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Unsupervised Deep Cross-modality Spectral Hashing
Tuan Hoang, Thanh-Toan Do, Tam V. Nguyen, Ngai-Man Cheung

Abstract—This paper presents a novel framework, namely
Deep Cross-modality Spectral Hashing (DCSH), to tackle the
unsupervised learning problem of binary hash codes for efficient
cross-modal retrieval. The framework is a two-step hashing
approach which decouples the optimization into (1) binary
optimization and (2) hashing function learning. In the first
step, we propose a novel spectral embedding-based algorithm to
simultaneously learn single-modality and binary cross-modality
representations. While the former is capable of well preserving
the local structure of each modality, the latter reveals the
hidden patterns from all modalities. In the second step, to learn
mapping functions from informative data inputs (images and
word embeddings) to binary codes obtained from the first step, we
leverage the powerful CNN for images and propose a CNN-based
deep architecture to learn text modality. Quantitative evaluations
on three standard benchmark datasets demonstrate that the
proposed DCSH method consistently outperforms other state-
of-the-art methods.

Index Terms—Cross-modal retrieval, Spectral hashing, Image
search, Constraint Optimization

I. INTRODUCTION

The last few years have witnessed an exponential surge in
the amount of information available online in heterogeneous
modalities, e.g., images, tags, text documents, videos, and
subtitles. Thus, it is desirable to have a single efficient system
that can facilitate large-scale multi-media searches. In general,
this system should support both single and cross-modality
searches, i.e., the system returns a set of semantically relevant
results of all modalities given a query in any modality. In addi-
tion, to be used in large scale applications, the system should
have efficient storage and fast searching. To handle the above
challenges, several cross-modality hashing approaches have
been proposed, in both supervised [1]–[16] and unsupervised
[17]–[29] learning. Furthermore, as the unsupervised hashing
does not require any label information, it is suitable for large-
scale retrieval problems with limited/scarce label information.
Thus, in this work, we focus on the unsupervised setting of
the cross-modality hashing problem for retrieval tasks.

Recent unsupervised cross-modality hashing methods [22],
[23] jointly learn binary codes and linear hash functions.
However, mapping data from very high-dimensional non-
linear spaces to a common Hamming distance space using
linear models is likely to underfit training data. Learning
highly expressive non-linear models (e.g., CNN) with binary
constraints on the model outputs in the unsupervised context is
not a straightforward solution. It is non-trivial to obtain low-bit

Tuan Hoang and Ngai-Man Cheung are with the Singapore University of
Technology and Design (SUTD), Singapore. Email:
nguyenanhtuan hoang@mymail.sutd.edu.sg, ngaiman cheung@sutd.edu.sg

Thanh-Toan Do is with the University of Liverpool, United Kingdom.
Email: thanh-toan.do@liverpool.ac.uk

Tam V. Nguyen is with the University of Dayton, United States. E-mail:
tamnguyen@udayton.edu

hash codes that preserve the structure of the high-dimensional
inputs without any supervised information (i.e., semantically-
similar inputs may be mapped to very dissimilar binary codes).
To overcome this challenge, in this paper, we rely on the two-
step hashing approach [30], [31] for learning binary codes
and hashing functions. By decoupling the binary optimization
and hashing function learning, the two-step approach helps to
simplify both the problem and the optimization, which leads
to better binary codes.

Particularly, in the first step, i.e., learning binary codes,
it is essential to preserve the intra and inter-modality sim-
ilarities jointly in a common Hamming space. To preserve
the intra-modality similarity, previous unsupervised cross-
modality hashing methods [17], [19] utilize the well-known
spectral embedding-based approach to discover the neigh-
borhood structure of data [32]. Nevertheless, these methods
produce different embedding spaces for different modalities,
which is a non-optimal solution for the cross-modality retrieval
problem [20], [33]. To overcome this drawback, we propose
a spectral embedding-based approach to learn a joint binary
representation that is well represented for all modalities si-
multaneously. We additionally include the independence and
balance constraints on binary codes, i.e., different bits in the
binary codes are independent from each other, and each bit has
a 50% chance of being 1 or −1 [34], [35]. The independence
property is to ensure hash codes do not capture redundant
information, while the balance property is to ensure hash codes
contain the maximum amount of information [35].

Furthermore, we note that the quality of data-to-data sim-
ilarity matrix plays an important role in the success of the
spectral clustering. The Anchor Graph [36] is widely adopted
in recent works [23], [37], [38] to construct the similarity
matrices. This method, however, only considers the data-to-
anchor connection, while the anchor-to-anchor connections,
which potentially contain some useful information, are not put
into consideration. To achieve better graph representations, we
propose to further improve the Anchor Graph by introducing
the anchor-to-anchor mapping.

The second step of the two-step hashing approach is to
learn hash functions to map inputs to the learned binary codes
in the first step. In this step, since there is no challenging
requirement as in the first step (i.e., preserving the intra
and inter-modality similarities jointly in a common Hamming
space, independent and balanced hash codes), any deep-model
can be chosen to fit the learned binary codes easily. Specifi-
cally, for image modality, we leverage the powerful CNN to
learn hash functions from input images as this would help
to reduce the bias from the classification task, on which the
CNN model are pre-trained, i.e., some information of input
images is discarded if it is irrelevant to classification labels.
For text modality, instead of using the limited-information bag-
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Fig. 1: The overview of our proposed method: Deep Cross-modality Spectral Hashing (DCSH). Our method includes the
following two stages. In the first stage, we learn the cross-modality binary representation B that can represent the underlying
local structure of all modalities well. In the second stage, given the cross-modality binary codes, we train deep models to map
informative inputs (e.g., images, word embeddings) to their corresponding binary codes.

of-words (BOW) textual features as previous cross-modality
hashing works [18]–[24], we propose a CNN-based deep
architecture to learn the binary representation from a set of
word embeddings (named as document embeddings). In fact,
the textual BOW is commonly constructed from most frequent
words which appear in the entire training set. However, the
BOW textual features do not put the meaning of words
into consideration. For example, many words having similar
meaning are considered as completely different words (e.g.,
tree and plant, street and road, women and female). Hence,
using word embeddings can help to mitigate this issue as word
meanings are put into consideration (e.g., words with similar
meaning tend to have similar embeddings) [39], [40].

In summary, in this paper, by adopting the spectral embed-
ding with the two-step hashing, we propose a novel frame-
work, dubbed Deep Cross-modality Spectral Hashing (DCSH).
Our main contributions are:

• We introduce the anchor-to-anchor mapping which pro-
vides datapoints broader views of local structures, i.e.,
capturing the manifold structures of datasets better. The
proposed anchor-to-anchor mapping is novel and robust.
In section V-B3, we empirically show that it is beneficial
in building more informative anchor graphs for learning
binary codes.

• In the first stage of the two-step hashing, we propose a
novel algorithm which is based on spectral embedding
to simultaneously learn single modality representations
and a cross-modality binary representation. The for-
mer presents the underlying structure of each individual
modality, while the latter captures the common hidden
patterns among all modalities.

• In the second stage of the two-step hashing, for the text
modality, we propose to leverage the word embeddings

[39], [40] to obtain more informative input for the text
modality (named as document embeddings), instead of
using the limited-information bag-of-words (BOW) tex-
tual features as previous cross-modality hashing works
[18]–[24]. We then propose a CNN-based deep architec-
ture to learn the binary representation from the infor-
mative document embeddings. For the image modality,
learning hash functions directly from images also help to
reduce the bias from the classification task, on which the
CNN model are pretrained.

• We compare our proposed method against various state-
of-the-art unsupervised cross-modality hashing meth-
ods on three standard cross-modal benchmark datasets,
i.e., MIR-Flickr25K, IAPR-TC12, and NUS-WIDE. The
quantitative results clearly justify our contributions and
demonstrate that our proposed method outperforms the
compared methods on various evaluation metrics.

The overview of the proposed method is presented in Fig. 1.

II. RELATED WORK

In this section, we first give a brief overview on hashing
methods. We then focus on works that relate to our method,
i.e., supervised and unsupervised cross-model hashing.

