arXiv:1811.05625v2 [cs.CV] 8 Jun 2020

Model-guided Multi-path Knowledge Aggregation
for Aerial Saliency Prediction

Kui Fu, Jia Li, Senior Member, IEEE, Yu Zhang, Member, IEEE,
Hongze Shen and Yonghong Tian, Senior Member, IEEE

Abstract—As an emerging vision platform, a drone can look
from many abnormal viewpoints which brings many new chal-
lenges into the classic vision task of video saliency prediction.
To investigate these challenges, this paper proposes a large-
scale video dataset for aerial saliency prediction, which consists
of ground-truth salient object regions of 1,000 aerial videos,
annotated by 24 subjects. To the best of our knowledge, it is
the first large-scale video dataset that focuses on visual saliency
prediction on drones. Based on this dataset, we propose a Model-
guided Multi-path Network (MM-Net) that serves as a baseline
model for aerial video saliency prediction. Inspired by the
annotation process in eye-tracking experiments, MM-Net adopts
multiple information paths, each of which is initialized under
the guidance of a classic saliency model. After that, the visual
saliency knowledge encoded in the most representative paths is
selected and aggregated to improve the capability of MM-Net
in predicting spatial saliency in aerial scenarios. Finally, these
spatial predictions are adaptively combined with the temporal
saliency predictions via a spatiotemporal optimization algorithm.
Experimental results show that MM-Net outperforms ten state-
of-the-art models in predicting aerial video saliency.

Index Terms—Multi-path CNNs, knowledge transfer, visual
saliency, aerial video, eye-tracking.

I. INTRODUCTION

ISUAL saliency prediction is one of the fundamental

vision problems that has been extensively studied for
several decades [1I], [2]], [3]. With the proposal of compre-
hensive rules [4], [3l], large training datasets [6], [7], [8] and
deep learning algorithms [9], [10], [[L1], [12]], the performance
of saliency models has been improving steadily. Meanwhile,
many saliency-based attentive systems have achieved impres-
sive performance in image recognition [13[], video compres-
sion [14], content-based adverting [15]], robot interaction [16]
and navigation [17]. Despite the success of various existing
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models, an important concern still remains in the literature:
whether visual knowledge extracted from existing saliency
models can boost the performance of saliency prediction in
various scenarios, especially the newly emerging ones?

In most existing works, this question is explored using
plenty of images [7] and videos [18] collected from Internet
to cover various daily scenarios taken by digit cameras and
mobile phones. In this paper, we conduct research on an
emerging but less studied domain, the aerial videos captured
by drones. A drone can observe the world from many different
viewpoints, providing us an opportunity to revisit the problem
from new perspectives. In particular, from these aerial videos,
we wish to explore reliable answers to two questions in visual
saliency estimation:

1. Whether previous ground-level saliency models still work
well in processing aerial videos?

2. How to transfer the ground-level knowledge to aerial
platforms to develop an aerial saliency model?

To answer these two questions, we collect 1,000 videos cap-
tured by drones, which are then free-viewed by 24 subjects in
eye-tracking experiments to collect dense, accurate fixations.
In this manner, the ground-truth salient regions in aerial videos
can be well annotated, based on which we can benchmark
the performance of various visual saliency models deployed
on drones. By testing the performance of ten ground-level
saliency models, we find these models still work impressively
in capturing salient regions in aerial videos. However, there
still exist large gap between their predictions and the ground-
truth maps. Therefore, it is necessary to explore the way that
drones look and develop a saliency model suitable for the
saliency prediction task on aerial videos.

Based on this dataset, we also develop a Model-guided
Multi-path Network (MM-Net) that can be used as a baseline
model for aerial video saliency prediction. The design of
MM-Net is motivated by the settings of eye-tracking exper-
iments (see Fig. [T) and aims to aggregate the visual saliency
knowledge from many classic models into a unified deep
network. As shown in Fig. Pl common low-level features
are first extracted in a low-level module of MM-Net, which
are then fed into a multi-path module. This module contains
multiple information paths, each of which is initialized under
the guidance of a classic saliency model. After that, redundant
paths are identified and removed via a path selection algorithm
that jointly considers path diversity, representativeness and the
overall complexity of the multi-path module. The selected
paths then enter the fusion module, and the visual saliency
knowledge encoded in the selected paths are aggregated to


http://cvteam.net

Subjcets in Eye-tracking Experiments
[ ] [ ] [ ]
ok BT BEEY

Network| | Network ... |Network
Path 1 Path 2 Path K K
S oS

1
’ Model Cyc

.

