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Abstract— Change detection has received extensive attention
because of its realistic significance and broad application fields.
However, none of the existing change detection algorithms can
handle all scenarios and tasks so far. Different from the most of
contributions from the research community in recent years, this
paper does not work on designing new change detection algo-
rithms. We, instead, solve the problem from another perspective
by enhancing the raw detection results after change detection.
As a result, the proposed method is applicable to various kinds
of change detection methods, and regardless of how the results
are detected. In this paper, we propose Fast Spatiotemporal
Tree Filter (FSTF), a purely unsupervised detection method,
to enhance coarse binary detection masks obtained by different
kinds of change detection methods. In detail, the proposed
FSTF has adopted a volumetric structure to effectively synthesize
spatiotemporal information of the same target from the current
time and history frames to enhance detection. The computational
complexity analyzed in the view of graph theory also show that
the fast realization of FSTF is a linear time algorithm, which
is capable of handling efficient on-line detection tasks. Finally,
comprehensive experiments based on qualitative and quantitative
analysis verify that FSTF-based change detection enhancement
is superior to several other state-of-the-art methods including
fully connected Conditional Random Field (CRF), joint bilateral
filter, and guided filter. It is illustrated that FSTF is versatile
enough to also improve saliency detection as well as semantic
image segmentation.

Index Terms— Change detection, binary mask enhancement,
tree filtering, spatiotemporal filtering, post-processing.

I. INTRODUCTION

THE purpose of “change detection” is to detect areas of
change in a series of images taken at different times at the

same scene. It is the basis of intelligent video analysis such
as target tracking and action recognition. Change detection
has received extensive attention due to its practical signifi-
cance and broad applications. Important applications of change
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detection include video surveillance [1], [2], remote sensing
[3]–[5], [6], [7], medical diagnosis and treatment [8], etc.

The earliest image change detection method is frame dif-
ferencing. Jain and Nagel [9] propose a frame differencing
method to extract moving objects. Though the computational
speed of frame differencing is fast, it is only suitable for
simple scenes with static backgrounds and cameras. Then,
Aach and Kaup [10] improve the frame differencing using
hypothesis testing and Markov Random Field (MRF). In order
to remove ghosts caused by frame differencing, background
modeling for change detection later becomes popular. Stauffer
and Grimson [11] use Gaussian Mixture Model (GMM) for
background modeling and foreground subtraction. Despite its
robustness against complex disturbances, early versions of
GMM are unable to achieve satisfactory results at situations
of target stagnation, serious camera jitter, sudden illumination
changes, and so on. Therefore, many approaches have been
proposed to improve GMM. Zivkovic [12] employ GMM
with changeable number of Gaussian distributions at each
pixel to improve adaptability and to simplify computation.
An illumination-robust foreground detection method based on
GMM with adaptive Gaussians is presented by Li et al. [13].
Different from typical statistical background modeling meth-
ods, unsupervised change detection algorithms often solve the
detection problem in heuristic ways, and solutions emerge in
an endless stream in recent years. In [14], a nonparametric
kernel density estimation is proposed to detect foregrounds,
and it reduces negative effect from shadows to some extent
by considering the srgb color space information. ViBe [15]
leverages a random background updating strategy to reduce
the complexity of background modeling and obtains an accel-
erated detection speed. Change detection based on Robust
Principal Component Analysis (RPCA) has also been pro-
gressing rapidly in recent years. Candes et al. [16] show
that RPCA can be applied to moving object detection by
modeling the background with a low-rank subspace and rep-
resenting the foreground objects with a noise component.
Zhou et al. [17] propose a batch algorithm—DECOLOR that
combines RPCA and MRF to separate foreground objects
from images. Gao et al. [18] impose spatial coherence of
foreground components to refine the mechanism of change
detection using decomposition. Liu et al. [19] take group
properties of foregrounds into account on both spatial and tem-
poral domains for sparsity recovery in background subtraction.
Though RPCA-type methods boast solid theoretical basis and
effective change detection results, the computational speed is
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usually slow. With the rapid development of deep learning
for computer vision tasks, semi-supervised and supervised
foreground segmentation algorithms based on deep learning
[20], [21] are sprouting up, and the segmented foreground
masks can serve directly for the purpose of detection. In order
to provide a large amount of data for various supervised
detection algorithms and a benchmark for comparison of var-
ious algorithms, large change detection datasets emerged. The
most popular one is the CDnet2012 dataset [22]. It contains
6 video categories with 4 to 6 videos sequences in each
category. BMS-26 dataset [23] consists of 26 video sequences
with pixel-level annotated moving objects. Daimler Pedestrian
Benchmark dataset [24] consists of many pedestrian images
captured from a vehicle-mounted calibrated stereo camera rig
in urban environments.

In practice, many change detection algorithms cannot
deliver satisfactory binary results under heavy noise, and
others tend to generate under-detected or over-smoothed fore-
ground contours. To date, none of the existing change detection
algorithms can deliver satisfactory results under all scenarios
and tasks. On one hand, we can always design and improve
change detection algorithms. But on the other hand, we can
also solve the problem by enhancing the raw detection results
after change detection, regardless of how they are detected.
The earliest enhancement method is perhaps the morphological
operation [25], [26]. It exploits the direct relationship between
a pixel and its neighboring pixels to improve detection masks.
However, this method needs to design different combinations
of morphological operators for different binary masks. For
example, one must have prior knowledge that whether the
detection is over-smoothed or under-detected so as to apply
an erosion operator or a dilation operator respectively. Also,
the iteration times of morphological operation are usually
determined by experience and observation. Redundant dila-
tions amplify detection noise and bring about the problem
of false-positive targets. Redundant erosions easily remove
under-detected targets, leading to false-negatives. With the
rising popularity of Markov Random Fields (MRFs) during
the last few decades, image denoising, restoration, and other
image processing operations have found harder theoretical
basis. MRFs are generally used to calculate the a priori
probability of the pixel to be affected by its surrounding pixels,
and the maximum a posteriori (MAP) probability is then
iteratively calculated to improve the detection masks. By using
the simulated annealing method with a decreasing tempera-
ture parameter of the Gibbs distribution, the framework of
MAP-MRF can reach rapid convergence [13], [27], [28].
MRFs are especially suitable for improving results obtained
from statistical/probabilistic foreground detection methods.
Limited by the high computation burden, MRFs usually per-
form in a local window, which restricts its smoothing effort
to a local scale. Conditional Random Field (CRF) considers
both unary potentials and pairwise potentials of pixels. The
traditional CRF is also applied locally to improve image
segmentation results due to the huge computation burden [29],
[30]. However, reference [31] proposes a fully connected CRF
for global enhancement based on mean field approximation

and high-dimensional filtering, which significantly reduces
the computation cost. Since then, CRFs are extended to full
size images. A fully-connected CRFs are currently widely
used for post-processing of image detection or segmentation
results [32], [33].

Recently, image filtering becomes a popular and important
research topic for their performances on image/video denois-
ing and enhancement. Bilateral filter [34] is a local image
filter that considers both spatial relation and color similarity
among pixels. Given enough computing power, the bilat-
eral filtering sometimes generates significant improvements.
Several accelerated versions have emerged to improve the
filtering efficiency [35]–[37]. Since bilateral filter, new image
filters have been emerging rapidly. He et al. [38] present the
guided filter, a local linear filter utilizing a guidance image for
enhancing the input image. This kind of filter exhibits excellent
edge-preserving capability with low computational complexity.
However, if an input image is highly noisy, this method
tends to amplify the noise because the filter runs with local
information. Yang [39], thus, propose a tree filter to handle
the cost aggregation process in stereo matching in a global
way. Unlike other local image filters, the tree filter aggregates
information on the minimum spanning tree generated from the
whole guidance image. Every pixel of the image can transfer
information to any other pixels through paths of the minimum
spanning tree. Local filters have limited filtering effects for
the reason that they only consider the relationship among the
pixels within a window; while a global filter considers long-
range correlation between any pair of pixels, making full use
of the domain information.

For the case of videos, the same foreground object appar-
ently might appear in a series of adjacent frames. Over the
timeline, the same object has self-similarity in both appearance
and form. Thus, it is reasonable to assume that the information
obtained from the temporal domain and spatial domain can
aggregate to enhance the change detection results, e.g., with
more accurate foreground contours. Motivated by the above
mentioned, in this paper we propose a Fast Spatiotemporal
Tree Filter (FSTF) to enhance coarse binary detection masks.
The contributions are summarized as follows:

1) We extend the original tree filter to the spatiotemporal
domain and propose Fast Spatiotemporal Tree Filter (FSTF) to
enhance coarse change detection masks for image sequences.
FSTF effectively synthesizes information of the same target
from the current time and history frames to enhance detection.
The proposed filter is purely unsupervised, and can be applied
after various kinds of change detection algorithms.

2) We analyze the computational complexity of FSTF from
the perspective of graph theory, and we theoretically prove
that the fast realization of FSTF holds the same complexity
with the original tree filter proposed in [39], which is a linear
time algorithm.

3) Comprehensive qualitative and quantitative experiments
prove that FSTF-based change detection enhancement is
superior to several other state-of-the-art enhancing methods.
We also demonstrate that FSTF has a broad applicability. It is
not only applicable to enhancing change detection results, but
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also able to improve saliency detection as well as semantic
image segmentation on a single image.

The paper is organized as follows. The principles of linear
image filtering and tree filtering are briefly introduced in
Section II. Section III presents the framework of the fore-
ground enhancement algorithm based on FSTF in details.
In Section IV, comprehensive qualitative and quantitative
experiments are performed to prove the superiority of FSTF.
In section V, we discuss the robustness of FSTF against
disturbances, and show the versatility of FSTF for improving
different detections and segmentations. Finally, conclusions
are drawn in Section VI.

