
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

On Aggregation of Unsupervised Deep Binary
Descriptor with Weak Bits

Gengshen Wu, Zijia Lin, Guiguang Ding, Member, IEEE, Qiang Ni, Senior Member, IEEE, Jungong Han,

Abstract—Despite the thrilling success achieved by existing
binary descriptors, most of them are still in the mire of three
limitations: 1) vulnerable to the geometric transformations; 2)
incapable of preserving the manifold structure when learning
binary codes; 3) NO guarantee to find the true match if multiple
candidates happen to have the same Hamming distance to a
given query. All these together make the binary descriptor less
effective when handling large-scale visual recognition tasks. In
this paper, we propose a novel learning-based feature descriptor,
namely Unsupervised Deep Binary Descriptor (UDBD), which
learns transformation invariant binary descriptors via projecting
the original data and their transformed sets into a joint binary
space. Moreover, we involve a `2,1-norm loss term in the binary
embedding process to gain simultaneously the robustness against
data noises and less probability of mistakenly flipping bits of
the binary descriptor, on top of it, a graph constraint is used to
preserve the original manifold structure in the binary space. Fur-
thermore, a weak bit mechanism is adopted to find the real match
from candidates sharing the same minimum Hamming distance,
thus enhancing matching performance. Extensive experimental
results on public datasets show the superiority of UDBD in terms
of matching and retrieval accuracy over the state-of-the-arts.

Index Terms—Image Hashing, Feature Matching, Local Binary
Descriptor, Similarity Retrieval, Deep Learning

I. INTRODUCTION

IN past decades, local binary descriptor has attracted wide
attention in many visual applications, such as patch match-

ing, image retrieval, object recognition and 3D reconstruc-
tion [22], [37], [58]. Benefiting from the characteristics of
high compactness and efficient bitwise calculation, binary
descriptor is a more favorable option in conducting match-
ing and retrieval in large-scale database over the traditional
floating-point descriptors (e.g., SIFT [37], FAST [46] and
SURF [6]) [2], [62]. This paper focuses on applying binary
descriptor in both patch matching and image retrieval, where
patches can be obtained from full image via keypoint detection
technology in the former applications [7].

Consistent with traditional feature descriptors, binary de-
scriptor is supposed to represent data (image/patch) accurately
in despite of geometric transformations (e.g., rotation, transla-
tion and scaling) [28], [37]. Earlier binary descriptors (e.g.,

Gengshen Wu and Qiang Ni are with the School of Computing and
Communication, Lancaster University, Lancaster, LA1 4YW, UK (e-mail:
gengshen.wu@lancaster.ac.uk; q.ni@lancaster.ac.uk).

Zijia Lin is with Microsoft Research Asia, Beijing, 100080, China (e-mail:
linzijia07@163.com).

Guiguang Ding is with the School of Software, Tsinghua University,
Beijing, 100084, P. R. China (e-mail: dinggg@tsinghua.edu.cn).

Jungong Han with Warwick Manufacture Group, University of Warwick,
Coventry, CV4 7AL, UK (e-mail: jungonghan77@gmail.com).

Jungong Han is the corresponding author.

0 10 20 30 40 50

Hamming Distance

0

20

40

60

80

F
re

q
u
e
n
c
y

64 bits

(a) Noise effects on matching

0 2 4 6 8 10

Noise Ratio (%)

44

46

48

50

52

54

56

<
<

<
 F

P
R

@
9

5
%

Yosemite->Liberty

l
2,1

-norm

l
2,2

-norm

(b) Distance distribution

Fig. 1. (a) An example of the Hamming distance distribution on Cifar-10
dataset at 64 bits, where 3 candidates are returned from the database with
the same minimum Hamming distance of 16 to the query; (b) Noise effects
on Brown dataset (train: Y osemite and test: Liberty) at 256 bits under
`2,1-norm and `2,2-norm losses, where a shaper performance decline from
`2,2-norm against `2,1-norm loss is observed at certain noise level.

BRIEF [9], BRISK [28], ORB [47] and FREAK [1]) are
generally data-independent, which adopt various hand-crafted
sampling patterns and perform a series of pairwised inten-
sity comparisons afterwards [69]. However, such predefined
sampling modes and intensity comparisons are extremely vul-
nerable to the distortions/transformations, thus yielding unsta-
ble performance when tackling large-scale visual recognition
tasks [60], [62], [69]. Consequently, many efforts have been
devoted to developing learning-based binary descriptors. Ex-
isting methods draw on the soul idea from hashing techniques
(e.g., LSH [2], ITQ [18], CMFH [11]), where the data points
are projected from their original feature space into the compact
binary space and the similar points could be represented by
the similar binary descriptors (low Hamming distance) [57],
[69], [71]. Although the learning-based binary descriptors
obtain great performance gains over the handcrafted ones,
some drawbacks become bottlenecks that impede their further
development in large-scale application scenarios.

Firstly, they pay intensive attention to novel discrete opti-
mization strategies, while the nature of local feature descriptor,
anti-geometric transformation, cannot be fully guaranteed [28],
[62]. That is crucial to the success of binary descriptor in
large-scale visual recognition tasks. More worriedly, most
learning paradigms fail to preserve the manifold structure
during the discrete optimization, which makes binary descrip-
tor less effective in large-scale neighbor search tasks [20],
[32], [49]. Supervised methods address this issue by using
prior knowledge (e.g., pair-wised labels).However, they are
not preferred in real-world applications because of intensive
labeling work.

Furthermore, traditional binary descriptors measure the sim-
ilarity between database and query via exhaustive Hamming

IEEE TRANSACTIONS ON IMAGE PROCESSING 2

4

0

9

6

4

0

9

6

4

0

9

6

4

0

9

6 000

001

010

100

011

101

111

110

𝑿𝒐𝒓𝒈

𝑿𝒗

𝑾𝒐𝒓𝒈

𝑾𝒗

×

≈

≈

k

k

1
0
1Backpropagation

𝑿𝒐𝒓𝒈

𝑿𝒗

𝑩

𝑩

Unsupervised Graph Learning

𝑿𝒐𝒓𝒈

Collective Binary Embedding

Input

Geometric
Transformation

Feature Learning&Deep Embedding Function Learning Unified Binary Descriptor Learning

Sharing Parameters

Fig. 2. The proposed binary descriptor learning framework is made up of deep feature extraction, unified binary code learning and deep embedding function
learning. The descriptor size is set to 3 as an example. Best viewed in color.

distance calculations in the testing phase. In practice, how-
ever, it is more likely to return many candidates with equal
Hamming distances to one specific query [36]. To clarify the
problem, we plot the Hamming distance distribution of a query
to the database (with randomly-selected 1, 000 candidates) on
Cifar-10 dataset in Fig. 1(a). For instance, 3 candidates are
returned from the database with the same minimum Hamming
distance of 16 to the query at the code length of 64. That
reduces the discriminative power of binary descriptor dramat-
ically. It is especially harmful to the matching performance,
where each query is expected to be matched with one exact
candidate (with the lowest Hamming distance) rather than a
bunch of ambiguous options (with equal minimum Hamming
distance).

In this paper, we propose a novel learning-based framework,
termed Unsupervised Deep Binary Descriptor (UDBD), to
overcome the above limitations in compact binary descriptor
learning. Fig. 2 shows the flowchart of UDBD. Particularly,
the original visual data and their transformed counterparts are
projected into common Hamming subspace directly during the
binary code learning. By doing so, transformation invariance
could be conserved along with the binary embedding process,
which is theoretically more advanced than the primitive ap-
proach [31] that simply minimizes the differences between
the binary codes of original data and those transformed ones.

In the meantime, `2,1-norm loss is employed together with
the proposed binary embedding to improve the robustness
of our binary descriptor against data noises/outliers for the
patch-level recognition tasks [20], [25]. To make it clear, we
plot the matching performance variations with increasing noise
ratios using ITQ+ [20] on Brown dataset [7]: train: Y osemite
and test: Liberty, in Fig. 1(b). As can be seen, there is
a shaper performance decline from `2,2-norm against `2,1-
norm loss function at certain noise level. The main cause is
that patches mainly contain microtexture information, which

are more prone to the noises/outliers compared to natural
images [58]. Without noticing it, previous methods directly
adopt the squared `p-norm regularization to build their loss
functions [20], which may exaggerate the adverse effects
caused by severe noises/distortions, thus leading to worse
results [20], [33]. That implies `2,1-norm loss is more suitable
for the patch-level recognition.

Then an unsupervised graph constraint is formed and added
into the loss function so as to preserve the original manifold
structure of training data in the Hamming space [49], [65].
With an alternating optimization scheme, the binary code
can be solved directly without relaxation, which avoids the
accumulated quantization errors from the two-step learning
strategy [10], [18], [59]. By training an unified deep network
with the guidance of the learned binary descriptors, the deep
embedding function is able to generate robust binary codes to
facilitate the upcoming visual tasks.

