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Abstract—We present a comprehensive study and evaluation of
existing single image compression artifacts removal algorithms,
using a new 4K resolution benchmark including diversified
foreground objects and background scenes with rich struc-
tures, called Large-scale Ideal Ultra high definition 4K (LIU4K)
benchmark. Compression artifacts removal, as a common post-
processing technique, aims at alleviating undesirable artifacts
such as blockiness, ringing, and banding caused by quantization
and approximation in the compression process. In this work, a
systematic listing of the reviewed methods is presented based
on their basic models (handcrafted models and deep networks).
The main contributions and novelties of these methods are
highlighted, and the main development directions, including
architectures, multi-domain sources, signal structures, and new
targeted units, are summarized. Furthermore, based on a uni-
fied deep learning configuration (i.e. same training data, loss
function, optimization algorithm, etc.), we evaluate recent deep
learning-based methods based on diversified evaluation measures.
The experimental results show the state-of-the-art performance
comparison of existing methods based on both full-reference,
non-reference and task-driven metrics. Our survey would give
a comprehensive reference source for future research on single
image compression artifacts removal and inspire new directions
of the related fields.

Index Terms—Compression artifacts removal, benchmark, side
information, loop filter, deep learning

I. INTRODUCTION

LOssy compression, such as JPEG [1], HEVC (High
Efficiency Video Coding) [2], Advanced Video Cod-

ing (AVC) [3], has been widely used in image and video
codecs to reduce information redundancy in transmission and
storage process to save bandwidth and resource. Based on
human visual properties, the codecs make use of redundancies
in spatial, temporal and transform domains to provide ap-
proximations of encoded content compactly. They effectively
reduce the bit-rate cost but inevitably lead to unsatisfactory
visual artifacts, e.g. blockiness, ringing and banding. These
artifacts are derived from the high-frequency detail loss in the
quantization process and the discontinuities caused by block-
wise batch processing. These artifacts not only degrade user
visual experience, but also are detrimental for the successive
image processing and computer vision tasks.

In our work, we focus on the degradation of compressed
images. The degradation configurations of two codecs are con-
sidered: JPEG and HEVC. Most modern codecs first divide the
whole image into blocks, which sometimes have a fixed size,
e.g. JPEG, while others have different sizes, e.g. HEVC. Then,
transformations, e.g. discrete cosine transformation (DCT) and
discrete sine transformation (DST) etc., follow to convert each

block into transformed coefficients with more compact energy
and sparser distributions than those in the spatial domain. After
that, quantization is applied on the transformed coefficients,
based on the pre-defined quantization steps, to remove the
signal components that have less significant influence on the
human visual system. The quantization intervals are usually
much larger on high-frequency components than those on low-
frequency components, because human visual system is less
capable of distinguishing high frequency components. Noting
that the quantization step is the main reason causing artifacts.
After quantization, the boundaries between blocks become
discontinuous. Thus, blocking artifacts are generated. Blurring
is caused by the loss of high-frequency components. In regions
including sharp edges, the ringing artifacts become visible.
When the quantization step becomes larger, the reconstructed
images suffer from severe distortions. Noticeable banding
effects appear in smooth regions over the image.

Lots of efforts are dedicated to the restoration of compressed
images. Early preliminary works [4], [5] perform filtering
along the boundaries to remove simple artifacts. After that,
data-driven methods are then proposed to learn the inverse
mapping of compression degradations to remove artifacts.
These methods are proposed in two directions: 1) one for
better inference models, e.g., sparse coding [6] and deep
networks [7]; 2) the other for utilizing better priors and side
information [8], [9]. In recent years, the emergence of deep
learning [7] largely improves the restoration capacity of the
data-driven methods, with its excellent nonlinear modeling
capacity. More advanced network architectures, e.g. dense
residual network [10], are put forward and more strong side
information, e.g. partition mask [11], is employed for com-
pression artifacts removal. Besides these two common factors,
for learning-based approaches, the training configurations and
protocols, including training data, losses, optimization ap-
proaches, data generation, and details of codecs etc., also have
large effects on the final performance. Thus, the related detail
changes in these factors also contribute to the performance
gains.

Despite their promising results, there are several neglected
issues in previous methods. First, there is no unified framework
to understand and sort out all previous methods. A survey that
compares and summarizes these methods with a simple and
integrated view is needed. Second, inconsistent experimental
configurations and protocols are employed in different works.
There is a lack of benchmarking efforts on state-of-the-art
algorithms on a large-scale public dataset. Last, previous
datasets do not cover 4K resolution images, which in fact sets
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a barrier to compare the performance of different methods in
recently more and more popular ultra high definition display
devices.

Our work paper is directly motivated to address the above
issues, and makes four-fold technical contributions:

• The first contribution of this paper is to provide a
comprehensive survey on compression artifacts removal
methods. Our survey provides a holistic view on most
of the existing methods. Particular emphasis is placed
on the deep learning-based single-image compression
artifacts removal methods as they offer the state-of-the-
art performance and own much flexibility for further
improvements.

• We introduce a new single image compression artifact
removal benchmark, called the Large-scale Ideal Ultra
high definition 4K (LIU4K) dataset. It is the first dataset
including 4K images as training and testing images serv-
ing for image restoration. It is also more large-scale than
other existing datasets that include high definition images.
Our LIU4K provides a better foundation to evaluate
performance of different methods, especially in recent
popular ultra high-resolution display devices.

• We conduct a systematic and extensive range of experi-
ments to compare state-of-the-art methods quantitatively
with diversified measures, on the new LIU4K dataset
as well as previous commonly used datasets with a
unified experimental setting, including the same training
data, optimization method, and loss function et al. The
thorough evaluation and analysis show the performance
and limitations of state-of-the-art methods. The new rich
insights inspire new research directions.

• We also explore to generalize some constraints and train-
ing strategies from JPEG artifacts removal to the general
compression artifacts removal. Three strategies, including
dense DCT transform constraints, mixed batches with the
patches having different sizes, and gradually expanded
patch sizes are used in our experimental setting. These
strategies are also common to benefit future compression
artifacts removal methods.

