.1 63.5 66.6 62.4 67.5 64.5 68.6

TABLE VIII
ATTRIBUTE-BASED EVALUATION BETWEEN OUR METHODS AND THEIR CORRESPONDING BASELINES (ECO [5] AND DEEPSTRCF [9]) WITH

UNCOMPRESSED NETWORKS. THE AUC SCORE IS REPORTED ON THE OTB-2015 DATASET [8].

IV SV OCC DEF MB FM IPR OPR OV BC LR Overall
ECO [5] 71.2 68.2 68.0 63.4 70.4 68.1 65.4 67.5 67.1 71.2 58.1 69.4
fECO 69.1 65.4 66.2 64.8 67.3 64.5 62.8 65.6 63.0 68.5 54.1 68.2

∆ -2.1 -2.8 -1.8 +1.4 -3.1 -3.6 -2.6 -1.9 -4.1 -2.7 -4.0 -1.2
DeepSTRCF [9] 67.5 66.8 66.2 64.1 68.3 66.5 62.9 66.6 64.8 64.6 63.7 68.5
fDeepSTRCF 68.5 66.9 65.6 64.9 67.9 66.1 63.5 66.6 62.4 67.5 64.5 68.6

∆ +1.0 +0.1 -0.6 +0.8 -0.4 -0.4 +0.6 0 -2.4 +2.9 +0.8 +0.1

on GPU (e.g., VITAL [50] and MDNet [49]).

Temple-Color Dataset. We further evaluate our trackers on
the Temple-Color benchmark with 128 color videos. On the
Temple-Color, our fECO and fDeepSTRCF yield the AUC
scores of 57.4% and 57.3%, respectively. From the left figure
in Figure 9, we can observe that our trackers perform better
than state-of-the-art real-time trackers (e.g., BACF [56], Staple
[21] and SiamFC [25]). Compared with the non-realtime deep
trackers including C-COT [15] and MCPF [61], the improved
fECO and fDeepSTRCF trackers achieve comparable perfor-
mance.

VOT-2016 and VOT-2017 Datasets. Finally, we compare our
trackers with state-of-the-art methods on the VOT-2016 [47]
and VOT-2017 [48] benchmarks. On the VOT benchmark,
a tracker will be re-initialized when tracking failure occurs.
The expected average overlap (EAO) is the evaluation metric
which considers both the tracking accuracy (overlap with the
ground truth box) and robustness (failure times) [68]. As
shown in Table VI, our methods obviously outperform ECOhc
and STRCF. This affirms that CF-VGG performs favorably
against empirical features. In addition, our trackers achieve
comparable or even better results than the VOT-2016 top
performer C-COT [15], whose running speed is only 0.3 FPS
on a CPU. Compared with other state-of-the-art and recently
proposed trackers (e.g., SA-Siam [28], VITAL [50], DSLT
[59], SiamRPN [30], FlowTrack [64]), our methods overall
show competitive performance.

Attribute Evaluation. All the 100 videos in OTB-2015 [8]
are annotated with 11 different attributes, namely: background
clutter (BC), deformation (DEF), out-of-plane rotation (OPR),
scale variation (SV), occlusion (OCC), illumination variation
(IV), motion blur (MB), in-plane rotation (IPR), out of view

AU
C

(%
) o

n
O

TB
-2

01
5

Fig. 10. Attribute-based evaluation on the OTB-2015 benchmark [8]. The
evaluation metric is the area-under-curve (AUC) score of the success plot.
We also put the overall performance here (the last one) for comparison
convenience facing a single challenge and their combination. Only the top
6 real-time trackers are displayed for clarity. Our fDeepSTRCF and fECO
algorithms perform favorably against state-of-the-art real-time trackers in
various challenging scenes.

(OV), fast motion (FM) and low resolution (LR).
In Table VII and Figure 10, we show the comparison

results of 10 real-time trackers (these trackers are from Section
V-C) when facing the above challenging factors. The results
show that our fECO and fDeepSTRCF trackers obviously
outperform other competitors in almost all the challenging
scenes.

