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Joint Raindrop and Haze Removal from a Single
Image
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Abstract—In a recent study, it was shown that, with adversarial
training of an attentive generative network, it is possible to
convert a raindrop degraded image into a relatively clean one.
However, in real world, raindrop appearance is not only formed
by individual raindrops, but also by the distant raindrops
accumulation and the atmospheric veiling, namely haze. Current
methods are limited in extracting accurate features from a
raindrop degraded image with background scene, the blurred
raindrop regions, and the haze. In this paper, we propose
a new model for an image corrupted by the raindrops and
the haze, and introduce an integrated multi-task algorithm to
address the joint raindrop and haze removal (JRHR) problem
by combining an improved estimate of the atmospheric light,
a modified transmission map, a generative adversarial network
(GAN) and an optimized visual attention network. The proposed
algorithm can extract more accurate features for both sky and
non-sky regions. Experimental evaluation has been conducted to
show that the proposed algorithm significantly outperforms state-
of-the-art algorithms on both synthetic and real-world images in
terms of both qualitative and quantitative measures.

Index Terms—Raindrop removal, haze removal, generative
adversarial network, visual attention.

I. INTRODUCTION

RESTORING a windshield or lens image corrupted by
raindrops is beneficial to various computer vision appli-

cations, such as autonomous driving [1] and video surveillance
[2], [3]. Unlike the removal of rain streaks, the shape of
the raindrops is similar to a fish-eye lens, which leads to
the raindrop regions being formed by light reflected from a
wider environment [4]. Thus the images degraded by raindrops
have three types of visibility degradation caused by individual
raindrops, distant raindrop accumulation and the atmospheric
veiling which are visually similar to the haze, and the blurred
appearance of the raindrop regions due to the focus of the
camera on the background scene, respectively.

Many studies have been conducted to address the problem
of raindrop removal from a single image, of which the two
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main approaches are model-based raindrop removal [5], [6],
[7], [8] and deep learning based raindrop removal [9], [10],
[1] respectively. The latter approach has received increasing
interest recently and is the focus of this paper.

A raindrop degraded image is often modeled by the additive
combination of background images and the effect of the
raindrops, such as the recent work in [1]. However, a raindrop
degraded image not only contains a background image and
the effects of the raindrops, but also includes the haze effects.
In addition, an image degraded by the raindrops is often
accompanied by the blurred raindrop regions caused by the
autofocus of the cameras. Therefore, enhancing an image
corrupted by raindrops would require the removal of the haze
effect, along with the removal of raindrops.

Existing methods, however, are designed either only for
raindrop removal, such as the model-based approaches [5],
[6], [7], and the deep learning based approaches [9], [10], [1],
or only for haze removal, such as the model based approaches
[11], [12], [13], and the deep learning based approaches [14],
[15].

These methods can achieve relatively good performance in
removing the targeted type of distortion (i.e. raindrop or haze)
from a single image, but are ineffective in removing both types
of distortions. To our knowledge, there is no existing study
for removing the blurred raindrop regions and the haze effect
simultaneously.

The aim of this paper is to convert an image corrupted
by raindrops and haze into a clean one by removing them
simultaneously. A potential approach to this problem is to
cascade a raindrop removal method with a haze removal
method, which, however, may be limited by the following
challenges. For example, blurring artifacts are often introduced
at the edges of the processed image with a typical haze
removal (or raindrop removal) algorithm, which may lead to
inaccurate estimation of the parameters of the model if the
raindrop removal (or the haze removal) step is followed in the
cascaded setting. In addition, existing haze removal methods,
e.g. [11], [14], [15] are ineffective in removing the dense haze
effects of an image corrupted by dense haze and raindrops. In
order to address these technical challenges, a joint raindrop
and haze removal (JRHR) problem is considered and our
contribution is two-fold:

1) JRHR model: A new model of the JRHR problem is
proposed in order to recover an image corrupted by
raindrops and haze by detecting and removing the effects
of the raindrops and the haze simultaneously.

2) JRHR algorithm: Based on the JRHR model, an inte-
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grated multi-task algorithm is proposed by combining
an improved estimate of the atmospheric light, a modi-
fied transmission map, a generative adversarial network
(GAN) and an optimized visual attention network.

a) Firstly, an improved estimate of atmospheric light
is presented by considering the medium brightness
case, to mitigate certain artifacts, such as blocking
effects, halo and gradient reversal artifacts, and to
produce a smooth transmission map.

b) Secondly, with the estimated value of the atmo-
spheric light, the transmission map is re-derived
for the sky and non-sky regions, respectively, to
facilitate the removal of haze at different levels.

c) Thirdly, an attentive GAN is presented by com-
bining a GAN network with an optimized visual
attention network to recover the background image
from an image corrupted by raindrops and haze.
We present a new loss function for the optimized
visual attention network where a penalty term is
introduced to improve the clarity of the raindrop
regions in the attention maps, to improve its gener-
alization performance by preventing it from over-
fitting, and also to relax the value range of the
network parameters in order to reduce potential
biases in their estimates.