II. A NEW DATASET FOR RESTORATION: LIU4K
A. Previous Datasets

We first review existing testing and training datasets: 1)
Testing: BSD100, Kodak, DIV2K-test, Set5, Set14, Classic5,
and Twitter; 2) Training: BSD400, DIV2K-train, and Mini-
ImageNet.
Kodak1. It is a very representative dataset proposed in 1991
including 24 digital color images extracted from a wide range
of films. After that, most image processing methods have been
proposed, optimized, and evaluated based on this dataset. The
resolution of images is 768×512 or 512×768.
BSD400 and BSD100. These two datasets are two parts
of BSD500 [12], which is originally designed for semantic
segmentation. It covers a large variety of real-life scenes, with
200 training image, 200 validation image, and 100 testing
images. The image resolution is 321×481 or 481×321. For

1http://r0k.us/graphics/kodak/

TABLE I
THE SUMMARY OF DIFFERENT DATASETS FOR COMPRESSION ARTIFACT

REMOVAL.

Dataset Number Resolution Train/Test Features
Kodak 24 768×512 Test Earliest Milestone
Set5 5 500 × 500 Test Small and Effective

Set14 14 250 × 250 -
500 × 500 Test Small, Effective

Classic5 5 512 × 512 Test Small, Effective

BSD500 200/200/100 321 × 481
Train / Test
Validation

Middle Scale with
Abundant Texture

Mini-
ImageNet 300,000 50×50-

4,000×3,000 Train Very Large Scale

Twitter 40 600 × 450 Test Complex Degradation

DIV2K 800/100/100 2,040 × 1,000 Train & Test
Validation

Large-Scale with
2K Images

LIU4K 1,500/200 3,264 × 2,448 Train&Test Large-Scale with
4K Images

image restoration, we combine the training and validation sets
of BSD500 as the training set of restoration and use its testing
set for the restoration evaluation.
DIV2K [13]. There are 1,000 images whose resolution is 2K.
It includes 800 images for training, 100 images for validation,
and 100 images for testing. Sizes of the images are around
2000×1000 or 1000×2000. The max length of the height and
width of an image is 2,040 and the other one is greater than
1,000. It is a milestone dataset for image super-resolution and
supports the NTIRE Challenge2 which uncovers preludes of
challenges in low-level image enhancement.
Set5 [14] and Set14 [15]. They are two effective small-scale
datasets to evaluate image restoration quality and usually
provide consistent evaluation results to those on large-scale
datasets. The resolution of Set5 is less than 500 × 500. The
image size of Set14 is greater than 250 × 250 and less than
500× 500.
Classic5 [16]. Classic5 dataset includes five represented im-
ages used for evaluating compressed image restoration. Their
resolutions are 512× 512.
Twitter [7]. 40 images compressed by the Twitter platform
whose sizes vary from 3,264 × 2,448 to 600 × 450. The
included artifacts are highly complex because the compression
process includes the rescaling operation.
Mini-ImageNet [17]. The dataset used to train SRGAN
in [17] including 300,000 images sampled from ImageNet.
The smallest size is less than 50×50, and the maximum size
is larger than 4,000×3,000. Although it might lead to superior
performance of the restoration models, it is very time and
resource-consuming to train with it.

The summarization of all these datasets are provided in
Table I.

B. LIU4K Dataset

The main characteristics of the LIU4K dataset and previous
datasets serving for image restoration are listed in Table II.
LIU4K has several unprecedented superiorities as follows,

• High-resolution definition. Compared to previous
datasets, the resolution of the images in our dataset is
2848×4288, larger than those in previous datasets, which
offers abundant materials for testing and evaluating the
performance in 4K/8K display devices.

2http://www.vision.ee.ethz.ch/ntire17/
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Fig. 1. Milestones of compressed image restoration methods, including filter based artifacts removal, probabilistic priors based artifacts removal, deep
learning-based artifacts removal, and deep learning-based loop filter. The time period up to 2015 is dominated by handcrafted methods, including filter-based
and probabilistic priors-based artifacts removal. The emergence of ARCNN [7] changes the development of this domain. A turning point is observed in 2015.
After that, deep learning-based methods play a major role in the next several years. It is observed that, the years 2017 and 2018 welcome the blooming of
deep learning-based artifacts removal and loop filters.

(a) (b)

Fig. 2. Example images sampled from LIU4K. (a) Training set. (b) Testing set.

TABLE II
THE STATISTICAL COMPARISONS OF DIFFERENT TESTING SETS. THE NUMBERS IN BRACKETS DENOTE THE VARIANCE. THE BEST RESULTS ARE

DENOTED IN BOLD.
Dataset BPP PPI (105) Number ENTROPY BRISQUE ENIQA (10−4) NIQE

Set5 0.52 (0.004) 1.13 5 6.84 (0.548) 33.58 (47.82) 0.1393 (74.75) 4.79 (4.62)
Classic5 0.65 (0.004) 2.62 5 7.37 (0.037) 22.99 (146.58) 0.3696 (3.46) 5.08 (1.62)
Kodak 0.56 (0.006) 3.93 24 6.93 (0.175) 6.22 (17.32) 0.0202 (6.35) 2.95 (0.21)
LIVE1 0.58 (0.007) 3.57 39 7.14 (0.107) 5.01 (11.82) 0.0218 (5.80) 2.87 (0.18)
Set14 0.58 (0.013) 2.30 14 6.74 (0.605) 26.29 (147.77) 0.1421 (194.00) 4.71 (2.69)

BSD100 0.60 (0.010) 1.54 100 6.94 (0.258) 20.01 (84.39) 0.0801 (97.13) 3.09 (0.76)
DIV2K 0.53 (0.011) 28.35 100 7.02 (0.748) 23.64 (131.93) 0.0925 (47.01) 3.18 (2.05)
LIU4K 0.92 (0.0298) 132.79 200 7.43 (0.039) 15.98 (73.86) 0.0036 (32.02) 2.39 (0.24)

• Large-scale. Our dataset is large-scale. Our training and
testing images include 1,541 and 200 4K images, much
more than those in previous datasets. Thus, training and
evaluation based on LIU4K are more comprehensive and
balanced.

• Diversified and complex signals. As shown in Table II,
our dataset achieves the best results in entropy-driven
non-reference metrics, which demonstrates its signal di-
versity and complexity.

• High visual quality. LIU4K wins in general purpose
non-reference metrics (except for Kodak and LIVE1,
which are the training set of some metrics) as shown
in Table II, which confirms its high visual quality.