Single modal hashing: Existing single modal hash-
ing methods can be categorized as data-independent and
data-dependent schemes [41]–[43]. Data-independent hash-
ing methods [44]–[47] rely on random projections for
constructing hash functions. Although representative data-
independent hashing methods such as Locality-Sensitive Hash-
ing (LSH) [44] and its kernelized versions [45], [46] have the-
oretical guarantees which show that similar data have a higher
probability to be mapped into similar binary codes. They
require long codes to achieve high precision. Different from
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data-independent approaches, data-dependent hashing methods
use available training data for learning hash functions in an
unsupervised or supervised manner and they usually achieve
better retrieval results than data-independent methods. The
unsupervised hashing methods [29], [34], [48]–[55] try to pre-
serve the neighbor similarity of samples in the Hamming space
without label information. The representative unsupervised
hashing methods are Iterative Quantization (ITQ) [48], Spher-
ical Hashing (SPH) [51], and K-means Hashing (KMH) [49].
The supervised hashing methods [56]–[60] try to preserve the
label similarity of samples using labeled training data. The
representative supervised hashing methods are Kernel-Based
Supervised Hashing (KSH) [57], Semi-supervised Hashing
(SSH) [61], and Supervised Discrete Hashing (SDH) [59]. The
readers can refer to [41] and [42] for extensive reviews on
single model hashing research.

Recent works show that joint learning image representations
and binary hash codes in an end-to-end deep learning-based
supervised hashing framework [62]–[69] have demonstrated a
considerable boost in retrieval accuracy. By joint optimization,
the produced hash codes are more sufficient to preserve
the semantic similarity between images. In those works, the
network architectures often consist of a feature extraction sub-
network and a subsequent hashing layer to produce hash codes.

Most aforementioned hashing methods are designed for a
single modality input. However, recent years have witnessed
an exponential surge in the amount of information available
online in heterogeneous modalities, e.g., images, tags, text
documents, videos, and subtitles. Thus, it is desirable to have
a single efficient system that can facilitate large-scale multi-
media searches.

Supervised Cross-modal hashing: Supervised hashing
methods can explore the semantic information to enhance
the data correlation from different modalities (i.e., reduce
modality gap) and reduce the semantic gap. Many supervised
cross-modal hashing methods with shallow architectures have
been proposed, for instance Co-Regularized Hashing (CRH)
[1], Heterogeneous Translated Hashing (HTH) [2], Supervised
Multi-Modal Hashing (SMH) [3], Quantized Correlation Hash-
ing (QCH) [4], Semantics-Preserving Hashing (SePH) [5],
Discrete Cross-modal Hashing (DCH) [6], and Supervised Ma-
trix Factorization Hashing (SMFH) [8]. All of these methods
are based on hand-crafted features, which cannot effectively
capture heterogeneous correlation between different modali-
ties and may therefore result in unsatisfactory performance.
Unsurprisingly, recent deep learning-based works [10]–[16],
[70] can capture heterogeneous cross-modal correlations more
effectively. Deep cross-modal hashing (DCMH) [12] simulta-
neously conducts feature learning and hash code learning in a
unified framework. Pairwise relationship-guided deep hashing
(PRDH) [15], in addition, takes intra-modal and inter-modal
constraints into consideration. Deep visual-semantic hashing
(DVSH) [16] uses CNNs, long short-term memory (LSTM),
and a deep visual semantic fusion network (unifying CNN
and LSTM) for learning isomorphic hash codes in a joint
embedding space. However, the text modality in DVSH is only
limited to sequence texts (e.g., sentences). In Cross-Modal
Deep Variational Hashing [14], given learned representative

cross-modal binary codes from a fusion network, the au-
thors proposed to learn generative modality-specific networks
for encoding out-of-sample inputs. In Cross-modal Hamming
Hashing [71], the author proposed Exponential Focal Loss
which puts higher losses on pairs of similar samples with
Hamming distance much larger than 2 (in comparison with
the sigmoid function with the inner product of binary codes).
Mandal et al. [9] proposed Generalized Semantic Preserving
Hashing (GSPH) which can work for unpaired inputs (i.e.,
given a sample in one modality, there is no paired sample in
other modality.).

Although supervised hashing typically achieves very high
performance, it requires a labor-intensive process to obtain
large-scale labels, especially for multi-modalities, in many
real-world applications. In contrast, unsupervised hashing does
not require any label information. Hence, it is suitable for
large-scale image search in which the label information is
usually unavailable.

Unsupervised Cross-modal hashing: Cross-view hashing
(CVH) [17] and Inter-Media Hashing (IMH) [19] adopt Spec-
tral Hashing [34] for the cross-modality hashing problem.
These two methods, however, produce different sets of binary
codes for different modalities, which may result in limited
performance. In Predictable Dual-View Hashing (PDH) [18],
the authors introduced the predictability to explain the idea of
learning linear hyper-planes each of which divides a particular
space into two subspaces represented by −1 or 1. The hyper-
planes, in addition, are learned in a self-taught manner, i.e.,
to learn a certain hash bit of a sample by looking at the
corresponding bit of its nearest neighbors. Collective Matrix
Factorization Hashing (CMFH) [20] aims to find consistent
hash codes from different views by collective matrix factor-
ization. Also by using matrix factorization, Latent Semantic
Sparse Hashing (LSSH) [21] was proposed to learn hash codes
in two steps: first, latent features from images and texts are
jointly learned with sparse coding, and then hash codes are
achieved by using matrix factorization. Inspired by CCA-ITQ
[48], Go et al. [22] proposed Alternating Co-Quantization
(ACQ) to alternately minimize the binary quantization error
for each of modalities. In [23], the authors applied Nearest
Neighbor Similarity [72] to construct Fusion Anchor Graph
(FSH) from text and image modals for learning binary codes.

In addition to the aforementioned shallow methods, several
works [25]–[27] utilized (stacked) auto-encoders for learning
binary codes. These methods try to minimize the distance be-
tween hidden spaces of modalities to the preserve inter-modal
semantic. They also used the reconstruction criterion for each
modality to maintain the intra-modal consistency. However,
the reconstruction criterion is not a direct way for preserving
similarity [50], [73], and may lead to non-optimal binary
codes. Recently, Zhang et al. [28] designed a graph-based
unsupervised correlation method to capture the underlying
manifold structure across different modalities, and a generative
adversarial network to learn the manifold structure. Taking
a different approach, we adopt a spectral embedding-based
approach which can effectively capture the local structure of
the input datasets. Wu et al. [74] proposed Unsupervised Deep
Cross Modal Hashing (UDCMH), which alternatives between
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feature learning, binary latent representation learning and hash
function learning. Su et al. [75] proposed a joint-semantics
affinity matrix, which integrates the neighborhood information
of two modals, for mini-batch samples to train deep network
in an end-to-end manner. This method is named as Deep Joint
Semantics Reconstructing Hashing (DJSRH). On the contrary,
we decouple the learning of binary codes and hashing function.
This results in simpler optimization and better binary codes.
Additionally, inspired by Anchor Graph [36], we also propose
a novel method to achieve more informative similarity graphs
for the multi-modal context. Moreover, both UDCMH [74]
and DJSRH [75] are only proposed for two modalities, and
their abilities to adapt to the general case of M modalities
are unclear, while our method is proposed for M modalities.
In Cycle-Consistent Deep Generative Hashing (CYC-DGH)
[76], the authors leverage the cycle-consistent loss [77] to
learn hashing functions that map inputs of different modalities
into a common hashing space without requiring paired inputs.
However, this setting is not the main focus of our work, and
we leave it for future study.

III. PRELIMINARY WORKS

Spectral Clustering is one of the most popular clustering
algorithms due to its simple implementation and effectiveness
in exploring hidden structures of the input data [32]. The
well-known formulation of spectral clustering of an undirected
weighted graph G = {X; A}, with a vertex set X ∈ RN×D

(N data points of D-dimension) and an edge affinity matrix
A ∈ RN×N , is defined as follows:

min
Y

Tr
(
Y>LY

)
, s.t. Y>Y = IL, (1)

where Y ∈ RN×L is an L-dimension spectral embedding
(L � D) of the input data X, L = D −A is the Laplacian
graph matrix, and D ∈ RN×N is a diagonal matrix with
Dii =

∑N
j=1 Aij . The solutions of (1) are simply the L eigen-

vectors corresponding to the L smallest positive eigenvalues
of L. The clusters are obtained by conduct k-means on the
L-dimension spectral embedding.