The paper is organized as follows. Section II describes the
related work. Section III formulates a new mathematical model
for the JRHR problem. Section IV presents our proposed algo-
rithm for the problem of JRHR. Section V shows numerical
results. Section VI concludes the paper and draws potential
future research directions.

II. RELATED WORK

In the field of computer vision, there is an increasing
interest in the problem of raindrop removal over the past
decades [16], [17], [18], [19], [3], [20], [21]. Unlike the image
recovery of the rain streaks, there are relatively few papers in
recovering the raindrop degraded image [22], [23], [24], [25],
[9], [26], [27], [1]. According to the required input amount
of the images, the raindrop removal methods can be mainly
divided into multi-image (or video) based methods and single
image based methods. Multi-image (or video) based methods
are mainly used for dynamic scenes, which include other
moving objects apart from the raindrops coupled with possible
movement of lens. For the video sequences with small amount
of raindrops, the corrupted image can be enhanced by directly
averaging the video frames, if the effect of the raindrops on
the pixel is only in a few frames. Single image based methods
are mainly used for static scenes, where no lens and other
clear movement cases are involved.

Multi-image (or video) based methods: Kurihata et al.
[22] proposed a raindrop detecting method by using video
sequences. The shape of raindrops is learned by using principal
component analysis (PCA). However, the number of raindrops
that needs to be learned cannot be determined automatically
for transparent raindrops with various shapes. Roser and
Geiger [23] proposed a raindrop shape model based on cubic

Bezier curves and a method to compare a synthetic raindrop
with a raindrop patch. The raindrops are assumed to be a
sphere section or an inclined sphere section. Later Roser
et al. [24] presented a novel raindrop shape model for the
detection of view-disturbing, adherent raindrops on inclined
surfaces. The synthetic raindrop is assumed to be an oblique
spherical section. Wu et al. [25] presented a machine learning
based approach to detect and remove raindrops on windshield
by analyzing the color, texture and shape characteristics of
raindrops in images. The raindrops are assumed to be circular
in each image frame under light and moderate rainy conditions.
However, these assumptions cannot handle the situation for
covering the windshield completely. Webster and Breckon [26]
proposed two novel extensions for raindrop detection in video
imagery: the use of additional shape priors in the classification
model and the incorporation of scene context for all features
used in the secondary stage of raindrop verification. You et
al. [27] introduced a motion based method for detecting and
removing raindrops in video, based on the observation that the
motion of raindrop pixels is slower than that of non-raindrop
pixels, and the temporal change of intensity of raindrop pixels
is smaller than that of non-raindrop pixels. These methods can
remove raindrops in multiple images, whereas they cannot be
applied directly to a single image.

Single image based methods: Eigen et al. [9] presented
a post-capture image processing solution that can remove
localized raindrop and dirt artifacts from a single image. The
key idea is to collect a dataset of clean/corrupted image pairs
to train a convolutional neural network. The method works
for relatively sparse and small droplets as well as dirt but is
not effective for large and dense raindrops, since it assumes
that the raindrops are separate and opaque small regions. Qian
et al. [1] proposed a single-image based raindrop removal
method by using a GAN with an attention map. The novelty
is to insert an attention map into both generative network and
discriminative network. This method focuses on the raindrop
regions of a raindrop degraded image, but does not consider
the haze effects caused by the distant raindrop accumulation
and the atmospheric veiling.

In this paper, we build a new model of an image corrupted
by the raindrops and the haze in view of the mixed effects
of the background scene, the blurred raindrop regions, and
the haze. An integrated multi-task algorithm by combining
an improved haze removal method, a GAN network and
an optimized visual attention network is used to detect and
remove the raindrops and the haze.

III. MATHEMATICAL MODEL

The aim here is to recover an image corrupted by raindrops
and haze by detecting and removing the effects of the rain-
drops and the haze. In this section, a mathematical model is
presented for the JRHR problem.