We perform statistical comparisons to demonstrate the su-
periority of LIU4K dataset. Entropy, BPP (Bits Per Pixel)

and PPI (Pixels Per Image) are used to indicate the amount
of information included in each dataset. Three non-reference
image quality assessment metrics are utilized to assess the
perceptual image quality, including Entropy, natural image
quality evaluator (NIQE) [55], blind/referenceless image spa-
tial quality evaluator (BRISQE) [56], and entropy-based im-
age quality assessment (ENIQA). The entropy is estimated
following the most primitive calculation based on per-pixel
independent distribution [69]. The bits used to calculate BPP
values are estimated by the compressing the gray version of
an image into a PNG image. The work in [57] has shown
that, the non-reference image quality assessment metrics are
highly correlated to human perception and are superior to
some full-referenced measures in visual quality. In our work,
we calculate values of NIQE, BRISQE, and ENIQA with
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TABLE III
AN OVERVIEW OF EXISTING WORKS ON NON-DEEP JPEG ARTIFACTS REMOVAL.

Method Published Category Inference Model Priors / Side Information Basic Idea

Minami and Zakhor TCSVT-1995 [18] Filter Linear model (constrained
quadratic programming)

Mean squared difference
of slope (MSDS) Reducing the expected MSDS

Deblocking Fliter TCSVT-2012 [68] Filter Hand-crafted metrics
based boundary classification

Coding information
(PU/TU, intra mode,
motion vector etc.)

Divide blocking boundaries into
different types and accordingly
choose diffident kinds of deblocking
filters.

Field of Expert TIP-2007 [20] Probabilistic prior MAP framework
High-order Markov model Quantization tables

The original image is modeled as a
high order MRF with learned
potential functions

Transform Domain
Non-Local Similarity

ICME-2012 [21]
TIP-2013 [22] Probabilistic prior MAP framework

Adaptive parameter selection Nonlocal similarity
The decoded coefficient and its
nonlocal estimation are fused
adaptively

Low-Rank Minimization DCC-2013 [23] Probabilistic prior Patch clustering
Singular value thresholding

Local sparsity
Low-rank prior

Similar patches are clustered
and reconstructed by low-rank
minimization

Sparse Coding with
Total Variation TSP-2014 [6] Probabilistic prior Sparse coding Sparsity prior

Total variations
Combination of sparse
representation and total variations

Dual Domain
Sparse Representation

CVPR-2015 [24]
TIP-2016 [25] Probabilistic prior Sparse coding

Spatial domain
DCT domain
External data

Sparse representations
jointly in dual domains
augmented by external data

SA-DCT Transform TIP-2007 [16] Probabilistic prior Wiener filtering
in SA-DCT domain

SA-DCT transform
Structural constraint

The transform uses
adaptive supports which
leads to better edge reconstruction

Adaptive Low-Rank
Minimization TIP-2016 [26] Probabilistic prior Patch clustering

Singular value thresholding

Local sparsity
Low-rank prior

Transform coefficient variance
Quantization step

The thresholds in SVT are
adaptively determined

the codes provided by their authors with the default settings.
For NIQE, BRISQE and ENIQA, small values indicate better
image qualities.

As listed in Table II, LIU4K is more large-scale than previ-
ous datasets in scale and resolution. From the perspective of
information theory, the images in LIU4K are more informative.
Its mean BPP and entropy values are greater, which means that
the dataset contains more information. For perceptual image
quality assessment, LIU4K also achieves very competitive
scores in BRISQUE, ENIQA, and NIQE. Note that, the values
of BRISQUE and ENIQA of LIU4K are worse than those of
Kodak and LIVE1, since the metrics are trained on these two
datasets and their scales are relative small. These assessments
indicate that images in LIU4K are of relatively high perceptual
quality and suitable for image restoration tasks.

III. ALGORITHM SURVEY

The approaches designed for compression artifacts removal,
namely loop filters in codecs, are proposed in literatures.
There are four categories in our review: filter-based methods,
probabilistic-prior based methods, deep learning-based JPEG
artifacts removal methods, and deep learning-based loop filter
methods. The first and last two categories are summarized
in Table III and IV, respectively. We will review the four
categories and then briefly summarize their technical improve-
ments. Note that, the technologies discussed in our work can
be applied without the change of the existing pipeline of
codecs.

A. Filtering-based method

The earliest methods [46], [47] perform filtering operations
to remove compression artifacts. Later approaches [2], [18]
attempt to infer the parameters of filtering operations adap-
tively. Minami and Zakhor [18] observed that quantization
of the DCT coefficients of two neighboring blocks increases
the expected value of the mean squared difference of slope
(MSDS) between the slope across two adjacent blocks, and the

average value between the boundary slopes of each of the two
blocks. Thus, a constrained quadratic programming problem
is built to reduce the expected value of this MSDS to extent to
decrease the blocking effect while preserving texture details. In
HEVC, an in-loop deblocking filter is specially designed [68]
to reduce the blocking artifacts between coding units. The
picture is divided into 8 × 8 blocks and boundaries on the
8×8 grid are classified by a series of metrics. Different levels
of deblocking operations are later performed on the boundaries
according to their types.

B. Probabilistic-prior methods.

Some successive approaches are based on probability es-
timation of image prior models. Based on their basic mod-
els, these methods can be further categorized into Markov
random field [20], non-local similarity [21], [22], low-rank
minimization [22], [23], sparse coding [6], [24], [25], and
adaptive DCT transformation [16]. In [20], the distortion term
is modeled as additive, spatially correlated Gaussian noise,
and the original image is depicted as a high order Markov
random field based on the fields of experts framework. Non-
local based methods [21], [22] consider similar blocks to be
potentially correlated, estimate the overlapped-block transform
coefficients, and remove compression noise from non-local
similar blocks. For low-rank based methods, Ren et al. [23]
performed patch clustering and low-rank minimization simul-
taneously to make use of both local sparsity and non-local
similarity. A successive work [22] selects thresholds adaptively
for each group of similar patches based on compression noise
levels and decomposed singular values. In [16], a new shape
adaptive DCT transform is proposed for image compression
artifacts reduction.

C. Deep learning-based JPEG artifacts removal

Deep learning-based methods largely improve the restora-
tion capacity of the data-driven methods. ARCNN [7] is the
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TABLE IV
AN OVERVIEW OF EXISTING WORKS ON DEEP COMPRESSION ARTIFACTS REMOVAL.