II. SPATIOTEMPORAL TREE FILTERING

In this section, we first elaborate the basic concept of
using an image filter to enhance change detection results.
Afterwards, we introduce the form of linear image filtering and
several popular filters that belong to this form. We then extend
the original tree filter that works spatially to a spatiotemporal
domain, and propose anO(n) Fast Spatiotemporal Tree Filter.

A. Change Detection and Image Filtering

An image filtering process involves an input image p,
a guidance image I used for aggregating information from
other domains, and an output image q . A change detection or
a foreground detection result is usually represented by a binary
image in which the foreground is labeled with white pixels,
while the background is labeled in black. The objective of
enhancing the change detection is to improve the input binary
image p. The guidance image I , e.g., the grayscale original
image or the depth image corresponding to p, contains rich
texture information and color/spatial smoothness coherence
that p does not hold. Moreover, due to noise and detection
limits of those algorithms, dispersed false detections are com-
mon in the resultant binary image and the foreground mask
may not cover the real object area. Therefore, it is natural to
employ I as the reference to produce a filtered detection image
q for enhancement. It should be noted that after enhancing the
input binary image p, the output image q becomes a grayscale
image in which a brighter pixel implies a higher possibility of
being foreground.

B. Linear Image Filters

The general linear filtering process can be defined as a
weighted sum on a pixel support region centered at pixel i

qi =
�

j
ωi j (I )p j , (1)

where j is the pixel index in the support region, and ωi j (I ) is
the weight which can be regarded as the coherence between
the center pixel i and j on the guidance image.

Joint bilateral filter [40], a very typical image filter in the
above linear weighted form, can be represented as a joint
filtering process upon the spatial and the color kernels

qi = 1

Ni

�
j

exp

�
−

��xi − x j
��2
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exp
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��2

σ 2
r

�
p j ,

(2)

where xi and x j are the pixel coordinates, σs and σr are two
parameters used to adjust the spatial similarity and the range
similarity respectively, and Ni is a normalizing factor. If the
guidance image is the input image itself, the joint bilateral
filter degrades to the original bilateral filter proposed in [34].

The guided image filter [38], another effective local-based
filter is also in the form of (1). In guided filtering, the kernel
weight can be expressed as

ωi j (I ) = 1

|ω|2
�

k:(i, j )∈ωk

�
1 + (Ii − μk)

�
I j − μk

�
σ 2

k + ε

	
, (3)

where |ω| is the number of pixels in the support window
ωk with a radius r , and ε is a regularization parameter to
control the edge-preserving extent. Parameters μk and σ 2

k are
the mean and variance of I in ωk , respectively. There is
no need to normalize the weights because



jωi j (I ) = 1.

A correspondence exists between the guided filter and the
bilateral filter: r ↔ σ 2

s and ε↔ σ 2
r [38].

C. Tree Filtering

Many linear image filters can be applied to improve change
detection results; however, only in a local manner. The tree
filter is a global filter because it aggregates information from
all pixels along branches of the Minimum Spanning Tree of
the guidance image.

In tree filtering, a guidance image I is regarded as a
4-connected, undirected graph G = (V , E). The vertex set V
represents all the pixels in the guidance image and the edge
set E contains all edges between connected pixels. The weight
of an edge connecting two pixels u and v can be represented
as

e (u, v) = e (v, u) = |Iu − Iv | . (4)

A minimum spanning tree (MST), which connects all the
nodes and possesses the smallest sum of weights in all possible
spanning trees, is generated from the graph G defined above.
The similarity between any two nodes u and v on the guidance
image is defined as

SI (u, v) = SI (v, u) = exp

�
− L I (u, v)

σ

�
, (5)

where L I (u, v) denotes the length between u and v—i.e., the
sum of the weights of the edges on the path from u and v
on the MST. The parameter σ adjusts the sensitivity of the
similarity between u and v. For the guidance image I , the
input p and the output image q , the tree filtering is defined as

qi =
�

j
SI (i, j) p j�
j

SI (i, j)
. (6)

The denominator of (6) depends only on the position of
pixel i , which can then be viewed as a normalization factor
Ni . The similarity SI in (6) can also be viewed as a support
weight received by the pixel i in filtering. It is easy to observe
that the tree filtering has the weighted linear form just as (1).
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Fig. 1. Spatiotemporally connected, undirected graph I = (V, E), with
k = 4.

D. Spatiotemporal Tree Filtering

The same moving object in several adjacent video frames
have similar appearance, therefore it seems reasonable to
aggregate the detection masks and guidance images of the
same object with time. Sometimes due to restrictions on imag-
ing, detection, as well as interference from background, the
object in a frame can only be partially detected. By utilizing
the spatiotemporally aggregated image filtering of the object,
we can improve the current binary mask by exploiting past
detections, even though they are coarse and imperfect.

Following the above enlightenment, a spatiotemporal tree
filter builds a guidance image set I consisting of local
image regions that contain the same object in k consecutive
video frames. If I (t) denotes the local image area of the
moving object in the video frame at time t , then we have
I = {I (t)|t ∈ {1, . . . , k}}. To balance the processing speed
and the filtering effect, k should be set to a proper value
(usually smaller than 5). The tuning of k will be further
discussed in Section IV-B. By stacking all guidance images
in I with their centers aligned together, we can construct a
spatiotemporal undirected graph I = (V , E) shown in Fig. 1.
The vertex set V contains all pixels of I, and E consists
of two parts which are the spatial edges and the temporal
edges. The spatial edges are indicated by solid lines in Fig. 1,
and the temporal edges are indicated by the dashed lines.
All edges are defined exactly the same as (4). In order to
effectively connect all images of the same target, we align
the central pixels of all I (t) for k times, and the latest image
layers are placed on top of the stack. The pixels of target
image I (t) are connected to pixels from I (t + 1) and I (t −1).
As all edge weights are calculated using (4), a spatiotemporal
minimum spanning tree (MST) can always be obtained from
I = (V , E). The coarse detection masks corresponding to the
guidance images can also form a set P = {p(t)|t ∈{1, . . . , k}},
which is called the input set. Via the spatiotemporal tree
filtering of (7), we acquire an enhancement foreground image
set Q = {q(t)|t ∈ {1, . . . , k}}. The value of σ in (7) is related
to the complexity of the video scene

Qi =
�

j
exp

�
− LI(i, j)

σ

�
P j

�
j

exp

�
− LI(i, j)

σ

� . (7)

The biggest advantage of the spatiotemporal tree filter is that
it can aggregate information in both time and space domains.
In addition, compared with other local filters, it provides a
natural measure of global pixel similarity; each pixel can
effectively support all other pixels by delivering its information
on the MST. Fig. 2(a) shows grayscale guidance images of

Fig. 2. Generating the spatiotemporal MST from the guidance images of the
same foreground object in different frames. (a) shows the grayscale images
of the same target in four different times; (b) is the guidance set I formed
by stacking the images in (a); (c) is an enlarged visualization of the stacked
5∗5 pixel area near the center of I . (d) shows the MST of the area of (c),
in which the 4 horizontal layers are the 5∗5 pixel areas labeled in magenta
from Fig. 2(a) to (c), respectively. In (d), the round nodes are painted with
their real colors in the guidance images; and the green segments represent the
edges in the generated MST of the whole graph I . The edges that connect
the nodes in (d) with the nodes outside of (d) are not shown here.

Fig. 3. Support weights computed by spatiotemporal tree filtering. (a) is
the guidance image at t = 4 of Fig. 2(a) with a pixel marked in red star.
(b) shows support weights received by the star pixel in heatmaps.

the same target at 4 different times, respectively. We stack
the four guidance images together with their centers aligned
in Fig. 2(b), and then compute the MST of this spatiotem-
poral volume. In order to exhibit details, we focus on a
stacked 5∗5 pixel area labeled by magenta bounding boxes
in Figs. 2(a), (b), and (c). We zoom in on the 5∗5 stacked
area and show its part of MST in Fig. 2(d), in which we can
see that pixels with similar gray values are connected to each
other in spatiotemporal MST. Fig. 2(d) also reveals that similar
and nearby pixels will deliver information in a fast and natural
way. Therefore, the spatiotemporal structure of MST implies
a “global” measure of pixel similarity. Fig. 3 uses heap maps
to show the similarities of a pixel with all other pixels after
information aggregated on the spatiotemporal MST, which also
reflects the global supports of other pixels for the pixel. The
first line of Fig. 3(b) shows the similarities between the pixel
marked by the five-pointed star in Fig. 3(a) and all other
pixels in I at σ = 10. The second line of Fig. 3(b) shows
the similarities when σ = 100. The values of all similarities
are normalized to the interval of [0, 1], and the similarities are
illustrated by heatmaps with red color for high values and blue
for the opposite. At all four guidance frames, those pixels that
have similar grayscale intensity to the five-pointed star pixel
are close to red, indicating a high support in filtering. The
parameter σ controls the sensitivity of the similarity. When
σ is small, only the pixels from the car hood can effectively
support the star pixel; but when σ is large, the information
becomes easier to transmit on the MST, causing supports from
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other parts of the car (e.g., car roof, and body) that have similar
color with the hood to become larger. As a result, the shapes
of the high similarity areas in Fig. 3(b) at σ = 100 get closer
to a real car.

