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OSLNet: Deep Small-Sample Classification
with an Orthogonal Softmax Layer

Xiaoxu Li, Dongliang Chang, Zhanyu Ma, Senior Member, IEEE, Zheng-Hua Tan, Senior Member, IEEE,
Jing-Hao Xue, Jie Cao, Jingyi Yu, and Jun Guo

Abstract—A deep neural network of multiple nonlinear layers
forms a large function space, which can easily lead to overfitting
when it encounters small-sample data. To mitigate overfitting in
small-sample classification, learning more discriminative features
from small-sample data is becoming a new trend. To this end,
this paper aims to find a subspace of neural networks that
can facilitate a large decision margin. Specifically, we propose
the Orthogonal Softmax Layer (OSL), which makes the weight
vectors in the classification layer remain orthogonal during both
the training and test processes. The Rademacher complexity of
a network using the OSL is only 1

K
, where K is the number

of classes, of that of a network using the fully connected
classification layer, leading to a tighter generalization error
bound. Experimental results demonstrate that the proposed OSL
has better performance than the methods used for compari-
son on four small-sample benchmark datasets, as well as its
applicability to large-sample datasets. Codes are available at:
https://github.com/dongliangchang/OSLNet.

Index Terms—Deep neural network, Orthogonal softmax layer,
Overfitting, Small-sample classification.

I. INTRODUCTION

In recent years, due to the advances of deep learning, large-
scale image classification has achieved massive success [1],
[2]. However, in many real-world problems, big data are
difficult to obtain [3]–[5]. In addition, when human beings
learn a concept, millions or billions of data samples are un-
necessary [6], [7]. Therefore, small-sample classification [8]–
[10] has received much attention recently in the deep learning
community [7], [11]–[16]. However, a deep neural network
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usually models a large function space, which results in over-
fitting and instability problems that are difficult to avoid in
small-sample classification [17]–[19].

Small-sample classification can be roughly classified into
two families depending on whether there are unseen categories
to be predicted [20], [21]. In this work, we mainly focus on the
one with no unseen category to be predicted. A key challenge
in this direction is how to avoid overfitting. Up to now, many
methods have been proposed to mitigate overfitting in small-
sample classification, such as data augmentation [22]–[24], do-
main adaptation [3], [19], [25], regularization [26], ensemble
methods [27] and learning discriminative features [28], [29].

Recently, learning discriminative features has become a
new trend to improve the classification performance in deep
learning. Methods such as the large-margin loss and the virtual
softmax method [30] work well on both large-sample and
small-sample data. However, these methods either add some
constraints on the loss function or make some assumptions on
data, which increases the difficulty of optimization and limits
the applicable types of data. On the contrary, our goal in this
work is to find a subspace of neural networks that can readily
obtain a large decision margin and learn highly discriminative
features. Specifically, we aim at obtaining a large decision
margin through achieving large angles between the weight vec-
tors of different classes in the classification layer (i.e., output
layer), in part motivated by the observation that the larger the
angles between the weight vectors in the classification layer
are, the better the generalization performance is, as shown in
Fig. 1.

Therefore, we propose the Orthogonal Softmax Layer
(OSL) for neural networks as a replacement of the fully
connected classification layer. In the proposed OSL, some
connections are removed and the weight vectors of different
classes are pairwise orthogonal. Due to fewer connections and
larger between-class angles, the OSL can mitigate the co-
adaptation [31] of a network while enhancing the discrim-
ination ability of features, as we will show in this work.
Compared with traditional networks with a fully connected
classification layer, a neural network with the OSL has sig-
nificantly lower model complexity and is ideally suitable for
small-sample classification. Experimental results demonstrate
that the proposed OSL performs better on four small-sample
benchmark datasets than the methods used for comparison as
well as its applicability to large-sample datasets.

The main contributions of this paper are threefold:
1) A novel layer, namely the Orthogonal Softmax Layer

(OSL), is proposed. The OSL is an alternative to the
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Fig. 1. The first three matrices show the final angles of the weight vectors from the classification layer in the fully connected network (FC). We ran 60
rounds of simulations on the Caltech101 dataset, see Section IV for more details. The results are selected from the minimum (Caltech101-Min), median
(Caltech101-Med) and maximum (Caltech101-Max) of 60 sets of accuracies. The corresponding accuracies are 88.07%, 89.28% and 90.35%, respectively.
The boxplot shows the off-diagonal angels of these three matrices.

fully connected classification layer and can be used as
the classification layer (i.e., the output layer) of any
neural network for classification.

2) The proposed OSL can reduce the difficulty of network
optimization due to militating the co-adaptation between
the parameters in the classification layer.

3) A network with the proposed OSL can have a lower
generalization error bound than a network with a fully
connected classification layer.

II. RELATED WORK

Data augmentation. Data augmentation, which artificially
inflates the training set with label preserving transformations,
is well-suited to limited training data [32], [33], such as the
methods of deformation [34], [35], generating more training
samples [36], and pseudo-label [37]. However, data augmen-
tation is computationally costly to implement [23].

Domain adaptation. The goal of domain adaptation [38],
[39] is to use a model, which is trained in the source domain
with a sufficient amount of annotated training data while
trained in the target domain with little or no training data [40]–
[43]. The simplest approach to domain adaptation is to use
the available annotated data in the target domain to fine-
tune a convolutional neural network (CNN) pre-trained on
the source data, such as ImageNet [42], [44]–[46], which is a
commonly used method for small-sample classification [47].
However, as both the initial learning rate and the optimization
strategy of neural networks affect the final performance, this
kind of methods is difficult to avoid the overfitting problem
in small-sample classification. In addition, the knowledge
distillation [48], a kind of method for knowledge transfer,
compresses the knowledge in an ensemble into a single model.
Overall, this type of methods have some limitations: the
original domain and the target domain cannot be far away
from each other, and overfitting of neural networks on small-
sample data remains difficult to avoid.