Method Published Inference Model Priors / Side Information Basic Idea

Artifacts Reduction
CNN ICCV-2015 [7] Three-layer CNN / The first work introducing deep models to the topic

Trainable Nonlinear
Reaction Diffusion TPAMI-2017 [27] Trainable nonlinear

diffusion model / The proposed nonlinear diffusion model is unrolling
into a deep network

D3 Model CVPR-2016 [8]
Learned iterative shrinkage
and thresholding with DCT
layers

DCT domain constraint
Sparsity constraint

The proposed nonlinear diffusion model is unrolling into a
deep network

Denoising CNN TIP-2017 [28] CNN with residual learning
and batch normalization / The combination of residual learning, batch normalization,

and Adam optimization

Dual-Domain CNN ECCV-2016 [9] A two-branch CNN Range of DCT coefficients A two-branch CNN works in pixel and DCT domains and
finally aggregates their information

Residual Encoder-
Decoder Network NIPS-2016 [29] Encoder-decoder with

skip connections / An encoder-decoder with symmetric skip connections

Compression Artifact
Suppression CNN IJCNN-2017 [30] Encoder-decoder with

skip connections Multi-scale losses An encoder-decoder constrained by multi-scale losses

One-to-Many
Network CVPR-2017 [31] ResNet

Shift-and-average strategy

Perceptual loss
Adversarial loss

JPEG loss

A ResNet takes input as random noise and a compressed
image, and its output is constrained by three losses

MemNet ICCV-2017 [32] DenseNet architecture
Memory block

Multi-supervision
Long-term memory

The network is stacked by memory blocks, consisting of a
recursive unit and a gate unit to learn explicit persistent
memories

DMCNN ICIP-2018 [33] A two-branch auto-encoder
with dilated convolution

DCT domain constraint
Multi-scale loss

It integrates the dual domain architecture (DCT and spatial
domains), DCT loss and multi-scale loss

Multi-level
Wavelet-CNN CVPRW-2018 [34] Encoder-decoder with

Wavelet transforms Wavelet signal structure Wavelet transforms are introduced into CNN architecture

Dual Pixel-Wavelet
Domain Deep CNN CVPRW-2018 [35] A two-branch CNN

with Wavelet transforms
Dual domains

Wavelet signal structure
A two-branch CNN is constructed to make use of both
redudenancy in pixel and frequency domains

VRCNN MMM-2017 [36] Variable-filter-size
Residue-learning / The designed CNN owns variable filter size to learn the

residual between input and target frames
Deep CNN-based

Auto Decoder DCC-2017 [37] ResNet TU size A ResNet is used for quality enhancement in the decoder end

Partition Mask CNN ICIP-2018 [11] ResNet CU size The CU size is utilized and integrated with distorted decoded
frame

Residual High-way
CNN TIP-2018 [38] Highway network QP range Residual highway CNNs trained delicately for each QP range

MLSDRN DCC-2018 [39]
Multi-channel long-short
term dependency residual
network

Block boundary
Multi-channel

MLSDRN uses an update cell to adaptively store and select
the long-term and short-term dependency

Adversarial
Intra Coding ICASSP-2018 [40] Multi-scale structure Adversarial learning A multi-level progressive refinement network with adversarial

learning
Decoder-Side
Scalable CNN ICME-2017 [41] Two-branch scalable CNN / The network has two branches. A group of switches will

control whether the complicated one is activated.

Practical CNN ICIP-2018 [42] Compressed fixed
point CNN QP The network also takes QP as input. After training, the model

is compressed and concerted into fixed point format.
Multi-Scale

Deep Decoder DCC-2018 [43] CNN
Multi-scale LSTM / Each frame is fed into a CNN, then a multi-scale LSTM is

connected to fuse multi-frame redundancies.

MF Quality Enhancer CVPR-2018 [44]
SVM classier

CNN-based alignment
CNN-based enhancer

Neighboring peak
quality frames

The neighboring high quality frames are fed into a CNN to
facilitate inference of enhanced frames.

Separable CNN filter JVET-K0158 [45] SE block
Separable convolution

Normalized Y/U/V
Normalized QP

The network takes as input Normalized Y/U/V and QP and
consists of SE blocks and separable convolutions.

Dense Residual Network VCIP-2018 [10]
Dense shortcuts

Residual learning
Bottleneck layer

/ The network consists of dense shortcuts, residual learning,
and bottleneck layers.

CU Classification VCIP-2018 [72] Multiple variable-filter-size
residue-learning CU classification A classifier is employed to decide whether to use VRCNN-ext

for each coding unit.
Progressive Rethinking

Network ICIP-2019 [70] Progressive Rethinking
Block and Network

Multi-scale mean
value of CUs

The progressive rethinking network is built to take multi-scale
mean value of coding units as side information.

Coding Prior based
High Efficiency Restoration ICIP-2019 [71] Weight Normalization Unfiltered frame

Prediction frame

An EDSR-like network takes the unfiltered and prediction
frames as side information and is trained with weight
normalization.

Content-Aware CNN TIP-2019 [73] Context-based
model selection

Clusters based on
quality ranking

The discriminative model is learned to analyze the region
content for model selection. An iterative training is proposed
to label filter categories and fine-tune CNN models.

seminal work and takes the architecture of a three-layer CNN.
Deep Dual-Domain (D3) [8] is the first work to introduce
the DCT-domain priors to facilitate JPEG artifacts removal. It
combines both the strong learning capacity of deep networks,
as well as the problem-specific knowledge of JPEG artifacts
removal.

Successive works proceed into two main streams: better
network architectures [28], [30], [32] and better utilization
of DCT domain information [9], [33]. Many advanced net-
works are constructed to model the rich dependencies of
deep features. Residual Encoder-Decoder Network (RED-

Net) [29] and Compression Artifact Suppression CNN (CAS-
CNN) [30] utilize deep encoding-decoding frameworks with
symmetric convolutional-deconvolutional layers. Tai et al. [32]
constructed a deep persistent memory network. The memory
blocks consist of a recursive unit and a gate unit to keep
memories. The former extracts multi-level representations
from the last input feature while the latter learns to control
the ratio between the memory and current input. Dual-Domain
Multi-Scale CNN (DMCNN) [33] integrates the dual domain
and auto-encoder style networks with dilated convolutions to
have very large receptive fields and eliminate the banding
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Fig. 3. The technical improvement route for deep learning-based compression artifacts removal and loop filter of codecs.

effects. In [34], wavelet transforms are introduced into CNN
architecture for a better trade-off between the receptive field
size and computational efficiency. In [35], a two-branch CNN
is constructed to handle the restoration in the pixel and discrete
wavelet domains.