Fixation Density Maps
(Ground-truth)

L .

Salicncy Maps

Consecutive
Video Frames

1
Model C, Model C,

| CNN Path Fusion | ‘ Fixation Fusion ‘

Model Pool

Fig. 1: In eye-tracking experiments, saliency maps can be
generated by fusing fixations of multiple subjects. This process
motivates the design of a multi-path network architecture, in
which different paths are guided by different classic saliency
models to encode different knowledge about visual saliency
prediction.

predict spatial saliency [[19] in aerial scenarios. Finally, spatial
saliency maps can be efficiently predicted, which are then
adaptively fused with the temporal saliency predictions to
obtain clean and accurate saliency maps for various types
of aerial videos. Experimental results show that MM-Net
outperforms ten state-of-the-art models on aerial videos.

The main contributions of this paper include: 1) We propose,
to the best of our knowledge, the first large-scale video
dataset for aerial saliency prediction; 2) We propose a Model-
guided Multi-path Network that provides a way to transfer the
knowledge from multiple classic models into a single deep
model; 3) We propose an effective path selection algorithm,
which can be used to balance the complexity and effectiveness
of the multi-path network.

The rest of this paper is organized as follows: Section
reviews related works and Section [III| presents the dataset. Our
approach is presented in Section and tested in Section
Finally, Section concludes the paper.

II. RELATED WORKS

In this section, we present a brief review of computational
saliency models from three aspects: heuristic models, non-deep
learning models and deep learning models.

Heuristic saliency models can be roughly categorized into
bottom-up [1], [20] and top-down categories [21]], [22]. The
bottom-up models are stimulus-driven and infer saliency from
visual stimuli themselves with hand-crafted features (e.g., di-
rection, color and intensity) and/or limited human knowledge
(e.g., center-bias). Due to the imperfect hand-crafted features
or heuristic fusion strategies, bottom-up models may have
some difficulties in suppressing background distractors. To
address this problem, some top-down models heuristically
incorporate high-level factors. For example, Borji et al. [23]]
proposed an unified Bayesian approach to integrate global
context of a scene, previous attended locations and previous
motor actions over time to predict the next attending locations.
Chen et al. [24] proposed a video saliency model that predicted
video saliency by combining the top-down saliency maps with
the bottom-up ones through point-wise multiplication.

Non-deep learning saliency models propose to learn the
fusion strategies of various heuristic saliency cues [25]], [26],
[27]. For example, Vig et al. [26] proposed a simple bottom-
up model for dynamic scenarios with the aim of keeping the
number of salient regions to a minimum. Recently, Fang et
al. [10] proposed an image saliency model by learning a set
of discriminative subspaces that perform the best in popping
out targets and suppressing distractors. Li et al. [28] proposed
a saliency model that measured the joint visual surprise from
intrinsic and extrinsic contexts. However, the hand-crafted
features used in these models may inherently set an upper
bound for the final performance.

Deep learning saliency models have great advantages in
learning feature representations [29], [30], [31]. For exam-
ple, Kiimmerer er al. [32] presented a Convolutional Neural
Network (CNN) that reused AlexNet [33]] to generate high-
dimensional features. Pan et al. [9] proposed two designs, a
shallow network and a deeper network, that can be trained
end-to-end for fixation prediction. Lahiri er al. [34] proposed
a saliency model which used a two step learning strategy.
These deep learning models usually have high computational
efficiency and impressive performance in daily scenarios.
However, it is unclear whether these saliency models can be
reused in aerial platforms, which has remarkable viewpoint
and depth changes. Therefore, it is necessary to construct
a large-scale aerial saliency dataset to benchmark saliency
models.

ITI. THE AERIAL VIDEO SALIENCY DATASET

In this section, we follow [35] to label the salient regions in
the videos by eye-tracking and present a large-scale dataset for
aerial video saliency. Note that such an annotation process is a
regular process in the field of visual video attention prediction
and minimizes the bias from different subjects via a voting
manner, leading to accurate annotations. We also benchmark
classic ground-level models to show the difference and corre-
lation between aerial and ground-level saliency prediction.

A. Dataset Construction

To construct the dataset, we download hundreds of long
aerial videos from Internet that are captured by drones. We
manually divide these long videos into shots and randomly
sample 1,000 shots with a total length of 1.6 hours (i.e.,
177,664 frames at 30 FPS). We find that the dataset mainly
covers videos from four genres: building, human, vehicle, and
others. Thus the dataset, denoted as AVSlKF_l contains four
subsets that are denoted as AVS1K-B, AVS1K-H, AVS1K-V
and AVS1K-O, respectively.