Learning discriminative features. There are several recent
studies that explicitly encourage the learning of discriminative
features and enlarge the decision margin, such as the virtual
softmax [30], the L-softmax loss [28], the A-softmax loss [49],
the GM loss [50], and the center loss [51]. The virtual softmax

enhances the discrimination ability of learned features by
injecting a dynamic virtual negative class into the original
softmax, and it indeed encourages the features to be more
compact and separable across the classes [30]. The L-softmax
loss and the A-softmax loss are built on the cross-entropy
loss. They introduce new classification scores to enlarge the
decision margin. However, the two losses increase the dif-
ficulty of network optimization. The GM loss assumes that
the deep features of sample points follow a Gaussian mixture
distribution. It still has some limitations since many real data
are not well suitable to be modelled by Gaussian mixture
distributions. The center loss [51] developed a regularization
term for the softmax loss function, that is, features of the
samples from the same class must be close in the Euclidean
distance. In addition to the loss functions above, other loss
functions either consider the imbalance of data [52] or the
noisy labels in the training data [53]. The focal loss [52]
places different weights on different training samples: the
samples that are difficult to be identified will be assigned
a large weight. The truncated Lq loss [53], a noise-robust
loss function, can overcome noisy labels in the training data.
Unlike these studies for improving the loss function, our
method obtains discriminative features by constructing a fixed
orthogonal classification layer by removing some connections.

Ensemble methods. The ensemble methods [54]–[58] have
been shown to be effective to address the overfitting prob-
lem. The SnapShot ensembling [27] only trains one time
and obtains multiple base classifiers for free. This method
leverages the nonconvex nature of neural networks and the
ability of the stochastic gradient descent (SGD) to converge to
or escape from local minima on demand. It finds multiple local
minima of loss, saves the weights of the corresponding base
networks, and combines the predictions of the corresponding
base networks. The temporal ensembling, a parallel work to
the SnapShot ensembling, can be trained on a single network.
The predictions made on different epochs correspond to an
ensemble prediction of multiple subnetworks due to dropout
regularization [57]. Both the SnapShot ensembling and the
temporal ensembling work well on small-sample data. How-
ever, generally speaking, using an entire ensemble of models
to make prediction is cumbersome and computationally costly.
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Regularization. The L2 regularization method [59] is often
applied to mitigate overfitting in neural networks. Dropout [60]
mitigates overfitting mainly by randomly dropping some units
(with their connections) from the neural network during train-
ing, which prevents the units from coadapting too much. Drop-
Connect [61] is a variant of Dropout, where each connection
can be dropped with probability p. Both approaches introduce
dynamic sparsity within the model. The fully connected layer
with DropConnect becomes a sparsely connected layer, where
the connections are randomly selected during the training
stage.

Several orthogonality regularization methods [62]–[68] have
been proposed to maintain the orthogonality of the weight
vectors during the training process of networks, e.g., mini-
mum hyperspherical energy [62] and orthonormal regulariza-
tion [63]. These methods maintain the orthogonality of the
weight vectors either for reducing gradients vanishing and ob-
taining a stable feature distribution [64]–[66] or for generating
decorrelated features representation [67], [69], [70]. Unlike
the aforementioned methods, our work does not constrain the
optimization process to obtain an orthogonal weight matrix,
but constructs a network structure with a fixed orthogonal clas-
sification layer by removing some connections This procedure
can mitigate the co-adaptation between the parameters.

In addition to these methods, there exist implicit regu-
larization techniques, such as batch normalization and its
variants [71], [72]. Batch normalization (BN) [73] aims to nor-
malize the distribution of the layer input of neural networks,
hence it can reduce the internal covariate shift in the trai,ning
process. Built on BN, the decorrelated batch normalization
(DBN) [71] decorrelates the layer input and improved BN
on CNNs. Iterative normalization (IterNorm) [72] further
improves DBN towards efficient whitening and iteratively
normalizes the data along the eigenvectors in the training
process. Both DBN and IterNorm adjust the distribution of
samples so that features of samples are pairwise orthogonal.
Unlike them, the proposed OSL forces the weights in the
classification layer to be pairwise orthogonal (Please refer to
Fig. 2 for details.) The orthogonality in OSL is to assign the
input neurons to different output neurons so that it can mitigate
the co-adaptation between the parameters.

III. THE ORTHOGONAL SOFTMAX LAYER

Dropping some connections in the neural networks are
adopted by Dropout and DropConnect, as well as the proposed
OSL. To make the proposed OSL easy to understand, we first
review Dropout and DropConnect.

A. Preliminaries

We denote the input vector and the output vector of a
layer in the neural network as v = [v1, v2, . . . , vD]T and
r = [r1, r2, . . . , rK ]T, respectively, and denote the activation
function as a. Following the formulation in [61], the fully
connected layer is defined as r = a(Wv) with weight matrix
W.

Based on the above denotations, the fully connected layer
with Dropout is defined as r = m?a (Wv), where ? represents

element wise product, m is a K-dimension binary vector. The
jth element of m, mj ∼ Bernoulli (1− p), j ∈ {1, 2, . . . ,K}
and p is probability for dropping a neuron. Moreover, the
fully connected layer with DropConnect is defined as r =
a ((M ?W)v), where ? represents element wise product and
each entry of binary matrix M is Mij ∼ Bernoulli (1− q),
i ∈ {1, 2, . . . , D} and j ∈ {1, 2, . . . ,K}, and q is the
probability for dropping a connection.

B. Mathematical Interpretation of the OSL

To maintain large angles among the weights in the classifi-
cation layer, we drop some connections in the fully connected
classification layer, make the weights in the classification layer
be pairwise orthogonal and propose the Orthogonal Softmax
Layer (OSL, see Fig. 2). The OSL is defined as

r = softmax ((M ?W)v) , (1)

where ? represents element wise product, and M, the mask
matrix of W, is a fixed and predesigned block diagonal matrix
as

M =


M1,1 01,2 · · · 01,K
02,1 M2,2 · · · 02,K

...
...

. . .
...

0K,1 0K,2 · · · MK,K

 , (2)

where K is the number of classes, Mij is a column vector
whose elements are 1, and 0ij is a zero column vector where
every element is 0. The matrix is fixed during the training
and test phases. If we consider M ? W as one matrix, the
column vectors are pairwise orthogonal, which is equivalent to
introducing a strong prior that the angles between the weights
of different categories are all 90◦.