Besides network improvement, some works try to embed
traditional priors or constraints into deep networks, e.g. spar-
sity [8], nonlinear diffusion [27], multi-scale constraint [30],
[33], and wavelet signal structures [34], [35]. In one-to-many
network [31], adversarial learning is introduced to facilitate
generating visually pleasing restoration results. A summary
of the performance comparison of typical deep learning-based
JPEG artifacts removal reported by their works is presented
in Fig. 5.

D. Deep Learning-Based Loop Filter

Besides JPEG, deep learning techniques are also applied
to latest codecs, e.g. HVEC, as a post-processor. Beyond the
improvement directions embodied in JPEG artifacts removal,
deep-learning based loop filter considers more on handling
the degradation caused by variable-size partition and utiliz-
ing the side information from codecs. Variable-Filter-Size
Residue-Learning CNN (VRCNN) [36] is the pioneering work.
The designed CNN owns variable filter size to learn the
residual between input and target frames. Successive works
also proceed into two classes: better network and better side
information. Zhang et al. [38] proposed a residual highway
convolutional neural network (RHCNN) for in-loop filter of
HEVC. In [43], Wang et al. proposed a multi-scale LSTM
to fuse multi-frame redundancies along temporal dimension
to acquire the fused feature. Meng et al. [39] proposed a
multi-channel long-short term dependency residual network
to simulate the mechanism of human memory update and
introduced an update cell which learns to store and select the
long-term and short-term dependency adaptively. Li et al. [52]
presented a dynamic classification mechanism. An up-to-one
byte flag indicates complexity of video content and quality
of each frame. In [41], Yang et al. designed a scalable deep
CNN to reduce distortion of both I and B/P frames in HEVC.
is proposed. It has two branches and a group of switches
to control whether DS-CNN-B branch is activated based on
the resource state. In [42], Song et al. developed a CNN
that can enhance compressed videos of different qualities with
low redundancy. In [44], Yang et al. explored to enhance the

compressed video frames using the neighboring high quality
frames. A novel multi-frame convolutional neural network is
built for compressed video enhancement. In [45], Hashimoto
et al. proposed a CNN with squeeze and excitation block and
spatial separable convolution for deblocking. In [10], Wang
et al. proposed a dense residual convolutional neural network
(DRN). In this network, dense shortcuts and residual learning
are combined. Bottleneck layers are injected into each DRN
to save the computational resources while adaptively fusing
the hierarchical features.

Various kinds of side information is designed for more
effective post-processing of compression artifacts reduction.
This side information includes: the compression parame-
ters from coding tree units (CTU) [51], partition mask of
CTU [11], QP parameter [38], block boundary [39], com-
plexity [52], peak quality frames and optical flow [44], and
normalized Y/U/V and normalized QP [45], etc.

E. Technical Improvement Summary

The typical improvement route of deep learning-based com-
pression artifacts reduction is summarized in Fig. 3. Three
aspects of improvements are included: side information utiliza-
tion, e.g. injecting the partition mask of CTU [11] as input;
network improvement, e.g. dense residual network [10]; and
novel loss function, e.g. adversarial loss [31]. For the network
improvement, all methods are improved in four directions: 1)
network architecture improvement (summarized more specifi-
cally in Fig. 4); 2) multi-domain network, e.g. DMCNN [33];
3) signal structure embedding, e.g. D3 [8]; 4) new unit design,
e.g. TNRD [27]. In the next section, we will benchmark these
methods using the unified protocols.

IV. ALGORITHM BENCHMARKING

With the rich resources provided by LIU4K, we evaluate
9 representative state-of-the-art algorithms: Shape-Adaptive
DCT (SA-DCT) [16], Artifacts Removal CNN (ARCNN) [7],
Trainable Nonlinear Reaction Diffusion (TNRD) [27], Denois-
ing CNN (DnCNN) [28], Persistent Memory Network Mem-
Net [32], Dual-domain Multi-scale CNN (DMCNN) [33],
Multi-Level Wavelet-CNN (MWCNN) [34], Variable-filter-
size Residue-learning CNN (VRCNN) [36], and Progressive
Rethinking Network (PRN) [70]. Our selected baselines try
to cover most of the representative methods. The first one is
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(h) Dense Residual Network [10]

(g) Multi-scale Convolutional LSTM [43]

3×3 Conv

C
o

n
cat

3×3 Conv 3×3 Conv

3×3 Conv 3×3 Conv 3×3 Conv

C
o

n
cat

3×
3
 C

o
n
v

(e) Auto-Encoder [33]

…

(f) Wavelet-Like Network [34]

C
o
n
v

D
W

T

C
o
n
v

D
W

T

C
o
n
v …

C
o
n
v

ID
W

T

C
o
n
v

ID
W

T

C
o
n
v

Fig. 4. The network improvement route for compression artifacts removal
and loop filter of codecs, where the multiplication sign in the circle in (c)
denotes the element-wise multiplication operation.

a traditional non-deep method. The successive six methods
are deep learning-based JPEG artifacts reduction methods.
The last two are deep learning-based loop filter methods.
We apply most of learning-based methods to restorations of
images compressed by JPEG and HEVC. For JPEG artifacts
reduction, we train the models on the training of LIU4K. For
loop filters, the models are trained on the training sets of both
BSD500 and LIU4K. Note that, the source codes of SA-DCT

2015 2016 2017 2018
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Fig. 5. Recent evolution of deep learning-based JPEG artifacts removal. We
can observe significant performance (PSNR) improvement since deep learning
entered the scene in 2015. The performances showed here are directly quoted
from the published papers.

and TNRD provided by the authors only support removing
JPEG artifacts with quality factors 10, 20, 30, 40 and 10,
20, 30, respectively. Thus, for these two methods, we only
compare their performances in these cases. We also add the
residual learning in our implemented ARCNN for fast training
and comparison.