In the feature matching procedure, a weak bit scheme,
where the Hamming distance is recalculated based on the
reliability of each bit, is further applied to find the best match
among the returned candidates with the same initial Hamming
distance [21]. In summary, our work differs the previous
algorithms in the following three aspects:

• To the best of our knowledge, this is the first work that
learns the transformation invariant binary descriptor via
embedding the original visual data and their transformed
sets into a common Hamming space in unsupervised
manner. Moreover, a graph constraint that preserves the
manifold structure from the original feature space is
employed in the unified binary representation learning,
thus improving the code quality.

• Since patch mainly contains noise-sensitive local features,
`2,1-norm loss is proposed to regularize the binary em-
bedding. On one hand, `1-norm distance at the patch level
provides the robustness against outlier samples. On the

IEEE TRANSACTIONS ON IMAGE PROCESSING 3

other hand, `2-norm measures the distance along space
dimension, which spreads out the errors over each bit
uniformly to lower the possibility that certain bits are
mistakenly flipped after getting large errors. To this end,
an alternating discrete optimization strategy is proposed
to optimize the `2,1-norm constrained objective function,
where the binary code can be solved directly with no
need for relaxation.

• As a means of distance re-measure, a weak bit scheme,
which considers the reliability of each bit in a descriptor,
is applied along with the proposed binary descriptor.
It helps to find the best match if there are multiple
candidates with the same distance to the query when
comparing the Hamming distance of descriptors.

The rest of this paper is organized as follows. We first
discuss some related works in Section II. Then in Section III,
the proposed method is elaborated along with the comprehen-
sive analysis. Extensive experimental results are provided and
analyzed in Section IV. Finally, the conclusion is given in
Section V.

II. RELATED WORKS

In this section, the related works from two aspects: hand-
crafted and learning-based feature descriptors, are discussed
in details.

A. Handcrafted Feature Descriptors

Most handcrafted local descriptors are real-valued in
the early research stage. Two classical feature descriptors:
SIFT [37] and SURF [6] are widely used in vision recognition
tasks like image retrieval and feature matching. Particularly,
the local gradient histograms are applied in SIFT to generate
the scale-invariant descriptors. While the computation process
of SIFT is accelerated dramatically by SURF, which takes
advantage of the integral images in the calculations. However,
the good performance from both of these real-valued feature
descriptors heavily relies on the high dimensionality (i.e., long
descriptor length), which means the high storage requirement
and computational complexities for feature matching by using
those descriptors [1], [9].

Consequently, many efforts have been devoted in developing
binary local descriptor to address there problems, such as
BRIEF [9], ORB [47], BRISK [28], and FREAK [1]. These de-
scriptors generally perform a set of pairwise intensity compar-
isons to generate compact binary codes. While the efficiency
of these binary descriptors for the similarity search tasks has
been improved significantly due to the XOR operations in
Hamming space, their robustness is relatively worse than that
of the real-valued local descriptors. The reason is that these
binary descriptors are mainly built according to some manually
predefined sampling modes and intensity comparisons, which
are very sensitive to the affine transformations and quality
variations on the original images, thus compromising their
performance when dealing with complex visual tasks [60],
[62], [69].

Recently, a novel binary RGB-D descriptor termed GEOBIT
is presented in [44] for the textured depth map tracking, which

is claimed to be invariant to the non-rigid transformation
by integrating the appearance and the geometric information
from RGB-D images in the code learning. While SRBD [67]
proposes a new kernel-distance-based clustering method to
select the stable superpixels from the templates and encodes
the dominant gradient orientation of each superpixel as its
rotation-invariant binary descriptor. However, they still adopt
the handcrafted patterns like BRIEF [9] and ORB [47], which
indicates their weak generalization ability.

B. Learning-Based Feature Descriptors

More recently, the learning-based feature descriptors, which
involves dedicated training process of encoding function on
massive training data, are widely developed to boost the
descriptor performance and gain better robustness. Without
loss of generality, these learning-based feature descriptors
can further be categorized into supervised and unsupervised
approaches, which are differentiated based on whether the
supervision information (e.g., labels, similarity matrix) is
utilized during the training process.

1) Supervised Feature Descriptors: Earlier learning-based
works learn the shallow projections to generate the local
descriptors. For example, LDAHash [57] is proposed that
uses linear projections combining linear discriminant analysis
to generate binary descriptors. D-BRIEF [63] generates the
descriptors by projecting the training data into a latent sub-
space. To deal with the nonlinear data structure, BinBoost [62]
learn a set of nonlinear classifiers in encoding the data, which
makes the learned binary codes more discriminative jointly
with the boosting algorithm. Online learning is adopted in
BOLD [4], which aims at selecting binary intensity tests to
produce low intra-class and high inter-class distances in the
code learning. However, these methods generally adopt simple
binary intensity tests and some important cues of a patch
cannot be captured in the to-be-learned descriptor.

With the development of deep learning techniques, more
recent works apply CNN network and deep features in learn-
ing the local feature descriptor. For example, in [73], a
supervised hashing framework is proposed to generate bit-
scalable hashing codes directly by training the network with
triplet samples and an additional regularization term. A novel
DHN architecture is designed in [76] to jointly learn good
image representation along with compact hash code, where
the quantization error is claimed to be well controlled. In [29],
a deep supervised discrete hashing algorithm is proposed to
learn the hash code within one stream framework, where the
pairwise label and classification information are considered in
the loss function. Dosovitskiy et al. [12] trains a CNN network
by optimizing the classification loss, where the output vectors
before the classification layer is used as the patch descriptors.
Instead of simply optimizing the classification loss, Siamese
loss is introduced in the network training of DeepDesc [54],
where the patch pairs as the network inputs are selected by
applying an aggressive searching strategy. Subsequently, L2-
NET [60] trains a Siamese network for pairwised patches and
produces binary codes by directly quantizing the real-valued
outputs, where different regularization terms are applied on

IEEE TRANSACTIONS ON IMAGE PROCESSING 4

the intermediate layer outputs to improve the code quality. In
[61], Second Order Similarity Regularization (SOSR) is in-
corporated into the proposed SOSNet as a regularization term
to boost the matching performance. In [30], they train a deep
network termed DN4, where a local descriptor is learned based
on image-to-class measure. In [40], the context awareness is
introduced to augment local feature descriptors by aggregating
the cross-modality contextual information like visual context
from high-level image representation and geometric context
from 2D keypoint distribution. HardNet [42] proposes a triplet
loss function that explores the hard examples by a effective
mining strategy to mimic the matching procedure in a batch
fashion, where at least one positive pair is guaranteed in
building the triplet input. DOAP [23] is proposed to train
the deep network via optimizing a new loss function termed
Average Precision (AP) directly, which improves the ranking-
based retrieval performance. On top of that, CDbin [69]
is proposed to generate the binary descriptors via jointly
optimizing four complementary loss functions in an end-to-end
manner. In such cases, dedicated prior knowledge (e.g., labels)
is required, which is usually impractical in real application
scenarios.

2) Unsupervised Feature Descriptors: More works have
been done recently to learn the binary descriptor in unsu-
pervised manner. For example, DH [16] optimizes the bi-
nary descriptor with independence and even distribution. In
[72], the proposed unsupervised hashing framework unifies
the quantization error minimization, likelihood and mutual
information maximization to preserve the feature distribution
for better code quality. In DistillHash [66], Bayesian learning
framework is integrated into the hash code learning, where
a distilled data set is investigated automatically and further
utilized to learn the compact binary code. In [51], the proposed
DVB adopts a conditional auto-encoding variational Bayesian
networks to estimate the training data structure under the
probabilistic inference process with hashing objectives, thus
improving the code quality. More than just pairwised inputs
in [54], [60], the triplet loss is incorporated in the objective
function of [70] to further guarantee the code discriminative-
ness. In [74], they propose a binary mean shift (bMS) to find
frequent and informative image patterns directly in binary
space such that the computation and memory costs can be
reduced dramatically. In [39], C-CBFD is proposed to generate
binary codes under three complimentary learning objectives:
high variance for information preservation, low quantization
errors and even-distribution at each bit. To overcome the
limitations of two-step optimization, DBD-MQ [71] adopts a
multi-quantization strategy that reduces the quantization errors
within the K-AutoEncoders (KAEs) networks. GraphBit [15]
integrates the reinforcement learning with the binary code
learning, where the uncertainty of binary codes are minimized
by maximizing the mutual information between the real-
valued inputs and the corresponding bits. Despite the great
success achieved by those descriptors, the transformation-
invariant nature of local descriptor is not considered in the
training process. Consequently, DeepBit [31] is proposed to
learn compact binary descriptors via optimizing several loss
functions in network training, one of which minimizes the

Hamming distances of the binary codes from the original patch
and their transformed versions in pairwised manner. Although
it takes the transformation invariance into consideration to
some extent, the objective to minimize the Euclidean distances
of original data and their transformed sets in the binary space
potentially deems they are not identical. With the powerful
GAN [19], BinGAN [77] learns the compact binary descriptors
from patches via optimizing two additional losses from dis-
tance matching and entropy regularizers. GAN has also been
employed in [56] to facilitate image retrieval and compression.