C. Remarks for OSL

Here are some remarks on the OSL. First, the OSL is an
alternative to the classification layer (i.e., the last fully con-
nected layer) of a neural network. In contrast, the Dropconnect
cannot be effectively used in the classification layer, because if
all the connections of a output neuron are dropped, the neural
network or part of it cannot be trained.

Second, a neural network with the OSL is a single model
throughout the training and test processes, since it first drops
some connections and subsequently fixes the structure in both
the training and test phases. This is in contrast with the Drop-
Connect method. DropConnect randomly drops connections
with a given probability during the training phase, but no
connection is dropped in the test phase. DropConnect can be
considered an implicit ensemble method.

Third, in the OSL, different neurons of the last hidden layer
connect to different output neurons. This setup assigns each
hidden neuron to one and only one specific class that they
are responsible prior to the start of training, so the difficulty
level of training the neural network is reduced. Moreover,
the solution space of a network with the OSL is a subset
of the solution space of its corresponding network with a
fully connected classification layer, which implies low model
complexity of the former.
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Fig. 2. The left-hand panel is a standard network with the fully connected classification layer, and the right-hand panel is a network with the Orthogonal
Softmax Layer (OSL, indicated by shadow).

D. Implementation of the OSLNet

The OSL can be used in any type of networks for classifi-
cation, such as the fully connected network or CNN. For con-
venience, we call a neural network with the OSL as OSLNet.
The OSLNet uses the OSL as the classification layer instead
of a fully connected classification layer, and the structure of
the other layers are kept the same as a standard network, e.g.,
a neural network with the fully connected classification layer.

Different from the implementation of the fully connected
classification layer, the forward computation of the OSL needs
to conduct the dot product (see (1)) between the predesigned
matrix M (see (2)) and weights matrix W.

E. The Generalization Error Bound of the OSLNet

In this section, we discuss the generalization error bound of
the OSLNet in terms of the Rademacher complexity [74], [75].
We define the entire network into two parts: the classification
layer and the layers of extracting features. The classification
layer refers to the last fully connected layer in a neural
network, and the layers of extracting features refer to all
layers except the classification layer. Based on the definitions,
a standard network with the fully connected classification
layer can be represented as f (x;Ws,Wg) and the OSLNet
can be represented as f (x;M ?Ws,Wg), where Ws and
M ?Ws are the parameters of the classification layer for the
two networks, respectively, and Wg are the parameters of the
layers for extracting features.

Lemma 1. (Network Layer Bound [61]) Let G denote the class
of real functions with input dimension Q, i.e. G = [Qj ]Dj=1,
and H denote a linear transform function parametrized by W
with ||W||2 ≤ B; then R̂l (H ◦ G), the empirical Rademacher
complexity of (H ◦ G), satisfies R̂l (H ◦ G) ≤

√
DBR̂l (Q).

Theorem 2. (Complexity of OSLNet). Following the nota-
tion in Lemma 1, we further let R̂l (O) denote the empir-
ical Rademacher complexity of an OSLNet. If the weights
of the OSL meet |Ws| ≤ Bs, we will have R̂l (O) ≤(

D√
k
Bs

)
R̂l (Q).

Proof. First, we denote the empirical Rademacher complexity
of a standard network with the fully connected classification
layer as R̂l (O0) = R̂l (H0 ◦ G). Since no connection has
been removed in a standard network with the fully connected
classification layer, H0 is a linear transform function H0 :

RD → R and is parametrized by Ws with |Ws| ≤ Bs.
Because |Ws| ≤ Bs and the size of Ws is D ×K, we have
||Ws||2 ≤

√
DKBs. Thus, based on Lemma 1, we can obtain

R̂l (O0) ≤
(
D
√
KBs

)
R̂l (Q).

Similarly, for OSLNet, we have R̂l (O) = R̂l (H ◦ G).
Because in the OSLNet some connections are removed and
the weight vectors of different classes are pairwise orthogonal,
H becomes a linear transform function H: R

D
K → R and is

parametrized by M?Ws (||M?Ws||2 ≤
√
DBs). Therefore,

based on Lemma 1, we have R̂l (O) ≤
(

D√
K
Bs

)
R̂l (Q).

The analysis above shows that the bound of empirical
Rademacher complexity for the OSLNet is only 1

K of that
for a standard network. In addition, the empirical error of the
OSLNet is close to the standard model in terms of accuracy
and cross-entropy loss on the training data, as shown in Fig. 6.
Therefore, according to the relationship between a model
generalization error bound and an empirical Rademacher com-
plexity (Theorem 3.1 in [74]), the OSLNet has a lower model
generalization error bound than the standard network.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed OSL, we
compare OSLNet with other methods on four small-sample
datasets and three large-sample datasets. These evaluation
serve four purposes:

1) To compare the proposed OSL with state-of-the-
art methods on small-sample image classification
(Sec. IV-C, Sec. IV-D, and Sec. IV-E);

2) To investigate the effect of modifying the width or
depth of the hidden layers on OSLNet (Sec. IV-F and
Sec. IV-G), and the effect of changing the feature
extractor on OSLNet (Sec. IV-H);

3) To demonstrate the discriminability of the features
learned from OSLNet (Sec. IV-I);

4) To demonstrate the performance of OSL on large-sample
image classification (Sec. IV-J).

A. Small-Sample Datasets

For experiments on small-sample image classification, we
selected the following four small-sample datasets:
• UIUC-Sports dataset (UIUC)1 [76]: This dataset contains

8 classes of sports scene images. The total number of

1http://vision.stanford.edu/lijiali/Resources.html
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TABLE I
COMPARISON OF THE CLASSIFICATION PERFORMANCE ON THE UIUC, 15SCENES, 80-AI, AND CALTECH101 DATASETS. THE METHODS ARE: Fully
connected network (FC), Focal loss (FOCAL), Center loss (CENTER), Truncated Lq loss (T-Lq ), Iterative Normalization (ITERN), Decorrelated Batch

Normalization (DBN), Minimum Hyperspherical Energy (MHE), Orthonormal regularization (OR), Dropout, Large-Margin Softmax Loss (LMS), SnapShot
Ensembling (SE), AND the proposed OSL (OS), AND SnapShot Ensembling of OS (OS-SE). EACH METHOD HAS BEEN EVALUATED FOR 60 ROUNDS.