A. Advanced Training Strategies

In our benchmarking, we also make efforts in generalizing
some constraints and methods of JPEG artifacts reduction to
the general compression artifacts reduction.
Dense DCT Domain Constraint. For some codecs, e.g.
HEVC, the partitioned block sizes are not the same all the
time. Thus, the original DCT branch constraint that regularizes
reconstruction of fixed-sized blocks in JPEG artifacts removal
cannot be utilized. Thus, we slightly change our DCT branch
design:

• Location-independence. We do not pose the constraint
based on block partitions. Instead, we impose the DCT
constraint densely for every pixel location.

• Variable-size DCT constraint. To handle variable block
sizes in HEVC codecs, we extend the DCT branch
into multiple branches. Each branch is responsible for
constructing DCT constraints at a certain scale.

In summary, our DCT constraint takes several variable-block-
size DCT transformation paths densely in every location.
Gradual Expanding Patch Size. The DCT branch is not
stable during training. To make our training more effective, we
first use small patches to train our network and then enlarge
the patch size gradually. Let P and e denote the patch size and
epoch. The size of training patches during train a restoration
model for JPEG is set as follows,

P =


56, e ∈ [1, 6] ,
112, e ∈ [7, 9] ,
168, e ∈ [10, 12] ,
224, e ∈ [13, 15] ,
256, e ∈ [16, 60] .

(1)
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For HEVC post-processing, all interval bounds for e are
multiplied by 5. This strategy leads to the better constraint
of the DCT branch and also offers a better performance.
Learning with Mixed Batches. For the methods with high
complexities, it is impossible to train the models with both
a large patch size and a large batch size at the same time.
Thus, we propose to apply training with mixed batches, the
combination of (large patch, small batch) and (small patch,
large batch). Therefore, with the limited GPU memory re-
sources, the network training can be stabilized by the large
batch size, and at the same time, the model can also learn the
information from a large context with the large patch size. In
our benchmark, we train MemNet and PRN with this strategy.

B. Evaluation Protocols

Four full-reference metrics including PSNR, PSNR-B [58],
SSIM [59], MS-SSIM [60], and two non-reference metrics
including NIQE [55], and BRISQUE [61] are used to evaluate
the effectiveness of the proposed method. In our implemen-
tation, we use Adam [62] optimizer to pre-train our network
and finetune it with stochastic gradient descend (SGD) [63]
with cosine decay. In the first stage, the learning rate is set to
0.001. For PRN and MemNet, the learning rate is set to 0.0001.
After training 16 epochs, SGD is used for fintuning. The initial
learning rate is set to 0.0001 at the second-stage training with
cosine decay. We allow at most 60 epochs for JPEG artifacts
removal and 300 epochs for restoration of compressed images
by HEVC. For all methods, the models used for restorations
of images compressed by JPEG with a quality factor 40 and
HEVC with a quantization parameter 22 are trained from
scratch. Other models are initialized these two models during
the training.

C. Objective Comparison

The objective results are presented in Table V. DMCNN
is the obvious winner in full-reference metrics, followed by
MWCNN for JPEG artifacts removal and PRN for loop
filter. On the whole, deep learning-based methods achieve
significantly superior performance than previous ones. In no-
reference metrics, TNRD achieves a superior performance for
JPEG artifacts removal and almost all methods generate results
worse than original compressed images. We also provide more
objective results of different methods on other testing sets in
the supplementary material. These results have high consensus
levels among different testing sets.

D. Subjective Results

We also compare the subjective quality of different methods
in Fig. 6 and 7. It is observed that, DMCNN achieves the
overall best visual quality. Most artifacts are removed and
texture details are preserved due to its superior modeling
capacity. As shown in Fig. 6, JPEG, ARCNN, VRCNN and
DnCNN generate obvious banding effects in large and smooth
regions. MemNet and PRN achieve better results. However,
there are still gentle bands when taking a close look. Benefiting
from the large receptive filed, MWCNN and DMCNN can well
restore the artifacts in the smooth regions and remove banding
artifacts. For the water wave textures, after compression, some

regions are quantized to be small smooth blocks. All methods
fail to restore the visually pleasing texture. ARCNN, VRCNN,
DnCNN only remove blockiness boundaries. MemNet and
PRN restore water wave textures in stochastic directions.
MWCNN and DMCNN generate consistent water wave tex-
tures to the surrounding waves. Fig. 7 provides the results
of edges and regular textures. It is observed that, the results
of ARCNN, VRCNN and DnCNN contain many artifacts.
MWCNN, MemNet and PRN generate better results. DMCNN
generates most shape edges and regular brick textures.
E. Evaluation on Model Capacity

Table VI reports the parameter number, the storage usage,
and the per-image running time of each method, averaged
over the images (768×512) in LIVE1, on a machine with
Intel(R) Xeon(TM) E5-2650 v4 2.20 GHz CPU, 16G RAM,
and GeForce GTX 1080 Ti. ARCNN, DnCNN, MemNet,
MWCNN, PRN, DMCNN, and VRCNN are implemented in
Pytorch. SA-DCT and TNRD are implemented in MATLAB.
ARCNN, DnCNN, MemNet, MWCNN, PRN, DMCNN, and
VRCNN run on GPU while SA-DCT and TNRD run on CPU.
It is observed that, all deep learning-based methods can finish
process an image within 1 seconds. ARCNN, VRCNN and
DnCNN achieve the shortest running time and can finish the
restoration within 10 millisecond. As for the storage, ARCNN
and VRCNN use the minimum storage space. As for the model
complexity, MWCNN uses the most parameters while TNRD
uses the fewest ones. Note that, PRN and DMCNN use differ-
ent network architectures to handle JPEG artifacts removal and
the restoration of compressed images by HEVC. Therefore, we
present the complexities of their different versions in Table VI,
denoted with (J) and (H), respectively. The results are also
visualized in Fig. 8.