Moreover, such learning-based binary descriptors have been
widely developed in many other applications like palmprint
and face recognition [14], [17]. For example, DDBC [17]
learns a simple mapping function to project the convolution
difference vectors to the neighboring directions of the tem-
plates. Subsequently, one-stage learning strategy is utilized
in SLBFLE [38], where the binary codes and the encoding
codebook are jointly optimized for local face patches. Con-
sequently, they extend these works as CA-LBFL [14] and
RI-LBD [13], which learns the robust local binary descrip-
tor to further improve the efficiency and accuracy in face
recognition. In these applications, the learning-based binary
descriptors act as the main contributing roles in improving the
performance on the specific tasks.

III. METHODOLOGY

A. Framework Overview

Some mathematical symbols are defined to ease the follow-
ing explanations on the framework. Assuming that the training
set consists of n data samples (images/patches) and each one
has m different transformation sets, where the transformed ver-
sions of each sample could be obtained by rotation, scaling and
translation [31]. We denote the training set as O = {oi}ni=1,
oi = {xiv}mv=1, where v denotes the index of the transformation
set, xiv ∈ Rpv is a feature vector and pv represents the
dimensionality of xiv in the set. For each transformation set, we
denote the feature matrix as Xv = [x1

v, x
2
v, ..., x

n
v] ∈ Rpv×n.

Given the code length k, the goal of the proposed method is
to learn the unified binary descriptor B ∈ {−1,+1}k×n for
the training samples within all transformation sets. Particularly,
each sample and its transformed versions should be encoded as
the same binary code because the semantics of those samples
keeps unchanged even after certain transformations.

To achieve this learning goal, the deep features of different
input sources are first extracted from the fully-connected
(fc) layers of a pre-trained VGG-16 network [55]. Then the
features are fed into binary code learning that generates the
uniformed binary descriptor for various transformation sets via
exploring their common binary space. With sharing network
parameters Θ, an unified deep embedding function H is built
via projecting all transformation sets into the learned binary
code to generate new descriptors for the query. In the online
stage, a weak bit scheme that excludes the contributions of
unreliable bits in distance calculation is adopted to further
improve the matching performance. The major mathematical
symbols used in this chapter are summarized in Table I for
the ease of explanation.

IEEE TRANSACTIONS ON IMAGE PROCESSING 5

TABLE I
MATHEMATICAL SYMBOLS AND DESCRIPTIONS.

Symbol Description
O training set
n number of training samples
xv feature vector
m transformation set number
Xv feature matrix
S affinity matrix
v transformation set index
L Laplacian matrix
B unified binary descriptor
k code length

Wv latent embedding matrix
αv weight factors
β,γ balance parameters
z weak bit mark

H(.) deep embedding function
Θ network parameter
f real-valued feature vector
th threshold

B. Learning Unified Binary Descriptor

In this section, we analyze two involved sub modules
within the unified binary descriptor learning: collective binary
embedding and unsupervised graph learning.

1) Collective Binary Embedding: The ideas of this module
can be explained from two aspects: 1) the original image patch
and its transformed versions should be encoded with the same
binary descriptor, which can be achieved via embedding all
the those sets into a common Hamming space; 2) the unified
binary code is learned from different transformation sets,
which encodes the nature of transformation invariance to the
maximum. Particularly, we formulate the objective function of
this part as below:

min
B,Wv,αv

m∑
v=1

(αv)
γ‖Xv −WvB‖2,1,

s.t. B ∈ {−1,+1}k×n,
m∑
v=1

αv = 1, αv > 0.

(1)

where B ∈ {−1,+1}k×n,
∑m
v=1 αv = 1 and αv > 0.

Here, Xv are the deep features extracted from the fc7 layer
of the pretrained VGG-16 model, Wv ∈ Rpv×k are the
latent embedding matrices that connect the unified binary
descriptor with the deep features. αv are the weight factors
that measure the contributions of different transformation sets
in learning the binary descriptor. γ is the balance parameter.
`2,1-norm is defined as ‖Y ‖2,1 =

∑n
i=1‖yi‖2 for a matrix

Y = [y1, y2, ..., yn] ∈ Rp×n [33].
Generally speaking, this module is proposed to encode

the transformation invariance maximally in the to-be-learned
binary descriptor via applying affine-transformation and per-
forming matrix factorization on every single patch. It is worth
noting that this module differs data augmentation in traditional
classification tasks. From the functionality perspective, data
augmentation involves the process of creating new data points
by manipulating the original data to increase the training
data diversity, thus avoiding overfitting [55]. However, the

overfitting issue is not our concern here and the transformed
data is provided merely for the proposed invariance encoding.
From the technical perspective, being identified as the same
category label is the only optimization goal for the original
image and its augmented ones in the classification. The same
category label does not necessarily guarantee the same feature
descriptor. In our method, Eq. (1) regularizes all transforma-
tion sets of each patch to be represented by a unified binary
descriptor (i.e., feature). Therefore, our learning objective is
more stringent and optimizing such complicated loss functions
is much more challenging.

More importantly, the proposed embedding function has
been upgraded to make it compatible with the local binary
descriptor learning [11], [59]. Firstly, `2,1-norm is introduced
into the discrete optimization model to reduce the negative
effects caused by severe noises/distortions. In contrast to
the widely-used squared `2-norm that is extremely prone to
noises/outliers, `2,1-norm is a more rational choice in the
patch-level transformation invariant descriptor learning. On
one hand, `1-norm distance at the patch level provides the ro-
bustness against outlier samples after random transformations
in this case (see Fig. 1(b)). On the other hand, `2-norm distance
enables to allocate the errors to each bit uniformly across the
space dimension, which diminishes the possibility that certain
bits are mistakenly flipped after getting large errors [20], [25],
[33], [45], [68]. Those flipped bits may dramatically disturb
the subsequent Hamming distance measure. Moreover, we
solve the unified binary representation B directly under the
restrictions of `2,1-norm in the proposed model, where the
accumulated quantization errors from the two-step learning
paradigms [11], [20], [26], [49], [59] are avoided and the
robustness of the learnt binary code is further enhanced.

2) Unsupervised Graph Learning: As discussed above, the
essence of the binary descriptor learning can be described as
a process of projecting the high-dimensional original features
into the compact binary space properly [2], [18], [20]. During
the projection, the neighbourhood relationship preservation
plays an important role in generating the similar binary
descriptors for those data (images/patches) that belong to
the same category. In this work, an unsupervised Laplacian
constraint is derived from the original data set and imposed
on all the transformation sets during the optimization, which
shares the similar idea in common dictionary learning [10],
[20], [75]. The reason is that the relative positions of data
points in the feature space will be inevitably shifted after
geometric transformations and provide unreliable neighbor-
hood structures within the transformation sets [22], [25], [43].
That will mislead the unified binary descriptor learning and
thus adversely affect the code quality. The basic functionality
of using such Laplacian term is to keep the consistency
between the original and binary feature spaces during the code
learning [34], [49], [65]. Let B∗,j and B∗,l denote the j-th
and l-th columns of B, the affinity matrix S ∈ Rn×n from
the original patch set, the graph problem can be formulated as
follow:

IEEE TRANSACTIONS ON IMAGE PROCESSING 6

min
B

1

2

∑n

j=1

∑n

l=1
‖B∗,j −B∗,l‖2FSj,l = min

B
tr(BLBT),

(2)
where B ∈ {−1,+1}k×n. L ∈ Rn×n is the Laplacian
constraint and computed as L = diag(S1) − S. diag(S1)
represents the diagonal matrices with each diagonal element
being calculated as the sum of values in the corresponding row
of S, where S is constructed via k-Nearest-Neighbour (kNN).
Particularly, the anchor graph scheme [35] can be adopted to
reduce the computational complexity following the previous
works [34], [50].

Based on the discussions, the unified binary code for the
training data can be learned via jointly optimizing the above
learning objectives. By incorporating Eq. (2) into Eq. (1), the
overall objective function of unified binary descriptor learning
can be formulated as:

min
B,Wv,αv

m∑
v=1

(αv)
γ(‖Xv −WvB‖2,1 + βtr(BLBT)), (3)

where
∑m
v=1 αv = 1, αv > 0. Wv ∈ Rpv×k, L ∈ Rn×n and

B ∈ {−1,+1}k×n. β is the balance parameter.