To annotate the ground-truth salient regions, we conduct
massive eye-tracking experiments involved with 24 subjects.
For each video in the dataset, we collect eye fixations on each
frame and convert them to fixation density maps following the
setting of [35], making the whole dataset densely annotated.
Note that each video is free-viewed by 17-20 randomly
selected subjects. All subjects have normal or corrected to

!Dataset is publicly available at http://cvteam.net
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Fig. 2: System framework of our proposed baseline model MM-Net. The low-level module extracts low-level features. After
that, these features are delivered into a multi-path module, in which each path is a sub-network pre-trained on massive aerial
scenes under the guidance of a classic saliency model. In this manner, various visual saliency knowledge can be encoded in
multiple paths to enhance the capability of MM-Net in processing aerial videos. To reduce computational cost, we further
propose a selection algorithm to remove redundant paths according to path representativeness, diversity as well as module
complexity. After that, the selected paths are fine-tuned on aerial scenarios to generate spatial saliency maps. They are then
adaptively fused with the temporal saliency predictions to obtain clean and accurate saliency prediction results.

normal vision, and they have never seen these videos before.
Note that we do not provide any prior information to the
subjects and let them watch videos in a free-viewing manner
in the eye-tracking experiments. In experiments, the videos are
displayed on a 22-inch color monitor with the resolution of
1680x1050. A chin set is adopted to eliminate the error caused
by the head wobble and fix the monitor viewing distance to
75cm. Other experimental conditions such as illumination and
noise are set to constant for all subjects.

Given the fixation data, we can compute a fixation density
map for each frame to annotate the ground-truth salient
regions, ie., the salient regions that a drone should look at
from the perspective of human-being. Let Z; € V be a frame
presented at time ¢, we measure the fixation density map of
T:, denoted as S; as in [35]. The value of S; at pixel p can
be computed as

Si(p) = > 8(ty = 1)+ Dapa(f.p) - Diem!(f.D),
feFy

(D

where Dy, (f, p) and Dye,, (f, p) measure the spatial and tem-
poral influences of the fixation f to the pixel p, respectively.
By using an indicator function §(¢; > t) that equals 1 if t; > ¢
and 0 otherwise, we only consider the influence of fixations
in a short period after t. Let (z,y,) be the coordinate of p,
the values of Dg,q(f,p) and Dy, (f, p) can be computed as

(x5 — mp)2 + (yr — yp)2
20% ’

(ty —t)*
20% ’

where op and o are two constants to control the spatial and
temporal influences of fixations, which are empirically set to
3% of video width (or video height if it is larger) and 0.1s,

Dspa(fap) = €exXp <_
(2)
Dtem(fap) = €exXp <_
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Fig. 3: Sample aerial frames (a, c, e), fixations (red dots) and
ground-truth saliency maps (b, d, f) from AVSIK.

respectively. Some representative frames, recorded fixations
and generated ground-truth saliency maps can be found in Fig.
Dataset statistics can be found in Tab. [l

B. Model Performance in Aerial Scenarios

As it stands, aerial videos often have higher viewpoints, a
wider field of vision and smaller targets. In other words, the
visual patterns in aerial videos may be remarkably different



TABLE I: Dataset statistics of the AVS1K dataset.

Dataset ‘ Video Max Res. Frames Avg. Len. (s)
AVS1K-B 240 1280x720 41,471 5.76
AVS1K-H 210 1280720 31,699 5.03
AVS1K-V 200 1280%720 27,092 4.52
AVS1K-O 350 1280720 77,402 7.37
AVS1K 1000 1280720 177,664 5.92

TABLE II: Performance comparisons on AVS1K and DHF1K.

Method AVSIK DHF1K

AUC sAUC NSS AUC sAUC NSS
AIM 0.644 0.652 0.944 0.713 0.576 0.812
AWS 0.681 0.728 1.391 0.693 0.571 0.854
BMS 0.710 0.746 1.660 0.743 0.580 1.031
GB 0.612 0.650 0.984 0.631 0.558 0.599
HFT 0.789 0.715 1.671 0.806 0.579 1.323
ICL 0.698 0.651 1.252 0.712 0.535 0.697
IT 0.540 0.572 0.844 0.559 0.517 0.387
QDCT 0.689 0.696 1.302 0.720 0.569 0.909
Sp 0.781 0.706 1.602 0.811 0.581 1.400
SUN 0.587 0.603 0.672 0.628 0.546 0.540

from those on the ground. Thus, it is worth exploring the
performance of classic saliency models in aerial scenarios. To
address this concern, we test ten classic saliency models on
AVSI1K. These models include AIM [36]], AWS [37], BMS
[38], GB [39], HFT [40], ICL [41]], IT [1], QDCT [42], SP [43]
and SUN [44]. Note that they are not learning-based and thus
less sensitive to dataset bias. As an intuitive comparisons, we
also show the performance of these models over DHFIK [435]],
the latest large-scale video saliency dataset fulfilled with daily
videos collected by digital cameras and mobile phones.