E. Fast Spatiotemporal Tree Filtering (FSTF)

According to (7), when computing the filter output of pixel i
we must calculate the similarity between it and all other pixels
in I. Furthermore, the computation complexity of L I (i, j)
is related to the distance between j and i on the MST (the
number of edges on the path connecting i and j). Therefore,
in the light of (7), the floating-point addition need to be
operated


n
j=1 d(i, j)+2(n−1) times, and multiplication need

to be operated 2n times, exp is calculated n times, and division
once.


n
j=1 d(i, j) is the sum of all distances from any node

to the current node i ; it cannot be easily computed. However,
there is a clue that


n
j=1 d(i, j) can be approximated by

the average distance dave of the tree multiplied by n. The
average distance of a graph is defined as the expected distance
between a randomly chosen pair of distinct vertices. If the
graph is a tree, then the average distance can be represented
by [41]:

dave = 1⎛
⎝ n

2

⎞
⎠

�
u,v⊂ tree

d (u, v). (8)

When the graph is large, it becomes very costly to calculate
the exact average distance via (8). The study of the average
distance as a graph parameter began from 1940s [42]. Despite
many theorems were proposed for the average distance of a
connected graph, the majority of them focus on derivations of
the upper or/and lower bounds. Mohar [43] shows an exact
connection between eigenvalues and mean distance in graphs;
given a tree of order n and let λ2, λ3, . . . , λn be the non-zero
Laplacian eigenvalues of this tree, then

dave = 2

n − 1

n�
i=2

1

λi
. (9)

This equation gives a closed-form solution for computing
the average distance in a tree. According to the definition
of the proposed spatiotemporal filter, the guidance set has
a spatial structure that resembles to a thin plate. This is
because the dimension of a guidance image is far larger than
k, the thickness of the set. We have calculated the average
distance using (9) on more than 200 different MSTs formed
on real guidance sets with k ≤ 4 from image patches such
as Fig. 2., respectively; and discovered that dave always falls
into an interval of (n1/2, 3n1/2). Therefore


n
j=1 d(i, j) can

be upper bounded by 3n3/2. Direct computation of (7) on all
pixels in the guidance set I has a combined complexity of
O(n5/2) on floating point additions, O(n2) on both floating
point multiplications and exponentials, and O(n) for divisions.
According to [44], the floating point addition takes 3-6 CPU
clock cycles, the floating point multiplication takes 4-8 cycles,
a division takes 20-45 cycles, and an exponential takes no less

than 48 cycles. The floating-point additions account for the
majority of the cost in direct computation of (7), and it is
pretty slow especially when the spatiotemporal tree contains
thousands of vertices.

The mechanism can be sped up by taking the advantage of
both the tree structure and definition of the similarity by (5).
Assume a simple case that the vertices u and v are connected
by a vertex w on a path of the MST; then the similarity between
u and v can be represented by a multiplication of similarity
SI (u, w) and SI (w, v). Actually, the path that connects any
two nodes on the MST is unique, otherwise two different paths
connecting the same pair of nodes will form a circle, which
contradicts with the fact that the tree is already an MST. If the
path connecting the two nodes u and v to be represented by
an edge set Eu,v={e1, e2, . . . , ed}, then the length between u
and v can be calculated by

LI(u, v) =
�

ei ∈Eu,v

ei . (10)

By using equation (5), the similarity of u and v becomes

SI (u, v) = exp

⎛
⎝−

�
ei∈Eu,v

ei
�
σ

⎞
⎠ =

�
ei ∈Eu,v

exp
�
−ei

σ

�
. (11)

If the guidance images are grayscale, the edge weight ei is
an integer ranging from 0 to 255, and the parameter σ is preset
before computation. The exponentials in (11) can then be pre-
computed by a table of length 256, and the similarity between
two arbitrary nodes now breaks into a multiplication of pre-
computed float numbers. Now the total computation complex-
ity using the above speed-up for all pixels in I comprises
O(n2) on floating-point additions, O(n5/2) on floating point
multiplications, and O(n) for divisions. When the number
of pixels in I is not large, the speedup by (11) is evident.
However, applying (11) to a bigger guidance set costs even
more time than the direct computation of (7) because a CPU
normally needs slightly more cycles on doing multiplication
than addition.

The key to this speed-up problem is to treat (7) as an
information aggregation process on the MST beginning from
leaf nodes to the root node, i.e., the current pixel i . This
aggregation is therefore called the leaf-to-root process. The
numerator and denominator of (7) are aggregated separately
using the Claim 1 presented in [39]. The aggregated value for
each node u is represented by QA

u = QA
u (num)

�QA
u (den).

The numerator can be computed by

QA
u (num) = Pu +

�
par(v)=u

SI (u, v)QA
v (num), (12)

in which par(v) means the parent node of v. The denominator
is then computed by

QA
u (den) = 1 +

�
par(v)=u

SI (u, v)QA
v (den). (13)

For each leaf node, we have QA
lea f (num) = PA

lea f (num) and
QA

lea f (den) = 1. For the root node only, the equation Qi = QA
i

holds. The computation complexity can be easily derived by
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Fig. 4. A demonstration of fast spatiotemporal tree filtering. (a) shows
a guidance graph I containing three layers of images from three different
epochs, respectively. The spatial edges are solid lines, and the temporal edges
are in dotted lines. (b) shows the MST computed from the graph (a). Fig. 4(c)
shows the leaf-to-root information aggregation of the MST with node 6 as the
root node; the arrows represent the direction of aggregation. (d) shows the
computation of the node 5 using the root-to-leaf propagation. The filtering
result of node 5 is a combination of two parts: (i) the aggregated information
QA

5 (·) from the subtree that contains node 5 itself in the leaf-to-root process;
and (ii) the part surrounded in dotted red area that propagated from the whole
MST except the subtree containing node 5. In (d), the black arrows represent
the aggregation process, and the red arrow represents the propagation.

a simple example shown by Fig. 4. Fig. 4(a) is a spatiotem-
poral graph I with k = 3, and the corresponding MST is
demonstrated by solid connections in Fig. 4(b). Assuming
we are now going to compute the filtered value for node 6,
the MST can immediately turn into an equivalent leaf-to-root
structure shown in Fig. 4(c). The information aggregates along
the arrows on the tree to the root node. The equations (12), (13)
are computed sequentially along the arrows to the root, and
it is therefore straightforward to find that either (12) or (13)
takes one floating-point multiplication as well as one addition
on each edge. So, each root node costs 2(n−1) multiplications,
2(n − 1) additions, and 1 division to compute its filter output.
After iterating the root on all nodes in the MST, the total
complexity reduces to O(n2) on CPU clock cycles. Though
faster than the speed-up using (11), the calculation is still
formidable for large graphs.

The leaf-to-root aggregation spends a lot of repetitive calcu-
lations when the root node iterates from one node to another.
In fact, it is possible to compute the aggregation values
QA

u (num) and QA
u (den) only once for all nodes, and then com-

pute all filter outputs Qi without changing the root node on the
graph. First, we randomly choose a root node in the graph, then
do leaf-to-root aggregation, and the aggregated numerators
and denominators for all nodes are stored. By applying the
Claim 2 in [39], a root-to-leaf propagation process is used to
compute the final filtering result for numerators of all other
nodes in the set using (14):

Qu(num) = QA
u (num)

+ SI(par(u), u)Qpar(u)(num)

− SI(u, par(u)) · QA
u (num). (14)

If change all “num” in (14) to “den”, we obtain the prop-
agation for denominators. Equation (14) must be computed
sequentially starting from the root node to its child nodes,
and finally to all leaf nodes. In the example of Fig. 4(c), since
the output Q6 of the root node 6 has been computed, we can
propagate the support from node 6 to its child node 5. Then the
final filtering result of node 5 is a combination of two parts:
(i) QA

5 (·), the information aggregated from the subtree that

Fig. 5. Merging the fragmented foregrounds and removing false positives
for generating intact foreground guidance images. (a) is the binary detection
result of a foreground detection method; In (b), the foreground areas that
contain enough white pixels are labeled by bounding boxes, respectively. Each
bounding box in (b) is broadened in (c) by a few pixels to avoid missing
false negatives. The overlapping foreground bounding boxes are bounded by
a larger bounding box (dotted blue box) in (d), and the foreground area in this
blue box is treated as the input of tree filtering. The corresponding bounding
box area in the guidance image (e) is used to generate the guidance set for
spatiotemporal tree filtering.

contains node 5 itself in the leaf-to-root process; (ii) Q6(·) −
SI(5, 6)QA

5 (·), the information that propagated from the whole
MST except the subtree containing node 5. The first part can
be represented by the black arrows along edges in Fig. 4(d),
and the second part can be represented by the area surrounded
by the dotted red box. When the second part propagates from
the root node 6 to the node 5, the information has to go
through the edge e(6, 5); therefore it must be multiplied by
the similarity SI(6, 5) as the attenuation. After the numerator
and denominator of node 5 are computed separately from (14),
the final Q5 can be obtained via a division. Equation (14) can
be further transformed into

Qu(·)= SI (par(u), u)Qpar(u)(·)+
�
1−S2

I (u, par(u))
�
QA

u (·),
(15)

in which the notation (·) means either numerator or denomi-
nator. The two terms and 1 − S2

I in (15) can be precomputed
by look-up tables, and QA

u (·) is precomputed in the leaf-to-
root process. Therefore, each non-root node needs 2 multi-
plications, 1 addition, and 1 division to compute the output.
As a result, the total MST needs 1 leaf-to-root aggregation
and n −1 root-to-leaf propagations. Comparing to the original
complexity O(n5/2) on computing (7) for all pixels, now the
total complexity of the speed-up only takes O(n) on CPU
clock cycles, which is linear with the size of the MST. This
speed-up makes real-time FSTF applications to be possible.

III. FSTF-BASED CHANGE DETECTION ENHANCEMENT

In this section, we propose a foreground detection enhance-
ment method based on FSTF. The framework can be divided
into three parts: (i) fragmented foreground parts merging and
noise removal, (ii) enhancement of FSTF, and (iii) binarization.