Anchor Graph [37] uses a small set of P points (called
anchors) U = {ui}Pi=1 ∈ RP×D to approximate the neighbor-
hood structure underlying the input dataset X = {xi}Ni=1 ∈
RN×D (N � P ). U is commonly achieved by using
lightweight clustering methods such as k-means, DeepVQ
[78]. Given a kernel function K(x1,x2), e.g., Gaussian Kernel
K(x1,x2) = exp

(
−‖x1 − x2‖2/σ

)
with the bandwidth pa-

rameter σ, the nonlinear data-to-anchor mapping (RD 7→ RP )
is defined as follows:

z(xi) = [δ1K(xi,u1), . . . , δPK(xi,uP )]
>
/Nl1, (2)

where δj ∈ {0, 1} and δj = 1 if and only if anchor uj is
one of the k � P closest anchors of xi in U, and Nl1 =∑P

j=1 δjK(xi,uj). Then, the data-to-data affinity matrix is
achieved as A = ZΛ−1Z>, where Z = [z(x1), . . . , z(xn)]

>

is the data-to-anchor affinity matrix and Λ = diag(Z>1).
Each element of A can be probabilistically interpreted as the
transition probability from one data point to another.

Algorithm 1: Deep Cross-modality Spectral Hashing
(DCSH)

Input : Training data O = {oi}Ni=1; code length L;
parameters P, k, ka, λ1, λ2, α, γ1, γ2

Output: Modality-specific hashing functions{Fm}Mm=1

/* I - Anchor Graph */
1 Learn anchor sets for modalities (Sec. IV-A1);
2 Compute the expanded data-to-anchor affinity matrices
{Ẑm}Mm=1 (Sec. IV-A2);

3 Compute the Laplacian graphs: {Lm}Mm=1 (Sec. II);
/* II - Maximized Correlation

Cross-modality Binary Codes */
4 Obtain cross-modality binary codes B using Algo. 2;
/* III - Hashing functions */

5 Train modality-specific hashing functions {Fm}Mm=1 with
the objective function (12), given B from the above
step;

6 return {Fm}Mm=1.

IV. PROPOSED METHOD

Given a dataset of N instances including M modalities,
denoted as O = {oi}Ni=1, oi = (x1

i , . . . ,x
M
i ), where xm

i ∈
RDm

is the Dm dimensional feature of m-th modality. We
also denote the feature matrix for m-th modality as Xm =
{xm

i }Ni=1 ∈ RN×Dm

. We now delve into the details of our
proposed method. The overview of the proposed method is
presented in Fig. 1 and Algorithm 1.

A. Anchor Graph

Inspired by the anchor graph method [36], [37] for single
modality data, we firstly propose to construct the anchor
graphs for the multi-modal context. Furthermore, we propose
to introduce the anchor-to-anchor mapping, which leverages
the information among anchor points when constructing the
anchor graph.

1) Anchors: By learning the anchor for each modality
separately, the anchor sets lose the one-to-one relationship
among modalities, i.e., there is no connection from an anchor
point in a modality, e.g., image, to any anchor in another
modality, e.g., text, as in the original datasets. Losing this
property could lead to difficulty in modality fusion.

To handle this problem, we propose to learn the anchor
sets for all modalities together as follows. (i) Firstly, we
normalize the data in m-th modality to have the unit-variance

by dividing the data to the factor of
√∑Dm

i=1 λ
m
i , where λmi

is the i-th eigenvalue of the covariance matrix of the m-th
modality. (ii) Afterwards, we concatenate the datasets of all
modalities together, i.e., X = [X1, . . . ,XM ]∈RN×D, where
D=

∑M
m=1D

m. (iii) We then apply k-means over X, which
results in P cross-modal centroids as U=[U>1 , · · · ,U>P ]>∈
RP×D. Note that the unit-variance normalization step (first
step) is important, as this helps to avoid k-means being
biased toward modalities which have higher variances. We will
analyze this aspect further in the experiment section (Section
V-B1). (iv) Finally, we achieve the centroids for each modality



5

Algorithm 2: Maximized Correlation Cross-modal Spec-
tral Hashing (MCCSH)

Input : {Lm}Mm=1

Output: B

1 Initialize {Ym}Mm=1 as in Sec. IV-B1 (Algo. 3);
2 repeat
3 Update B with MPEC-EPM in Sec. IV-B2(Algo. 4);
4 Update {Ym}Mm=1 as in Sec. IV-B3 (Algo. 5);
5 until converges;
6 return B.

by splitting each cross-modal centroid as Up =[u1
p, · · · ,uM

p ]

where um
p ∈ RDm

is p-th centroid of m-th modality.
Given the anchor sets for different modalities {Um}Mm=1,

where Um = {um
1 , · · · ,um

P }, we can construct the data-to-
anchor affinity matrix {Zm}Mm=1 as discussed in Section II -
Anchor Graph.

2) Anchor-to-Anchor mapping: In Anchor Graph [36], we
can observe that the connections among anchors are not being
considered. Nevertheless, these information can be beneficial
in helping data points to have broader views of data structures,
especially for the cases of large clusters. In other words, the
anchor-to-anchor mapping enhances the connectivity between
data points of the same clusters. We note that by increasing the
number of considered nearest anchors (k in Section II-Anchor
graph) when computing data-to-anchor matrix, data points can
also have broader views. However, the resulting graphs could
be noisy. We will investigate this aspect in our experiments
(Section V-B3).

Hence, we propose to build the anchor-to-anchor affinity
matrix Sm for the m-th modality. Similar to the data-to-anchor
affinity matrix Zm, the nonlinear anchor-to-anchor mapping
(RP 7→ RP ) for m-th modality is defined as:

sm(um
i ) = [δ1K(um

i ,u
m
1 ), . . . , δPK(um

i ,u
m
P )]
>
/Nl1, (3)

where δj ∈ {0, 1} and δj = 1 if and only if anchor uj is
the one of the ka � P reciprocal (mutual) nearest anchors of
ui, and Nl1 =

∑P
j=1 δjK(um

i ,u
m
j ). Note that the reciprocal

nearest criterion is used to determine neighbor anchors to en-
hance the likelihood they belong to a same data manifold [79].
Consequently, we obtain the anchor-to-anchor affinity matrix
for the m-th modality: Sm = [sm(um

1 ), . . . , sm(um
P )]>. We

now can achieve the expanded data-to-anchor affinity matrix
by combining the data-to-anchor matrix Zm and the proposed
anchor-to-anchor matrix Sm as follows:

Ẑm = ZmSm, (4)

and subsequently compute the data-to-data affinity matrix Am

and then the Laplacian graph Lm as presented in Section II-
Anchor graph. We note that the data-to-data affinity matrix
Am computed from Ẑm can still be interpreted as the proba-
bility transition matrix. Given {Lm}Mm=1, we now present the
proposed two-step approach for learning the hash functions.

B. Stage 1: Maximized Correlation Cross-modal Binary Rep-
resentation

In this section, we propose a novel spectral embedding-
based method to learn a joint binary representation that is
well represented for all modalities simultaneously.

Given the set of Laplacian graphs of different modalities
{Lm}Mm=1, we aim to simultaneously learn the compact L-
bit joint binary representations B = [b>1 , · · · ,b>N ]> ∈
{−1,+1}N×L for N inputs, and set of representations for
each modality {Ym}Mm=1, in which Ym ∈ RN×L. For conve-
nience, we call Ym as a single modality spectral representation
and B as the cross-modality spectral binary representation.

To naturally fuse heterogeneous modalities, we would like
to simultaneously (i) minimize the spectral clustering error of
each modality, i.e., preserve intra-modality similarity, and (ii)
maximize the correlation between the cross-modality binary
spectral representation B and each single modality spectral
representation Ym. This resulting B is well represented for
all the modalities. We now formally propose our objective
function as follows:

min
{Ym}Mm=1,B

∑M

m=1
J (B,Ym), (5)

s.t. B ∈ {−1,+1}N×L, (5a)

B>B = NIL, B>1N×1 = 0L×1, (5b)

(Ym)>Ym = NIL, ∀m, (5c)

where

J (B,Ym) = Tr
(
(Ym)>LmYm

)
− αTr

(
B>Ym

)
. (5d)

The parameters α controls the trade-off of the spectral clus-
tering objective and the spectral representation correlation
between the m-th modality spectral representation Ym and
the cross-modality spectral representation B. We constrain
(Ym)>Ym to be NIL, instead of IL, to make Ym comparable
with B. Besides the binary constraint (5a), we also enforce B
to be independent and balanced (5b) [34], [35], [52], [73].