Recently, a generalized rain model that depicts rain location
and rain intensity separately [3] is expressed as follows:

O = B + S ◦ R, (1)

where O ∈ NN×M is the input image corrupted by rain,
B ∈ NN×M is the background layer, S ∈ NN×M is the



3

Fig. 1. The architecture of our multi-task joint raindrop and haze removal (JRHR) algorithm, including the determination of parameters 1© and the joint
haze and raindrop removal network 2©.

rain layer, and a region-dependent variable R ∈ NN×M to
indicate the locations of individually visible rain, where ◦
means element-wise multiplication. Here, elements in R are
binary values, where 1 indicates rain regions and 0 indicates
non-rain regions. The model allows to detect rain regions
first, and then to operate differently on rain and non-rain
regions, preserving background details. However, in (1), R
only considers the locations of rain regions and non-rain
regions, without considering the haze effects [11], [28].

To overcome the drawback, a new model of the JRHR
problem is proposed, where we aim to recover the background
layer B from an image O corrupted by raindrops and haze.

O = (B + (I− L) ◦ R) ◦ t + A(I− t), (2)

where O ∈ NN×M is the input image corrupted by raindrops
and haze, B ∈ NN×M is the background layer, A ∈ R
indicates the global atmospheric light, and t ∈ NN×M denotes
the transmission map. R =

∑r
i=1 R̃i is the rain layer, where

R ∈ NN×M and each R̃i ∈ NN×M is a layer of raindrops,
i is the index of the raindrop layers, and r is the maximum
number of raindrop layers. I ∈ NN×M is an unit matrix (all-
ones matrix), (I − L) indicates the locations of individually
visible raindrops, and ◦ denotes the Hadamard product. Here,
elements in L are binary values, where 0 indicates raindrop
regions and 1 indicates non-raindrop regions.

In model (2), our goal is to recover the background layer B
from an input image O. Thus B can be expressed as

B = (O−A(I− t))� t− (I− L) ◦
r∑

i=1

R̃i, (3)

where � denotes the Hadamard division.
In real life, the raindrops are transparent and the haze is

semi-transparent, and the camera is usually focused on the
background scene. Moreover, the shape of the raindrops is
similar to a fish-eye lens, and therefore the raindrop regions
of the images are formed by light reflected from a wider
environment. As a result, the imagery inside a raindrop region
is mostly blurred, and transparent parts of the raindrop regions
contain some information about the background. Based on (2),
we can generate synthetic images that resemble natural images
better than those generated by (1). Thus, we can use these
images to train our network, and perform raindrop removal and
haze removal, which provides convenience for model training.

IV. JOINT RAINDROP AND HAZE REMOVAL ALGORITHM

In this section, we present an integrated multi-task algorithm
in a two-step solution where joint raindrop and haze removal
(JRHR) is performed to solve the problem in (3), as shown
in Fig. 1. The first step is to determine the parameters of the
global atmospheric light A and the transmission map t. The
second step is to recover the background image B from the
degraded image O.

According to (3), given the input image O, our goal is to
estimate the background layer B. The JRHR problem can be
described by

arg min
B,R,L

‖(O − A(I − t)) � t − B − (I − L) ◦ R‖22, (4)

where A is the global atmospheric light parameter, t is the
transmission map, R denotes the raindrop layer, (I − L)
indicates the locations of individually visible raindrops, where
I denotes an unit matrix (all-ones matrix), L denotes the binary
values, ◦ denotes the Hadamard product, and � denotes the
Hadamard division. Here, the elements in L are in binary
values, where 0 indicates raindrop regions and 1 indicates
non-raindrop regions. To reduce algorithmic complexity and
training time, we fix the parameters A and t by estimating
them directly from the input image, but learn the parameters
L and R via a learning algorithm using some training data, as
detailed in our experiments.

A. Determination of parameters

In real life, pictures are often taken in natural light or
lamplight. For an image, the region with bright illuminations
is called sky region, and the region with low illuminations
is called non-sky region. Even in low-light or blowing sand
environments, such as underground or the driving place of the
mine, an image has both sky and non-sky regions.

As shown in Fig. 1 and Fig. 2, for the purpose of estimating
the background layer B, we need to find the global atmospheric
light A ∈ R and the transmission map t = {t1, t2} ∈ NN×M

according to the sky region and non-sky region, respectively.
The method in [11] is based only on non-sky region.

However, even in low-light environments, the transmission
map estimated by the non-sky region is not smooth, but
containing blocking artifacts. Different from [11], the methods
in [12] and [13] take account of the non-sky region and
the sky region together, which are effective in reducing halo
and gradient reversal artifacts. However, the atmospheric light
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A of these methods is determined only with the maximum
values of the light channel image and the minimum values
of the dark channel image, and the transmission map t is
not evaluated according to sky region and non-sky region,
respectively. Therefore, the performance of these methods is
limited with different thickness of haze. In order to solve the
above problems, we take the medium brightness case in full
consideration, as well as present an improved atmospheric
light and the corresponding transmission map.