Datasets Measure FC Focal Center T-Lq IterN DBN MHE OR Dropout LMS SE OS OS-SE
UIUC Mean 0.8837 0.8787 0.8347 0.8573 0.8506 0.8378 0.8676 0.8849 0.8889 0.8946 0.8950 0.9016 0.9041

Std. 0.0151 0.0135 0.0283 0.1693 0.0242 0.0752 0.0694 0.0132 0.0113 0.0076 0.0175 0.0055 0.0030
15Scenes Mean 0.8331 0.8285 0.7911 0.6551 0.8291 0.8005 0.8332 0.8373 0.8321 0.8434 0.8413 0.8439 0.8464

Std. 0.0080 0.0066 0.0152 0.3319 0.0067 0.0358 0.0132 0.0072 0.0101 0.0054 0.0066 0.0037 0.0022
80-AI Mean 0.5316 0.5291 0.4678 - 0.5828 0.4552 0.5803 0.5558 0.5445 0.3886 0.5825 0.6157 0.6192

Std. 0.0139 0.0159 0.0356 - 0.0074 0.0291 0.0328 0.0159 0.0305 0.0413 0.0091 0.0031 0.0025
Caltech101 Mean 0.8927 0.8881 0.8644 - 0.8814 0.9254 0.8936 0.8978 0.8865 0.9168 0.9290 0.9127 0.9369

Std. 0.0046 0.0047 0.0062 - 0.0068 0.0028 0.0046 0.0051 0.0077 0.0071 0.0020 0.0044 0.0011

Fig. 3. Comparison of the accuracies obtained by FC, Focal, Center, T-Lq , IterN, DBN, MHE, OR, Dropout, LMS, SE, OS, and OS-SE, via boxplots on the
UIUC, 15Scenes, 80-AI, and Caltech101 datasets. The central mark is the median, and the edges of the box are the 25th and 75th percentiles. The outliers
are individually marked. In the boxplots, each method has been simulated for 60 rounds.

images is 1579. The numbers of images for different
classes are: bocce (137), polo (182), rowing (250), sailing
(190), snowboarding (190), rock climbing (194), croquet
(236), and badminton (200).

• 15Scenes [77]: This dataset contains 15 classes of natural
scene images: coast, forest, highway, inside city, moun-
tain, open country, street and tall building. We randomly
select 200 images for each class, so the total number of
images is 3000.

• Subset of the Scenes dataset on AI Challenger (80-AI):
This dataset contains 80000 images in 80 classes of daily

scenes, such as airport terminal and amusement park. The
size of the classes is 600-1000 2. We randomly select 200
images for each class, so the total number of images is
16000.

• Caltech101 [78]: This dataset contains pictures of objects
in 101 categories, and the size of each category is approx-
imately 40-800 images. The total number of pictures in
the dataset is 4000.

For the 15Scenes and 80-AI datasets, in both the training
and test datasets, each class contains 100 samples. For the

2https://challenger.ai/competition/scene/subject
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UIUC and Caltech101 datasets, unlike the 15Scenes and 80-
AI datasets, different classes have different number of samples,
and we randomly split the data of each class into the training
and test sets evenly.

We adopted a CNN feature extractor, VGG16 [79], which
was pre-trained on ImageNet. First, we resized the images
into identical sizes of 256 × 256 and directly extracted the
image features using the VGG16 network. Finally, we kept
the features of the last convolutional layer and simply flattened
them. The feature dimension of each image is 512× 8× 8 =
32768.

B. The Compared Methods and Their Implementation

To evaluate the classification performance of the pro-
posed OSL, we compare the following methods: 1) baseline
method, i.e. fully connected network (FC); 2) focal loss
(Focal) [52]; 3) center loss (Center) [51]; 4) truncated Lq

loss (T-Lq) [53]; 5) iterative normalization (IterN) [72]; 6)
decorrelated batch normalization (DBN) [71]; 7) minimum
hyperspherical energy (MHE) [62]; 8) orthonormal regular-
ization (OR) [63]; 9) Dropout; 10) large-margin softmax loss
(LMS) [28]; 11) SnapShot ensembling of FC (SE) [27]; 12)
the proposed OSL (OS); and 13) SnapShot ensembling of OS
(OS-SE).

For FC, we used a fully connected network with two layers,
where the activation functions of the first and second layers are
rectified linear unit function (Relu) and Softmax, respectively.
FC is optimized by minimizing the softmax cross-entropy loss
based on the minibatch gradient descent. The optimization
algorithm is the RMSprop with the initial learning rate 0.001,
the batch size is 32, and the number of epochs is 100.

For Focal, Center, T-Lq , and LMS, we adopted the focal
loss [28], center loss, truncated Lq loss, and large-margin
softmax loss [28] to replace the softmax cross-entropy loss
used in FC, respectively. For these four loss functions, we tried
multiple sets of parameter values and selected the setting with
best performance. Specifically, for Focal, we selected γ = 0.5
for the 80-AI dataset and γ = 0.3 for other three datasets.
For Center, we selected a small loss weight, λ = 1e− 10. For
T-Lq , we set q = 0.5 and k = 0.1 for the UIUC dataset, and
q = 0.1 and k = 0.1 for the 15Scenes dataset. However, on
the 80-AI and Caltech101 datasets, we did not find a set of q
and k that makes T-Lq fit the training data. For LMS, we set
m = 2. Other settings were kept the same as those for FC.

For DBN and IterN, we placed them before each linear layer
of FC. For DBN, we set group-number = 2 for the UIUC and
15 scenes datasets and set group-number = 16 for the 80-
AI and Caltech101 datasets. For IterN, we set T = 10 and
group-number = 8 for all the four datasets.

For MHE, we added the minimum hyperspherical regular-
ization term for the output layer of FC, and set λ equals
0.05, 0.001, 1.0, 0.01 on the UIUC, 15Scenes, 80-AI and
Caltech101 dataset, respectively. For OR, we added the or-
thonormal regularization term to the loss fucntion of FC, and
set λ equals 0.1 on the UIUC dataset, 0.01 for the 80-AI
dataset, 10 for the 15Scenes and Caltech101 datasets. Other
settings of Dropout are identical to FC. Regarding the selection

of λ in MHE and OR, we tried multiple combinations of
parameter values and empirically selected the setting with the
best performance.