C. Optimization Algorithm

It is intractable to solve the objective function Eq. (3)
directly because of the discrete-constrained conditions and the
non-convex `2,1-norm term, which refers to a NP-hard prob-
lem [20]. Consequently, an alternating optimization strategy
is employed to tackle this issue, which is presented as the
following steps.

1) Wv Step: For Wv with other parameters fixed, the
objective function in Eq. (3) can be simplified as follow:

ψv = min
Wv

‖Xv −WvB‖2,1

= min
Wv

n∑
i=1

‖Xi
v −WvB

i‖2,
(4)

where Wv ∈ Rpv×k, Xi
v and Bi are the i-th columns of Xv

and B, respectively. Then we can calculate the gradient of ψv
with respect to Wv as:

∂ψv
∂Wv

=

n∑
i=1

WvB
i(Bi)T −Xi

v(B
i)T

‖Xi
v −WvBi‖2

= (WvB−Xv)DvB
T .

(5)

Here, the diagonal matrix Dv are led into the problem and
its i-th diagonal element is obtained as:

(Dv)i,i =
1

‖Xi
v −WvBi‖2

. (6)

Although there is no closed-form solution for Wv in the
above equation, the calculation of (Xv − WvB) can be
leveraged to compute Dv and ∂ψv

∂Wv
directly with the minimal

efforts. Then a gradient descent strategy can be employed to
optimize the objective function [8].

2) B Step: For B with other parameters fixed, the objective
function (3) can be further rewritten as follow:

min
B

m∑
v=1

(αv)
γ(‖Xv −WvB‖2,1 + βtr(BLBT)), (7)

where B ∈ {−1, 1}k×n. Inspired by recent coordinate descent
based methods [49], the objective loss can be minimized via
optimizing all the bits in B sequentially. Here, we denote
bT ∈ {−1, 1}1×n as the i-th row of B, and B′ the matrix
of B excluding bT . Let wv ∈ Rpv be the i-th column of
Wv , W′

v be the matrix of Wv excluding wv . Considering
WvB = W′

vB
′+wvb

T , tr(BLBT) = tr(B′LB′
T

) + bTLb
and tr(B′LB′

T
) is const, (7) with respect to b ∈ {−1, 1}n

can be formulated as:

min
b

m∑
v=1

(αv)
γ(‖Xv −W′

vB
′ − wvbT ‖2,1 + βbTLb). (8)

Let X̃v = Xv −W′
vB
′, Eq. (8) is further simplified as:

min
b

m∑
v=1

(αv)
γ(‖X̃v − wvbT ‖2,1 + βbTLb). (9)

The above derivations transform the objective function into
the similar form like Binary Quadratic Problem (BQP), but
more complex. The closed-form solution of b cannot be
obtained directly from Eq. (9). Following the previous works,
it is still feasible to optimize the objective function via flipping
each bit sequentially in b, where the bit would be flipped if the
flipping operation decreases the objective function loss [49].
Fortunately, the initial values for b , denoted as b0, can be set
properly to minimize the first term in Eq. (9). Namely, the
j-th bit in b0 is calculated as:

b0j = sign(

m∑
v=1

(αv)
γ(‖X̃j

v + wv‖2 − ‖X̃j
v − wv‖2)), (10)

where b0j ∈ {−1, 1} and X̃j
v ∈ Rpv is the j-th column of X̃v .

Sign(x) = 1 if x ≥ 0 and otherwise −1. After getting b0,
we can flip each bit sequentially as in [49] to optimize the
objective function.

3) αv Step: For αv with other parameters fixed and let
Gv = ‖Xv −WvB‖2,1 + βtr(BLBT), we can rewrite Eq.
(3) as:

min
αv

m∑
v=1

(αv)
γGv, s.t.

m∑
v=1

αv = 1, αv > 0. (11)

By introducing the Lagrange multiplier η, the above prob-
lem is then transformed to:

min E(αv, η) =

m∑
v=1

(αv)
γGv − η(

m∑
v=1

(αv)
γ − 1), (12)

where the partial derivatives with respect to αv and η are
calculated as:

IEEE TRANSACTIONS ON IMAGE PROCESSING 7

{
∂Ev
∂αv

= γ(αv)
γ−1Gv − η,

∂Ev
∂η =

∑m
v=1 αv − 1.

(13)

By setting those derivatives as 0, we have the optimal
solution of αv as:

αv =
(Gv)

1
1−γ∑m

v=1(Gv)
1

1−γ
. (14)

By repeating the above steps, the objective function con-
verges to local minimum after a few iterations (the iteration
number t ≤ 10 in the experiment), thus obtaining unified
binary descriptors for the training data. The major difference
against the previous discrete optimization strategies is that only
the gradient descent is performed to make the overall objective
function keep decreasing in the proposed method. There is no
need to find the closed-form solution for each variable during
each optimization iteration [49], [59], [64].

D. Generating Out-of-Sample Binary Descriptor

After learning the binary descriptors for training data, an
unified deep embedding function H(Xv; Θ) is trained as the
code generator for out-of-sample data. Particularly, the input
data Xv from multiple sets (v = 1, ...,m) are sequentially fed
into the deep network and the Euclidean distances between
feature vectors from the last output layer and their corre-
sponding binary representations B are minimized, as shown
in Fig. 2. By doing so, geometric transformation invariance
could be preserved maximally during the deep embedding
function learning. Moreover, the computational complexity can
be reduced by updating the sharing weight Θ for the original
data and its transformation sets simultaneously, instead of
training different deep networks for them separately as in [31].
The objective function of this process is presented as:

min
Θ

m∑
v=1

‖H(Xv; Θ)−B‖2F , s.t. B ∈ {−1,+1}k×n. (15)

The optimization problem can be solved by fine-tuning
the deep network with Stochastic Gradient Descent (SGD),
where the sharing weight Θ is iteratively optimized until
convergence. Given a query instance xq , we can obtain its
binary descriptor by simply calculating sign(H(xq; Θ)). The
proposed algorithm is summarized in Algorithm 1.

E. Refined Matching via Weak Bit Selection

Once we have obtained binary descriptors for both query
and gallery data, the matching can be done by simply compar-
ing their Hamming distance. However, as the binary represen-
tation reduces the discriminative power of data, it is very often
that there are multiple candidates with the same minimum
Hamming distance (even 0 in the worst-case scenarios) to
a specific query (see Fig. 1(b)). It might be acceptable for
applications like retrieval, but is definitely a problem for local
feature points matching, where one true match should be
provided. In this case, a means to conduct the second distance

Algorithm 1 Unsupervised Deep Binary Descriptor
Input: Deep features Xv for different transformation sets,

code length k, parameters β and γ, Laplacian matrix L,
maximum epoch T . Randomly initialize binary code B,
latent embedding matrices Wv and deep parameters Θ.
Set average weights αv , v = {1, ...,m}.

Output: Deep hash function H(Xv; Θ);
1: Extract the feature matrices Xv from fc7 layers;
2: for t = 1 to T do
3: Update the latent embedding matrices Wv by Eq.

(5)∼(6);
4: Update the unified hash code B by Eq. (8)∼(10);
5: Update the weight factors αv by Eq. (14);
6: end for
7: Update the network parameters Θ by Eq. (15);
8: return H(Xv; Θ);

measurement is required. Inspired by the advocate of weak bit
(i.e., unreliable bit) in fingerprinting systems [5], [21], [41],
[52], [53], we found that the contribution/reliability of each bit
within the binary codes differs. Hence, such information can
be useful to refine the initial Hamming distance computation.
Concretely, the unreliable bits (with values closed to 0) for
each input x ∈ Rp are selected based on its real-valued vector
f ∈ Rk, which is extracted from the last output layer of the
deep embedding network. With a certain threshold th > 0, the
weak bit z ∈ {0, 1}k in its binary code b ∈ {−1, 1}k can be
defined as:

zk =

{
1, |fk| < th;
0, |fk| ≥ th,

(16)

where the bits with values in the range of (−th, th) are marked
as weak bits (ie, zk = 1). Here, the intuition is that the closer
the real-valued feature gets to 0 the weaker it will be. This
does make sense because the value closer to 0 is likely to
be mistakenly flipped in the existence of noises, considering
the fact that we use a sign function to convert a real value to
a binary bit. In this second matching procedure, a sequence
of binary digits of a query, formed by weakness indications
at each bit location, will be compared against the counterpart
digits of a candidate. As a result of doing this, the aggregated
distance enables to find the best match, thus improving the
matching performance.

IV. EXPERIMENT

In this section, we conduct extensive experiments on three
public datasets to evaluate the matching and retrieval perfor-
mance of the proposed binary descriptor.