Fig. 2. The architecture of the determination of parameters. The global
atmospheric light A and the transmission map t = {t1, t2} need to be
determined according to sky and non-sky regions.

(i) Determination of the atmospheric light A
Considering the medium brightness case, an improved at-

mospheric light is presented as follows:

A = pLmed + (1− p)Ddmax. (5)

Here, p = k
K , K and k are the number of all pixels and

the number of light pixels within the image, respectively.
Lmed = median(Olight(x)) is present to denote the median
of the light channel image constructed by several Olight(x)
with the change of the pixel x. Ω(x) denotes a patch cen-
tered at the pixel x. c represents one of R,G,B channels
and Oc means a c channel in Ω(x) of the input image
O. Olight(x) = max

y∈Ω(x)
[ max
c∈{R,G,B}

(Oc(y))] represents a light

channel in Ω(x) that contains the maximum R,G,B values
of each pixel, namely sky region. Ddmax = max(Odark(x))
represents the maximum of the dark channel image con-
structed by several Odark(x) with the change of the pixel
x. Odark(x) = min

y∈Ω(x)
[ min
c∈{R,G,B}

(Oc(y))] represents a dark

channel that contains the minimum R,G,B values of each
pixel, namely non-sky region.

The new method for estimating the atmospheric light has
an advantage in mitigating certain artifacts, such as blocking
effects and halo and gradient reversal artifacts, and thus
resulting in more smooth estimation of the transmission map,
as compared with the methods in [11], [12] and [13].

(ii) Determination of the transmission map t
According to (2), the model of the JRHR problem can be

transformed into (6).

O
A

=
B + (I− L) ◦ R

A
◦ t + I− t. (6)

Based on the improved estimate of the atmospheric light A,
and the transformation model in (6), the transmission map t
can be re-derived for the sky and non-sky regions, respectively.

For non-sky region (O(x) < A), the two minimum filtering
operations are performed on both sides of (6).

min
y∈Ω(x)

[ min
c∈{R,G,B}

Oc(y)

A
]

= min
y∈Ω(x)

[ min
c∈{R,G,B}

Bc(y)+(1−L(y))◦Rc(y)
A ]t(x) + 1− t(x),

(7)

where O(x) means the maximum R,G,B value of the pixel
x, t(x) means the transmission map of the pixel x and A is the
atmospheric light. Bc(y) represents a color channel in Ω(x)
of the background layer, Rc(y) represents a color channel in
Ω(x) of the rain layer, and L(y) is a binary value in Ω(x)
which indicates the location of the raindrop.

When min
y∈Ω(x)

[ min
c∈{R,G,B}

Bc(y)+(1−L(y))◦Rc(y)] is close

to 0, the transmission map t(x) is expressed as

t(x) = 1− ω
min

y∈Ω(x)
[ min
c∈{R,G,B}

Oc(y)]

A
, (8)

where ω is a constant parameter with a value between [0,1]
to make the image looks more natural.

For sky region (O(x) ≥ A), two maximum filtering opera-
tions are performed on both sides of (6).

max
y∈Ω(x)

[ max
c∈{R,G,B}

Oc(y)

A
]

= max
y∈Ω(x)

[ max
c∈{R,G,B}

Bc(y)+(1−L(y))◦Rc(y)
A ]t(x) + 1− t(x).

(9)

When max
y∈Ω(x)

[ max
c∈{R,G,B}

Bc(y)+(1−M(y))◦Rc(y)] is close

to 1, the transmission map t(x) is expressed as

t(x) = 1− ω
1− max

y∈Ω(x)
[ max
c∈{R,G,B}

Oc(y)]

1−A
. (10)

So, a modified transmission map t is presented as follows:

t(x) =

1− ω
min

y∈Ω(x)
[ min
c∈{R,G,B}

Oc(y)]

A , O(x) < A

1− ω
1− max

y∈Ω(x)
[ max
c∈{R,G,B}

Oc(y)]

1−A . O(x) ≥ A
(11)

The new transmission map may provide significant benefits
in two aspects. First, it defines the transmission map according
to the ranges of the new atmospheric light more clearly.
Second, it offers better chances in removing haze at different
levels, as compared with [11], [12] and [13].