(i) Fragmented foreground parts merging and noise removal.
For the k-frame consecutive foreground masks obtained by
change detection, we use 8-connected component labeling
to count the number of pixels for all foreground regions
in those foreground masks. If the number of pixels of a
connected foreground region is larger than T harea , we regard
the region as a potential foreground area and then label it
with a bounding box. For better handling of under-detection,
we enlarge all object boxes with 10-20 pixels in height and
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Fig. 6. The sketch map of forming the guidance image set and the
coarse detection image set for a target in four consecutive frames for FSTF
calculation. (a) shows the trajectories of the two targets in the video sequence
and the searching area for target 1. (b) shows the process of forming sets I1
and P1 for target 1.

width. Then, the overlapping bounding boxes in the same
image are bounded by a larger box that merges the fragments.
Fig. 5(a) is the coarse binary result obtained by using a
foreground detection algorithm on the original frame Fig. 5(e).
The three small boxes in Fig. 5(b) are the bounding boxes of
connected foregrounds that exceeds the size threshold T harea .
In Fig. 5(c), the three boxes are extended a little to prevent
from missing details in case of under-detection. Because the
three boxes have overlapping areas, in Fig.5(d) we use a larger
dotted box to encompass all of them. The binary image area
inside the box is denoted by pm(t), and it means the m-th
foreground area at time t , in which m ∈{1, . . . , mmax(t)}. The
corresponding area of pm(t) in the original frame is defined
by Im(t), which is shown in Fig. 5(e). pm(t) and Im(t) will
directly participate in FSTF computation.

There is usually a large amount of white isolated noise in
a coarse binary mask. If the number of pixels of a connected
foreground area is less than T harea and it is also not contained
in any of bounding boxes, we consider it a false positive area.
The false positive pixels are then directly changed to black
pixels as a denoising step for removing dispersed detection
noise. Following this denoising, the false positive areas in
Fig. 5(d) are reduced comparing to Fig. 5(c), while the small
white areas inside pm(t) remains unchanged (e.g., two small
white points in the thighs).

(ii) Enhancement of FSTF. First calculate the mean intensity
value μm(t) of the foreground pixels of Im(k), and compute
the center coordinate of Im(k) as cm(t) for all foreground areas
in all frames t ∈ {1, . . . , k}. We establish a guidance graph
Im = Im(k) for the mth foreground region at the latest time
k, and establish the coarse input set Pm = pm(k). At each
cm(t) position with a radius of T hr , we search whether it
exists a center c(t) of another foreground region falling into
the circle region. If multiple foreground areas fall into the
search region in a same frame, only the foreground that has
the closest mean intensity to μm(k) is selected as the potential
matching candidate. Then we stack the guidance images of
the candidate foreground beneath the guidance graph Im , and
then add the corresponding binary image area to the set Pm .
If no foreground area is found in a frame, two sets—Im and
Pm stay unchanged. After traversing all frames, the FSTF is
applied on Im , Pm to obtain the output set Qm = {qm(t)|t ∈
{1, . . . , k}, m ∈ {1, . . . , mmax(t)}}. Fig. 6 shows how the
guidance set and the coarse input set of a target are formed in
four consecutive frames. Fig. 6(a) presents the trajectories of

TABLE I

THE PSEUDO-CODE OF THE CHANGE DETECTION ENHANCEMENT
ALGORITHM BASED ON FSTF

the two moving targets in the video sequence. Let c1(4) be the
center of target 1 at frame 4, we search within a radius of T hr

for target regions in the spatiotemporal domain. In Fig. 6(b)
we can see at t = 3, c1(3) and c2(3) both satisfy the distance
condition. But μ1(3) is much more close to μ1(4) than μ2(3),
so I1(3) is the potential matching candidate of I1(4). Then we
stack I1(3) beneath I1(4) to update I1, and meanwhile add
p1(3) to P1. Similarly, at time t = 2, only I1(2) is regarded
as the potential matching candidate of I1(4), and I1, P1 are
also updated, respectively. At time t = 1, no foreground can
be found in the search circle, therefore the two sets remain the
same. After traversing all four frames, FSTF is applied to I1
and P1 to generate a resultant set Q1 = {q1(4), q1(3), q1(2)},
which contains enhanced grayscale detection masks for target
1 at all three frames.

(iii) Binarization. Each pixel in the spatiotemporal output
set Qm is grayscale, so a threshold T hb is needed to binarize
Qm . If the filtered pixel value is greater than the threshold,
it becomes a white foreground pixel; otherwise it becomes
a black background pixel. After binarization, we obtain an
enhanced binary mask bm(k) for qm(k). Finally, the region
of bm(k) is used to cover the corresponding rectangular area
pm(k) in the binary detection frame after noise removal to
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form the final enhancement result. The pseudo-code for change
detection enhancement based on FSTF is shown in Table I.

IV. EXPERIMENTS

In this section, in order to demonstrate the superiority of
the proposed FSTF, we first compare it with the other six
algorithms as the first part of our experiments: morphological
operators (MO), Foreground-adaptive MRF (FA MRF) [28],
Li MRF [13], guided filtering (GF) [38], joint bilateral filtering
(JBF) [34], and fully-connected Conditional Random Field
(CRF) [31] on enhancing the coarse detection masks obtained
from 4 different foreground detection algorithms: GMM [11],
SpkmeansEM [13], ViBe [15], and FgSegNet [20], respec-
tively. The comparison is performed on 5 video sequences
from the CDnet2012 dataset [22]: “streetlight”, “pedestrians”,
“office”, “traffic”, and “diningRoom”. The “streetlight” is a
320∗240 resolution sequence that captures an outdoor traffic
scene using a fixed camera. The “traffic” sequence is also a
320∗240 resolution sequence that records a near traffic scene
with a fixed camera. The “office” is a 360∗240 resolution
sequence that records an office scene. The “pedestrians” is also
a 360∗240 resolution sequence that records a street scenario
containing several walking pedestrians with subtle background
motion. The “diningRoom” is a 320∗240 resolution sequence
recorded by a thermal camera. CDnet2012 offers ground truth
for all sequences; but the region of interest (ROI) of “street-
light” only covers a very small region. Therefore, we manually
label the ground truth images for this sequence. GMM and
SpkmeansEM are statistical background-foreground subtrac-
tion based on mixture models that need unsupervised training.
We use the first 600 frames of “streetlight”, the first 400 frames
of ”pedestrians”, the first 500 frames of “office”, “traffic”, and
“diningRoom”, respectively, to train background models for
the two statistical algorithms. We adopted suggested learning
rates in their original papers, and the maximum number of the
Gaussian distributions is fixed to 5 at each pixel for both GMM
and SpkmeansEM. The only parameter T in the foreground
detection of GMM is fixed to 0.5 for all videos. There are four
parameters in the foreground detection stage of SpkmeansEM,
and we tune the parameters according to the suggestion in the
original paper. ViBe is an unsupervised heuristic algorithm
that uses a history pixel batch to represent background; four
parameters are designed for updating the background batch as
well as detecting moving foregrounds, and we use the default
values recommended in its original paper. FgSegNet is a
supervised method that uses convolutional neural networks for
multiscale feature encoding. We choose 200 images from sev-
eral different CDnet sequences containing human foregrounds
as the FgSegNet training data to segment human targets, and
choose 80 images from several sequences containing vehicles
to train the FgSegNet for detecting vehicles. The enhancement
methods are tested and compared on the coarse detection
results on frames 704-713 of “streetlight”, frames 1291-1303
of “traffic”, frames 734-743 of “office”, frames 576-585 of
“pedestrians”, and frames 833-842 of “diningRoom”.

The seven detection enhancement methods including ours
are tuned to produce their respective optimal results in exper-
iments. The morphological operator comprises a fundamental

“open” operation to reduce noise and a “close” operation
to enhance foreground contours. The FA MRF and Li MRF
methods are both Maximum a posteriori (MAP) MRF, which
requires both the a priori background probability and the
a posteriori foreground probability of every pixel; thus the
two MRF methods are not suitable for non-statistical methods
such as ViBe and FgSegNet. The Gibbs temperature γ and a
scale parameter θ of the FA MRF are both fixed at 0.01, and
the number of MRF iterations is no higher than 3 to avoid
over-smoothing. The parameters for the Li MRF are the values
recommended in the paper [13], and the number of iterations is
also no higher than 3. The joint bilateral filter is controlled by
four parameters, in which the spatial parameter σs , the range
parameter σr , and the window radius r are fixed to 150, 0.2,
and 5 for all video sequences, respectively. The binarization
threshold T hb for joint bilateral filtering is set to a range of
120-150 for FgSegNet results, and 50-80 for other results.
The parameters r and ε for guided filtering are fixed to 4 and
0.16, respectively. The binarization threshold is set the same
way as the joint bilateral filtering. For FSTF, the parameter
σ is set to 25 for “streetlight” and “traffic” sequences, 10 for
“office”, 15 for both “pedestrians” and “diningRoom”. The
threshold T hb is set to 100 for FgSegNet results and 20 for the
other 3 methods. We fix parameters T harea and T hr to 50, and
fix k to 4 for all experiments in this paper. The fully connected
CRF contains 5 parameters and we use recommended values
from [31] to realize the enhancement. CRF requires pixel-wise
foreground probability map, thus it is not suitable for ViBe.

The second part of experiments focus on quantitative com-
parisons. In this part, we first compare the performances of the
seven enhancement methods on consecutive frames from five
CDnet2012 sequences. Then, we apply the proposed FSTF
after five extra popular change detection methods on the
complete CDnet2012 dataset to prove its wide applicability.
At last, we compare FSTF with GF, CRF, and Li MRF under
three metrics for improving coarse SpkmeansEM results.

Following the comparisons, we also provide with a number
of parameter tuning tests. Suggestions are given on how
to choose proper values for σ and T hb based on different
conditions. The stability test of the performance of FSTF under
varying parameters is also performed. The influence of para-
meter k on FSTF is analyzed. At last, the average time costs
for the seven enhancement algorithms on five CDnet sequences
are compared. Our FSTF has satisfactory real-time speed.