A. Dataset Descriptions

Brown1 [7] is the most popular dataset in the evaluation of
local feature descriptors, which contains three subsets: Notre
Dame, Yosemite, and Liberty collected from the Photo Tourism
reconstructions. In each subset, there are more than 400, 000

1http://matthewalunbrown.com/patchdata/patchdata.html

IEEE TRANSACTIONS ON IMAGE PROCESSING 8

gray-scale patches with the size of 64×64. Those patches are
split into training and test sets, which contains 200, 000 pairs
(100, 000 matched and non-matched pairs) and 100, 000 pairs
(50, 000 matched and non-matched pairs), respectively.

Cifar-102 [27] consists of 60, 000 images with the size
of 32 × 32 from 10 different categories, which are split
into training and test sets with 50, 000 and 10, 000 images
separately. The training set is employed for the code learning,
and use the test set as the queries for retrieval evaluation.

HPatches3 [3] consists of about 1 million patches extracted
from 116 images using the combination of various interest
point detectors, where the patches are collected from the 3D
reconstructions of several landmarks in Rome. Each patch is
annotated with its ground truth label and then post-processed
after extraction with the fixed size of 65× 65. We follow the
default settings in [69] and test the performance on the full
split within the dataset.

B. Implementation Details

The experiments are carried out on Linux Ubuntu Server
with the configuration of Intel i7-5960X CPU@3.0GHz, 64GB
RAM and NVIDIA GTX 1080 Ti GPU. Most source codes
of the baselines are publically available online, which can be
tuned via open source softwares (e.g., Caffe [24]) according
to the papers. Specifically, the geometric transformation of
the input patches are implemented by following the data
augmentation in [31], where the rotation angles are within the
range of [−10, 10]. Particularly, 5 different rotation angles:
[−10,−5, 0, 5, 10], are imposed on each input patch, which
simulates the small viewpoint variations from human perspec-
tive [31]. Their deep features are extracted from the fc7 layer
(4096-d) of the pre-trained VGG-16 [55].

In the proposed method, γ and β are set as 5 and 10−3 dur-
ing the discrete optimization, while the discrete optimization
usually converges within 10 iterations. The number of data
points is set to 10,000 in the code learning. In the network
training phase, VGG-16 model is used as the backbone with
the output size of k and tanh as activation function in the
last fc layer. The backpropagation is performed in the whole
network. The basic learning rate as 0.0001, momentum as 0.9
and weight decay as 0.0005. The batch sizes is 32 and the
maximum iteration is 30000. The threshold is set to 0.3 via
cross-validation in the weak bit selection.

C. Comparisons with State-of-The-Arts

1) Results on Brown Dataset: On Brown dataset, we con-
duct extensive comparisons on the patch matching perfor-
mance between our approach and several state-of-the-art bi-
nary descriptors. These baselines are categorized into unsuper-
vised (e.g., BRIEF [9], GraphBit [15] and DeepBit [31], etc.)
and supervised approaches (e.g., BinBoost [62], L2-Net [60],
HardNet [42] and CDbin [69]). The results from floating-
pointed (SIFT [37])and supervised methods are provided as
reference. Following [31] and [69], False Positive Rates at

2https://www.cs.toronto.edu/ kriz/cifar.html
3https://github.com/hpatches/hpatches-dataset

95% (FPR@95%) from the cross-validations on three subsets
are provided in Table II. Lower FPR@95% indicates better
performance. As can be seen, the proposed method outper-
forms unsupervised approaches significantly on most training
and test configurations. Particularly, the error rates achieved
by UDBD are 18.99%, 52.6%, 11.76%, 52.17%, 14.61%
and 20.79% from bottom left to right. However, our method
performs less favorable than BinGAN on Yosemite. The subset
contains too many visually similar patches (e.g., snow and
forest), which makes them difficult to be distinguished [31].
Nevertheless, UDBD still achieves the best average FPR@95%
(28.49%) among unsupervised binary descriptors. Compared
with the supervised methods, UDBD is highly competitive,
where our method even has better result (11.76%) against
BinBoost [62] (16.9%) on the setting of Liberty and Notre
Dame.

Moreover, the ROC curves of those unsupervised descriptors
on different subsets are plotted in Fig. 3 to further verify
the above discussions. As shown in the figures, the ROC
curves from UDBD rank at the top under most settings,
which indicates its advantage over those unsupervised binary
descriptors.

2) Results on Cifar-10 Dataset: Without loss of generality,
on Cifar-10 dataset, we first compare our method with several
unsupervised binary descriptors regarding image retrieval per-
formance, including the unsupervised binary descriptors and
some classical hashing methods. The retrieval performance is
evaluated under mean average precision (mAP) at top 1, 000
returned images, which is detailed in Table III at the code
length of 16, 32 and 64. As observed from Table III, our
method improves the mAP@1000 values by 2.19%, 1.52%
over BinGAN on 16 and 32 bits, while 1.63% on 64 bits over
GraphBit. Moveover, we provide the Precision-Recall curves
on Cifar-10 dataset at different code lengths in Fig. 4, where
the results are consistent with the above discussions.

Additionally, the matching performance measured by Pre-
cision@Top 1 returned candidate from several state-of-the-
arts are also provided in Table IV, where image is treated
as big patch. As can be seen, the proposed method obtains the
highest values in term of Precision at top 1, at least 4.74%
higher than the most competitive baseline, which consolidates
the contribution on improving the matching accuracy from the
proposed method.

3) Results on HPatches Dataset: Finally, we report mAP
values from the three visual tasks: matching, retrieval and
verification, on HPatches dataset to provide broader insights on
the binary descriptor performance. Specifically, the matching
is conducted by comparing patch sets between a reference
image and a target one and the retrieval aims at finding
similar patches for each query. The verification is to classify
whether two patches are matched or not [3], [69]. Following
the evaluation protocols suggested in [3], [69], the results of
the full split from HPatches are summarized in Table V. We
compared UDBD with several unsupervised binary descriptors
and provided the results of SIFT [37], BinBoost [62], L2-
Net [60] and CDbin [69] for references. Table V shows that
UDBD outperforms the most competitive GraphBit by 3.05%,
3.69% and 4.58% on matching, retrieval and verification,

IEEE TRANSACTIONS ON IMAGE PROCESSING 9

TABLE II
COMPARISON OF THE PROPOSED UDBD TO THE STATE-OF-THE-ART BINARY DESCRIPTORS IN TERMS OF FPR@95% ON BROWN

DATASET. DIM, SP AND USP DENOTE DIMENSION, SUPERVISED AND UNSUPERVISED, RESPECTIVELY. † AND ‡ INDICATE THE
TRAIN AND TESTING SUBSETS. THE RESULTS FROM SIFT AND SUPERVISED METHODS ARE PROVIDED AS REFERENCES. BOLD

VALUES ARE THE BEST RESULTS IN UNSUPERVISED BINARY DESCRIPTORS.

Method Dim Type Notre Dame† Notre Dame† Liberty† Liberty† Yosemite† Yosemite† Average
Liberty‡ Yosemite‡ Notre Dame‡ Yosemite‡ Notre Dame‡ Liberty‡ FPR@95%

SIFT [37] 128 USP 36.27 29.15 28.09 29.15 28.09 36.27 31.17
BinBoost [62] 64 SP 20.49 18.96 16.9 22.88 14.54 21.67 19.24
L2-Net [60] 128 SP 7.53 7.74 5.92 9.12 5.43 9.25 7.49
HardNet [42] 128 SP 2.22 2.28 0.57 2.13 0.96 2.35 1.9
CDbin [69] 128 SP 6.81 3.02 7.92 3.02 4.26 9.0 6.46
BRIEF [9] 256 USP 59.15 54.96 54.57 54.96 54.57 59.15 56.23
BRISK [28] 512 USP 79.36 73.21 74.88 73.21 74.88 79.36 75.82
ORB [47] 256 USP 56.26 54.13 48.03 54.13 48.03 56.26 52.81
DBD-MQ [71] 256 USP 31.1 57.24 25.78 57.15 27.2 33.11 38.59
BinGAN [77] 256 USP 25.76 40.8 27.84 47.64 16.88 26.08 30.83
DeepBit [31] 256 USP 33.83 54.63 20.66 56.69 28.49 34.64 38.15
GraphBit [15] 256 USP 24.24 50.54 16.75 49.11 21.09 27.23 31.49
UDBD 256 USP 18.99 52.6 11.76 52.17 14.61 20.79 28.49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it

iv
e

 R
a
te

UDBD(256 bits,18.99%)

BinGAN(256 bits,25.76%)

DeepBit(256 bits,32.48%)

GraphBit(256 bits,24.24%)

DBD-MQ(256 bits,33.65%)