In Table VIII, we further compare our methods with their
teachers (i.e., ECO and DeepSTRCF) on attributed videos.
From the results, we can observe that our compressed model
is comparable with the teacher model in most attributes, but
performs not good enough in fast motion (FM), motion blur
(MB), out of view (OV) and low resolution (LR), which
indicates the representation capability of our student network
still has improvement room. It should be noted that the
model size of our network is only 1/63 of its teacher, so the

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 10

fECO fDeepSTRCF SiamRPN BACF TRACA CSR-DCF Staple SiamFC

Fig. 11. Qualitative evaluation of our trackers (e.g., fECO, fDeepSTRCF) and six other state-of-the-art real-time trackers including SiamRPN [30], BACF [56],
TRACA [35], CSR-DCF [14], Staple [21] and SiamFC [25] on 10 challenging sequences (from left to right and top to down: Bolt2, Box, Diving, DragonBaby,
Girl2, Human3, Singer2, Tiger1, Soccer and Skiing, respectively). Our fECO and fDeepSTRCF trackers perform favorably against the state-of-the-arts.

ECO fECO

Fig. 12. Failure cases of the proposed method. The videos are Ironman and Freeman4 from OTB-2015 [8]. Our compressed model struggles when an occlusion
or a drastic appearance change occurs.

slight performance degradation is bearable since our trackers
achieve superiorly balanced high performance and CPU real-
time efficiency.

Qualitative Evaluation. Figure 11 shows some comparison
results of our trackers (fECO and fDeepSTRCF) and other
six state-of-the-art real-time trackers including SiamRPN [30],
BACF [56], TRACA [35], CSR-DCF [14], Staple [21] and
SiamFC [25] on ten challenging sequences. From the results
in Figure 3, we can see that our fECO and fDeepSTRCF
trackers perform well on occlusion (e.g., Box, Girl2, Human3
and Soccer) and background clutter (e.g., Tiger1 and Soccer).
Compared with the recent real-time deep trackers (SiamRPN
[30] and TRACA [35]), our methods perform favorably against
them while exhibiting the CPU real-time speed.

D. Failure Cases
Finally, we show some failure cases of our method in Figure

12. In the video Freeman4, the target with low resolution
undergoes frequent occlusions in a short span of time, while
the Ironman in the second video occurs a drastic appearance
change. In these cases, our compressed model is not powerful
enough compared to the teacher network. In our future work,
we aim to include more training data and adopt a better net-
work structure to further enhance the representation capability
of the student model.

VI. CONCLUSION

In this paper, we propose to learn a lightweight backbone
network for real-time correlation tracking. By simultane-
ously compressing and transferring the teacher network pre-
trained on object recognition, we obtain a highly compressed

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 11

lightweight model (63× smaller) as the feature backbone.
Extensive experiments demonstrate that our training scheme
and strategies are effective and efficient. Even though being ex-
tremely lightweight, the proposed distilled backbone network
is sufficiently powerful and almost maintains the same feature
representation capability as the teacher network. Leveraging
our lightweight model for deep correlation tracking, the recent
top CF trackers consume much less memory storage and
show superiorly balanced high performance and CPU real-
time efficiency.

REFERENCES

[1] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2010.

[2] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), vol. 37, no. 3, pp.
583–596, 2015.

[3] K. Zhang, L. Zhang, M.-H. Yang, and D. Zhang, “Fast visual tracking via
dense spatio-temporal context learning,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2013.

[4] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical con-
volutional features for visual tracking,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2015.

[5] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg, “Eco:
Efficient convolution operators for tracking,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[6] G. Bhat, J. Johnander, M. Danelljan, F. S. Khan, and M. Felsberg,
“Unveiling the power of deep tracking,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 37, no. 9, pp. 1834–1848, 2015.

[9] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, “Learning spatial-
temporal regularized correlation filters for visual tracking,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[10] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[11] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Ben-
gio, “Fitnets: Hints for thin deep nets,” arXiv preprint arXiv:1412.6550,
2014.