The problem (5) is well-known to be NP-hard due to the
binary constraint (5a) and the orthogonal constraints (5b),(5c).
To handle this challenging problem (5), we propose the novel
algorithm 2, to handle these two constraints alternatively, i.e.,
we iteratively optimize {Ym}Mm=1 and B. Before going to
details of solving each sub-problem, we first discuss the initial-
ization, which is not only necessary to make the optimization
procedure robust, but also leads to a better local minimum.

1) Initialize {Ym}Mm=1: We propose to initialize
{Ym}Mm=1 by considering different modalities individually.
Each sub-problem becomes the well-known spectral clustering
problem:

min
Ym

Tr
(
(Ym)>LmYm

)
, s.t. (Ym)>Ym = NIL. (6)

The closed-form solution of (6) can be simply obtained as
Ŷm =

√
NEm

L , where Em
L is the L eigenvectors correspond-

ing to the L smallest positive eigenvalues of Lm. Furthermore,
we note that the closed-form solution is not the unique
optimum for (6). In fact, by rotating Ŷm via an arbitrary
orthogonal matrix Rm, the objective value of (6) is unchanged.
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Algorithm 3: {Ym}Mm=1 Initialization

Input : {Lm}Mm=1

Output: {Ym}Mm=1

1 Ŷm =
√
NEm

L ,∀m; where Em
L are the L eigenvectors

corresponding to L smallest positive eigenvalues of Lm;
2 Rm = IL,∀m;
3 repeat
4 for m = 1 to M do
5 Ŷ? =

∑M
t=1,t6=m ŶtRt;

6 Compute SVD of (Ŷ?)>Ŷm as SΩS>;
7 Rm = SS>;

8 until converges;
9 Ym = ŶmRm,∀m;

10 return {Ym}Mm=1.

Therefore, we further propose to find an orthogonal rotation
matrix for each modality such that the correlations between
all pairs of rotated spectral representations are maximized.
Equivalently, we have the following problem:

max
{Rm}Mm=1

∑M

m,t=1,
m6=t

Tr
(

(Rt)>(Ŷt)>ŶmRm
)
,

s.t. (Rm)>Rm = IL,∀m.
(7)

This problem can be solved by alternatively updating each
Rm. By fixing {Rt,∀t 6= m}, the problem (7) becomes:

max
Rm

Tr
(

(Ŷ?)>ŶmRm
)
, s.t. (Rm)>Rm = IL, (8)

where Ŷ? =
∑M

t=1,t6=m ŶtRt. The problem (8) is actually the
classic Orthogonal Procrustes problem [80] and has a closed-
form solution. In our case, the two point sets are the two
spectral representation matrices, i.e., Ŷm and Ŷ?. Rm can be
obtained as follows: first, compute the SVD of the L×L matrix
(Ŷ?)>Ŷm as SΩS> and, then let Rm = SS>. We note that
alternatively updating {Rm}Mm=1 is guaranteed to converge: (i)
each sub-problem has the closed-form solution which ensures
a non-decreasing objective value, (ii) the objective value of
(7) is upper-bounded by (MC2)NL, where (MC2) denotes
M combinations of 2.

Finally, we can achieve Ym =
√
NEm

L Rm. The resulting
Ym is not only represented for the local-structure of each
modality data well, but it also has the knowledge about
the local-structure of data of all other modalities. More im-
portantly, the highly pairwise-correlated {Ym}Mm=1 are very
beneficial for the learning B step as common patterns among
all single-modality representations are aligned. We present the
algorithm for the {Ym}Mm=1 initialization step in Algorithm
3. It is also worth noting that computing eigen-decomposition
for Lm to obtain Em

L , requiring a computational complexity of
O(N3), could be a computational bottleneck. We note that a
number of approximations to reduce the computational cost
(O(LN2)) have been proposed in the literature [81]–[83].
However, errors could be accumulated as more eigen-vectors
are required.

2) Fix {Ym}Mm=1, update B: Given fixed {Ym}Mm=1, the
problem (5) is still challenging as both the binary constraint

(5a) and the orthogonal constraint (5b) exist. Similar to [37],
[38], we relax the independent and balance constraints (5b)
by converting them into penalty terms. We reformulate the
problem (5) as follows:

min
B
L(B), s.t. B ∈ {−1,+1}N×L, (9)

where

L(B) = −
M∑

m=1

Tr
(
B>Ym

)
+
λ1

4

∥∥∥B>B−NIL

∥∥∥2
F
+
λ2

2

∥∥∥B>1N×1

∥∥∥2
F
,

(9a)
and λ1, λ2 are penalty parameters for the independent and
balance terms respectively. We leverage the recent advanced
optimization technique for the binary constraint, specifically
the MPEC-EPM [84] (Mathematical Programming with Equi-
librium Constraints - Exact Penalty Method). We note that the
proof of Lemma 3 in [84] is valid for both convex and non-
convex objective functions. Hence, the MPEC-EPM method
still guarantees to converge to a local binary optimum for our
problem (9). We present the detailed algorithm for solving
problem (9) using MPEC-EPM in Appendix A-A. (Algorithm
4).

3) Fix B, update {Ym}Mm=1: Given the fixed B,
{Ym}Mm=1 are independent and can be solved separately. The
problem (5) w.r.t. Ym can be re-written as follows:

min
Ym

Tr
(
(Ym)>LmYm

)
− αTr(B>Ym),

s.t. (Ym)>Ym = NIL.
(10)

This sub-problem (10), even though, no longer contains the
binary constraint, it is still challenging due to the orthogonal
constraint. To the best of our knowledge, there is no simple
method for achieving a closed-form solution for Ym. We pro-
pose to directly solve the orthogonal constraint optimization
problem (10) using Augmented Lagrangian (AL) method. By
introducing the Lagrange multipliers Γ ∈ RL×L, we target to
minimize the following unconstrained AL function:

LAL(Ym,Γ, µ) = J (B,Ym)− Tr(Γ>Φ) +
µ

2
‖Φ‖2F , (11)

where Φ = (Ym)>Ym − IL and µ is a penalty parameter on
the constraint. The AL algorithm for solving (11) is presented
in Algorithm 5 (Appendix A). When µ is large, the constraint
violation is severely penalized, thereby the minimal values of
the AL function (11) is forced to be closer to the feasible
region of the original constrained function (10). Additionally,
it has been theoretically shown in [85] that the Lagrange
multiplier Γ is improved at every step of the algorithm, i.e.,
getting closer to the optimal multiplier Γ?. Hence, it is not
necessary to increase µ→ +∞ to achieve a local optimum of
(10).

C. Stage 2: Modality-specific hashing models

Given the binary code B for the training data, we now
learn the modality-specific hashing functions {Fm}Mm=1 which
are used to produce binary codes for new data points. We
propose to use the powerful architecture: Convolutional Neural
Network (CNN) as the hash functions to directly learn the
binary codes from more informative input data, instead of the
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TABLE I: The configuration of CNN for text modality.

# Layer Kernel size Output size
0 Input n× |W| × dw
1 1D-Conv1 |W| × 512× 1 n× 512× dw
2 Linear1 dw × 256 n× 512× 256
3 1D-Conv2 512× 256× 1 n× 256× 256
4 Linear2 256× 128 n× 256× 128
5 1D-Conv3 256× 128× 1 n× 128× 128
6 Linear3 128× 64 n× 128× 64
7 1D-Conv4 128× 64× 1 n× 64× 64
8 Linear4 64× 32 n× 64× 32
9 Flatten n× 2048
10 Linear5 2048× 1024 n× 1024
11 Linear6 1024× L n× L

• |W| is the size of word dictionary, dw is the dimension of
Glove word embedding [39], and n is the mini-batch size.
• For 1D-Conv layer, the kernel size values are respectively the

number of input channels, the number of output channels,
and the receptive field size; for Linear layer, the kernel size
values are respectively the number of input features and the
number of output features.

extracted feature vectors. Formally, we minimize the following
objective function:

min
{Θm}Mm=1

1

2

∑M

m=1
‖Fm(Xm)−B‖2F

−γ1
∑M

m,t=1,
m 6=t

Tr
(
Fm(Xm)>F t(Xt)

)
+γ2

∑M

m,t=1

∥∥Fm(Xm)>F t(Xt)−NIL
∥∥2
F
.

(12)

Here, Θm is the parameters of the hashing function Fm

for m-th modality. The first term of (12) is to minimize
the discrepancy between outputs of the deep models and
the learned binary codes B. The second is to maximize the
correlations between outputs of all pairs of modalities. Hence,
the binary codes from different modalities are learned to be
matched with each others. The last term is to re-enforce the
output hash codes to be independent.