F. Evaluations on Performance of Computer Vision Tasks

Depth Estimation. Table VIII shows the results by depth esti-
mation with accurate object boundaries [66], one of the state-
of-the-art depth estimation methods, based on images with
and without compression artifacts reduction by VRCNN on
NYUv2 [67] in different measures. Several accuracy measures
are employed to evaluate the depth estimation performance.
Mean squared error (MSE), root mean squared error (RMS),
mean relative error (MRE), mean log 10 error (log 10),
and threshold accuracy, as well as the precision (P), recall
(R) and F1 score of the estimated edge maps. It is noted
that, for MSE, RMS and MRE, small values signify better
performance. For log 10, threshold accuracy δ, P, R and
F1 score, large values denote better performance. From the
results, for MSE, RMS, and MRE, it is always beneficial to
perform compression artifacts reduction among all cases (both
JPEG and HEVC codecs with all QPs and QFs). For other
metrics, the results become slightly controversial. The results
of the restored images are sometimes inferior to those of the
compressed ones, e.g., QF=10 on log 10, and QF=30, 40 on
P, etc. However, in general, the results of restored images
win in more cases, compared to the compressed ones. It is
also demonstrated that, the reconstruction aiming to restore
compressed images in visual quality might be not beneficial to
the successive tasks all the time. The trend of the performance
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(a) Original (b) JPEG (c) ARCNN [7] (d) VRCNN [36] (e) DnCNN [28]

(f) MWCNN [34] (g) MemNet [32] (h) PRN [70] (i) DMCNN [33]

Fig. 6. Examples of restored results on a compressed image by HM from LIU4K (QF=10).

change before and after the restoration at different QP/QF
conditions is also visualized in Fig. 10. We also show the
visual results in Fig. 9. It is observed that, when QF=10,
the result of the compressed image degrades much and the
enhancement operation effectively improves the visual quality
of the depth map. When QF=20, the degradations in the result
of the compressed image are not obvious. The enhancement
operation also leads to minor visual quality gains. Some
discontinuous boundary artifacts are removed as shown in the
red boxes of Fig 9. However, some details become blurry, e.g.
the details and boundaries in the blue boxes, as shown in Fig 9.
Semantic Segmentation. We integrate two baselines for eval-
uations: ResNet50Dilated + PPM Deepsup and ResNet50 +
UperNet [64]. The evaluation is performed on ADE20K [64].
Results are reported in two metrics commonly used for se-
mantic segmentation [65]: Pixel accuracy indicates the pro-
portion of correctly classified pixels. Mean IoU indicates the
intersection-over-union between the predicted and groundtruth
pixels, averaged over all the classes. It is observed from
Table VIII that, compression artifacts reduction (i.e. VRCNN)
may not benefit the inference of semantic segmentation all the
time. In many cases, e.g. for JPEG artifacts, the performance
of the baseline ResNet50Dilated + PPM Deepsup on restored

images is worse than that on compressed images for QF=40.
The trend of the performance change before and after the
restoration at different QP/QF conditions is also visualized
in Fig. 12. The main reason of the performance drop might be
the consensus of the effect of MSE used in the training and
the semantic segmentation purpose. Training with MSE, the
restoration results of compressed images with gender artifacts
tend to be smooth and some critical details are lost causing
low accuracy. For visual results, it is observed from Fig. 11
that, compression artifact removal might slightly correct some
false boundaries.

V. TRENDS AND CHALLENGES

Although deep learning techniques bring fast development
in compression artifacts reduction, there remains several im-
portant challenges and inherent trends. First, recent researchers
obtained higher and higher accuracy by advanced deep models
with a huge amount of parameters, it is still hard to apply
these methods in real scenario. It is interesting to re-design
compact deep network architectures and compress or adjust
the existing models into small ones for real-time compression
artifacts reduction. Second, with the latest codecs, i.e. versatile
video coding (VVC), more integrated tools are employed, thus
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(a) Original (b) JPEG (c) ARCNN [7] (d) VRCNN [36] (e) DnCNN [28]

(f) MWCNN [34] (g) MemNet [32] (h) PRN [70] (i) DMCNN [33]

Fig. 7. Examples of restored results on a compressed image by JPEG from LIU4K (QF=10).
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Fig. 8. Visual results of performance and complexity (i.e. parameters) of
different methods. (a) JPEG artifacts removal (QF=10). (b) restoration of
compressed images by HEVC (QP=37).

the distribution of compression artifacts is more complex.
It is challenging to apply the existing methods to the next
generation codecs. With more powerful weapons of deep learn-
ing, e.g. capsule network, and reinforcement learning etc., we
believe that, the future technique improvement on restoration
of more complex degradations will bring new surprises. Third,
for compression artifacts reduction, there are few works on
the internal mechanism of feature learning and the related

(a) (b) (c) (d)

Fig. 9. The visual results of depth estimation on compressed images (JPEG)
with and without compression artifacts reduction. (a) Input RGB image. (b)
Depth map of compressed image (QF=10). (c) Depth map of restored image
(QF=10). (d) Depth map of original image.

interpretable factors. Beyond obtaining superior performance,
one direction is to give comprehensive explanations on what
factors might lead to a more effective network and the specific
mechanism. Last, for various low-level image processing tasks,
it is a critical issue to design and apply proper metrics to
constrain model training and evaluate the model’s effective-
ness. Thus, it is an important future direction to develop more
effective and rational measures that balance both signal fidelity
and visual perception for compression artifacts reduction.

VI. CONCLUSION

This paper presents a systematic review of compression
artifacts reduction methods, including both traditional and
deep-learning based methods. These methods evolve in several
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TABLE V
OBJECTIVE EVALUATIONS OF DIFFERENT METHODS ON LIU4K FOR COMPRESSION ARTIFACTS REDUCTION. THE VALUE IN RED, AND BLUE COLORS

DENOTE THE FIRST, AND SECOND BEST RESULTS, RESPECTIVELY.
Method Quality Compressed SA-DCT TNRD ARCNN VRCNN DnCNN MemNet MWCNN PRN DMCNN
PSNR

QF=10

30.45 31.32 31.85 31.86 31.83 32.05 32.18 32.28 32.19 32.33
PSNR-B 29.93 31.32 31.82 31.83 31.81 32.01 32.10 32.23 32.15 32.30

SSIM 0.8090 0.8237 0.8427 0.8423 0.8419 0.8463 0.8488 0.8508 0.8491 0.8520
MS-SSIM 0.9270 0.9353 0.9457 0.9457 0.9452 0.9481 0.9496 0.9511 0.9498 0.9513

NIQE 6.81 4.55 5.31 5.22 5.31 5.16 5.27 5.39 5.25 5.48
BRISQUE 56.39 51.09 43.00 49.94 48.63 49.40 49.56 50.32 50.51 51.16

PSNR

QF=20

33.28 33.87 34.48 34.51 34.47 34.57 34.80 34.86 34.83 34.91
PSNR-B 32.61 33.86 34.42 34.45 34.39 34.47 34.71 34.80 34.78 34.86