To measure the performance of these models, we select three
widely adopted metrics according to [46], [47], [48], including
the traditional Area Under the ROC Curve (AUC), the shuffled
AUC (sAUC) and the Normalized Scanpath Saliency (NSS).
Typically, AUC may assign high scores to a fuzzy saliency
map if it correctly predicts the orders of salient and less-salient
locations, while sSAUC and NSS prefer clean saliency maps
that only pop-out the most salient locations and suppress all
the other regions.

Based on the three metrics, Tab. [lI| shows the performance
of ten classic models on AVS1K and DHFI1K. From Tab.
we find that the AUC scores of all models on AVS1K are lower
than those on DHFIK. Such inferior performance intuitively
demonstrates that it is challenging for classic saliency models
in dealing with aerial scenarios since they are designed based
on human visual mechanisms on the ground-level but can not
directly fit to aerial scenarios. Note that it is not affected by
the bias of ground-truths labeling. This may be caused by the
fact that aerial videos often have wider field of vision and thus
contain richer contents. Surprisingly, SAUC and NSS, which
focus on the saliency amplitude, achieve even higher scores on
AVSI1K than on DHF1K. This implies that the salient targets
in aerial videos, which are usually very small, demonstrate
impressive capability to pop-out from its surroundings from
the higher viewpoints. These results imply that visual saliency
knowledge encoded in classic models can be reused in aerial

saliency prediction after certain domain adaptation operations.

IV. THE MODEL-GUIDED MULTI-PATH NETWORK
A. Path Initialization

Motivated by above observations, we present MM-Net, a
baseline model that absorbs the visual saliency knowledge in
classic models and evolves to handle aerial video saliency like
the human being does. As shown in Fig.[2] MM-Net starts with
a low-level module that consists of two convolution layers
and one max pooling layer. We initialize the parameters of
the low-level module with the first two convolution layers of
VGGI16 [49]. Given these low-level features, there exist many
ways in classic models to extract and fuse saliency cues from
them. To make use of the knowledge in these models, we select
the ten classic models we have tested in Section [I1I} each of
which is used to guide the initialization process of a network
path in Fig. 2] In the initialization, we first obtain the saliency
maps of a classic model on the training set (500 videos) and
validation set (250 videos) of AVS1K. These model-estimated
saliency maps are then used as ‘“ground-truth” to fine-tune
the layers in each MM-Net path. Note that the multiple paths
and fusion modules are independently trained. The selected
three paths are fixed in the fusion process. Each path is
initialized with Xavier’s algorithm and the input resolution
is 320 x 320. In this process,the low-level module is fixed so
that the parameters of each network path are independently
updated. By minimizing the cross entropy loss between path
outputs and classic model predictions, each path is forced to
behave like a classic model so as to distillate its knowledge
of saliency prediction.

After initialization, MM-Net inherently learns how to ex-
tract and fuse various saliency-related features. However, the
knowledge encoded in different paths is highly redundant, and
how to remove such redundancy to reduce model complexity
is the next issue to be addressed.

B. Path Selection

To remove the path redundancy, we propose a path selection
algorithm that jointly considers path diversity, representative-
ness and the overall complexity of the multi-path module. For-
mally, a binary column vector o« with M binary components
(M = 10 in this study) is adopted, which indicates the ith path
is selected if a; = 1, or discarded otherwise. For all the K
frames from the 250 validation videos of AVS1K, we denote
the saliency map predicted by the ¢th path on the kth frame
as Sk,. As a result, the path selection process can be solved
by optimizing

o =arg max Qr + 24

3)
st. 1< ||allo <M, and o; € {0,1},V ¢

where ||ct||o denotes the number of non-zero components in o
and thus reflects the complexity of the multi-path module. The
terms (2, and 24 denote the representativeness and diversity
to be maximized, respectively. The )4 is a weight parameter to
balance the representativeness and diversity, which is empiri-
cally set to 0.2 (its influence on final results will be discussed
in experiments).