All experiments are conducted on a desktop PC operated
under Windows 10 with a 3.4 GHz Intel Core i7-3770 CPU
and 16 GB memory. In this section, the quantitative evaluations
are performed by using metrics such as F-measure, Mean
Absolute Error (MAE), Mean Square Error (MSE), Peak
Signal to Noise Ratio (PSNR), and the Receiver Operating
Characteristics (ROC) curve. F-measure is defined by

F−measure = 2 · Precision · Recall

Precision + Recall
, (16)

where Precision = TPs/(TPs + FPs) and Recall = TPs/(TPs
+ FNs). True Positive (TP) is the foreground pixel in the
ground truth correctly classified as the foreground by the
algorithm. False Positive (FP) is the background pixel in
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Fig. 7. The comparison of enhancements across seven methods on coarse
detection results of the “streetlight” sequence. In order to avoid visual
redundancy, we compare enhancements on GMM for frame 703 on row 1,
enhancements on SpkmeansEM for frame 707 on row 2, enhancements
on ViBe for frame 710 on row 3, and enhancements on FgSegNet for
frame 713 on row 4. On each row, the enhancement result with the highest
F-measure is highlighted by a red bounding box, the result with the second
highest F-measure is labeled by a green bounding box.

the ground truth falsely classified as the foreground by the
algorithm. False Negative (FN) is the foreground pixel in the
ground truth incorrectly classified as the background. TN is
the background pixel in the ground truth correctly classified as
the background by the algorithm. The ROC curve reflects the
relation between False Positive Rate (FPR) and True Positive
Rate (TPR), in which FPR=FPs/(FPs+TNs) and TPR=Recall.
MAE, MSE, and PSNR are defined by (17)-(19), in which
GTi means the i -th pixel of the binary ground truth image,
and M AX (b) means the maximum value of a pixel in the
output binary image it can reach. In quantitative evaluations,
we normalize all binary values into the range of [0, 1]. Then
bi − GTi has only three cases {−1, 0, 1}, and the MAE and
MSE are the same all the time. Therefore, we integrate the
two measures with a label “MAE/MSE”.

M AE = 1

|b|
|b|�

i=1

|bi − GTi |, (17)

M SE = 1

|b|
|b|�

i=1

(bi − GTi )
2, (18)

PSN R = 10 · log10

�
M AX2(b)

M SE

�
. (19)

A. Qualitative and Quantitative Comparisons

The enhancement methods are first compared on the “street-
light” images in Fig. 7. In order to avoid visual redundancy,
we show enhancements on different foreground detection algo-
rithms on different frames, respectively. This is because we
only focus on enhancing coarse detections from detection algo-
rithms, rather than comparing different detection algorithms.
Our FSTF generates the closest results to the ground truth
across all seven enhancement methods in Fig. 7. In addition,
FSTF is the only method that correctly separates two vehicles
from a falsely connected foreground region on the upper-right
corner of the FgSegNet mask. For the enhancement compari-
son on “traffic” sequence in Fig. 8, the proposed FSTF is the
closest to the ground truth across all compared methods for
GMM, ViBe, and FgSegNet. For SpkmeansEM, CRF narrowly
wins over FSTF on the frame 1297 under SpkmeansEM.
Particularly, the FSTF shows impressive improvement on
FgSegNet, which evidently outperforms all other methods.

Fig. 8. The comparison of enhancements across seven methods on coarse
detection results of the “traffic” sequence. We show enhancements on GMM
coarse mask for frame 1294 on row 1, enhancements on SpkmeansEM for
frame 1297 on row 2, enhancements on ViBe for frame 1300 on row 3, and
enhancements on FgSegNet for frame 1303 on row 4. On each row, the result
with the highest F-measure is labeled by a red bounding box, the result with
the second highest F-measure is labeled by a green bounding box.

Fig. 9. The comparison of enhancements across seven methods on coarse
detection results of the “office” sequence. We show enhancements on GMM
coarse mask for frame 734 on row 1, enhancements on SpkmeansEM for
frame 737 on row 2, enhancements on ViBe for frame 740 on row 3, and
enhancements on FgSegNet for frame 743 on row 4.

Fig. 10. The comparison of enhancements across seven methods on coarse
detection results of the “pedestrians” sequence. We show enhancements on
GMM coarse mask for frame 576 on row 1, enhancements on SpkmeansEM
for frame 579 on row 2, enhancements on ViBe for frame 582 on row 3, and
enhancements on FgSegNet for frame 585 on row 4.

Comparison on the “office” sequence is shown in Fig. 9.
FSTF is still the method closest to the ground truth across all
seven enhancement methods, and FSTF is the only method
able to connect the leg area and the upper body in enhance-
ments for GMM, SpkmeansEM, and ViBe. The JBF and
GF methods show evident over-smoothing effects. For the
enhancement comparison on “pedestrians” in Fig. 10, the
proposed FSTF is still the closest to the ground truth across
all seven enhancement methods, and FSTF is the only method
capable of detecting the full contour of the left pedestrian on
GMM and SpkmeansEM masks. FSTF is also the only method
that can distinguish the two different feet of the left pedestrian
from the over-smoothed FgSegNet result (row 4 of Fig. 10).
For the enhancement comparison on “diningRoom” in Fig. 11,
the proposed FSTF is still the closest to the ground truth across
all enhancements, and it is the only method that completely
fills the upper body area of the person with white pixels.

On each row of Figs. 7-11, the enhancement result with the
highest F-measure is highlighted by a red bounding box, the
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Fig. 11. The comparison of enhancements across seven methods on coarse
detection results of the “diningRoom” sequence. We show enhancements on
GMM coarse mask for frame 833 on row 1, enhancements on SpkmeansEM
for frame 836 on row 2, enhancements on ViBe for frame 839 on row 3, and
enhancements on FgSegNet for frame 842 on row 4.

TABLE II

QUANTITATIVE FSTF ENHANCEMENT RESULTS ON FIVE DIFFERENT

CHANGE DETECTION ALGORITHMS FOR THE TOTAL CDNET2012
DATASET

result with the second highest F-measure is labeled by a green
bounding box. It is clear that the proposed FSTF is especially
good at finding the missing foreground parts in detection by
exploiting the spatiotemporal guidance information. During
enhancement, FSTF also exhibits satisfactory edge preserving
ability in qualitative results.

Three quantitative experiments are carried out. In the
first quantitative experiment, we compare the F-measures
of the seven enhancement methods on consecutive frames
from five CDnet2012 sequences. The seven enhancement
methods are separately tested on the coarse results from GMM,
SpkmeansEM, ViBe, and FgSegNet, respectively. The compar-
isons on F-measure are shown in Fig. 12, in which our FSTF
obtains the highest F-measure value for most of the time. In the
second quantitative experiment, we apply the proposed FSTF
after five extra popular change detection methods including
Histogram [45], ED [46], WeSamBE [47], STBM [48], and
SuBSENSE [49], on the complete CDnet2012 dataset that
contains 31 video sequences. For the five methods, FSTF raise
around 2% to 7% in average F-measure. The increases of
F-measures by FSTF are in boldface in Table II, and only a few
cases are not enhanced. In the third quantitative evaluation,
we compare FSTF with GF, CRF, and Li MRF under three
metrics (F-measure, MAE/MSE, and PSNR) for improving
coarse SpkmeansEM results from 10 representative sequences
of CDnet2012 in Table III. For MAE/MSE, the lower the

TABLE III

THE QUANTITATIVE COMPARISON AMONG FSTF, GF, CRF, AND LI MRF
UNDER THREE METRICS ON TEN SEQUENCES FROM CDNET2012. THE

BEST RESULTS ARE IN BOLDFACE

better; and the opposite for both PSNR and F-measure. Our
FSTF shows evident superiority in comparisons.

B. Parameter Tuning

We take the 735th frame of the “office” sequence as an
example for visually presenting the influence of σ on the
result of FSTF. As shown in Fig. 13(c)-(g), the grayscale
output of FSTF effectively removes isolated false positives
and fills the black holes on the foreground. But when the
parameter is too small (e.g., 5), the enhancement is not evident
enough with black holes on the foreground remains largely
unchanged. When the parameter is increased to 25, though the
holes are filled, the upper body foreground leaks to the dark
door frame, creating a white vertical line on the left side of the
person. It can also be observed that the whiteboard background
influences the book foreground whose color is also white,
making the book to be incorrectly filtered as a background.
A larger σ should be used for a complex scene for letting
the foreground information easier to aggregate. However, a
larger σ also makes it easier for background information to
cross target boundary to affect the foreground area. Therefore,
one should choose a proper σ to reach a good trade-off in a
particular scene. For example, “streetlight” and “traffic” are
both complex outdoor traffic sequences, the cameras suffer
from jittering caused by wind. The targets in the two sequences
are mostly vehicles that have non-uniform colors; e.g., the
color of the windscreen and the roof are usually different.
Due to specular reflection, the color of the same vehicle may
also vary drastically in the video. Therefore, we set σ = 25
for “streetlight” and “traffic” sequences. The “pedestrians” and
“office” sequences depict close-range scenes, and the targets
are slowly moving pedestrians. Due to the relatively stable
illumination conditions and background color distributions,
we choose σ = 15 for both “pedestrians” and “diningRoom”,
and σ = 10 for “office”.

For the threshold T hb, we discover that its value should not
be too large for enhancing background-foreground subtraction
detection results. Take Fig. 13 for example, we first casually
filter frame 735 of “office” with σ = 10, and then compare
the qualitative and quantitative results across five different T hb

thresholds. It is obvious that T hb = 20 can achieve the best
visual effect and F-measure at the same time, which enjoys
the best trade-off between the smallest area of black holes
on the foreground and the lightest leak of the leg foreground
to the surrounding background area. It is also interesting to
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Fig. 12. The F-measure comparisons of different enhancement methods on consecutive detected frames of five CDnet2012 sequences. In each sub-graph,
the vertical axis stands for F-measure (the higher the better), and the horizontal axis means frame indices. The 1st row of sub-graphs shows enhancements
on coarse GMM detections, the 2nd row shows enhancements on SpkmeansEM results, the 3rd row shows enhancements on ViBe results, and the last row
shows enhancements on FgSegNet. The 1st to 5th columns exhibit consecutive enhancement results for “streetlight”, “traffic”, “office”, “pedestrian”, and
“diningRoom” sequences, respectively. Our FSTF obtains the highest F-measure values for most of the time.