B. Recovery of the background image B
In order to reconstruct B, the maximum posteriori estimation

is considered as

arg min
B,R,L

‖(O−A(I− t))� t− B− (I− L) ◦ R‖22. (12)

The global atmospheric light A and the transmission map t
obtained from (5) and (11) are combined in (12) to remove the
haze effects of the degraded image O. An attentive GAN is
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Fig. 3. The architecture of the joint haze and raindrop removal network. G represents the generative network which includes an optimized visual attention
network 1© and an autoencoder network 2©. D represents the discriminative network. A1,A2, and AJ are the initial attention map, the second attention map
and the Jth attention map produced by 1©, respectively.

established to detect and remove the raindrops of the degraded
image O by combining a GAN network and an optimized
visual attention network.

1) Generative network: As shown in Fig. 3, the generative
network consists of two sub-networks: an optimized visual
attention network and an autoencoder network. Pairs of images
with raindrops and without raindrops in the same background
scene are used to train the generative network.

(i) Optimized visual attention network
The purpose of the optimized visual attention network is

to find the raindrop regions of the degraded image O, which
needs to get attention from the autoencoder network.

Each recurrent block at each iteration comprises of five
layers of ResNet for extracting features from the input image
and the previous block, as well as a convolutional long short-
term memory (Cov-LSTM) unit with the convolutional layers
for generating the attention maps [1].

In [1], the visual attention network can help to find raindrop
regions of the input image that need to be attended. However,
it may have potential negative effects in two aspects. First, in
haze removal, typically, blurring artifacts may be introduced at
the edges of the processed image which may lead to inaccurate
estimation of the parameters of the model if the raindrop
removal step is followed in the joint haze and raindrop removal
setting. Second, it is prone to over-fitting with less data, and
may limit the value range of the network parameters and
introduce potential biases in their estimates.

To address these issues, a penalty term is introduced to the
loss function of each recurrent block as follows:

LATT ({Aatt},L) =

J∑
j=1

[θJ−jLMSE(Aj ,L) + λ‖Aj‖22],

(13)
where j is the time step and L is defined in (2), Aj =
ATTj(Fj−1,Hj−1,Cj−1) represents the output attention map
produced by the optimized visual attention network at time
step j. The values of Aj become larger with the increase of
iterations until the J th iteration, which indicates the increase
in confidence. ATTj represents the optimized visual attention
network at j. λ is a constant and set to 0.001. Fj−1 is the

concatenation of the input image and the attention map from
the previous iteration. θ is a calibration factor. Cj = fj◦Cj−1+
ij◦tanh(Wxc∗Xj+Whc∗Hj−1+bc) encodes the cell state for
the next LSTM unit. Hj = oj ◦ tanh(Cj) describes the output
features of the LSTM unit. Here ij = σ[(Wxi ∗ Xj + Whi ∗
Hj−1 + bi)], fj = σ[(Wxf ∗ Xj + Whf ∗ Hj−1 + bf )], oj =
σ[(Wxo ∗Xj + Who ∗Hj−1 + bo)] are an input gate, a forget
gate and an output gate of the convolutional LSTM unit,
respectively. σ is the activation function of sigmoid. Operator
∗ and ◦ are used for the convolution and Hadamard product.
Wx,Wh and b are the weights and the biases of the linear
relationship.

The new loss function may provide significant benefits in
three aspects. First, it improves the clarity of the raindrop
regions in the attention maps. Second, the generalization
performance is improved by preventing it from over-fitting.
Third, it relaxes the value range of the network parameters and
reduces the potential biases in the estimates of the parameters.

(ii) Autoencoder network
The autoencoder network is used here to generate an image

without raindrops. The input of the autoencoder network is the
concatenation between the input image and the J th attention
map from the optimized visual attention network.

The architecture of the autoencoder network is shown in
Fig. 3, which has sixteen conv-leakyrelu blocks and skip
connections to prevent blurred outputs. In order to alleviate
the neuron death, we use several conv-leakyrelu blocks instead
of the conv-relu blocks.

The loss function of the autoencoder network includes two
loss functions: the multi-scale loss and the perceptual loss. The
multi-scale loss function of the autoencoder network is defined
as (14), which can extract features with different scales [1].

LM ({S}, {T}) =

M∑
i=1

φiLMSE(Si,Ti), (14)

where Si and Ti represent the ith output of the decoder layers
and the ground truth which have the same scale. φi represents
the ith weight. The value of φ increases with the scales and is
set typically between [0,1]. The outputs of the last first, third
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and fifth layers are used whereas smaller layers are not used
since the information is insignificant.

Based on the VGG, the perceptual loss function of the
autoencoder network is defined as (15), that measures the
global discrepancy between the features of the autoencoder
s output and the corresponding ground-truth image can be
learned from the training data [1].