The term €2, is defined according to path similarities. That
is, the unselected paths should be highly similar to selected
ones that are considered to be representative. This term can
be defined as

M=

(1 — ;) - max{a; - Sim,;|V j # i}

0, == = . @
Z (1 - ai) +e€

i=1

where € is a small value to avoid dividing by zero. The term
Sim;; measures the similarity between the ith and jth paths
that can be measured in a data-driven manner:
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where W and H are the width and height of the input images,
respectively. By resizing Sy, and Sy, to the input image
resolution and normalizing them into probability distributions,
Sim;; measures the average histogram interactions between the
saliency maps estimated by two paths. By maximizing €2,., the
similarity between selected and unselected paths can become
very high, leading to a less-redundant multi-path module.

The representativeness term €2, is defined between selected
and unselected paths, while the diversity term €2, is defined
only on the selected ones that aims to maximize their differ-
ence

M=
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i
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We can see that this term will penalize the co-selection of two
highly similar paths.

By incorporating @) and (6) into the optimization objec-
tive (3), we can obtain a binary optimization problem with
quadratic terms. As M is relatively small, enumeration can be
adopted in ideal case. For large M, set optimization methods
(e.g. submodular optimization) can quickly find a good local
minimum.

C. Spatial Prediction and Spatiotemporal Fusion

Since the regular GPU with 11G memory (e.g., GTX
1080Ti) can not afford the training of the proposed model
with a large number of classic methods, we optimize the path
settings within the acceptable range of hardware to seek a
complexity-accuracy trade-off. By solving (3) defined over the
similarity matrix of ten paths, we obtain three representative
paths (i.e., paths pre-trained by IT, QDCT, and SUN in the
given parameters). After that, these selected paths are fused
to output the spatial saliency maps. The overall structure of
MM-Net can be found in Fig. @] In training MM-Net, the
parameters of the fusion module are randomly initialized and
then optimized with a learning rate of 5 x 1076,

Beyond the spatial fusion of paths, another necessary fusion
is the spatial and temporal saliency maps. Let S, be the
spatial saliency map given by MM-Net and 7}, be the temporal
saliency map given by an existing temporal saliency model

(e.g., [50]). Inspired by [51]], we propose to spatiotemporally
fuse Sy and T} in adaptive fashion:

Sk =\ Sznt ( ) Ssel (7)

where S} is the refined saliency map, Si"* is the collaborative
interaction of S; and T}, and Sgel is the selected spatial
or temporal saliency map according to a heuristic rule. A is
a positive scalar/weight to balance Si"* and S;¢'. We first
compute the spatial-to-temporal consistency score Cgo; and
temporal-to-spatial consistency score Ciog:

Csor = e(Sk ©Ty)/e(Tk), Cras = e(Sk © T)/e(Sk), (8)

where ¢(-) is the entropy function and ® indicates the per-
pixel multiplication. We can see that the spatial-to-temporal
consistency Cso; Will be higher than the temporal-to-spatial
consistency C}s; if the temporal saliency map is cleaner, and
vice versa. As a result, the collaboration interaction map can
be computed by emphasizing the cleaner map:

Cios - T + Csor - S,
Smt 12 k+ Csot - ko )
Ct23 + Cs2t
Let di and d} be the weighted average of distances of
salient pixels to their gravity centers in Sy and T}, respectively.
The SZ"‘Z is defined as the map with more compact salient

regions:
Ssel Sk
Ty,

Intuitively, we can trust S;"* if the spatial and temporal
saliency maps are highly consistent. If not, we can select the
most compact map as the final prediction. Let di"* be the
average weighted distances of salient pixels to their gravity
center in Si"™, the parameter A can be computed as

o min(Cias, Csaq)  if di™
B 0 otherwise

if di <dF

10
otherwise (10)

<w- min(df,d{) (an

where w is a predefined weight that is empirically set to 2.1 (its
influence will be discussed in experiments). By incorporating

©), (10) and (TI) into (7)), we can adaptively fuse the spatial
and temporal saliency maps.

V. EXPERIMENTS

We test our approach using the proposed aerial video
saliency dataset AVS1K as well as the latest video saliency
dataset DHF1K [52] that are fulfilled with daily scenarios
captured by digital cameras and mobile phones. Both datasets,
to the best of our knowledge, are currently the largest in their
own domain. For DHF1K we use the official split, which
contains 600, 100 and 300 videos for training, validation and
testing, respectively.