BRIEF(256 bits,59.15%)

BRISK(512 bits,79.36%)

ORB(256 bits,56.26%)

(a) Notre Dame→Liberty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

UDBD(256 bits, 52.6%)

BinGAN(256 bits,40.8%)

DeepBit(256 bits,54.63%)

GraphBit(256 bits,50.54%)

DBD-MQ(256 bits,57.24%)

BRIEF(256 bits,54.96%)

BRISK(512 bits,73.21%)

ORB(256 bits,54.13%)

(b) Notre Dame→Yosemite

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s

it
iv

e
 R

a
te

UDBD(256 bits, 14.61%)

BinGAN(256 bits,16.88%)

DeepBit(256 bits,27.28%)

GraphBit(256 bits,21.09%)

DBD-MQ(256 bits,28.25%)

BRIEF(256 bits,54.57%)

BRISK(512 bits,74.88%)

ORB(256 bits,48.03%)

(c) Yosemite→Notre Dame

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s

it
iv

e
 R

a
te

UDBD(256 bits,20.79%)

BinGAN(256 bits,26.08%)

DeepBit(256 bits,34.64%)

GraphBit(256 bits,27.23%)

DBD-MQ(256 bits,33.11%)

BRIEF(256 bits,59.15%)

BRISK(512 bits,79.36%)

ORB(256 bits,56.26%)

(d) Yosemite→Liberty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

UDBD(256 bits,11.76%)

BinGAN(256 bits,27.84%)

DeepBit(256 bits,20.66%)

GraphBit(256 bits,16.75%)

DBD-MQ(256 bits,25.78%)

BRIEF(256 bits,54.57%)

BRISK(512 bits,74.88%)

ORB(256 bits,48.03%)

(e) Liberty→Notre Dame

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it

iv
e
 R

a
te

UDBD(256 bits,52.17%)

BinGAN(256 bits,47.64%)

DeepBit(256 bits,56.69%)

GraphBit(256 bits,49.11%)

DBD-MQ(256 bits,57.15%)

BRIEF(256 bits,54.96%)

BRISK(512 bits,73.21%)

ORB(256 bits,54.13%)

(f) Liberty→Yosemite

Fig. 3. ROC curves under different settings on Brown dataset when using various unsupervised binary descriptors. Best viewed in color.

respectively, which indicates the superiority of UDBD in
generating effective binary descriptors for various visual tasks.

D. Further Analysis

In this section, further insights are provided to address some
key features in our proposed method.

1) Ablation Study: Firstly, the comprehensive analysis on
the contribution of those involved components: view weighting
scheme and Laplacian constraint, during the code learning
is provided in Table VI. Particularly, three different settings:
γ = 0 (i.e., UDBDγ=0: NO view weighting scheme), β = 0
(i.e., UDBDβ=0: NO graph loss term) and γ = β = 0
(i.e., UDBDγ=β=0), are investigated on various datasets. For
instance, mAP@1,000 result at 64 bits on Cifar-10 when β = 0

would decrease dramatically to 34.08%. These values with
γ = 0 and γ = β = 0 are 35.33% and 33.79%, which are far
below than the original result (39.6%) achieved by UDBD in
Table III. That indicates the importance and necessity of the
involved graph loss term and view weighting scheme in the
proposed framework, respectively.

2) Transformation Invariance: Then we investigate the per-
formance variations: FPR95% on matching and mAP@1000
on retrieval, under certain affine transformation imposing on
test images, where rotation is given as an example as plotted
in Figure 5. The variations are calculated at 64 bits from
GraphBit, DeepBit and UDBD. Large rotation angles usually
reduce visual similarity on the images, thus yielding worse
performance [31]. However, UDBD still outperforms the oth-

IEEE TRANSACTIONS ON IMAGE PROCESSING 10

Recall

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

0.2

0.4

0.6

UDBD

BinGAN

GraphBit

DeepBit

ITQ

DMD-MQ

DH

SH

LSH

(a) Cifar-10 at 16 bits

Recall

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

0.2

0.4

0.6

0.8
UDBD

BinGAN

GraphBit

DeepBit

ITQ

DMD-MQ

DH

SH

LSH

(b) Cifar-10 at 32 bits

Recall

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

0.2

0.4

0.6

0.8
UDBD

BinGAN

GraphBit

DeepBit

ITQ

DMD-MQ

DH

SH

LSH

(c) Cifar-10 at 64 bits

Fig. 4. Precision-Recall curves of the proposed method and the baselines on Cifar-10 dataset at 16, 32 and 64 bits.

TABLE III
MAP (%) OF TOP 1,000 RETURNED IMAGES AT DIFFERENT

CODE LENGTH FROM VARIOUS UNSUPERVISED DESCRIPTORS
ON CIFAR-10 DATASET. BOLD VALUES ARE THE BEST

RESULTS.

Method mAP@1000 (%)
16 bits 32 bits 64 bits

LSH [2] 10.31 11.39 13.74
ITQ [18] 24.85 27.32 30.84
SH [48] 16.25 19.64 20.91
DH [16] 22.43 23.21 25.84
DBD-MQ [71] 21.53 26.5 31.85
BinGAN [77] 30.05 34.65 36.77
DeepBit [31] 26.36 27.92 34.05
GraphBit [15] 27.79 33.45 37.97
UDBD 32.24 36.17 39.6

TABLE IV
PRECISION AT TOP 1 ON CIFAR-10 DATASET WHEN USING

DEEPBIT, BINGAN, GRAPHBIT AND UDBD AT DIFFERENT BIT
SIZES.

Method Precision@Top 1 (%)
16 bits 32 bits 64 bits

DeepBit [31] 24.38 32.51 39.74
BinGAN [77] 33.72 41.48 44.31
GraphBit [15] 32.12 41.39 46.79
UDBD 38.46 46.63 52.06

-10 -5 0 5 10

Rotation Angles

0

10

20

30

40

F
P

R
@

9
5

%

Yosemite->Notre Dame

UDBD

GraphBit

DeepBit

(a) Brown at 256 bits

-10 -5 0 5 10

Rotation Angles

0

10

20

30

40

m
A

P
@

1
0

0
0

(%
)

UDBD

GraphBit

DeepBit

(b) Cifar-10 at 64 bits

Fig. 5. Performances variations: FPR95% on matching and mAP@1000 on
retrieval, under different rotation angles on test instances from GraphBit,
DeepBit and UDBD on Brown and Cifar-10.

ers significantly at all angle ranges. Particularly, mAP@1000
for UDBD is 34.1% when rotating 10 degrees, which is much
higher than those achieved by DeepBit (27.26%) and GraphBit
(23.51%). That indicates the proposed binary descriptor is
more robust to rotation. More analysis on other transforma-

tions (e.g., scaling, translation and occlusion) will be made in
the future work.

3) Loss Term: Moreover, we report the performance varia-
tions when using different loss terms (i.e., `2,1-norm vs `2,2-
norm) in the code learning process, as shown in Table VII.
`2,2-norm is selected as baseline because of its wide usage and
high competitiveness. For example, on Liberty→Notre Dame,
FPR@95% is 15.81% under `2,2-norm, which is 4.05% lower
than 11.76% when applying `2,1-norm. Generally, `2,1-norm
loss yields better results compared to the widely used `2,2-
norm, which are consistent with the previous discussions on
`p,q-norm based similarity search and other regularizers even
obtain worse performance [20].

32 64 128 256

Code Length

10

15

20

25

30

35

40

<
<

<
 F

P
R

@
9

5
%

)

Brown

ND->Lib:With Weak Bit

ND->Lib:Without Weak Bit

Lib->ND:With Weak Bit

Lib->ND:Without Weak Bit

(a) Brown

16 32 64

Code Length

35

40

45

50

55

P
re

c
is

io
n

@
T

o
p

 1

Cifar-10

With Weak Bit

Without Weak Bit

(b) Cifar-10

Fig. 6. Performance variations (%) at varying code lengths with/without
applying weak bit scheme. (a) FPR@95% on Brown: Notre Dame
(ND)→Liberty (Lib) and Liberty→Notre Dame; (b) Precision@Top 1 on
Cifar-10.

4) Weak Bit Study: Then the impact of weak bit scheme
on the system performance is investigated in Fig. 6 and Table
VIII, under three measurements as FPR@95%, Precision@Top
1 and mAP on different datasets. As can be seen, noticeable
performance gains have been achieved with the weak bit
scheme on Brown and Cifar-10 datasets, especially when using
shorter codes. For instance, Precision@Top 1 is 46.63% (with
weak bit) and 42.33% (without weak bit) on Cifar-10 using
32 bits. While on HPatches, slight improvements also have
been achieved by the proposed method when tackling three
tasks (1.44%, 0.13% and 1.3%) at 256 bits with the weak bit
scheme separately. The results show that the weak bit scheme
plays vital role in improving the matching performance, which
further verifies the claimed contribution.