For Dropout, we added a Dropout layer after the hidden
layer of FC. The probability that a neuron unit should be
dropped is 0.5. Other settings of Dropout are identical to FC.

The SE here is a SnapShot ensembling built on the FC,
where the learning rate is learned by using a cyclic cosine
annealing method [80], and the number of SnapShots is 2.
For OS, we replaced the fully connected classification layer
with the proposed OSL in FC and other settings were identical
to that of FC. For OS-SE, except for the structure of base
network, other settings are identical to that of SE.

All the methods have been implemented with PyTorch [81].

C. Classification Accuracy

We ran FC, Focal, Center, T-Lq , IterN, DBN, MHE, OR,
Dropout, LMS, SE, OS and OS-SE on the UIUC, 15Scenes,
80-AI and Caltech101 datasets for 60 rounds each. The mean
and the standard deviation of the classification accuracy are
listed in Table I, and the boxplot of classification accuracy is
shown in Fig. 3. Larger mean and smaller standard deviation
indicate better performance.

Table I shows that, on the four datasets, FC is easy to
overfit and has unstable performance. Moreover, Focal, Center,
and T-Lq underperform FC. IterN outperforms FC on 80-
AI, and DNB performs better than FC on Caltech101. In
other cases, IterNorm and DBN underperform FC. MHE has
similar performance to FC on 15Scenes and Caltech101 but
underperforms FC in other cases. OR always performs slightly
better than FC. Dropout performs slightly better than FC on
UIUC, competitively with FC on 80-AI, and worse than FC
on 15Scenes and Caltech101. LMS performs better than FC
on UIUC, 15Scenes and Caltech101 but slightly worse than
FC on 80-AI. SE always has better performance than FC on
the four datasets. OS performs better than FC, Dropout and
LMS on UIUC, 15Scenes and 80-AI, with larger mean and
smaller variance. OS performs better than FC and Dropout, but
worse than LMS and SE, on Caltech101. We also evaluated
the SnapShot ensembling version of OS, denoted as OS-SE.
It obtains the best performance on all the four datasets.

Figure 3 demonstrates that on the UIUC and 80-AI datasets,
the boxplot of OS is more compact than those of other
methods. Moreover, it has no outlier. On the 15Scenes dataset,
the boxplot of OS is close to that of LMS, but is more compact
than those of other methods except LMS. On the Caltech101
dataset, the boxplot of OS is lower than those of DBN, LMS,
and SE, and is more compact and higher than those of other
methods except DBN, LMS, and SE. Finally, the boxplots
of OS-SE is always more compact than those of all other
compared methods, with higher central mark and edges.

D. Classification Accuracy for Different Training Set Sizes

Table II and Fig. 4 show that, on the UIUC datasets with
decreased training set sizes, Dropout shows small improve-
ment over FC. LMS achieves larger mean and lower variance
than FC and Dropout. SE, an ensemble method, obtains larger
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACIES ON THE UIUC, 15SCENES, 80-AI AND CALTECH101 DATASETS WHEN THE TRAINING DATA ARE

REDUCED. THE NOTATION DATASETNAME−n DENOTES THE CONFIGURATION WHERE THE TRAINING DATA IN THE NAMED DATASET IS REDUCED BY n
DATA POINTS FOR EVERY CLASS FROM THE ORIGINAL TRAINING SETS, WHEREAS THE TEST SETS REMAIN UNCHANGED. EACH METHOD RUNS 60

ROUNDS ON EACH DATASET.

Datasets Measure FC Dropout LMS SE OS OS-SE
UIUC-20 Mean 0.8715 0.8776 0.8800 0.8822 0.8891 0.8894

Std. 0.0134 0.0146 0.0082 0.0129 0.0074 0.0080
UIUC-30 Mean 0.8577 0.8631 0.8682 0.8682 0.8793 0.8692

Std. 0.0135 0.0145 0.0087 0.0142 0.0060 0.0118
UIUC-40 Mean 0.8447 0.8493 0.8563 0.8585 0.8695 0.8570

Std. 0.0152 0.0141 0.0086 0.0127 0.0082 0.0145
UIUC-50 Mean 0.8296 0.8349 0.8372 0.8353 0.8461 0.8329

Std. 0.0115 0.0139 0.0092 0.0174 0.0065 0.0223
Datasets Measure FC Dropout LMS SE OS OS-SE

15Scenes-20 Mean 0.8283 0.8209 0.8399 0.8371 0.8401 0.8438
Std. 0.0067 0.0174 0.0070 0.0077 0.0039 0.0022

15Scenes-40 Mean 0.8181 0.8112 0.8312 0.8299 0.8296 0.8347
Std. 0.0091 0.0126 0.0066 0.0067 0.0039 0.0026

15Scenes-60 Mean 0.804 0.7965 0.8156 0.8101 0.8129 0.8164
Std. 0.0090 0.0120 0.0077 0.0066 0.0042 0.0028

15Scenes-80 Mean 0.7781 0.7746 0.7936 0.7837 0.7906 0.7979
Std. 0.0084 0.0220 0.0070 0.0078 0.0049 0.0066

Datasets Measure FC Dropout LMS SE OS OS-SE
80-AI-20 Mean 0.5169 0.5241 0.4116 0.5693 0.5999 0.6023

Std. 0.0141 0.0401 0.0217 0.0076 0.0027 0.0040
80-AI-40 Mean 0.4977 0.5019 0.4016 0.5475 0.5772 0.5680

Std. 0.0202 0.0282 0.0240 0.0080 0.0031 0.0118
80-AI-60 Mean 0.4766 0.4605 0.4022 0.5099 0.5386 0.5089

Std. 0.0121 0.0252 0.0412 0.0086 0.0046 0.0219
80-AI-80 Mean 0.4112 0.4018 0.4043 0.4247 0.4624 0.3696

Std. 0.0134 0.0210 0.0168 0.0090 0.0118 0.0513
Datasets Measure FC Dropout LMS SE OS OS-SE

Caltech101-5 Mean 0.8774 0.8760 0.9057 0.9163 0.9013 0.9261
Std. 0.0048 0.0088 0.0059 0.0028 0.0050 0.0013

Caltech101-10 Mean 0.8583 0.8579 0.8856 0.8976 0.8867 0.9037
Std. 0.0047 0.0079 0.0071 0.0035 0.0056 0.0015

TABLE III
THE p-VALUES OF THE PROPOSED METHOD (OS) AND THE COMPARED
METHODS, FC, DROPOUT, LMS AND SE, BY THE PAIRED STUDENT’S

T-TESTS. EACH METHOD RUNS 60 ROUNDS ON EACH DATASET.
√

DENOTES p < 0.05 AND × DENOTES p > 0.05.