On these two datasets, we compare MM-Net and two
variants: MM-Net+ (with spatiotemporal refinement) and MM-
Net- (without spatiotemporal refinement and the guidance of
classic models). We also make comparisons with ten state-of-
the-art models, including the heuristic group (H Group) HFT
[40], SP [43] and PNSP [50], the Non-Deep Learning Group
(NL Group) SSD [3] and LDS [10]], and the Deep Learning
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Fig. 4: The structure of MM-Net, including (a) low-level
module, (b) multi-path module and (c) fusion module.

Group (DL Group) eDN [27], iSEEL [53], SalNet [9]], DVA
[52] and STS [54]. Among these models, iSEEL and eDN are
built on pre-extracted features and thus cannot be re-trained.
For the other three models, we fine-tune them on the two
datasets and use a mark * to indicate the retrained model.

In the comparisons, we adopt five evaluation metrics, in-
cluding the aforementioned AUC, sAUC and NSS as well as
the Similarity Metric (SIM) [55] and Correlation Coefficient
(CO) [56]. SIM is computed to measure the similarity of
two saliency maps as probability distributions, while CC is
computed as the linear correlation between the estimated and
ground-truth saliency maps. Values of all the five metrics are
positively correlated with the performance.

A. Comparison with the State-of-the-art Models

Performance of 13 evaluated models on the AVS1K dataset
are shown in Tab. [T We also illustrate the Receiver Operating
characteristics Curves (ROC) in Fig. [5] and several represen-
tative results of these models in Fig. [6]

From Tab. Il we find that our fundamental multi-path
network MM-Net-, in which the spatiotemporal refinement and
the guidance of classic models are not used, still outperforms
the other ten state-of-the-art models in terms of NSS and
CC and ranks the second place in terms of AUC (worse
than DVA), sAUC (worse than SalNet) and SIM (worse than
DVA). Note that NSS is the primary metric recommended
by many surveys on saliency evaluation metrics [52]], [S7].
The impressive performance of MM-Net- can be explained
by its multi-path structure. The low-level module of MM-
Net- can extract many low-level preattentive features, based

TABLE III: Benchmarking results on AVS1K. The best and
runner-up models of each column are marked with bold and
underline, respectively. Except our models, the other deep
models fine-tuned on AVS1K are marked with *.

Models | AUC sAUC NSS SIM CcC
HFT 0.789 0.715 1.671 0.408 0.539
H Sp 0.781 0.706 1.602 0.422 0.520
PNSP 0.787 0.634 1.140 0.321 0.370
NL SSD 0.737 0.692 1.564 0.404 0.503
LDS 0.808 0.720 1.743 0.452 0.565
eDN 0.855 0.732 1.262 0.289 0.417
iSEEL 0.801 0.767 1.974 0.458 0.636
SalNet* 0.797 0.769 1.835 0410 0593
DL DVA* 0.864 0.761 2.044 0.544 0.658
STS* 0.804 0.732 1.821 0.472 0.578
MM-Net 0.858 0.771 2.110 0.547 0.673
MM-Net- 0.860 0.768 2.087 0.541 0.666
MM-Net+ 0.869 0.784 2.133 0.532 0.682
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Fig. 5: ROC curves of 13 models on AVSI1K.

on which the multi-path module can further extract saliency
cues at higher levels from different perspectives. These high-
level saliency cues are then fused to obtain the final saliency
map. In this way, MM-Net- has better representation capability
when compared with traditional single path network (such as
SalNet) and classic two-stream network for video (such as
STS). Although DVA also adopts a multi-stream structure that
directly fed supervisions into multi-layers, the MM-Net- still
performs better than DVA in terms of sAUC, NSS and CC.

In Tab. [} we also find that MM-Net outperforms MM-Net-
in terms of all metrics except AUC. This can be explained by
the model guidance strategy adopted in training multiple paths.
After initializing different network paths under the guidance of
selected models with heuristically designed saliency features
and rules, MM-Net inherently learns how to extract and fuse
saliency-related features. In this manner, the biases of classic
models can be further investigated and utilized to improve the
saliency prediction accuracy. As a result, the effectiveness of
the model guidance strategy can be well justified.
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From Tab. we also observe that MM-Net+ outperforms
all the other models in terms of all metrics except SIM. This
may be caused by the proposed spatiotemporal optimization
algorithm. Based on the mutual consistency and weighted
spatiotemporal saliency, the optimization algorithm tends to
generate cleaner saliency maps with more compact salient
regions (see Fig. [6). As a result, the most salient locations can
pop-out in the saliency maps predicted by MM-Net+, leading
to high NSS and sAUC scores.