5) Parameter Analysis: Finally, more experiments are con-
ducted on Cifar-10 as examples in the retrieval performance

IEEE TRANSACTIONS ON IMAGE PROCESSING 11

TABLE V
COMPARISON OF THE PROPOSED UDBD TO THE STATE-OF-THE-ART DESCRIPTORS IN TERMS OF MAP (%) ON HPATCHES

DATASET. DIM, SP AND USP DENOTE DIMENSION, SUPERVISED AND UNSUPERVISED, RESPECTIVELY. THE REAL-VALUED
DESCRIPTOR (SIFT) AND THE SUPERVISED METHODS ARE PROVIDED AS REFERENCES. BOLD VALUES ARE THE BEST RESULTS

IN UNSUPERVISED BINARY DESCRIPTORS.

Method Dim Type Matching Retrieval Verification
SIFT [37] 128 USP 25.47 31.98 65.12
BinBoost [62] 64 SP 14.77 22.45 66.67
L2-Net [60] 128 SP 30.89 41.29 70.58
CDbin [69] 128 SP 39.76 46.19 82.68
BRIEF [9] 256 USP 10.5 16.03 58.07
ORB [47] 256 USP 15.32 18.85 60.15
DBD-MQ [71] 256 USP 13.45 23.56 63.43
DeepBit [31] 256 USP 13.05 20.61 61.27
GraphBit [15] 256 USP 14.22 25.19 65.19
UDBD 256 USP 17.27 28.88 69.77

TABLE VI
ABLATION STUDY ON BROWN (FPR@95%): LIBERTY→NOTRE DAME AND YOSEMITE→LIBERTY, HPATCHES: MATCHING (MAP) AND
CIFAR-10 AT 64 BITS (MAP@1000) WHEN γ = 0 (I.E., UDBDγ=0), β = 0 (I.E., UDBDβ=0) AND γ = β = 0 (I.E., UDBDγ=β=0). BOLD

VALUES SHOW THE BEST RESULTS.

Method Brown [7] Cifar-10 [27] HPatches [3]
Liberty→Notre Dame Yosemite→Liberty 64 bits Matching

UDBDγ=0 14.18 23.62 35.33 14.24
UDBDβ=0 12.92 22.36 34.08 14.95
UDBDγ=β=0 14.93 24.47 33.79 13.91
UDBD 11.76 20.79 39.6 17.27

TABLE VII
PERFORMANCE VARIATIONS (%) ON BROWN (FPR@95%): NOTRE DAME→LIBERTY AND LIBERTY→NOTRE DAME, HPATCHES:

MATCHING (MAP) AT 256 BITS, AND CIFAR-10 AT 32 BITS (MAP@1000) WHEN USING `2,1-NORM AND `2,2-NORM LOSS TERMS.
BOLD VALUES SHOW THE BEST RESULTS.

Loss Term Brown [7] Cifar-10 [27] HPatches [3]
Notre Dame→Liberty Liberty→Notre Dame 32 bits Matching

`2,2-norm 22.51 15.81 34.24 14.81
`2,1-norm 18.99 11.76 36.17 17.27

TABLE VIII
MAP VARIATIONS (%) ON HPATCHES WITH/WITHOUT

APPLYING WEAK BIT SCHEME (UDBD‡ /UDBD†). BOLD VALUES
SHOW THE BEST RESULTS.

Method Matching Retrieval Verification
UDBD† 15.83 28.75 68.47
UDBD‡ 17.27 28.88 69.77

2 4 6 8 10
γ

20

25

30

35

40

m
A

P
@

10
00

 (
%

)

64 bits

32 bits

16 bits

(a) γ

10-4 10-3 10-2 10-1

β

20

25

30

35

40

m
A

P
@

10
00

 (
%

)

64 bits

32 bits

16 bits

(b) β

Fig. 7. Parameter sensitivity analysis of γ and β at various bit sizes on
Cifar-10 dataset.

analysis with varying hyperparameters (γ and β), as shown in
Fig. 7. γ and β are varied in wide ranges from {2, 3, 5, 7, 10}
and {10−5, 10−4, 10−3, 10−2, 10−1}, where the best perfor-

mance is given around the setting of 5 and 10−3. It is worth
noting that the performance degrades heavily when small β is
being set, which inevitably weakens the impact of the graph
constraint learning, thus yielding worse code quality.

V. CONCLUSION

In this paper, a novel learning-based unsupervised binary
descriptor termed UDBD is proposed to facilitate large-scale
visual recognition. Particularly, the binary descriptor is learned
via exploiting the common binary space between the original
and transformed data sets. With `2,1-norm loss as regulariza-
tion term, the learned descriptor is highly robust to potential
outliers. An unsupervised graph constraint is further employed
to preserve the original manifold structure in the code learning,
thus improving the code quality dramatically. Then the dis-
crete and `2,1-norm constrained objective function is solved
directly without relaxation following an alternating discrete
optimization strategy. Additionally, a weak bit scheme is used
to address the ambiguous matching issue and further boost
the matching performance of the proposed binary descriptor
in the online search stage. Experiments on several public
datasets show that UDBD outperforms the state-of-the-arts
significantly.

IEEE TRANSACTIONS ON IMAGE PROCESSING 12

REFERENCES

[1] A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,”
in CVPR. Ieee, 2012, pp. 510–517.

[2] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on. IEEE,
2006, pp. 459–468.

[3] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk, “Hpatches: A
benchmark and evaluation of handcrafted and learned local descriptors,”
in CVPR, 2017, pp. 5173–5182.

[4] V. Balntas, L. Tang, and K. Mikolajczyk, “Bold-binary online learned
descriptor for efficient image matching,” in CVPR, 2015, pp. 2367–2375.

[5] S. Baluja and M. Covell, “Beyond ’near duplicates’: Learning hash
codes for efficient similar-image retrieval,” in 2010 20th International
Conference on Pattern Recognition. IEEE, 2010, pp. 543–547.

[6] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in ECCV. Springer, 2006, pp. 404–417.

[7] M. Brown, G. Hua, and S. Winder, “Discriminative learning of local
image descriptors,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 1, pp. 43–57, 2011.

[8] F. Cakir and S. Sclaroff, “Adaptive hashing for fast similarity search,”
in ICCV, 2015, pp. 1044–1052.

[9] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust
independent elementary features,” in ECCV. Springer, 2010, pp. 778–
792.

[10] Y. Cao, M. Long, J. Wang, and S. Liu, “Collective deep quantization
for efficient cross-modal retrieval,” in AAAI, 2017.

[11] G. Ding, Y. Guo, J. Zhou, and Y. Gao, “Large-scale cross-modality
search via collective matrix factorization hashing,” IEEE Transactions
on Image Processing, vol. 25, no. 11, pp. 5427–5440, 2016.

[12] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and
T. Brox, “Discriminative unsupervised feature learning with exemplar
convolutional neural networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 9, pp. 1734–1747, 2015.

[13] Y. Duan, J. Lu, J. Feng, and J. Zhou, “Learning rotation-invariant local
binary descriptor,” IEEE Transactions on Image Processing, vol. 26,
no. 8, pp. 3636–3651, 2017.

[14] ——, “Context-aware local binary feature learning for face recogni-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 5, pp. 1139–1153, 2018.

[15] Y. Duan, Z. Wang, J. Lu, X. Lin, and J. Zhou, “Graphbit: Bitwise
interaction mining via deep reinforcement learning,” in CVPR, 2018,
pp. 8270–8279.

[16] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in CVPR, 2015, pp. 2475–2483.

[17] L. Fei, B. Zhang, Y. Xu, Z. Guo, J. Wen, and W. Jia, “Learning
discriminant direction binary palmprint descriptor,” IEEE Transactions
on Image Processing, 2019.

[18] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 12, pp. 2916–2929, 2013.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2672–
2680.

[20] Y. Guo, G. Ding, and J. Han, “Robust quantization for general similarity
search,” IEEE Transactions on Image Processing, vol. 27, no. 2, pp.
949–963, 2018.

[21] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system.”
in Ismir, vol. 2002, 2002, pp. 107–115.

[22] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge University Press, 2003.

[23] K. He, Y. Lu, and S. Sclaroff, “Local descriptors optimized for average
precision,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 596–605.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM International
Conference on Multimedia. ACM, 2014, pp. 675–678.

[25] W. Jiang, F. Nie, and H. Huang, “Robust dictionary learning with capped
l1-norm,” in IJCAI, 2015.

[26] W. Kong and W.-J. Li, “Isotropic hashing,” in Advances in Neural
Information Processing Systems, 2012, pp. 1646–1654.