Datasets FC Dropout LMS SE
UIUC

√ √ √ √

UIUC-20
√ √ √ √

UIUC-30
√ √ √ √

UIUC-40
√ √ √ √

UIUC-50
√ √ √ √

15Scenes
√ √

×
√

15Scenes-10
√ √

×
√

15Scenes-30
√ √

× ×
15Scenes-50

√ √ √ √

15Scenes-70
√ √ √ √

80-AI
√ √ √ √

80-AI-10
√ √ √ √

80-AI-30
√ √ √ √

80-AI-50
√ √ √ √

80-AI-70
√ √ √ √

Caltech101
√ √ √ √

Caltech101-5
√ √ √ √

Caltech101-10
√ √ √ √

mean, but the variance is similar to the others. It is encouraging
to see that OS has larger mean and lower standard deviation
than all the four compared methods on all the different sizes

TABLE IV
CLASSIFICATION ACCURACIES OBTAINED BY FC AND OS ON THE UIUC
AND 15SCENES DATASETS WHEN WE CHANGE THE SIZE OF THE HIDDEN

LAYER. FC AND OS HAVE 2 LAYERS AND THE SIZE OF THEIR HIDDEN
LAYER IS SHOWN. EACH SETTING OF FC AND OS HAS BEEN EVALUATED

FOR 60 ROUNDS.

UIUC 16 32 64 128 256 512
FC-Mean 0.8525 0.8837 0.8949 0.8800 0.8973 0.8945
FC-Std. 0.0218 0.0151 0.0146 0.0074 0.0073 0.0096

OS-Mean 0.9002 0.9016 0.9022 0.8987 0.8877 0.8836
OS-Std. 0.0074 0.0054 0.0056 0.0055 0.0070 0.0065

15Scenes 16 32 64 128 256 512
FC-Mean N/A 0.8070 0.8331 0.8409 0.8415 0.8431
FC-Std. N/A 0.0131 0.0080 0.0062 0.0059 0.0061

OS-Mean N/A 0.8419 0.8439 0.8429 0.8401 0.8373
OS-Std. N/A 0.0043 0.0037 0.0038 0.0036 0.0040

of training sets. OS-SE outperforms OS in terms of the mean
accuracy.

On the 15Scenes dataset, Dropout performs worse than FC,
in terms of variance and mean. LMS consistently performs
better than FC. SE shows slight improvement but is worse
than LMS On the 80-AI dataset, LMS and Dropout perform
worse than FC. LMS notably is difficult to converge with the
four training sizes. SE performs better than FC, Dropout and
LMS. OS has smaller variances and larger means and performs
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Fig. 4. Comparison of accuracies obtained by FC, Dropout, LMS, SE, OS and OS-SE via boxplots on the UIUC-30, UIUC-50, 15Scenes-40, 15Scenes-80,
80-AI-40, 80-AI-80, Caltech101-5 and Caltech101-10 datasets. In the boxplots, each method runs 60 rounds.

much better than all other methods.
On the Caltech101 dataset, SE performs better than FC,

Dropout and LMS. OS has smaller variances and larger means
than FC and Dropout and has similar performance to LMS.
OS-SE performs the best.

In summary, the proposed OSL performs better than other
compared methods on these datasets.

E. Paired Student’s t-tests

The experimental results presented in the previous sections
show that the proposed OSL obtains better performance. To
confirm that the improvement is statistically significant, we
performed paired Student’s t-tests [82] for OS vs. FC, OS vs.
Dropout, OS vs. LMS, and OS vs. SE, and the p-values are
listed in Table III. We set the significance level at 0.05.

For the tests of OS vs. FC and OS vs. Dropout, all the p-
values are much smaller than the significance level. Thus, the

null hypothesis that FC (or Dropout) and OS have the identical
mean is always rejected.

With respect to LMS (or SE), on the UIUC, 80-AI and
Caltech101 datasets, the null hypothesis that LMS (or SE)
and OS have the identical mean is always rejected. However,
on the 15Scenes dataset, the p-values can be larger than the
significance level in some cases. Thus, on 15Scenes, the null
hypothesis that LMS (or SE) and OS have the identical mean
is sometimes not rejected.

F. Effect of Changing the Width of the Hidden Layers on
OSLNet

In the previous experiments, our method and all the baseline
methods used the network structure with 32 neurons in the
last hidden layer. To explore the effect of the width of the
hidden layer on the performance of OSLNet, we changed the
number of hidden neurons in both FC and OS from 16 to 512
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TABLE V
COMPARISON OF THE CLASSIFICATION ACCURACIES ON THE UIUC AND 15SCENES DATASETS WHEN WE VARY THE DEPTH OF THE NEURAL NETWORKS.

THE SIZES OF THE HIDDEN LAYERS ARE LISTED. EACH STRUCTURE OF FC AND OS IS TESTED FOR 60 ROUNDS.

UIUC Measure 32-8 64-32-8 128-64-32-8 256-128-64-32-8 512-256-128-64-32-8
FC Mean 0.8837 0.8834 0.8796 0.8687 0.8545

Std. 0.0151 0.0101 0.0096 0.0101 0.0129
OS Mean 0.90167 0.8933 0.8872 0.8575 0.8482

Std. 0.0055 0.0089 0.0095 0.0136 0.0169
15Scenes Measure 64-15 128-64-15 256-128-64-15 512-256-128-64-15

FC Mean 0.8331 0.8378 0.8391 0.8288
Std. 0.0080 0.0061 0.0056 0.0077

OS Mean 0.8439 0.8406 0.8404 0.8208
Std. 0.0037 0.0062 0.0057 0.0083

TABLE VI
COMPARISON OF THE CLASSIFICATION PERFORMANCE ON THE UIUC AND 15SCENES DATASETS, WITH 60 ROUNDS OF VALUATIONS FOR EACH METHOD.