LP (B,T) =

M∑
i=1

LMSE(V GG(B), V GG(T)), (15)

where V GG is a pretrained CNN, and produces features from
a given input image. B = G(Or) indicates the output image
of the whole generative network. T is the ground-truth image
without raindrops.

Therefore, the loss function of the generative network can
be written as [1]:

LG = LGAN (B) + LM ({S}, {T}) + LP (B,T) + LATT ({Aatt},L),

(16)

where LGAN (B) = η log(1−D(B)), D represent the process
of producing an image by the discriminative network, and η
is a constant and set to 0.01.

2) Discriminative network: As shown in Fig. 3, to differ-
entiate candidates produced by the generator network from
the true data distribution, the discriminative network aims to
distinguish the regions degraded by the raindrops, which is
constructed by seven convolution layers with the kernel of (3,
3), a fully connected layer of 1024 and each neuron with a
sigmoid activation function [1].

The loss function of the discriminator network can be
expressed as [1]:

LD = − log(D(C))− log(1−D(B)) + γLMAP (B,C,AJ).
(17)

Here, C is a sample image drawn from a pool of real and
clean images, AJ denotes the J th attention map, γ is the cal-
ibration factor. LMAP (B,C,AJ) = LMSE(Dmap(B),AJ) +
LMSE(Dmap(C), 0) describes the loss between the features
extracted from interior layers of the discriminator and the J th

attention map, where Dmap represents the process of produc-
ing a 2D map by the discriminative network. 0 represents an
attention map containing only 0 values and implies that no
specific region needs to be attended.

The proposed algorithm is summarized in Algorithm 1.

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical simulations to demon-
strate the competitive performance of the proposed multi-task
JRHR algorithm.

Experimental Data. We use the following two kinds of
images for the experiment:

[Synthetic images] A dataset RH of 1619 images is com-
posed of two parts, including the dataset captured by Qian et
al. [1] and 500 clean/corrupted pairs of images captured by us.
We use Nikon D5300 to capture various background scenes
which include the raindrops and the haze. The thickness of
the glass slabs is 3 mm. In order to minimize the reflective

Algorithm 1 Joint raindrop and haze removal algorithm
Input: The input image O corrupted by raindrops and the

haze as given in (4).
Output: Recovery of B.

1. Global atmospheric light computation.
A = pLmed + (1− p)Ddmax,
where p,K, k, Lmed, Ddmax are defined as in (5).
2. Transmission map computation.

t(x) =

1− ω
min

y∈Ω(x)
[ min
c∈{R,G,B}

Oc(y)]

A , O(x) < A,

1− ω
1− max

y∈Ω(x)
[ max
c∈{R,G,B}

Oc(y)]

1−A , O(x) ≥ A,
where O(x), Oc(y), ω,Ω(x) are defined as in (5) and (7).
3. Recovery of the background image B.
arg min

B,R,L
‖(O−A(I− t))� t− B− (I− L) ◦ R‖22.

4. Loss function of generative network.
LG = LGAN (B) + LM ({S}, {T}) + LP (B,T) + LATT ({Aatt},L),

where LGAN ,LM ,LP ,LATT are defined as in (13), (14),
(15) and (16).
5. Loss function of discriminative network.
LD = − log(D(C))− log(1−D(B)) +γLMAP (B,C,AJ),
where LMAP , γ,C,AJ are defined as in (17).

effect of the glass, the distance between the glass slabs and
the camera lens has been set between 2 to 8 cm to generate
the diverse raindrop images. Fig. 4 shows some examples of
the dataset RH.

Fig. 4. Samples of the dataset. Top: The images corrupted by raindrops and
haze. Bottom: The corresponding ground-truth images.

[Real-world images] Different from the synthetic images,
the real-world images without ground truth are selected from
Google and Baidu search engines, and captured from several
surveillance cameras without movement of lens.

Our algorithm is compared with the state-of-the-art algo-
rithms on these two kinds of images. The dataset for training
our network is the dataset RH of 1619 images. The testing
images considered for the synthetic image simulations are
randomly picked from the dataset RH. The testing images
considered for the real-world image simulations are selected
from Google and Baidu search engines, and captured from
several surveillance cameras without movement of lens.

Baseline methods. We compare some versions of our JRHR
algorithm: A1 (removing two layers of ResNet), A2 (increas-
ing two layers of ResNet), B1 (removing two convolution lay-
ers of the generative network), B2 (increasing two convolution
layers of the generative network), C1 (removing two attention
maps), C2 (increasing two attention maps), D (changing loss
function to MSE), JRHR (full version of our JRHR algorithm)



7

with the state-of-the-art algorithms: Feature Fusion Attention
Network (FFA)1 [14], All-in-One Dehazing Network (AOD)2

[15], Single Image Haze Removal Using Dark Channel Prior
(DCP)3 [11], CNN-based raindrop removal method (CNN)4

[9], conditional adversarial networks (Pix2Pix)5 [29], and
attentive generative adversarial network (AGAN)6 [1].