We also find that the heuristic models in the H Group
perform worse than the models in the NL Group and the
DL Group. For H Group, the key issue here is that hand-
crafted features designed for daily scenarios may be no longer
suitable for the aerial scenarios. In other words, there may
exist many irregular saliency visual patterns in aerial videos,
which should be learned from data. This also explains the
impressive performance of models in the DL Group since
they can benefit from the powerful capabilities of CNNs in
extracting hierarchical feature representations.

From these results, we conclude that, in aerial scenarios, the

salient visual patterns as well as the feature fusion strategies
may become remarkably different. As a result, it is necessary
to learn the saliency cues and their fusion strategies that
best characterize the salient visual patterns from the aerial
perspective. In addition, there exist some inherent correlations
between the daily and aerial scenarios, implying that a drone
can also benefit from the knowledge encoded in previous mod-
els in learning how to look. By transferring such knowledge,
a drone can gain a better capability of handling various visual
patterns.

B. Performance Analysis

In this section, we conduct several experiments to analyze
the performance of MM-Net+ (and MM-Net) from multiple
perspectives, including parameter influences, generalization
ability and performance on four subsets of AVSIK.

In the first experiment, we analyze the parameter A4 in (3]
that is used to balance the representativeness and diversity
in MM-Net+. The NSS curve of MM-Net+ on AVS1K with
different A4 is shown in Fig.[7l From Fig.[7} we find that when
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Fig. 7: Performance of MM-Net+ on AVS1K with the paths
selected under different \;. In a wide range of A4, the selected
paths stay almost stable (i.e., 2 or 3 paths)

Ag falls in [0, 0.24], MM-Net+ achieves the best performance
(NSS=2.133) with three representative paths (IT, QDCT and
SUN). When )y grows, the number of selected path decreases.
When )\, falls in [0.26, 0.56], MM-Net+ has lower complexity
(only two selected paths, BMS and IT) as well as the lowest
performance (NSS=2.035). When \; grows larger, only two
paths keep on being selected but they may be guided by
two different models. For example, when A, falls in [0.58,
0.68], MM-Net+ selects AIM and IT with NSS=2.093. When
Mg falls in [0.70, 1.00], MM-Net+ selects IT and SUN with
NSS=2.093. To sum up, in a wide range of A4, the path
selection algorithm tends to select two or three paths to reduce
the model complexity. Therefore, we select A; = 0.2 in all
experiments for pursuing better performance at an acceptable
performance.

In the second experiment, we analyze the parameter w in
(TT) that serves as a threshold in computing A and further
balance the fusion of spatial and temporal saliency maps
in MM-Net+. The curves of AUC, sAUC, NSS, SIM and
CC scores on AVS1IK with different w are shown in Fig.
[8l We find that the AUC, NSS and CC curves are convex,
the SAUC curve is monotonically increasing, and the SIM
curve is monotonically decreasing. The overall performance
is generally stable when w falls between [1.8, 2.3]. With a
small w, many saliency maps are refined with A = 0 (see
(1)), implying that the spatial and temporal saliency maps
cannot be adaptively fused in (7). On the contrary, a large
w may generate non-zero A in most cases and thus lead to
noisy saliency maps due to the additive fusion strategy of (7).
Therefore, we select w = 2.1 in all experiments.

In the third experiment, we do some ablation studies to
show how the path selection and spatiotemporal fusion affects
or contributes to the saliency estimation. We present the
performance of different settings of path selection in Tab.
From this table, we find that both the path selection and
spatiotemporal fusion boost the performance of saliency pre-
diction on aerial videos. The model with three paths is superior
to those with two paths ones. This can be interpreted as the
three paths that can encode more complete visual knowledge
into the overall model, leading to more powerful intermediate
representations. Meanwhile, we find that performance gaps
exist between the different selection of classic models. The
overall performance not necessarily positively relates to the

Parameter Analysis
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Fig. 8: Parameter analysis on AVS1K with different w in the
interval [1.1, 3.0].

TABLE IV: Performance of different settings of path selection
and spatiotemporal fusion on AVS1K. The best and runner-up
models of each column are marked with bold and underline,
respectively.

Init Fusion Nums Paths ‘ AUC sAUC NSS SIM CC

3 - 0.860 0.768 2.087 0.541 0.666
v 3 IT,QDCT,SUN| 0.858 0.771 2.110 0.547 0.673
v v 3  IT,QDCT,SUN| 0.869 0.784 2.133 0.532 0.682
v v 2 AIM,IT 0.867 0.778 2.093 0.527 0.670
v v 2 BMS,IT 0.861 0.769 2.035 0.514 0.650
v v 2 IT,SUN 0.872 0.781 2.110 0.528 0.674

performance of the classic models but depends on the fitness
of the encoded knowledge.