Fig. 13. The results of parameter tuning on frame 735 of the “office”
sequence. The first row gives the filtering results for different σ before
binarization, respectively. The second row shows the final FSTF results at
σ = 10.0 with different T hb settings, respectively.

find out that all the five cases on the second row of Fig. 13
have better F-measure than the original SpkmeansEM result
shown by Fig. 13(b). This reveals a fact for our FSTF—the
optimal configuration of σ and T hb may be unique, but the
sub-optimal solutions are widespread and easy to find.

In order to quantitatively analyze the influence of T hb on
the result of FSTF, we fix σ to 15.0 and do parameter tuning
of T hb on frames 576-585 of the “pedestrians” sequence after
four different change detection methods. The ROC curves
and F-measure curves with T hb varying from 1 to 254 are
presented in Fig. 14. The ROC curves of Fig. 14(a)-(c)
show that a T hb ranging from 10 to 50 show satisfactory
performances, and the enhancement results generally locate

Fig. 14. The ROC curves (first row) and F-measure curves (second row) with
varying T hb for the “pedestrians” sequence under FSTF enhancements at a
fixed σ = 15. For the ROC curves, the point that is closer to the upper-left
corner means a better result. And for the F-measure curves, the higher the
better.

near the upper-left corner of the ROC plot, quantitatively
better than the original detection result (labeled by a pink
triangle mark). The F-measure curves of Fig. 14(e)-(g) show
that choosing T hb from the interval of [10, 100] can generate
far better results comparing to the original detection results,
and the enhanced performance peaks with T hb set around 20.
Therefore, we suggest T hb = 20 to be a good choice for FSTF
to improve the results obtained by those pixel-wise change
detection models such as GMM, SpkmeansEM, and ViBe.
The foreground segmentation methods based on deep learning
or RPCA usually output over-smoothed foreground regions;
therefore T hb should be adequately large for preventing from
further expansion of foregrounds. Fig. 14(d) shows that FSTF
obtains best performance when T hb is set around 100 for
FgSegNet. So, we suggest using a larger T hb (around 100)
for those change detection algorithms that tend to generate
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TABLE IV

THE AVERAGED F-MEASURE VALUES UNDER DIFFERENT PARAMETER
SETTINGS OF FSTF ON TWO CDNET SEQUENCES. THE HIGHTEST

VALUE IS IN BOLDFACE, AND THE LOWEST IS UNDERLINED. THE

VALUES HIGHER THAN THE COARSE CASE ARE WITH PINK

BACKGROUND

over-smoothed detections. In Fig.14(h), we can also see that
the F-measure values stay at a high plateau when T hb is within
the range of [10, 150], which means our algorithm does not
need very careful parameter tuning.

We also have looked into the stability of performance of
FSTF under varying parameters to examine the fact that the
sub-optimal parameters for FSTF are widespread. We varied
the two parameters σ and T hb at the same time to test FSTF
results after SuBSENSE [49] on two sequences “boulevard”
and “canoe” from CDnet2012. The averaged F-measure values
under different parameter settings are given in Table IV. The
numbers with pink background are higher than the aver-
age F-measure of coarse SuBSENSE detections. Table IV
shows the parameter selection of FSTF is generally robust
because most of the table area is sub-optimal, exhibiting
pink background. This table also exhibits smooth landscapes
of performance of FSTF under varying parameters. For the
“boulevard” sequence, the worst parameter setting obtains an
F-measure at 0.7347, which amounts to 93.0% performance of
the highest F-measure at 0.7899. For the “canoe” sequence, the
worst parameter setting has an F-measure at 0.8092, which
also amounts to around 93.0% performance of the highest
F-measure at 0.7899.

We have also investigated the influence of parameter k on
FSTF. Fig. 15 shows outputs of FSTF with different k on
change detection results of the AVSS2007 sequence [50] and
the PETS2006 sequence [51]. According to Section II-E, the
time of filtering is linear with the number of pixels of the
MST. To balance the processing speed and the filtering effect,
k should be set to a proper value. We do FSTF with k varying
from 1 to 4 and meanwhile keep other parameters fixed in
Fig. 15. With k increases, the integrity of the car window on
the 1st row and the upper body of the person on the 2nd row
improve gradually. It is not difficult to find that FSTF can
fully utilize the spatiotemporal information of the same target
with a large k. But to make the algorithm running in real
time, we take k = 4 in all experiments throughout this paper.
It should be noted that when k = 1, the FSTF degenerates to
the original spatial tree filter [39] that searches the MST in
the current image only.

Fig. 15. Influence of k on FSTF results of a frame from AVSS2007 dataset
and a frame from PETS2006. With an increasing k, the integrity of the
foreground improves.

TABLE V

COMPARISON OF THE AVERAGE TIME COSTS (MILLISECONDS)
FOR ENHANCING ONE FRAME ACROSS THE SEVEN

ENHANCEMENT ALGORITHMS

C. Speed

The average time costs for the seven enhancement algo-
rithms on five CDnet sequences are listed in Table V. Each
measured time is averaged on 10 frames with 3 repeats. The
fastest enhancement algorithm is MO; however, its perfor-
mance is far from satisfactory. The slowest one is the fully
connected CRF. Although the proposed FSTF is slower than
GF and JBF, it has the best enhancement performance and
has real-time applicability. The processing speed of FSTF is
closely related to three aspects: the number of objects in the
newest frame, the number of guidance images in the guidance
set, and the area of guidance images. Thus, the speeds are
different depending on the type of the video stream.

V. DISCUSSION

A. Robustness Against Spatiotemporal Disturbances

Due to the limitation of the change detection algorithms,
foreground targets may be over-detected or under-detected in
the binary mask. Unstable detection performance may result
in object bias, object mismatching in regions of the guidance
set because each guidance region has the same position with
the bounding box of its corresponding foreground area. In this
subsection, we prepare inaccurate input and guidance sets by
simulating four different kinds of challenges including over-
detection, under-detection, object bias, and mismatching to
evaluate the robustness of FSTF against spatiotemporal dis-
turbances. We use PETS2003 and AVSS2007 as test datasets.
Fig. 16 and Fig. 17 show the effects of FSTF for enhancing
a soccer player’s mask and a vehicle mask with disturbances,
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Fig. 16. Robustness performance of FSTF on PETS2003. From the 1st to the
4th columns are the guidance images and the SpkmeansEM coarse detection
results for the current time t = 4 and three history frames, respectively.
The 5th column shows the FSTF results with binarization for the target at
t = 4 under different types of disturbances. The last column is the ground
truth for t = 4. The 1st row is the baseline without disturbances. The 2nd
row shows the enhancement given disturbance from foreground position bias
in the guidance set. The 3rd row shows the case of disturbance from an
incorrect foreground in the guidance set. The 4th row shows the case of
disturbance from over-detection in the current frame. The last row simulates
the disturbance from under-detection in all frames, in which, at time t = 4,
the right half of the target has an occlusion; the upper body of the character
has an occlusion at t = 3; occlusion at different positions in the lower part
of the target at t = 2 and t = 1. The blue solid bounding box means no
disturbance, and the red dashed bounding box means the opposite.

respectively. We use uniform parameters for all tests in this
subsection.

For the PETS2003 example, the original four consecutive
guidance images and their corresponding inputs of the same
target are shown in the 1st row of Fig. 16 as the baseline.
Our FSTF significantly improves the detection result at frame
t = 4, and the enhanced binary region is closer to the
ground truth comparing to the original detection. The 2nd

row simulates the disturbance of object bias. At frames t =
3, 2, 1, the detection box deviates from the real position of
the player, causing only half of the real foreground area to
remain in the guidance region. Though the result of FSTF
for this case is not as good as the first row, the overall
shape of the foreground is still intact after enhancement. The
3rd row simulates the mismatch in searching for historical
detections of the same object. At frames t = 3, 2, 1, we replace
the correct target with another red soccer player; the FSTF
result is still satisfactory. The 4th row simulates a sudden
over-detection. Although the foreground area at time t = 4
increases suddenly to almost twice the area of the ground truth,
FSTF successfully corrects its boundary by utilizing history
information. The 5th row simulates the under-detection case
that is usually caused by occlusion. In each frame, different
parts of the foreground masks are intentionally covered with
black background patches. However, our FSTF still exhibits
strong enhancement and the final binary result is still close to
the ground truth.

The original detection results of SpkmeansEM for the
AVSS2007 sequence and the corresponding guidance images

Fig. 17. Robustness performance on AVSS2007 PV sequence. From the 1st
to the 4th columns are the guidance images and the SpkmeansEM coarse
detection results for the current time t = 4 and three history frames,
respectively. The 5th column shows the FSTF results after binarization for
the current time at t = 4 under four types of disturbances. The last column
is the ground truth for t = 4. The 1st row is the baseline case without
disturbance. The 2nd row shows the enhancement given disturbance from
foreground position bias in the guidance set. The 3rd row shows the case of
disturbance from an incorrect foreground in the guidance set. The 4th row
shows the case of disturbance from over-detection in the current frame. The
last row simulates the disturbance from under-detection in all frames. The
blue solid bounding box means no disturbance, and the red dashed bounding
box means the opposite.

Fig. 18. Several FSTF enhancements on DSS results from the SOD
dataset. The 1st column lists three original images: “bear”, “church”, and
“sea anemone”. The 2nd column shows the saliency detection results by DSS
algorithm. The 3rd column shows the FSTF enhancement results with DSS
inputs. The 4th column is the ground truth. We use σ = 5, k = 4 for filtering
of the “bear” image;σ = 25, k = 4 for the “church” image; and σ = 25,
k = 4 for the “sea anemone” image.

of four frames are shown by the 1st row of Fig. 17 as the
baseline. We also have tested four kinds of disturbances for
this example. On the 2nd row of Fig. 17, only half of the
real vehicle area remains in the guidance region at frames
t = 3, 2, 1, and the result of FSTF is only slightly inferior
to the baseline situation in the region of the front windshield
of the vehicle. The 3rd row simulates mismatch in searching
historical detections, and the FSTF result is still satisfactory
in this case. The 4th row simulates over-detection by enlarging
the vehicle foreground mask to a big rectangle area at t = 4.
Although the over-detection completely buries the real vehicle
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boundary, the FSTF corrects its boundary to the ground
truth by utilizing history information. The 5th row simulates
the under-detection case by covering different parts of the
foreground masks with black patches. Our FSTF still exhibits a
satisfactory result. In summary, the four different disturbances
only slightly affect the final result of FSTF comparing to the
baseline, showing the strong robustness of FSTF.