All our algorithms are trained from scratch. Other methods
come from online available resources kindly provided by
the authors. For evaluations on synthesized images, we train
the model with the corresponding training data from scratch,
without any fine-tuning. CNN-based raindrop removal method
[9] is implemented in MATLAB. The facilities that were used
to perform the experiments include AMD Ryzen 7 2700 3.2
GHz CPU, NVIDIA GeForce RTX 2080Ti Graphics Card
and 14.9 GB memory. The results are given in Table I. The
results show that the proposed JRHR algorithm has better
performance in mean values of SSIM and PSNR than the DCP,
AOD, FFA, CNN, Pix2Pix and AGAN algorithms. The SSIMs
and PSNRs of the DCP, AOD, FFA, CNN, Pix2Pix and AGAN
algorithms are less than 0.87 and 26 dB. The computational
complexity of both methods in terms of run time was also
approximately calculated. Our proposed algorithms in GPU
are capable of dealing with a 480 × 640 image corrupted by
raindrops and haze in less than 3s.

TABLE I
THE PERFORMANCE AND TIME COMPLEXITY OF OUR JRHR ALGORITHM

COMPARED WITH STATE-OF-THE-ART METHODS.

Algorithm SSIM PSNR (dB) Running time (sec)

DCP [11] 0.7342 19.71 0.47
AOD [15] 0.7840 21.79 2.23
FFA [14] 0.8042 23.88 2.13
CNN [9] 0.8114 22.45 5.32
P2P [29] 0.7458 18.24 1.58

AGAN [1] 0.8640 25.32 2.15

A1 0.8412 24.38 1.56
A2 0.9114 27.64 2.83
B1 0.8571 23.93 1.65
B2 0.9128 28.18 2.35
C1 0.8167 20.59 2.14
C2 0.9128 27.33 2.67
D 0.8735 27.59 3.18

JRHR 0.9131 28.31 2.11

For the experiments on synthetic images, the performance
of the proposed algorithm can be evaluated by Structure
Similarity Index (SSIM) [30] and Peak Signal-to-Noise Ratio
(PSNR) [31], [32]. For the experiments on real-world images,
the performance of the proposed algorithm can be evaluated by
blind image quality index (BIQI) [33] and Blind referenceless
image spatial quality evaluator (BRISQUE) [34].

1https://github.com/zhilin007/FFA-Net
2https://github.com/weber0522bb/AODnet-by-pytorch
3https://github.com/He-Zhang/image dehaze
4https://cs.nyu.edu/∼deigen/rain/
5https://github.com/phillipi/pix2pix
6https://github.com/MaybeShewill-CV/attentive-gan-derainnet

Image quality assessment (IQA) can be achieved using
subjective or objective methods. The real-world images used
in our experiments do not have the ground truth that we can
compare with. For subjective IQA, we can only use single-
stimulus methods, which depend mainly on the way in which
the viewers rate their opinions based on their perceptions of
image quality. One way to ensure the reliability of the results
is to get experienced personnel to rate their opinions based on
their perceptions, and the other way is to recruit a large number
of viewers to rate their opinions based on their perceptions
of image quality. These opinions are afterwards mapped onto
numerical values. This method is costly and time consuming.
Therefore, we consider objective IQA, which is a no-reference
(NR) method for assessing the quality of the enhanced image
obtained from the real-world images without ground truth.
Blind image quality index (BIQI) and blind/referenceless
image spatial quality evaluator (BRISQUE) are commonly
used NR methods which are based on natural scene statistic
(NSS), and evaluated on the LIVE IQA database [35]. Once
trained, the BIQI and BRISQUE methods do not require any
knowledge of the distortions introduced, and can be extended
to any number of distortions. Therefore, it is economically
cheaper and more efficient to obtain the perceptual scores [33],
[34]. In addition, such metrics have been shown to be highly
correlated with the subjective IQA [33] and therefore they can
be used as an alternative to subjective IQA when the resources
for performing perceptual tests are limited.