UIUC Measure FC Focal Center IterN DBN Dropout SE OS OS-SE
VGG16 Mean 0.8787 0.8347 0.8506 0.8378 0.8837 0.8889 0.8950 0.9016 0.9041

Std. 0.0151 0.0135 0.0283 0.0242 0.0752 0.0113 0.0175 0.0054 0.0030
DenseNet121 Mean 0.5532 0.5389 0.3248 0.3163 0.5234 0.4697 0.6225 0.6438 0.6954

Std. 0.0631 0.0797 0.1105 0.0560 0.1197 0.0891 0.0391 0.0633 0.0158
15Scenes Measure FC Focal Center IterN DBN Dropout SE OS OS-SE
VGG16 Mean 0.8331 0.8285 0.7911 0.8291 0.8005 0.8321 0.8413 0.8439 0.8464

Std. 0.0080 0.0007 0.0152 0.0007 0.0357 0.0110 0.0066 0.0037 0.0022
DenseNet121 Mean 0.5783 0.5653 0.3497 0.4836 0.5694 0.5443 0.6366 0.6200 0.6799

Std. 0.0465 0.0490 0.1029 0.1158 0.0546 0.0379 0.0154 0.0359 0.0045

on the UIUC dataset, with other settings unchanged. At the
same time, we also changed the number of the hidden neurons
from 32 to 512 on the 15Scenes dataset, with other settings
unchanged. FC and OS were evaluated on the two datasets for
60 rounds, respectively.

From Table IV, we can observe that, with the increase in
the width of network, the mean of FC has generally slight
improvement on UIUC, and the standard deviation decreases.
That is, FC generally performs better when the number of the
hidden neurons is increased. In contrast, OS performs better
when the number of the hidden neurons is small. Particularly,
when the number of the hidden neurons is 16, OS is much
superior to FC. Moreover, on 15Scenes, a similar pattern can
be observed. In addition, OS has better performances when
approximately 2 to 4 hidden neurons are assigned to each class
on these two datasets with 8 and 15 classes, respectively.

G. Effect of Changing the Depth of the Hidden Layers on
OSLNet

We also evaluate the effect of the depth of the network on
OSLNet. In particular, we varied the depth of the network
from 2 to 5 layers and from 2 to 4 layers in both FC and
OS on the UIUC and 15Scenes datasets, respectively. Each
structure of FC and OS is evaluated on UIUC and 15Scenes
for 60 rounds. The size of each layer, the depth of each layer,
the corresponding mean and standard deviation of accuracy
are listed in Table V.

From Table V, we can observe that, on UIUC, the mean
values of FC and OS become smaller, when the depth is in-
creased, that is, the performance of both FC and OS decreases,
and OS decreases faster than FC. A similar pattern is also

found on 15Scenes. Therefore, shallow structures of both FC
and OS perform better than deep ones of FC and OS on the
two datasets.

H. Effect of Changing Feature Extractor on OSLNet

In all the experiments presented above, we used a pre-
trained VGG16 as the feature extractor. In this section, we
changed the feature extractor to a pre-trained DenseNet121
and ran all the compared methods on the UIUC and 15Scenes
datasets for 60 rounds each. The classification results are
shown in Table VI. Here, we do not list the performance of
T-Lq and LMS, as it cannot fit the training data if the feature
extractor is DenseNet121.

From Table VI, we can observe that: 1) On the UIUC
and 15scenes datasets, each method performs better with the
VGG16 feature extractor than with the DenseNer121 feature
extractor. 2) When the feature extractor is DenseNet121, on the
UIUC dataset, the proposed OS outperforms all the compared
methods, and on the 15scenes dataset, OS underperforms
SE and outperform other compared methods. Then we can
conclude that OS-SE performs best on both datasets.

In summary, the performance comparision on DenseNet121
is similar to those on VGG16, which further shows the
applicability of the OSL.

I. Feature Visualization

To gain insights on the proposed OSL, we visualize the
input features of OSL. Take the experiments on the UIUC
dataset as an example: the input dimension of OSL is 32,
and the output dimension of OSL is 8, as determined by
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Fig. 5. Visualization of the input feature of the OSL via t-SNE. The four columns from left to right are: 1) the 32-dimensional input feature (without
truncation) of OSL, 2) the 4th-8th dimensional features, 3) the 13th-16th dimensional features, and 4) the 21st-24th dimensional features, of which the last
three columns correspond to the classes 1, 3 and 5 in the OSL, respectively. Upper row: the training data. Lower row: the test data.

the number of classes. Therefore, according to the design
of OSL, each output neuron (i.e., each class) is assigned 4
input neurons. For example, the 1st-4th dimensional input
features are for the class 0, and the 5th-8th dimensional input
features are for the class 1 (The class labels are from 0 to
7 on the UIUC dataset). We use t-SNE [83] to visualize the
input features of OSL in Fig. 5. In Fig. 5, the first column is
for the 32-dimensional input features without truncation, and
the following three columns are for the 4th-8th dimensional
features, the 13th-16th dimensional features, the 21th-24th
dimensional features, which correspond to the classes 1, 3 and
5 in the OSL, respectively.

From Fig. 5, it can be observed that, in the first column, the
samples from different classes are separate. In the following
three columns, the samples of the corresponding class are put
to one end of a feature curve or a place far from the features of
other classes. A similar pattern appears for other classes in the
UIUC dataset and in other datasets. This demonstrates that, in
the proposed OSL, the input neurons assigned to each class
are indeed responsible for learning discriminative features for
differentiating that class from other classes.

J. OSLNet on Large-sample Datasets
To evaluate the applicability of our OSL on large-sample

classification, we selected the following three datasets.
• CIFAR-10: This dataset [84] consists of 60000 32 × 32

color images in 10 classes with 6000 images per class.
There are 50000 training images and 10000 test images.
The classes are as follows: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship and truck.

• CIFAR-100: This dataset [84] consists of 60000 32× 32
color images in 100 classes with 600 images per class.

There are 500 training images and 100 test images per
class.