For image modality, we can naturally use images as inputs
with any common CNN architecture, e.g., AlexNet [86], VGG
[87], and ResNet [88]. Specifically, in this work, we use the
pretrained VGG16 model [87] as the based model. We then
replace the last fully-connected layer of the VGG16 model,
which is used for the classification task, by 2 layers: [4096→
1024→ L].

For text modality, firstly, we propose to define a textual
input from a set of word embeddings, e.g., [39], [40], denoted
as a document embedding, as follows: Given a dictionary
W consisting of |W| words and their corresponding word
embeddings {wi}|W|i=1 , where wi is a Dw-dimension word
embedding of the i-th word in W:

xt
r i = [δ1w

>
1 , . . . , δ|W|w

>
|W|]

> ∈ R|W|×Dw , (13)

where [δ1, . . . , δ|W|] is the BOW vector of the i-th document.
Secondly, regarding the CNN model for text, unlike in

images, there is no clear local spatial information in word
embeddings. Hence, we propose to alternatively apply two
convolutional operations with kernel sizes1 of (|W| × 1) and

1Respectively for the first 2 layers only. Subsequent layers have different
kernel sizes.

(1 × dw) over document embedding data. By doing so, we
alternatively consider each dimension of the word embed-
dings independently and consider all dimensions of the word
embeddings jointly. This is similar to the spatial-separable
convolution, except we include a non-linear activation, i.e.,
ReLU, after each convolutional operation to enforce the model
to learn more complex mappings. The detailed configuration
is shown in Table I. In addition, Figure 1 can provide a
better understanding about our proposed CNN architecture
for text modality. Please note that the main goal of this
section is to introduce a CNN model to learn textual features
from informative text inputs, i.e., sets of word embeddings or
document embeddings. But how to design an optimal CNN for
the same task is not a focus of this paper and will be leaved
for future studies.

The models are trained using back-propagration. Finally,
given the trained modality-specific hashing models, the binary
code for a test sample of the corresponding modality can be
obtained as sign (Fm(xm)).

V. EXPERIMENTS

In this section, we conduct a wide range of experiments to
validate our proposed method on three standard benchmark
datasets for the cross-model retrieval task, i.e., MIR-Flickr25k
[89], IAPR-TC12, and NUS-WIDE [90].

A. Experiment settings

Datasets: The MIR-Flickr25K dataset2 [89] is collected
from Flickr website, which contains 25,000 images together
with 24 provided labels. For the text features, we preprocess
the textual tags by firstly (i) removing stop words, then (ii)
selecting the tags that appear at least 20 times, and finally (iii)
removing tags that are not English words3. Finally, we obtain
1,909-dimension BOW textual features. We randomly select
2,000 image-text pairs as the query set, and the remaining as
the training set and the database.

The IAPR-TC12 dataset4 contains 20,000 images with cor-
responding sentence descriptions. These images are collected
from a wide variety of domains, such as sports, actions,
people, animals, cities, and landscapes. Following the common
practice in [14], [16], we select the subset of the top 22
frequent labels from the 275 concepts obtained from the
segmentation task. Similar to the MIR-Flickr25K dataset, we
preprocess the description sentences by removing stop words,
selecting the tags that appear at least 10 times, and removing
non English words. As a result, we obtain 1,275-dimension
BOW textual features. We randomly select 2,000 pairs for the
query set and the remaining data is used as the training set
and the database.

The NUS-WIDE dataset5 [90] is a multi-label image dataset
crawled from Flickr, which contains 296,648 images with
associated tags. Each image-tag pair is annotated with one
or more labels from 81 concepts. Following the common

2https://press.liacs.nl/mirflickr/
3Words are not in the 400,000 word dictionary of Glove [39].
4https://www.imageclef.org/photodata
5https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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practice [13], [23], we select image-tag pairs which have at
least one label belonging to the top 10 most frequent concepts.
In this dataset, each tag is represented by an 1,000-dimension
preprocessed BOW feature. We randomly choose 200 image-
tag pairs per label as the query set of total 2,000 pairs, and the
remaining as the database. We then randomly sample 20,000
pairs from the database to form the training set.

For images, we extract FC7 features from the PyTorch
pretrained VGG-16 network [87], and then apply PCA to
compress to 1024-dimension.

Compared Methods and Evaluation Metrics: We com-
pare our proposed method DCSH against five other state-of-
the-art cross-modal hashing methods, i.e., Cross-View Hash-
ing (CVH) [17], Predictable Dualview Hashing (PDH) [18],
Collective Matrix Factorization Hashing (CMFH) [20], Al-
ternating Co-Quantization (ACQ) [22], and Fusion Similarity
Hashing (FSH) [23]. The evaluations are presented in four
tasks: (1) Img → Txt, (2) Txt → Img, (3) Img → Img, and
(4) Txt → Txt; i.e., images (Img)/texts (Txt) are used as
queries to retrieve image/text database samples accordingly.
In addition, the quantitative performance is evaluated by the
standard evaluation metrics [50], [73], [91], [92]: (i) mean
Average Precision (mAP) and (ii) precision of Hamming radius
≤ 2 (Prec@R≤2) which measures precision on retrieved
images/texts with a Hamming distance to query ≤ 2 (note that
we report zero precision in the case of no satisfactory result).
The image-text pairs are considered to be similar if they share
at least one common label and be dissimilar otherwise.

Implementation Details: For fair comparison, we use the
extracted features, which are used as the input for compared
methods, to construct anchor graphs. Note that the extracted
features are used to build the anchor graphs only, we use
images and document embeddings as inputs for the CNN
models (Sec. IV-C) to produce binary codes. For the anchor
graph, we set P = 500, k = 3 and ka = 2. We learn σ by
the mean squared distances to k-nearest neighborhoods. In
addition, we empirically set λ1 = λ2 = 1, γ1 = γ2 = 100,
and α=1 by cross-validation.

B. Ablation studies

1) The necessity of unit-variance normalization before
learning anchor sets: Table II shows an analysis on Mean
Squared Error (MSE) of reconstruction MIR-Flickr25k dataset
by its P = 500 anchors6 in the cases of learning anchors
with/without the unit-variance normalization step (Sec. IV-A).
The experimental results show that without the normalization
process, k-means severely biases toward the image modality.
In specific, there is almost no-change in MSE of the image
modality when learning the anchor set independently or jointly
with textual modality, while the MSE of the text modality
changes significantly. Regarding the case with normalized
data, the changes in MSE of image and textual modalities are
comparable. In other words, unit-variance normalization can
help to avoid k-means being biased toward any modality in
learning anchors. As a result, the anchor sets well approximate

6MSE = 1
N

∑N
i=1 ‖xi − ui‖2 where ui is the nearest anchor of xi.

TABLE II: Analysis of the necessity of unit-variance nor-
malization before learning anchors by measuring the change
in MSE for MIR-Flickr25k dataset. I: learn anchors inde-
pendently. J: learn anchors jointly by concatenating datasets.
G: the increasing gap (in percentage) of MSE when learn-
ing anchors independently and jointly (MSEG = (MSEJ −
MSEI)/MSEI ).

Setting Normalized NOT normalized
Img Txt Img Txt

I 0.6759 0.6416 715.8516 0.5954
J 0.8088 0.6974 714.3574 0.8393
G 19.66% 8.70% -0.13% 47.3%

1 2 3 4 5 6
Iteration number

-6

-5

-4

-3

-2

O
b
je
ct
iv
e
va
lu
e

#10 5

Full MCCSH Algo. - mAP = 74.20
Init. without Rm - mAP = 73.58
Independent anchors - mAP = 72.04

Fig. 2: MCCSH Algorithm analyses: convergence curves in
several settings using MIR-Flickr25k dataset at L = 32. The
average mAPs for Img → Txt and Txt → Img retrieval tasks
are also presented in the legend.

the local structures of all modalities, and the anchor graphs can
capture the manifold structures of the dataset [36].

2) Algorithm analysis: We would like to conduct experi-
ments to empirically analyze our proposed Algorithm 2. Fig.
2 shows an example of the convergence of Algorithm 2 using
MIR-Flickr25k dataset at L = 32 with different settings:
(i) learning anchors independently, (ii) without learning the
orthogonal rotation matrices in the initialization step (Sec.
IV-B1), and (iii) the fully-proposed algorithm. Firstly, the
graph shows that the Algorithm 2 takes a few iterations to
converge. Secondly, as we note that lower objective values
indicate the fact that the algorithm can potentially achieve bet-
ter binary cross-modality representations, i.e., well represented
for all modalities. The fact is also confirmed by the average
mAPs of Img → Txt and Txt → Img retrieval tasks. These
empirical results emphasize the importance of jointly learning
the anchors (Sec. IV-A1) and the necessity of initializing
{Ym}Mm=1 such that they are highly pairwise-correlated.