[27] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[28] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in ICCV. IEEE, 2011, pp. 2548–2555.

[29] Q. Li, Z. Sun, R. He, and T. Tan, “Deep supervised discrete hashing,”
in NIPS, 2017, pp. 2482–2491.

[30] W. Li, L. Wang, J. Xu, J. Huo, Y. Gao, and J. Luo, “Revisiting
local descriptor based image-to-class measure for few-shot learning,”
in CVPR, 2019, pp. 7260–7268.

[31] K. Lin, J. Lu, C.-S. Chen, J. Zhou, and M.-T. Sun, “Unsupervised deep
learning of compact binary descriptors,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2018.

[32] Z. Lin, G. Ding, J. Han, and J. Wang, “Cross-view retrieval via
probability-based semantics-preserving hashing,” IEEE Transactions on
Cybernetics, vol. 47, no. 12, pp. 4342–4355, 2017.

[33] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient l 2,
1-norm minimization,” in IJCAI. AUAI Press, 2009, pp. 339–348.

[34] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,” in
Advances in Neural Information Processing Systems, 2014, pp. 3419–
3427.

[35] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,”
2011.

[36] X. Liu, J. He, B. Lang, and S.-F. Chang, “Hash bit selection: a unified
solution for selection problems in hashing,” in CVPR, 2013, pp. 1570–
1577.

[37] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[38] J. Lu, V. E. Liong, and J. Zhou, “Simultaneous local binary feature
learning and encoding for homogeneous and heterogeneous face recogni-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 8, pp. 1979–1993, 2017.

[39] J. Lu, V. E. Liong, X. Zhou, and J. Zhou, “Learning compact binary face
descriptor for face recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 37, no. 10, pp. 2041–2056, 2015.

[40] Z. Luo, T. Shen, L. Zhou, J. Zhang, Y. Yao, S. Li, T. Fang, and
L. Quan, “Contextdesc: Local descriptor augmentation with cross-
modality context,” in CVPR, 2019, pp. 2527–2536.

[41] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe lsh: efficient indexing for high-dimensional similarity search,” in
Proceedings of the 33rd international conference on Very large data
bases. VLDB Endowment, 2007, pp. 950–961.

[42] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, “Working hard to
know your neighbor’s margins: Local descriptor learning loss,” in NIPS,
2017, pp. 4826–4837.

[43] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in CVPR, 2016, pp.
2574–2582.

[44] E. R. Nascimento, G. Potje, R. Martins, F. Cadar, M. F. Campos, and
R. Bajcsy, “Geobit: A geodesic-based binary descriptor invariant to
non-rigid deformations for rgb-d images,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 10 004–10 012.

[45] M. Qian and C. Zhai, “Robust unsupervised feature selection,” in IJCAI,
2013.

[46] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in ECCV. Springer, 2006, pp. 430–443.

[47] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in ICCV. IEEE, 2011, pp. 2564–2571.

[48] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International
Journal of Approximate Reasoning, vol. 50, no. 7, pp. 969–978, 2009.

[49] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete
hashing,” in CVPR, 2015, pp. 37–45.

[50] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, and H. T. Shen, “Unsu-
pervised deep hashing with similarity-adaptive and discrete optimiza-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 12, pp. 3034–3044, 2018.

[51] Y. Shen, L. Liu, and L. Shao, “Unsupervised binary representation learn-
ing with deep variational networks,” International Journal of Computer
Vision, vol. 127, no. 11-12, pp. 1614–1628, 2019.

[52] R. Shinde, A. Goel, P. Gupta, and D. Dutta, “Similarity search and
locality sensitive hashing using ternary content addressable memories,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 375–386.

[53] H. Shu, W. Jiang, and R. Yu, “Study on weak bit in vote count and
its application in k-nearest neighbors algorithm,” in 2015 IEEE 10th
Conference on Industrial Electronics and Applications (ICIEA). IEEE,
2015, pp. 119–122.

[54] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-
Noguer, “Discriminative learning of deep convolutional feature point
descriptors,” in ICCV, 2015, pp. 118–126.

IEEE TRANSACTIONS ON IMAGE PROCESSING 13

[55] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[56] J. Song, T. He, L. Gao, X. Xu, A. Hanjalic, and H. T. Shen, “Unified
binary generative adversarial network for image retrieval and compres-
sion,” IJCV, pp. 1–22, 2020.

[57] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash: Improved
matching with smaller descriptors,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 34, no. 1, pp. 66–78, 2012.

[58] R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[59] J. Tang, K. Wang, and L. Shao, “Supervised matrix factorization hashing
for cross-modal retrieval,” IEEE Transactions on Image Processing,
vol. 25, no. 7, pp. 3157–3166, 2016.

[60] Y. Tian, B. Fan, and F. Wu, “L2-net: Deep learning of discriminative
patch descriptor in euclidean space,” in CVPR, 2017, pp. 661–669.

[61] Y. Tian, X. Yu, B. Fan, F. Wu, H. Heijnen, and V. Balntas, “Sosnet:
Second order similarity regularization for local descriptor learning,” in
CVPR, 2019, pp. 11 016–11 025.

[62] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit, “Boosting binary
keypoint descriptors,” in CVPR, June 2013, pp. 2874–2881.

[63] T. Trzcinski and V. Lepetit, “Efficient discriminative projections for
compact binary descriptors,” in European Conference on Computer
Vision. Springer, 2012, pp. 228–242.

[64] D. Wang, Q. Wang, and X. Gao, “Robust and flexible discrete hashing
for cross-modal similarity search,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 28, no. 10, pp. 2703–2715, 2018.

[65] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances
in Neural Information Processing Systems, 2009, pp. 1753–1760.

[66] E. Yang, T. Liu, C. Deng, W. Liu, and D. Tao, “Distillhash: Unsupervised
deep hashing by distilling data pairs,” in CVPR, 2019, pp. 2946–2955.

[67] H. Yang, C. Huang, F. Wang, K. Song, and Z. Yin, “Robust semantic
template matching using a superpixel region binary descriptor,” IEEE
Transactions on Image Processing, vol. 28, no. 6, pp. 3061–3074, 2019.

[68] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, “L2, 1-norm
regularized discriminative feature selection for unsupervised,” in IJCAI,
2011.

[69] J. Ye, S. Zhang, T. Huang, and Y. Rui, “Cdbin: Compact discriminative
binary descriptor learned with efficient neural network,” IEEE Transac-
tions on Circuits and Systems for Video Technology, 2019.

[70] X. Yu, Y. Tian, F. Porikli, R. Hartley, H. Li, H. Heijnen, and V. Balntas,
“Unsupervised extraction of local image descriptors via relative distance
ranking loss,” in ICCV Workshops, 2019.

[71] D. Yueqi, L. Jiwen, and W. Ziwei, “Learning deep binary descriptor
with multi-quantization,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2018.

[72] H. Zhang, L. Liu, Y. Long, and L. Shao, “Unsupervised deep hashing
with pseudo labels for scalable image retrieval,” IEEE Transactions on
Image Processing, vol. 27, no. 4, pp. 1626–1638, 2017.

[73] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable
deep hashing with regularized similarity learning for image retrieval
and person re-identification,” IEEE Transactions on Image Processing,
vol. 24, no. 12, pp. 4766–4779, 2015.

[74] W. Zhang, X. Cao, R. Wang, Y. Guo, and Z. Chen, “Binarized mode
seeking for scalable visual pattern discovery,” in CVPR, 2017, pp. 3864–
3872.

[75] Z. Zhang, L. Liu, F. Shen, H. T. Shen, and L. Shao, “Binary multi-
view clustering,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018.

[76] H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep hashing network for
efficient similarity retrieval,” in AAAI, 2016.

[77] M. Zieba, P. Semberecki, T. El-Gaaly, and T. Trzcinski, “Bingan:
Learning compact binary descriptors with a regularized gan,” in NIPS,
2018, pp. 3608–3618.

	Introduction
	Related Works
	Handcrafted Feature Descriptors
	Learning-Based Feature Descriptors
	Supervised Feature Descriptors
	Unsupervised Feature Descriptors

	Methodology
	Framework Overview
	Learning Unified Binary Descriptor
	Collective Binary Embedding
	Unsupervised Graph Learning

	Optimization Algorithm
	Wv Step
	B Step
	v Step

	Generating Out-of-Sample Binary Descriptor
	Refined Matching via Weak Bit Selection

	Experiment
	Dataset Descriptions
	Implementation Details
	Comparisons with State-of-The-Arts
	Results on Brown Dataset
	Results on Cifar-10 Dataset
	Results on HPatches Dataset

	Further Analysis
	Ablation Study
	Transformation Invariance
	Loss Term
	Weak Bit Study
	Parameter Analysis

	Conclusion
	References