• MNIST: This dataset of handwritten digits [85] has a
training set of 60000 examples and a test set of 10000
examples. It is a subset of a larger set available from
MNIST. The digits have been size-normalized and cen-
tered in a fixed-size image. The size of the images is
28× 28.

We compare the following methods: 1) CNN; 2) SnapShot
ensembling of CNN (CNN-SE); 3) a CNN with OSL (OS-
CNN); and 4) SnapShot ensembling of OS-CNN (OS-CNN-
SE). The classification results are lised in Table VII and
demonstrated in Fig. 6.

On the CIFAR-10 and CIFAR-100 datasets, for CNN, we
used the VGG16 style network, where the convolutional layer
has batch normalization, and the fully connected parts have 2
hidden layers of 16 units each. The epoch number is 400, and
the learning rate decreases from 0.01 to 0 by using the cosine
annealed method. The optimization method iss SGD. For OS-
CNN, we only replaced the last fully connected layer with the
OS layer in CNN, while other settings unchanged. For CNN-
SE, the learning rate decreases from 0.01 to 0 by using the
annealed cosine method within 200 epochs, which restarted
to the identical process one more time. The total number
of epochs is 400, and the number of SnapShot networks is
2. Other settings are identical to those for CNN. For OS-
CNN-SE, except for the classification layer, other settings are
identical to that for CNN-SE.

On the MNIST dataset, we followed the CNN structure
published by PyTorch for MNIST. In the structure, there are
two modules including convolution (Maxpooling and Relu
activation) and two fully connected layers with 50 hidden
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Fig. 6. The cross-entropy loss and accuracy of CNN, CNN-SE, OS-CNN, and OS-CNN-SE on the CIFAR-100 dataset. The left-hand column: the training
data. The right-hand column: the test data.

TABLE VII
COMPARISON OF CLASSIFICATION ACCURACY OF CNN, CNN-SE,

OS-CNN AND OS-CNN-SE.

Datasets CNN CNN-SE OS-CNN OS-CNN-SE
CIFAR-10 0.9379 0.9445 0.9418 0.9468

CIFAR-100 0.7467 0.7648 0.7529 0.7690
MNIST 0.9921 0.9928 0.9925 0.9926

neurons. The optimization method remains to be SGD, and the
learning rate decreases from 0.01 to 0 as the cosine annealed
method is used. The epoch number is 400. For OS-CNN,
CNN-SE and OS-CNN-SE, except for the structure of CNN,
other settings were the same as that for the CIFAR-10 and
CIFAR-100 datasets.

From the classification accuracy shown in Table VII, the
curves of the cross-entropy loss, and the accuracy shown in
Fig. 6, it can be observed that CNN and OS-CNN have similar
performance on the three datasets. That is, the proposed OSL
is also applicable for large-sample classification.

K. Discussion
The focal loss places large weights on the samples that are

difficult to identify; the center loss constructs a constraints that
the features of samples from the same class must be close in
the Euclidean distance; and the truncated Lq loss is a noise-
robust loss. In the experiments above, the three loss functions

are not effective on the four small-sample datasets. It can
also be observed that IterNorm and DBN perform unstably,
which may be because, while accelerating optimization of
neural networks, they do not have any particular mechanism
to improve the classification performance of networks.

LMS introduces a large margin into the cross-entropy soft-
max loss function to learn more discriminative features. The
key problem of this method is that it is not easy to converge.
Thus, it does not perform well in some experiments with a
reduced training size. In contrast, the proposed OSL method
converges easily. MHE places the minimum hyperspherical
energy regularization of the weight vectors. It also encourages
large distances between weight vectors, while the orthonormal
regularization constrains the 90-degree angels between the
weight vectors. Even though the motivations of MHE and OR
are to obtain a large classification margin, when these two
regularization terms are optimized, they can also interfere with
the cross entropy loss used for fitting the labeled training data.

Among all the compared methods in the experiments
on small-samples datasets, Dropout is an implicit ensemble
method: in the training process it trains many subnetworks
of the original network, and in the test phase no neuron
is dropped. On the four small-sample datasets, Dropout do
not show remarkable advantages over the network without
dropouts. The SE is a strong baseline among the compared
methods and obtains relatively larger mean values and rel-
atively smaller variances. However, although the method is
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trained only once in the training process and combines the
predictions of all SnapShot networks in the test phase, due
to the correlation of the base networks, the SE increases the
performance of FC slightly.

The proposed method on small-samples datasets shows
higher accuracy and better stability, which are mainly at-
tributed to the OSL, where some connections are removed and
the angles among the weights of different classes are main-
tained as 90◦ from the beginning to the end during training.
Having large angles among the weights of different classes in
the classification layer is an important precondition to obtain
a decision rule with a large margin, when the L2 norms of
the weights are not considered. In addition, which class each
neuron of the last hidden layer should serve exclusively is
determined prior to the start of training, so the difficulty of
training can be significantly reduced. The experimental results
of changing the width and depth of the network suggest that
when a thin and shallow structure is selected, the OSL can
obtain a better performance. In addition, experimental results
of our OSL on the three large-sample image datasets show
that, although developed for small-sample classification, OSL
can also be well applied to large-sample classification.

Even though OSL has demonstrated superior performance,
it has its own limitations. For example, due to the design of
OSL, the number of neurons of the last hidden layer should
be larger than the class number. Therefore, when the class
number is large, e.g., 1000, a large number of neurons will
be required, which will increase the flexibility of network. We
leave it as an open problem for the future.

V. CONCLUSIONS

In this paper, we proposed a new classification layer called
Orthogonal Softmax Layer (OSL). A network with OSL
(OSLNet) has two advantages, i.e., easy optimization and
low Rademacher complexity. The Rademacher complexity of
OSLNet is 1

K , where K is the number of classes, of that
of a network with the fully connected classification layer.
Experimental results on four small-sample datasets provide
the following observations for an OSLNet in small-sample
classification: 1) It is able to obtain higher accuracy with larger
mean and smaller variance than those of the baselines used for
comparison. 2) It is statistically significantly better than the
baselines. 3) It is more suitable for thin and shallow networks
than a fully connected network. Further experiments on three
large-sample datasets show that, compared with a CNN with
the fully connected classification layer, a CNN with the OSL
has a competitive performance for both training and test data.
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