[12] F. Liu, C. Gong, X. Huang, T. Zhou, J. Yang, and D. Tao, “Robust visual
tracking revisited: From correlation filter to template matching,” IEEE
Transactions on Image Processing (TIP), vol. 27, no. 6, pp. 2777–2790,
2018.

[13] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Learning
spatially regularized correlation filters for visual tracking,” in Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV),
2015.

[14] A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kristan,
“Discriminative correlation filter with channel and spatial reliability,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[15] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, “Beyond
correlation filters: Learning continuous convolution operators for visual
tracking,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2016.

[16] C. Sun, D. Wang, H. Lu, and M.-H. Yang, “Correlation tracking via
joint discrimination and reliability learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[17] M. Tang, B. Yu, F. Zhang, and J. Wang, “High-speed tracking with
multi-kernel correlation filters,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[18] T. Zhang, S. Liu, C. Xu, B. Liu, and M.-H. Yang, “Correlation particle
filter for visual tracking,” IEEE Transactions on Image Processing (TIP),
vol. 27, no. 6, pp. 2676–2687, 2017.

[19] C. Ma, X. Yang, C. Zhang, and M.-H. Yang, “Long-term correlation
tracking,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[20] N. Wang, W. Zhou, and H. Li, “Reliable re-detection for long-term track-
ing,” IEEE Transactions on Circuits and Systems for Video Technology
(TCSVT), 2018.

[21] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. Torr, “Staple:
Complementary learners for real-time tracking,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[22] N. Wang, W. Zhou, Q. Tian, R. Hong, M. Wang, and H. Li, “Multi-cue
correlation filters for robust visual tracking,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[23] K. Zhang, J. Fan, Q. Liu, J. Yang, and W. Lian, “Parallel attentive
correlation tracking,” IEEE Transactions on Image Processing (TIP),
vol. 28, no. 1, pp. 479–491, 2018.

[24] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, and J. L. M.-H. Yang,
“Hedged deep tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[25] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H.
Torr, “Fully-convolutional siamese networks for object tracking,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2016.

[26] J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“End-to-end representation learning for correlation filter based tracking,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[27] Q. Wang, Z. Teng, J. Xing, J. Gao, W. Hu, and S. Maybank, “Learning
attentions: Residual attentional siamese network for high performance
online visual tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[28] A. He, C. Luo, X. Tian, and W. Zeng, “A twofold siamese network for
real-time object tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[29] N. Wang, Y. Song, C. Ma, W. Zhou, W. Liu, and H. Li, “Unsupervised
deep tracking,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[30] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High performance visual
tracking with siamese region proposal network,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[31] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, “Distractor-aware
siamese networks for visual object tracking,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018.

[32] C. Huang, S. Lucey, and D. Ramanan, “Learning policies for adaptive
tracking with deep feature cascades,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017.

[33] M. Danelljan, G. Häger, F. Khan, and M. Felsberg, “Accurate scale esti-
mation for robust visual tracking,” in British Machine Vision Conference
(BMVC), 2014.

[34] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer,
“Adaptive color attributes for real-time visual tracking,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[35] J. Choi, H. Jin Chang, T. Fischer, S. Yun, K. Lee, J. Jeong, Y. Demiris,
and J. Young Choi, “Context-aware deep feature compression for high-
speed visual tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[36] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[37] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in
Advances in Neural Information Processing Systems (NeurIPS), 2014.

[38] G. Zhu, J. Wang, P. Wang, Y. Wu, and H. Lu, “Feature distilled tracking,”
IEEE Transactions on Cybernetics, vol. 49, no. 2, pp. 440–452, 2017.

[39] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the devil in the details: Delving deep into convolutional nets,” in British
Machine Vision Conference (BMVC), 2014.

[40] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Convolu-
tional features for correlation filter based visual tracking,” in Proceedings
of the IEEE International Conference on Computer Vision Workshops
(ICCV Workshop), 2015.