B. Application to Saliency Detection

Saliency detection algorithms generate a grayscale saliency
map from an image by extracting the information that is
essentially important. The brighter a pixel of the saliency
map is, the more salient it is. FSTF can also be applied to
enhance the results of saliency detection. Although a saliency
detection algorithm normally processes a single image rather
than a video sequence, the case is akin to using a fast speed
shutter camera to capture a series of images at almost the
same time. By creating k duplicates of an image and then
stacking them to form a guidance set I, we can simulate a very
narrow spatiotemporal volume for applying FSTF. We test our
enhancement method on two saliency detection algorithms:
Deeply Supervised Salient (DSS) [52] and saliency detection
using Global Components (GC) representation [53]. For DSS,
we first use the trained model by the authors to carry out
saliency detection on 100 images from the SOD [54] dataset,
and then apply FSTF to enhance the results. For the saliency
detection of GC, we first use the original code of the paper
to conduct detection on 1000 images from the MSRA_B [55]
dataset, and then apply FSTF to enhance the saliency maps
thereafter. Fig. 18 shows the qualitative results for enhancing
DSS on several SOD images. We intentionally enlarge two
areas on the “bear” image (1st row) to show the effectiveness
of FSTF in recovering the actual boundary of the salient
object; the FSTF result outlines the hairy silhouette of the bear
better than the coarse DSS result. On the “church” image (2nd

row of Fig. 18), FSTF successfully recovers the cross on the
church roof (magenta box) and identifies the sky background
area through the window (green box). On the “sea anemone”
image (3rd row), our FSTF significantly improves the boundary
of the sea anemone. Fig. 19 shows the qualitative results for
enhancing GC on several MSRA_B images. The improved
results by FSTF are closer to the ground truth images than the
coarse GC detections.

We also have quantitatively evaluated the FSTF-enhanced
saliency detections. As both of the original and the enhanced
saliency map are grayscale, we hereby use MAE as the
measure. In FSTF enhancements, all parameters are fixed. σ
is set to 10.0, and k is set to 4. The coarse DSS results of
the SOD dataset obtains a MAE of 0.1439, and the FSTF-
enhanced DSS has a MAE of 0.1437. The coarse GC results
of the MSRA_B dataset obtains a MAE of 0.1019, and the
MAE of the FSTF-enhanced GC decreases to 0.1017. The
improvements by FSTF on the two quantitative saliency tests
are less significant than improvements on change detection
cases in the former section. This is probably because the
ground truths in SOD and MSRA_B are not perfectly labeled,
and many labeled object masks lose boundary details.

Fig. 19. Several FSTF enhancements on GC results from the MSRA_B
dataset. The 1st column lists three original images: “dominoes”, “signpost”,
and “flower”. The 2nd column shows the saliency detection results generated
by the GC algorithm. The 3rd column shows the FSTF enhancement results
with GC inputs. The 4th column is the ground truth. We use σ = 10, k = 4
for filtering of the “dominoes” image; σ = 25, k = 4 for the “signpost”
image; and σ = 25, k = 4 for the “flower” image.

Fig. 20. The comparison of CRF enhancement and the proposed method
(FSTF) on Deeplabv3 semantic image segmentation results. From top to down
are the “cat”, “wine”, “plane”, and “fighter” images. From left to right are the
original images, Deeplabv3 coarse segmentation results, CRF enhancements
on Deeplab results, FSTF enhancements on Deeplab results, and the ground
truth.

C. Application to Semantic Image Segmentation

Our algorithm can also improve the results of semantic
image segmentation; its improvement is superior than the most
popular post-processing method—CRF in many tests we have
performed. Similar to the way of improving a saliency map in
the previous subsection, k copies of the same guidance image
are stacked to form a spatiotemporal volume for applying
FSTF to the semantic segmentation. We test the enhancement
on the results of DeepLabv3 [32] on the PASCAL VOC
2012 [56] dataset. For the convenience of visualization, the
foreground targets are uniformly labeled by white pixels in the
masks, regardless of their semantic classes. The parameters
of FSFT are fixed as k = 4, σ = 20, and T hb = 100.
We compare the FSTF results with the Fully-connected CRF
results. The parameters of CRF are selected according to [32].
Several qualitative comparisons are shown in Fig. 20, in which
we can see that both CRF and FSTF have boundary recovery
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effect on the original segmentations. However, our method
seems to be better at finding overlooked foreground patches.
For the “cat” image on the 1st row of Fig. 20, FSTF finds
the body of the cat more completely than CRF. As shown on
the 2nd row of Fig. 20, FSTF outcompetes CRF by recovering
the missing lower-left part of the bottle. In the 3rd example
“plane”, CRF and FSTF both improves the boundary of the
coarsely segmented plane; but FSTF accurately recovers the
thin boundary of the left wing and correct shapes of four
wheels. On the 4th row of Fig. 20, the FSTF result for the
“fighter” image is closer to the ground truth than the CRF
counterpart.

D. Integrating FSTF With Other Local Filters

As we have summarized in the introduction, the local filters
possess strong local edge-preserving ability. FSTF considers
long-range correlation between any pair of pixels on the
spatiotemporal domain. The combination of a local filter and
a global filter can be a nice attempt because it may benefit
from both sides. In [57], we present an integrated filter that
comprises a weighted spatiotemporal tree filter and a weighted
guided image filter. The integrated filter even outperforms
the filter that focuses on either pure FSTF or pure local GF
in some cases (See the ROC curves under different weight
settings in Fig. 10 of [57]).

VI. CONCLUSION

In this paper, we propose a novel Fast Spatiotemporal Tree
Filter (FSTF) that makes full use of foreground information
for the current frame and history frames at the same time.
Differently from local image filters such as bilateral filter
[34] and guided image filter [38], FSTF extends the original
tree filter [39] from the spatial domain to the spatiotemporal
domain while keeping the global filtering ability. FSTF is
a purely unsupervised method. The analysis based on graph
theory shows it has linear time complexity. Experiments on
some challenging video sequences demonstrate the superiority
of the proposed FSTF over other state-of-the-art enhancement
methods on both qualitative and quantitative aspects. FSTF
also has broad applicability on enhancing change detections,
saliency detections, and even semantic segmentations.

In the future, we plan to endow FSTF with the ability to
simultaneously enhance multiple object masks with different
class labels on the same image.

ACKNOWLEDGMENT

D. Li thanks Caigang Hu for his timely and substantial help
during the revision of this paper.

REFERENCES

[1] B.-H. Chen, L.-F. Shi, and X. Ke, “A robust moving object detection
in multi-scenario big data for video surveillance,” IEEE Trans. Circuits
Syst. Video Technol., vol. 29, no. 4, pp. 982–995, Apr. 2019.

[2] C. Lin, B. Yan, and W. Tan, “Foreground detection in surveillance video
with fully convolutional semantic network,” in Proc. 25th IEEE Int.
Conf. Image Process. (ICIP), Oct. 2018, pp. 7–10.

[3] J. Liu, M. Gong, K. Qin, and P. Zhang, “A deep convolutional coupling
network for change detection based on heterogeneous optical and
radar images,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 3,
pp. 545–559, Mar. 2018.

[4] W. Gu, Z. Lv, and M. Hao, “Change detection method for remote sensing
images based on an improved Markov random field,” Multimedia Tools
Appl., vol. 76, no. 17, pp. 17719–17734, Sep. 2017.

[5] Y. Zhong, A. Ma, Y. S. Ong, Z. Zhu, and L. Zhang, “Computational
intelligence in optical remote sensing image processing,” Appl. Soft
Comput., vol. 64, pp. 75–93, Mar. 2018.

[6] Z. Zhu and C. E. Woodcock, “Continuous change detection and clas-
sification of land cover using all available landsat data,” Remote Sens.
Environ., vol. 144, pp. 152–171, Mar. 2014.

[7] B. DeVries, M. Decuyper, J. Verbesselt, A. Zeileis, M. Herold, and
S. Joseph, “Tracking disturbance-regrowth dynamics in tropical forests
using structural change detection and landsat time series,” Remote Sens.
Environ., vol. 169, pp. 320–334, Nov. 2015.

[8] V. Nika, P. Babyn, and H. Zhu, “Change detection of medical images
using dictionary learning techniques and principal component analysis,”
J. Med. Imag., vol. 1, no. 2, Sep. 2014, Art. no. 024502.

[9] R. Jain and H.-H. Nagel, “On the analysis of accumulative difference
pictures from image sequences of real world scenes,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-1, no. 2, pp. 206–214, Apr. 1979.

[10] T. Aach and A. Kaup, “Bayesian algorithms for adaptive change detec-
tion in image sequences using Markov random fields,” Signal Process.,
Image Commun., vol. 7, no. 2, pp. 147–160, Aug. 1995.

[11] C. Stauffer and E. Grimson, “Adaptive background mixture models for
real-time tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 1999, pp. 2246–2252.

[12] Z. Zivkovic, “Improved adaptive Gaussian mixture model for back-
ground subtraction,” in Proc. Int. Conf. Pattern Recognit., 2004,
pp. 28–31.

[13] D. Li, L. Xu, and E. D. Goodman, “Illumination-robust foreground
detection in a video surveillance system,” IEEE Trans. Circuits Syst.
Video Technol., vol. 23, no. 10, pp. 1637–1650, Oct. 2013.