3) Benefits of anchor-to-anchor mapping: We additionally
investigate the effect of including the anchor-to-anchor map-
ping when building the anchor graph. We first conduct the
experiments on MIR-Flickr25k, IAPR-TC12, and NUS-WIDE
datasets with L=32 and fixed ka =2. Fig. 3 shows the average
of mAP for Img → Txt and Txt → Img retrieval tasks when
changing k. We can observe that the anchor-to-anchor mapping
generally helps to achieve considerable improvements on the
retrieval performance for all datasets. Note that the improve-
ments come at a very small computational cost since P � N .
In addition, at larger k (e.g., k ≥ 4 for MIR-Flickr25k and
IAPR-TC12 and k ≥ 6 for NUS-WIDE), the performance
drops as the anchor graphs contain more spurious connections
[36].
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Fig. 3: The effect of including anchor-to-anchor mapping (ka = 2) on MIR-Flickr25k, IAPR-TC12, and NUS-WIDE datasets
at L = 32. The y-axis mAP is the average of mAP for Img → Txt and Txt → Img retrieval tasks.
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Fig. 4: The effect of varying ka anchor-to-anchor mapping(with fixed k = 3) on MIR-Flickr25k, IAPR-TC12, and NUS-WIDE
datasets at L = 32. ka = 0 means no anchor-to-anchor mapping is applied.

Additionally, we also investigate the performance when ka
varies. Fig. 4 shows mAP on MIR-Flickr25k, IAPR-TC12, and
NUS-WIDE datasets for various ka values. ka = 0 means no
anchor-to-anchor mapping is applied. The figure shows that
generally the anchor-to-anchor mapping with small ka (e.g.,
ka ∈ {1, 2, 3}), can help to achieve clear improvement gains.
With larger ka (e.g., ka ≥ 4), the anchor-to-anchor mapping
contains more spurious connections making the mapping less
reliable.

4) Deep and Deeper models: To evaluate the effectiveness
and necessary of the deep architecture DCSH, we compare
DCSH with its two variants, which use shallower networks (in
term of the number of trainable layers). Specifically, we use the
widely used linear model, denoted as DCSH-L, and a simple
3 fully-connected layer DNN [Dm → 1024 → 512 → L],
DCSH-F, for Fm. We train the shallow models from extracted
features, e.g., VGG FC7 for the image models and BOW for
the text models, instead of images and document embeddings
as DCSH.

Fig. 5 shows the retrieval performance on MIR-Flickr25K
dataset for various hash code lengths. We can observe clearly
that by using deeper models: DCSH-L→ DCSH-F→ DCSH,
we can achieve better performance. We note that using deeper
DNN models, i.e., adding more layers, with extracted features
is not helpful as the deeper DNN model is prone to overfitting.
The experimental results show the necessary of having both
deeper models and more informative inputs. More specifically,
using deeper models and more informative inputs can ensure
that modality-specific hashing functions well capture the infor-
mation contained in the cross-modality binary representation
B, which significantly affects the retrieval performance.

16 32 48
L

71

72

73

74

75

m
A

P

Img ! Txt

DCSH-L
DCSH-F
DCSH

16 32 48
L

71

72

73

74

75

m
A

P

Txt ! Img

DCSH-L
DCSH-F
DCSH

Fig. 5: The benefits of using deeper models and more infor-
mative data. The experiment is conducted on MIR-Flickr25K.

C. Comparison with the states of the art

The quantitative results to compare our proposed method
with other state-of-the-art unsupervised cross-modal hashing
methods are shown in Tables III and IV (mAP) and in Fig. 6c
(Prec@R≤2). Our proposed method DCSH consistently and
significantly outperforms all compared methods in terms of
mAP across four retrieval tasks at all code lengths, and on
three standard benchmark datasets, including the large scale
NUS-WIDE dataset.

Additionally, as shown in Fig. 6, DCSH also achieves
more favorable performances in terms of Prec@R≤2. Specifi-
cally, for short code lengths, e.g., L = 16, DCSH achieves
comparable performance with compared methods on MIR-
Flickr25k and IAPR-TC12. While at larger code lengths,
e.g., L = 32, 48, DCSH generally outperforms most of the
compared methods, except being slight lower than FSH and
comparable to ACQ at L = 48 on IAPR-TC12 dataset. Note
that many previous hashing methods achieve worse retrieval
performance with longer code lengths. This undesirable effect
arises since the Hamming space will become increasingly
sparse with longer code lengths and fewer data points will fall
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TABLE III: Comparison results using mAP on three benchmark datasets.

Task Method MIR-Flickr25k IAPR-TC12 NUS-WIDE
16 32 48 16 32 48 16 32 48

Im
g→

T
xt

CVH [17] 65.41 63.19 62.06 41.98 40.56 39.79 51.38 49.33 47.74
PDH [18] 71.07 72.26 72.42 43.62 45.16 44.88 55.01 56.90 59.39
CMFH [20] 65.87 65.90 65.81 43.15 44.02 44.46 54.58 56.24 57.85
ACQ [22] 71.42 71.57 71.76 45.54 46.21 46.85 57.89 59.03 58.75
FSH [23] 70.07 72.35 72.25 44.71 45.78 46.88 57.56 60.37 59.45
DCSH-L 71.87 72.65 73.13 45.59 46.67 47.21 59.10 60.35 60.54
DCSH 73.20 74.26 74.46 46.35 47.16 47.79 60.41 61.92 62.76

T
xt
→

Im
g

CVH 65.75 63.40 62.21 42.23 40.86 40.11 51.29 49.28 47.76
PDH 71.92 72.73 73.06 43.74 45.35 45.09 55.61 57.25 59.29
CMFH 66.06 66.12 65.94 43.85 44.65 44.97 54.78 56.81 58.15
ACQ 71.59 71.74 71.93 45.67 46.32 47.13 58.09 58.83 58.49
FSH 70.06 72.46 72.36 44.55 45.89 46.98 57.15 60.11 59.56
DCSH-L 71.88 73.08 73.38 45.86 46.67 47.35 59.11 60.47 60.69
DCSH 73.58 74.13 74.44 46.46 47.23 47.93 60.67 62.12 63.40

TABLE IV: Comparison results using mAP on three benchmark datasets.

Task Method MIR-Flickr25k IAPR-TC12 NUS-WIDE
16 32 48 16 32 48 16 32 48

Im
g→

Im
g

CVH 66.92 64.28 62.95 42.14 40.66 39.84 53.24 51.06 49.11
PDH 74.81 76.01 76.12 43.96 45.60 45.86 58.64 60.29 62.95
CMFH 66.59 65.78 65.33 42.82 43.19 43.40 57.12 58.98 61.05
ACQ 74.63 74.68 74.86 45.99 46.67 47.22 62.24 63.21 64.13
FSH 71.81 76.06 75.91 45.16 46.17 47.34 62.96 63.49 64.06
DCSH-L 74.79 76.38 76.71 46.12 46.97 47.49 63.61 64.12 64.52
DCSH 75.97 77.23 77.55 46.85 47.52 48.19 64.56 65.31 66.73

T
xt
→

T
xt

CVH 64.39 62.41 61.34 42.24 40.86 40.12 49.74 47.91 46.71
PDH 68.68 69.75 69.86 43.42 44.96 44.63 52.56 54.28 56.20
CMFH 65.48 65.59 65.99 44.25 45.48 46.01 51.87 53.46 55.57
ACQ 68.84 69.04 69.26 45.24 45.91 46.72 54.71 55.01 55.51
FSH 67.38 69.61 69.30 44.18 45.54 46.55 54.58 54.74 55.88
DCSH-L 69.52 70.54 70.96 45.42 46.18 46.90 55.83 56.89 57.41
DCSH 71.54 71.54 71.87 46.09 46.56 47.27 57.09 59.24 59.80

TABLE V: Comparison with UGACH [28] using mAP on
MIR-Flickr25k and NUS-WIDE datasets. The results of
UGACH are cited from [28].