SSIM 0.8772 0.8787 0.8958 0.8963 0.8958 0.8970 0.9005 0.9013 0.9007 0.9023
MS-SSIM 0.9675 0.9665 0.9737 0.9741 0.9738 0.9740 0.9757 0.9760 0.9757 0.9762

NIQE 5.30 4.23 4.84 4.84 4.98 4.86 4.94 4.96 4.94 5.17
BRISQUE 53.67 46.99 39.44 45.69 47.01 43.65 46.62 45.85 46.20 47.10

PSNR

QF=30

34.81 35.27 35.92 35.90 35.89 36.11 36.21 36.23 36.23 36.31
PSNR-B 34.09 35.26 35.84 35.82 35.76 35.97 36.04 36.17 36.16 36.25

SSIM 0.9062 0.9040 0.9192 0.9196 0.9198 0.9215 0.9229 0.9232 0.9233 0.9242
MS-SSIM 0.9799 0.9774 0.9830 0.9832 0.9833 0.9839 0.9842 0.9844 0.9843 0.9846

NIQE 4.68 4.08 4.57 4.64 4.59 4.57 4.74 4.92 4.78 4.96
BRISQUE 48.48 45.28 37.59 43.10 42.64 42.49 43.69 44.11 43.94 44.28

PSNR

QF=40

35.82 36.20 - 36.89 36.86 37.08 37.11 37.11 37.18 37.23
PSNR-B 35.07 36.19 - 36.77 36.74 36.96 36.94 37.03 37.06 37.13

SSIM 0.9220 0.9188 - 0.9331 0.9330 0.9349 0.9354 0.9353 0.9358 0.9363
MS-SSIM 0.9856 0.9829 - 0.9878 0.9878 0.9882 0.9883 0.9884 0.9885 0.9886

NIQE 4.28 4.00 - 4.49 4.54 4.63 4.61 4.75 4.68 4.80
BRISQUE 43.77 44.01 - 41.35 41.00 40.79 41.28 41.51 41.56 41.80

PSNR

QP=22

41.94 - - 41.72 41.72 41.79 41.80 41.79 41.75 41.86
PSNR-B 41.67 - - 41.58 41.58 41.69 41.67 41.68 41.62 41.77

SSIM 0.9728 - - 0.9729 0.9730 0.9732 0.9732 0.9732 0.9729 0.9734
MS-SSIM 0.9957 - - 0.9957 0.9957 0.9957 0.9957 0.9957 0.9957 0.9958

NIQE 3.86 - - 3.80 3.81 3.93 3.96 3.91 3.78 3.97
BRISQUE 21.29 - - 24.61 24.51 24.36 24.56 24.33 23.30 24.57

PSNR

QP=27

38.47 - - 38.48 38.49 38.50 38.55 38.56 38.61 38.59
PSNR-B 38.33 - - 38.43 38.45 38.47 38.50 38.52 38.56 38.57

SSIM 0.9456 - - 0.9462 0.9462 0.9465 0.9465 0.9468 0.9473 0.9472
MS-SSIM 0.9897 - - 0.9896 0.9896 0.9898 0.9897 0.9898 0.9899 0.9899

NIQE 4.02 - - 4.06 4.13 4.13 4.22 4.17 4.19 4.26
BRISQUE 32.68 - - 34.65 34.81 34.83 35.37 35.25 35.29 35.60

PSNR

QP=32

35.52 - - 35.63 35.65 35.71 35.74 35.75 35.78 35.79
PSNR-B 35.46 - - 35.62 35.64 35.70 35.71 35.74 35.77 35.78

SSIM 0.9061 - - 0.9072 0.9073 0.9083 0.9082 0.9085 0.9091 0.9094
MS-SSIM 0.9776 - - 0.9777 0.9776 0.9780 0.9779 0.9781 0.9782 0.9783

NIQE 4.55 - - 4.57 4.62 4.68 4.76 4.61 4.74 4.79
BRISQUE 40.99 - - 41.87 42.58 42.47 42.61 43.32 43.51 43.69

PSNR

QP=37

32.85 - - 33.00 33.02 33.06 33.12 33.14 33.16 33.17
PSNR-B 32.81 - - 33.00 33.01 33.05 33.10 33.14 33.14 33.16

SSIM 0.8558 - - 0.8577 0.8582 0.8582 0.8594 0.8604 0.8603 0.8613
MS-SSIM 0.9559 - - 0.9563 0.9562 0.9564 0.9567 0.9573 0.9571 0.9575

NIQE 5.04 - - 5.03 5.07 5.07 5.24 5.08 5.14 5.21
BRISQUE 46.61 - - 47.16 47.62 46.83 48.74 47.77 47.11 48.30

TABLE VI
THE MODEL COMPLEXITY ANALYSIS OF DIFFERENT METHODS. J DENOTES THE VERSION USED FOR JPEG ARTIFACTS REMOVAL. H SIGNIFIES THE

VERSION USED FOR THE RESTORATION OF COMPRESSED IMAGES BY HEVC.
Categories Non-Deep Deep JPEG Artifacts Removal Deep Loop Filter

Metrics SA-DCT ARCNN TNRD DnCNN MemNet MWCNN PRN (J) DMCNN (J) VRCNN PRN (H) DMCNN (H)
Parameter - 106,564 26,645 1,112,192 3,165,196 16,152,260 1,312,140 5,751,614 54,673 7,600,065 9,400,180

Storage (MB) - 0.40 1.93 2.12 12.26 61.60 5.16 21.95 0.21 29.16 22.67
Time (ms/per-image) 43164.00 3.56 15050.30 6.31 186.30 132.39 49.92 17.34 3.92 841.01 32.48

perspectives, including model architecture improvement and
continuing exploration of side information embedding, etc. We
summarize milestone and typical methods and highlight their
contributions, strengths, and weaknesses. We also conduct a
thorough benchmark of state-of-the-art compression artifacts
reduction methods. In our benchmarking experiments, some
constraints and training skills targeted for JPEG artifacts re-
moval are generalized to handle general compression artifacts
reduction methods. Based on our evaluation and analysis,
overall remarks, challenges, and trends are given. Although our
attempts are preliminary, they build a bridge from the existing

world to a new one, where more researchers are expected to
come.
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