In the fourth experiment, we compare MM-Net with 16
state-of-the-art models on the latest video saliency dataset
DHFIK that are fulfilled with videos captured by digital cam-
eras and mobile phones. The main objective of this experiment
is to verify the generalization ability of MM-Net on various
scenarios. Quantitative results of these two models, after being
fine-tuned on DHFIK, are shown in Tab. [V] We can observe
the proposed MM-Net outperforms the DVA on DHFIK in
terms of all of metrics except for NSS. This proves the
generalization ability of MM-Net, implying that the multi-path
network architecture can be used for the saliency prediction
task in both aerial and daily scenarios.

To verify the mutual generalization ability of saliency
models in the aerial and general scenarios, we present the
performance of two general models in Tab. [VIl This table
demonstrates the poor mutual generalization ability of saliency
models in the aerial and general models.

Furthermore, to verify the performance of MM-Net+ on
different scenarios, we show its performance on the four
subsets of AVS1K in Tab. MM-Net+ have relatively better



TABLE V: Performance comparison of 16 state-of-the-art mod- TABLE VII: Performance of MM-Net+ on subsets of AVS1K.
els on DHF1K. The best and runner-up models of each column The best and runner-up models of each column are marked
with bold and underline, respectively.

are marked with bold and underline, respectively.

Models \ AUC sAUC NSS SIM CC Subset \ AUC sAUC NSS SIM CC
K% ITTI [1] 0.774 0.553 1.207 0.162 0.233 AVS1K-B 0.872 0.780 1.974 0.543 0.681
-E GBVS [39] 0.828 0.554 1.474 0.186 0.283 AVSI1K-H 0.892 0.808 2.482 0.548 0.729
g SALICON [38] 0.857 0.590 1.901 0.232 0.327 AVSIK-V 0.865 0.826 2.497 0.566 0.759
) Shallow-Net [9] 0.833 0.529 1.509 0.182 0.295 AVS1K-O 0.859 0.757 1.926 0.503 0.630
§ Deep-Net [9] 0.855 0.592 1.775 0.201 0.331
“ | DVA [52] 0.860 0595  2.013 0262  0.358
PQFT [59] 0.699 0.562 0.749 0.139 0.137
- Seo et al. [20] 0.635 0.499 0.334 0.142 0.070 ACKNOWLEDGMENT
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5’ OM-CNN [63] 0.856 0.583 1.911 0.256 0.344
Two-stream [54] 0.834 0.581 1.632 0.197 0.325
OllI'S=i< 0.875 0.627 1.972 0.271 0.389 REFERENCES

* Tested on the validation set of DHF1K.

TABLE VI: Performance comparison of two general models
on AVSIK and DHFIK.

Method ~ AUC sAUC NSS SIM CcC
DVA* 0.807 0.610 1.071 0.354 0.351
SalNet’|  0.754 0.617 0.980 0.295 0.319
DVA* 0.822 0.574 1.430 0.240 0.283
SalNet 0.799 0.574 1.312 0.189 0.261

* Trained on DHFIK and tested on AVSIK.
* Trained on AVSI1K and tested on the validation set of DHF1K.

performance on AVS1K-H and AVS1K-V than on AVSI1K-
B and AVS1K-O. In most aerial videos, humans and vehi-
cles usually have relatively appropriate sizes and significant
motions, which makes them easier to pop-out from the local
context. On the contrary, buildings are static and usually have
big sizes, making both the spatial and the temporal saliency
prediction challenging. Similarly, AVSIK-O contains many
diverse scenarios about planes, boats and animals. In these
cases, the appearances and motion patterns of salient targets
may change remarkably, making it difficult to separate them
from distractors.

VI. CONCLUSION

In this work, we introduce a large-scale video dataset for
aerial saliency prediction. Based on this dataset, we propose
MM-Net, a baseline model for aerial saliency prediction,
which adopts a multi-path network structure and a model-
guided training strategy to transfer human knowledge from
classic models into the network paths. A spatiotemporal op-
timization algorithm is also proposed to fuse the spatial and
temporal saliency maps. Experimental results demonstrate the
superior performance of our proposed models.

In the future work, we will explore the feasibility of learning
a saliency model with few or none domain-specific training
data. Such one-shot or zero-shot learning may further help
the deployment of visual saliency models in many unknown
scenarios.
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