Task Method MIR-Flickr25k NUS-WIDE
16 32 64 16 32 64

Img→ UGACH 68.5 69.3 70.4 61.3 62.3 62.8
Txt DCSH 72.48 74.62 75.29 60.81 62.58 63.25

Txt→ UGACH 67.3 67.6 68.6 60.3 61.4 64.0
Img DCSH 71.93 73.61 74.23 60.92 62.76 63.94

in the Hamming ball of radius 2 [93]. It is worth noting that
DCSH achieves a relatively mild decrease in accuracy using
longer code lengths, validating that DCSH can concentrate
hash codes of similar points together to be within Hamming
radius 2, which is beneficial to Hamming space retrieval.

Furthermore, we want to emphasize that even with using lin-
ear models for modality-specific hashing models, i.e., DCSH-
L, our proposed framework still consistently outperforms
compared methods. Especially, the improvement margins are
clearer, ≥ 0.3% mAP, at higher code lengths, e.g., L = 32
and 48. This demonstrates the effectiveness of our proposed
algorithm 2 to learn the cross-modality binary representations.

Comparison with Unsupervised Generative Adversarial
Cross-Modal Hashing (UGACH) [28]: For a fair comparison,

we conduct additional experiments on MIR-FLickr25k and
NUS-WIDE datasets following the experiment settings from
[28]. More specifically, the FC7 features of the pretrained 19-
layer VGGNet are used for images, instead of the 16-layer
VGGNet. 1,000-dimension BOW features are used for texts in
both datasets. We take 1% samples of the NUS-WIDE dataset
and 5% samples of the MIR-FLickr25k dataset as the query
sets, and the rest as the retrieval database. For the very large
dataset NUS-WIDE, we randomly select 20,000 pairs from
the database to form the training set for our method. The
comparison results in term of mAP are shown in Table V.
We can observe that, for MIR-Flickr25k dataset, our proposed
DCSH consistently outperforms UGACH by a clear margin
(≥ 3.5%). For NUS-WIDE dataset, even though using less
training samples, our proposed DCSH generally outperforms
UGACH for the majority of cases.

Comparison with Collective Reconstructive Embedding
(CRE) [24] and Fusion Similarity Hashing (FSH) [23]:
Following the experiment setting of CRE and FSH, we conduct
experiments with hand-crafted features on MIR-Flickr25k and
NUS-WIDE datasets. For MIR-Flickr25k dataset, images are
represented with 100-dimensional BoW SIFT features and the
texts are expressed as 500-dimensional tagging vectors. After
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Fig. 6: The Prec@R≤2 on three benchmark datasets at differ-
ent code lengths, i.e., L = 16, 32, 48.

removing the instances without any label or textual tag, we
have 16,738 instances remained. 5% of instances (i.e., 836)
are sampled as the query set and the remaining are used as the
database and training set. For NUS-WIDE dataset, each image
is represented by 500-dimensional BoW SIFT features and
each text is represented by a 1,000-dimension preprocessed
BOW feature. We randomly select 2,000 pairs as the query
set; the remaining are used as the database. We also sample
20,000 pairs from the database as the training set. For a
fair comparison, we use the provided hand-crafted features
as the input to learn the 3-layer DNN modal-specific hashing
functions. We present the experiment results in Table VI. The
results in Table VI, III, and IV also show that our method
consistently outperforms FSH for both hand-crafted and CNN-
based features. Besdies, our method outperforms CRE for
both Img→Txt and Txt→Img tasks on NUS-WIDE dataset.
However, on MIR-Flickr25k dataset, our method slightly un-
derperforms CRE on Img→Txt task, while clearly outperform
CRE on Txt→Img task.

Comparison with Unsupervised Deep Cross Modal
Hashing (UDCMH) [74]: Similar to UDCMH, for images, we
use the PyTorch pretrained AlexNet to extract the FC7 features
to construct the similarity graph for the image modality. In
addition, following UDCMH, we report the mAP of top-
50 retrieved results (mAP@50). The experiment results are
shown in Table VII. We observe that our proposed method
can outperform UDCMH by large margins for both MIR-
Flickr25k and NUS-WIDE datasets. Additionally, the retrieval

TABLE VI: Comparison with FSH [23] and CRE [24] using
mAP on NUS-WIDE dataset. The results of FSH and CRE are
cited from [23] and [24] respectively.

Task Method MIR-Flickr25k NUS-WIDE
16 32 64 16 32 64

FSH [23] 59.68 61.89 61.95 50.59 50.63 51.71
Img→ CRE [24] 62.11 62.51 62.90 51.31 52.99 53.32

Txt DCSH-DNN 62.08 62.34 62.57 53.05 53.71 54.21
FSH 59.24 61.28 60.91 47.90 48.10 49.65

Txt→ CRE 61.49 61.82 62.17 49.27 50.86 51.49
Img DCSH-DNN 62.57 62.71 63.13 52.15 52.42 52.89

TABLE VII: Comparison with UDCMH [74] using mAP@50
on MIR-FLickr25k and NUS-WIDE datasets. The results of
UDCMH are cited from [74].

Task Method MIR-Flickr25k NUS-WIDE
16 32 64 16 32 64

Img→ UDCMH [74] 68.9 69.8 71.4 51.1 51.9 52.4
Txt DCSH-DNN 82.9 85.9 87.4 66.12 68.23 71.25

Txt→ UDCMH 69.2 70.4 71.8 63.7 65.3 69.5
Img DCSH-DNN 81.7 83.1 85.9 66.41 68.99 72.54

performance of UDCMH for the two tasks Img→Txt and
Txt→Img for NUS-WIDE dataset is very different. This
potentially indicates a misalignment between the hash code
spaces of two modalities. While for our method, the retrieval
performance of UDCMH for the two tasks Img→Txt and
Txt→Img is comparable. This demonstrates the effectiveness
of our contributions, including the building similarity anchor
graph for multi-modal context and the optimization procedure.

Comparison between handcrafted features and deep-
based features” In Table VIII, we present the retrieval results
of our proposed method when using handcrafted features and
deep-based features. Specifically, for the handcrafted features,
we use BoW of SIFT for images and BoW of keywords for
text. For deep-based features, we use FC7 features of VGG-
16 network for images and Globe embeddings for text with
Eq. (13). Unsurprisingly, the deep-based features can help to
achieve significantly higher performance in compared with the
handcrafted features [55], [94].

TABLE VIII: Comparison between the hand-crafted features
and CNN features using our proposed method.

Task Features MIR-Flickr25k NUS-WIDE
16 32 48 16 32 48

Img→ Hand-crafted 61.58 62.08 62.35 53.05 53.71 54.02
Txt Deep-based 73.20 74.26 74.46 60.41 61.92 62.76

Txt→ Hand-crafted 61.67 62.24 62.45 52.15 52.42 52.73
Img Deep-based 73.58 74.13 74.44 60.67 62.12 63.40

D. Visualization

Fig. 7 and 9 show the t-SNE visualizations [95] of the
input data of image modality X1 and their corresponding
cross-modality binary representation B for MIR-Flickr25k
and NUS-WIDE datasets respectively. Similarly, Fig. 8 and
10 show the t-SNE visualizations of the input data of text
modality X2 and their corresponding cross-modality binary
representation B for MIR-Flickr25k and NUS-WIDE datasets
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Fig. 7: The t-SNE visualization of MIR-Flickr25k input data
points of image modality X1 and their corresponding cross-
modality 32-bit binary representation B.
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Fig. 8: The t-SNE visualization of MIR-Flickr25k input data
points of text modality X2 and their corresponding cross-
modality 32-bit binary representation B.

respectively. For clarity, only 1,000 data-pairs randomly se-
lected from the training set are displayed. Additionally, in
order to clearly visualize the local structures of datasets which
is necessary to show the effectiveness of our method, we apply
k-means on 1,000 selected data-pairs to learn 15 clusters. The
data points, which belong to a same cluster and share at least
one common class label, are displayed in a same color

Firstly, as seen in Fig. 7 and 8, our proposed method can
learn cross-modality binary codes that well preserve the local
structures of datasets. Specifically, data points, which belong
to a same cluster in text or image modality (Fig. 7a and 8a),
are mapped to very similar binary codes (Fig. 7b and 8b).
Secondly, we also observe that if data points in the input
space are far from each other, e.g., yellow, red, and blue data
points in image and text modality spaces, their corresponding
cross-modality binary codes are also far from other binary
codes. Generally, from Fig. 9 and 10, we also have the
similar observation for NUS-WIDE dataset. In summary, the
visualization clearly shows the effectiveness of our proposed
DCSH method in fusing heterogeneous modalities to produce
discriminative binary codes.