[41] Q. Wang, J. Gao, J. Xing, M. Zhang, and W. Hu, “Dcfnet: Discrim-
inant correlation filters network for visual tracking,” arXiv preprint
arXiv:1704.04057, 2017.

[42] M. Mueller, N. Smith, and B. Ghanem, “Context-aware correlation filter
tracking,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

JOURNAL OF XXX, VOL. *, NO. *, JULY 2019 12

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[44] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks
for matlab,” in Proceedings of the ACM International Conference on
Multimedia (ACM MM), 2014.

[45] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

[46] P. Liang, E. Blasch, and H. Ling, “Encoding color information for visual
tracking: algorithms and benchmark,” IEEE Transactions on Image
Processing (TIP), vol. 24, no. 12, pp. 5630–5644, 2015.

[47] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin,
G. Fernández, T. Vojir, Hager, and et al., “The visual object tracking
vot2016 challenge results,” in Proceedings of the European Conference
on Computer Vision Workshops (ECCV Workshop), 2016.

[48] ——, “The visual object tracking vot2017 challenge results,” in Pro-
ceedings of the IEEE International Conference on Computer Vision
Workshops (ICCV Workshop), 2017.

[49] H. Nam and B. Han, “Learning multi-domain convolutional neural
networks for visual tracking,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[50] Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. W.
Lau, and M.-H. Yang, “Vital: Visual tracking via adversarial learning,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[51] S. Pu, Y. Song, C. Ma, H. Zhang, and M.-H. Yang, “Deep attentive
tracking via reciprocative learning,” in Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2012.

[53] Y. Zhang, L. Wang, J. Qi, D. Wang, M. Feng, and H. Lu, “Structured
siamese network for real-time visual tracking,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018.

[54] Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang, “Learning
dynamic siamese network for visual object tracking,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2017.

[55] I. Jung, J. Son, M. Baek, and B. Han, “Real-time mdnet,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018.

[56] H. K. Galoogahi, A. Fagg, and S. Lucey, “Learning background-aware
correlation filters for visual tracking,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017.

[57] J. Choi, H. Jin Chang, S. Yun, T. Fischer, Y. Demiris, and J. Young Choi,
“Attentional correlation filter network for adaptive visual tracking,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[58] J. Choi, H. Jin Chang, J. Jeong, Y. Demiris, and J. Young Choi, “Visual
tracking using attention-modulated disintegration and integration,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[59] X. Lu, C. Ma, B. Ni, X. Yang, I. Reid, and M.-H. Yang, “Deep
regression tracking with shrinkage loss,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018.

[60] Y. Song, C. Ma, L. Gong, J. Zhang, R. Lau, and M.-H. Yang, “Crest:
Convolutional residual learning for visual tracking,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2017.

[61] T. Zhang, C. Xu, and M.-H. Yang, “Multi-task correlation particle filter
for robust object tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[62] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Young Choi, “Action-decision
networks for visual tracking with deep reinforcement learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[63] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Adaptive decon-
tamination of the training set: A unified formulation for discriminative
visual tracking,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[64] Z. Zhu, W. Wu, W. Zou, and J. Yan, “End-to-end flow correlation
tracking with spatial-temporal attention,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[65] T. Yang and A. B. Chan, “Learning dynamic memory networks for object
tracking,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

[66] C. Sun, D. Wang, H. Lu, and M.-H. Yang, “Learning spatial-aware
regressions for visual tracking,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[67] E. Gundogdu and A. A. Alatan, “Good features to correlate for visual
tracking,” IEEE Transactions on Image Processing (TIP), vol. 27, no. 5,
pp. 2526–2540, 2018.

[68] M. Kristan, J. Matas, A. Leonardis, T. Vojı́ř, R. Pflugfelder, G. Fer-
nandez, G. Nebehay, F. Porikli, and L. Čehovin, “A novel performance
evaluation methodology for single-target trackers,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), vol. 38, no. 11,
pp. 2137–2155, 2016.