[14] A. M. Elgammal, D. Harwood, and L. S. Davis, “Non-parametric model
for background subtraction,” in Proc. Eur. Conf. Comput. Vis., 2000,
pp. 751–767.

[15] O. Barnich and M. Van Droogenbroeck, “ViBe: A universal background
subtraction algorithm for video sequences,” IEEE Trans. Image Process.,
vol. 20, no. 6, pp. 1709–1724, Jun. 2011.

[16] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, pp. 1–37, 2011.

[17] X. Zhou, C. Yang, and W. Yu, “Moving object detection by detecting
contiguous outliers in the low-rank representation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 3, pp. 597–610, Mar. 2013.

[18] Z. Gao, L.-F. Cheong, and Y.-X. Wang, “Block-sparse RPCA for salient
motion detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 10, pp. 1975–1987, Oct. 2014.

[19] X. Liu et al., “Background subtraction using spatio-temporal group
sparsity recovery,” IEEE Trans. Circuits Syst. Video Technol., vol. 28,
no. 8, pp. 1737–1751, Aug. 2018.

[20] L. A. Lim and H. Y. Keles, “Foreground segmentation using con-
volutional neural networks for multiscale feature encoding,” Pattern
Recognit. Lett., vol. 112, pp. 256–262, Sep. 2018.

[21] L. Yang, Y. Wang, X. Xiong, J. Yang, and A. K. Katsaggelos, “Efficient
video object segmentation via network modulation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 6499–6507.

[22] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar,
“Changedetection.Net: A new change detection benchmark dataset,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 1–8.

[23] T. Brox and J. Malik, “Object segmentation by long term analysis of
point trajectories,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 282–295.

[24] F. Flohr and D. Gavrila, “PedCut: An iterative framework for pedestrian
segmentation combining shape models and multiple data cues,” in Proc.
Brit. Mach. Vis. Conf., 2013, pp. 66.1–66.11.

[25] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed.
London, U.K.: Pearson, 2010.

[26] P. Soille, “Opening and closing,” in Morphological Image Analy-
sis: Principles and Applications. Berlin, Germany: Springer, 1999,
pp. 89–127.

[27] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and
the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. PAMI-6, no. 6, pp. 721–741, Nov. 1984.

[28] J. M. McHugh, J. Konrad, V. Saligrama, and P.-M. Jodoin, “Foreground-
adaptive background subtraction,” IEEE Signal Process. Lett., vol. 16,
no. 5, pp. 390–393, May 2009.



8820 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

[29] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller, “Multi-class
segmentation with relative location prior,” Int. J. Comput. Vis., vol. 80,
no. 3, pp. 300–316, Dec. 2008.

[30] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and
object localization with superpixel neighborhoods,” in Proc. ICCV, 2009,
pp. 670–677.

[31] P. Krähenbuhl and V. Koltun, “Efficient inference in fully connected
CRFs with Gaussian edge potentials,” in Proc. Adv. Neural Inf. Process.
Syst., 2011, pp. 109–117.

[32] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[33] S. Zheng et al., “Conditional random fields as recurrent neural
networks,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 1529–1537.

[34] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. IEEE Int. Conf. Comput. Vis., vol. 1998, pp. 839–846.

[35] S. Perreault and P. Hebert, “Median filtering in constant time,” IEEE
Trans. Image Process., vol. 16, no. 9, pp. 2389–2394, Sep. 2007.

[36] F. Porikli, “Constant time O(1) bilateral filtering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1–8.

[37] Q. Yang, N. Ahuja, and K.-H. Tan, “Constant time median and bilateral
filtering,” Int. J. Comput. Vis., vol. 112, no. 3, pp. 307–318, May 2015.

[38] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.

[39] Q. Yang, “Stereo matching using tree filtering,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 4, pp. 834–846, Apr. 2015.

[40] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and
K. Toyama, “Digital photography with flash and no-flash image pairs,”
in Proc. ACM Siggraph, 2004, pp. 664–672.

[41] M. Dehmer, Structural Analysis of Complex Networks. 2011, pp. 49–72.
[42] H. Wiener, “Structural determination of paraffin boiling points,” J. Amer.

Chem. Soc., vol. 69, no. 1, pp. 17–20, 1947.
[43] B. Mohar, “Eigenvalues, diameter, and mean distance in graphs,” Graphs

Combinatorics, vol. 7, no. 1, pp. 53–64, Mar. 1991.
[44] A. Fog, “Optimizing software in C++: An optimization guide for

windows, Linux and Mac platforms,” Tech. Univ. Denmark, Lyngby,
Denmark, Tech. Rep., Jan. 2020.

[45] J. Zheng, Y. Wang, N. L. Nihan, and M. E. Hallenbeck, “Extracting
roadway background image:Mode-based approach,” Transp. Res. Rec.
J. Transp. Res. Board., vol. 1944, no. 1, pp. 82–88, 2006.

[46] P.-M. Jodoin, “Comparative study of background subtraction algo-
rithms,” J. Electron. Imag., vol. 19, no. 3, Jul. 2010, Art. no. 033003.

[47] S. Jiang and X. Lu, “WeSamBE: A weight-sample-based method for
background subtraction,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 28, no. 9, pp. 2105–2115, Sep. 2018.

[48] M. Chen, Q. Yang, Q. Li, G. Wang, and M. Yang, “Spatiotemporal
background subtraction using minimum spanning tree and optical flow,”
in Proc. ECCV, 2014, pp. 521–534.

[49] P.-L. St-Charles, G.-A. Bilodeau, and R. Bergevin, “SuBSENSE: A uni-
versal change detection method with local adaptive sensitivity,” IEEE
Trans. Image Process., vol. 24, no. 1, pp. 359–373, Jan. 2015.

[50] (Sep. 2007). IEEE Int. Conf. Advanced Video Signal Based
Surveillance Dataset. [Online]. Available: http://www.elec.qmul.
ac.uk/staffinfo/andrea/avss2007.html

[51] (Jun. 2006). 9th IEEE Int. Workshop Performance Evaluation Tracking
Surveillance Dataset. [Online]. Available: http://pets2006.net/

[52] M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr, “Deeply supervised
salient object detection with short connections,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 2, pp. 353–367, Apr. 2011.

[53] M. Cheng, J. Warrell, W. Y. Lin, S. Zheng, V. Vineet, and N. Crook,
“Efficient salient region detection with soft image abstraction,” in Proc.
ICCV, 2013, pp. 1529–1536.

[54] V. Movahedi and J. H. Elder, “Design and perceptual validation
of performance measures for salient object segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. Workshop, Jun. 2010,
pp. 49–56.

[55] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.
[Online]. Available: http://arxiv.org/abs/1706.05587

[56] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn,
and A. Zisserma, “The PASCAL visual object classes challenge: A ret-
rospective,” Int. J. Comput. Vis., vol. 111, pp. 98–136, Jun. 2014.

[57] D. Li, S. Yan, X. Cai, Y. Cao, and S. Wang, “An integrated image
filter for enhancing change detection results,” IEEE Access, vol. 7,
pp. 91034–91051, 2019, doi: 10.1109/ACCESS.2019.2927255.

Dawei Li (Member, IEEE) received the B.Eng.
degree in automation and the Ph.D. degree in con-
trol theory and control engineering from Tongji
University, Shanghai, China, in 2006 and 2013,
respectively. From 2009 to 2010, he was a Visit-
ing Researcher with Genetic Algorithms Research
and Applications Group (GARAGe), Michigan
State University. From 2013 to 2015, he held a
postdoctoral position at the Department of Computer
Sciences and Technology, Tongji University. He is
currently an Associate Professor with the College

of Information Sciences and Technology, Donghua University, Shanghai. His
current research interests include image processing, pattern recognition, plant
phenotyping, and agricultural engineering. In 2010, he was bestowed the
Finalist for the Best Paper Award at the 11th IEEE’s International Conference
on Control, Automation, Robotics and Vision.

Siyuan Yan received the B.S. degree in electrical
engineering and automation from Donghua Univer-
sity, Shanghai, China, in 2017, where she is currently
pursuing the M.S. degree in control theory and
control engineering. Her research interests include
image processing and machine learning.

Mingbo Zhao (Senior Member, IEEE) received
the Ph.D. degree in computer engineering from the
Department of Electronic Engineering, City Univer-
sity of Hong Kong, Hong Kong, in January 2013.
He was with the City University of Hong Kong as
a Postdoctoral Researcher. He is currently a Full
Professor at Donghua University, Shanghai, China.
He has authored or coauthored over 50 technical
articles published at prestigious international jour-
nals and conferences, including the IEEE TRANSAC-
TIONS ON KNOWLEDGE AND DATA ENGINEERING,

the IEEE TRANSACTIONS ON IMAGE PROCESSING, the ACM Transac-
tions on Intelligent Systems and Technology, the IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS, the IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS, and Pattern Recognition. His current research interests include
pattern recognition and machine learning.

Tommy W. S. Chow (Fellow, IEEE) received
the B.Sc. (Hons.) and Ph.D. degrees in electrical
and electronic engineering from the University of
Sunderland, Sunderland, U.K., in 1984 and 1988,
respectively.

He is currently a Professor with the Department
of Electronic Engineering, City University of Hong
Kong, Hong Kong. His current research interests
include neural networks, machine learning, fault
diagnosis, and documents analysis. He has authored
or coauthored over 190 international technical jour-

nal articles related to his research, five book chapters, and one book.
Dr. Chow was a recipient of the Best Paper Award at the 2002 IEEE

Industrial Electronics Society Annual Meeting in Seville, Spain. He was the
Chairman of the Control Instrumentation and Automation Division, Hong
Kong Institution of Engineers, from 1997 to 1998. He was the Guest Editor
of Neural Computing and Applications on the 2010 Special Issue on The
Emerging Applications of Neural Networks. He is currently an Associate
Editor of the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS and
Neural Processing Letters. Under the Google Scholar, his works have received
a citation of over 6000.

http://dx.doi.org/10.1109/ACCESS.2019.2927255


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