E. Parameter Analysis

In this section, we firstly analyze the most important pa-
rameter of the proposed method, i.e., α, which controls the
contributions of spectral clustering loss and the maximizing
correlation loss, i.e., intra and inter-modality similarity. We
conduct the analysis on MIR-Flickr25k dataset and L = 32;
and then plot the mAP curve as α changes on Fig. 11. From
Fig. 11, we can observe that at small α, e.g., α ≤ 0.5,
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Fig. 9: The t-SNE visualization of NUS-WIDE input data
points of image modality X1 and their corresponding cross-
modality 32-bit binary representation B.
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Fig. 10: The t-SNE visualization of NUS-WIDE input data
points of image modality X1 and their corresponding cross-
modality 32-bit binary representation B.

the performances are slightly unstable as the optimization
focuses more on learning the single-modality representations.
At larger α, e.g., α≥1, we achieve much higher performances.
Nevertheless, the performances slightly drop as α gets larger
as the optimization pays too much attention on the maximizing
correlation part, which results in lower-quality single-modality
representations. Finally, we note that for α ∈ [0.1, 10], our
proposed method still outperforms other compared methods.

We additionally conduct empirical analyses on the hyper-
parameters of learning the modality-specific hashing models,
i.e., {γ1, γ2}. The experimental results are shown in Fig. 12.
The figure shows that the proposed method DCSH generally
achieves the best performance when both γ1 and γ2 are within
the range of [50, 100]. The method has lower performance
when {γ1, γ2} are too small. This fact emphasizes the im-
portance of (i) the independent and (ii) the high-correlation
properties of the hashing function outputs. The performance is
also low when {γ1, γ2} are too large. This effect is also under-
standable as the loss function pays too attention on learning
the independent and high-correlation properties. While it loses
the focus on minimizing the discrepancy between the outputs
and the learned cross-modality binary representation B, which
captures the data structures of modalities.

VI. CONCLUSION

In this paper, we proposed a novel unsupervised cross-
modality hashing framework, named Deep Cross-modality
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Fig. 12: Cross-modal retrieval performance of DCSH with
different values of parameters γ1 and γ2 on MIR-Flickr25k
dataset at L = 32.

Spectral Hashing (DCSH). The framework is based on the gen-
eral two-step hashing method which helps to simplify the bi-
nary optimization and hashing function learning. Specifically,
in the first stage, by adopting the spectral embedding approach
which is well-known in discovering the neighborhood structure
of data, we proposed a novel spectral embedding-based algo-
rithm, dubbed Maximized Correlation Cross-modal Spectral
Hashing (MCCSH). In which, we carefully initialized and
handle the challenging constraints to jointly learn the single-
modality spectral representations and the cross-modality bi-
nary spectral representation, which is well represented for
all modalities. We additionally proposed the anchor-to-anchor
mapping which is very beneficial in building better similarity
graphs by considering the connection among anchors. In the
second stage, we proposed to use the deep and powerful CNN
architecture to learn hashing functions from informative input
data, e.g., images and document embeddings. The informative
input data can be helpful in mitigate the discrete problem of
textual features (words are considered different regardless their
meaning). Finally, extensive experiments on various bench-
mark datasets clearly demonstrated the superior performances
of DCSH over state-of-the-art unsupervised cross-modality
hashing methods.
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APPENDIX A
MAXIMIZED CORRELATION CROSS-MODAL BINARY

REPRESENTATION

A. Fix {Ym}Mm=1, update B

In this section, we provide the details of applying MPEC-
EPM method on our binary optimization (9).

min
B
L(B), s.t. B ∈ {−1,+1}N×L, (9)

where

L(B) = −
M∑

m=1

Tr
(
B>Ym

)
+
λ1

4

∥∥∥B>B−NIL

∥∥∥2
F

+
λ2

2

∥∥∥B>1N×1

∥∥∥2
F
,

Firstly, we introduce an auxiliary variable V ∈ RN×L and
reformulate (9) equivalently as follows:

min
B,V

L(B),

s.t. − 1N×L ≤ B ≤ 1N×L,

Tr(B>V) = NL, ‖V‖2F ≤ NL.

(15)

We further introduce a penalty parameter ρ for the bi-linear
constraint Tr(B>V) = NL, the problem becomes:

min
B,V

L(B) + ρ(NL− Tr(B>V)),

s.t. − 1N×L ≤ B ≤ 1N×L, ‖V‖2F ≤ NL,
(16)

where 1N×L and 0N×L are the N × L matrices of all 1 and
0 respectively. We alternatively update B and V.

Solve B: Firstly, by fixing V, (16) becomes:

min
B
Q(B) = L(B) + ρ(NL− Tr(B>V)), (17)

s.t. − 1N×L ≤ B ≤ 1N×L. (17a)

We propose to solve (17) using the projected gradient de-
scent method. We initialize V = 0N×L for the sake of finding
a reasonable starting point for B, which is a local optimum of
the unconstrained optimization problem of (9). With the box
constraint (17a), we can easily project B back to its feasible
region using Clamp operation, i.e., min(max(x,−1), 1), after
each gradient descent update. The gradient of Q(B) is given
as follows:

∇BQ(B) = −
M∑

m=1

Ym+ λ1B(B>B−NIL) + λ21N×NB− ρV. (18)

Solve V: On the other hand, when fixing B, V is obtained
by minimizing:

min
V
−Tr(B>V), s.t. ‖V‖2F ≤ NL. (19)

Equivalently, V is obtained as the following closed-form
solution:

V =

{√
NL
‖B‖F B, B 6= 0N×L

0N×L, otherwise.
(20)

Similar to [84], we start the optimization process with a
small value of ρ, e.g., ρ = 0.01, and then it is increased by a
small factor σ, e.g., σ = 1.05, after each iteration of alternative
updating B and V until convergence to binary values.
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Algorithm 4: EPM for Binary Constraint

Input : ρ, σ, η, λ1, λ2, {Ym}Mm=1

Output: B ∈ {−1,+1}N×L

1 Initialize: ρ = 0.1, σ = 1.05, η = 0.01, V = 0N×L;
2 repeat
3 Update B: solving the sub-problem (16) using the

projected gradient descent: repeat
4 B := Clamp(B− η∇BQ(B),−1, 1) where

∇BQ(B) is in (18) and a learning rate η;
5 until converges;
6 Update V: using the closed-form solution (20);
7 Update the penalty: ρ := ρ× σ;
8 until B converges to binary;
9 return B ∈ {−1,+1}N×L

Algorithm 5: Augmented Lagrangian Algorithm
Input : B,Lm, α, µ, σ, ε.
Output: Ym

1 Initialize: µ0 = 0.01, σ = 2, ε = 10−3, Ym
0 ,Γ0;

2 for t = 0→ Tmax do
3 Optimize (11) w.r.t Ym:

Ym
t+1 := arg minYm LAL(Ym

t ,Γt, µt);
4 if |J (B,Ym

t+1)− J (B,Ym
t )| < ε then

5 break;

6 Update Lagrange multiplier: Γt+1 := Γt − µΦt+1;
7 Update penalty parameter: µt+1 := µt × σ;

8 return Ym;

B. Fix B, update {Ym}Mm=1

The unconstrained Augmented Lagrangian function for
solving Ym is given as follows:

LAL(Ym,Γ, µ) = J (B,Ym)− Tr(Γ>Φ) +
µ

2
‖Φ‖2F , (11)

Initialization of Augmented Lagrangian algorithm: The
Algorithm 5 requires the initialization for Ym

0 and Γ0. Firstly,
we utilize the optimal solution of Ym of previous update in
Algorithm 2 as the initialization for the current update Ym

0 .
Secondly, given µ0 and Ym

0 , we compute the corresponding
Γ0 by using the optimal condition for the unconstrained
minimization (11), i.e.,

∇YmLAL = 2LmYm − αB− 2YmΓ + 2µYmΦ = 0. (21)

We note that Φ0 = (Ym
0 )>Ym

0 − IL equals to zeros, we have

Γ0 =
(
(Ym

0 )>Ym
0

)−1
(Ym

0 )>
(
LmYm

0 −
α

2
B
)

= (Ym
0 )>

(
LmYm

0 −
α

2
B
)
.

(22)
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