The analysis of variance (ANOVA) based statistical sig-
nificance evaluation [36] of the proposed JRHR algorithm
as compared with the baseline methods is also given in
Section V. ANOVA is a statistical hypothesis testing heavily
used in the analysis of experimental data (e.g., in image and
speech processing), which is a relatively robust procedure with
respect to violations of the normality assumption, and has
lower probability of introducing Type I errors (false positives)
compared to T-Tests. According to the number of factors
considered in the tests, ANOVA includes one-way ANOVA,
two-way ANOVA, and multi-way ANOVA.

In this paper, considering the single-factor results (e.g.
SSIM, PSNR, BIQI, or BRISQUE), we use one-way ANOVA
based statistical significance evaluation (using the F distri-
bution) [36] on the means results obtained by the proposed
method as compared with the baseline methods, for both the
synthetic images and the real-world images.

A. JRHR for the synthetic images

In the first set of simulations, we evaluate the restoration
performance of the proposed JRHR algorithm described in
Algorithm 1. The synthetic images considered for the first
simulation are randomly picked from an image dataset RH.

For the improved haze removal method, the parameter
ω in the transmission map is a value between [0,1]. For
the optimized visual attention network, the total number of
iterations J of the attention maps, the calibration factor θ
and the parameter λ in the penalty term are set to be 4, 0.8
and 0.001, respectively. F0 is the input image concatenated
with the initial attention map A1 with the values of 0.5. For
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the autoencoder network, in the multi-scale loss function, the
output sizes of the last first, third, and fifth layers are 1/4,
1/2 and 1 of the original size, and φ are set to 0.6, 0.8, 1.0,
respectively. In the loss function of the generative network,
η is a constant and set to 0.01. In the loss function of the
discriminative network, γ is a calibration factor and set to
0.05.

Fig. 5 shows the restoration results of the JRHR algorithm
on the images corrupted by raindrops and haze. According
to the density of the raindrops and haze, the proposed JRHR
algorithm is successful in removing the majority of haze and
raindrops, and recovering background images.

Fig. 5. The restoration results of the JRHR algorithm: (a) Ground-truth
images (b) Input images corrupted by raindrops and haze (c) De-hazed images
(d) Restored background images.

We compare the proposed JRHR algorithm with six state-
of-the-art algorithms as shown in Fig. 6. As observed, the pro-
posed JRHR algorithm significantly outperforms DCP, AOD,
FFA, CNN, Pix2Pix and AGAN algorithms with respect to the
density of the raindrops and haze in removing raindrops and
haze, enhancing the visibility and preserving details.

Table II shows the results of different algorithms. As
observed, the SSIMs of the proposed JRHR algorithm are
closer to 1 than the DCP, AOD, FFA, CNN, Pix2Pix, AGAN
algorithms, and the PSNRs of the proposed algorithm are
better than those of the baseline algorithms. The proposed
JRHR algorithm achieves better results than the baseline
algorithms in terms of both SSIM and PSNR.

To evaluate the statistical significance of the performance,
we perform one-way ANOVA based F-test [36] for the SSIM
and PSNR of the DCP, AOD, FFA, CNN, Pix2Pix, AGAN
and the proposed JRHR algorithms in Table III. The average
results of SSIM and PSNR for 800 synthetic images are also
given in Table III. The p-value stands for the probability of
a more extreme (positive or negative) result than what we
actually achieved, given that the null hypothesis is true. F-
value can be defined as the ratio of the variance of the group

TABLE II
PERFORMANCE COMPARISON OF THE DCP, AOD, FFA, CNN, PIX2PIX

AND AGAN ALGORITHMS FOR THE SYNTHETIC IMAGES.

Algorithm
Image Metric DCP AOD FFA CNN P2P AGAN JRHR

Road SSIM 0.7011 0.7480 0.7647 0.7998 0.7551 0.7679 0.8843
PSNR (dB) 22.82 21.99 26.39 23.67 22.65 24.88 27.87

Entrance SSIM 0.6478 0.6585 0.7151 0.6423 0.7068 0.8112 0.8685
PSNR (dB) 19.88 24.98 25.10 18.86 20.56 25.21 26.92

Hill SSIM 0.7820 0.8349 0.8499 0.9127 0.8708 0.9067 0.9430
PSNR (dB) 25.15 26.17 26.40 26.81 25.87 27.60 29.34

Building SSIM 0.7656 0.7528 0.7528 0.6972 0.7723 0.7465 0.8550
PSNR (dB) 21.79 20.78 22.01 21.71 22.18 24.92 28.38

Safety SSIM 0.8126 0.8070 0.8572 0.7654 0.7768 0.8423 0.8743
PSNR (dB) 18.40 21.47 21.19 23.94 22.24 24.58 27.56

means to the mean of the within group variances. All the F-
tests in this work have been carried out at 5 % significance
level. If p-value is greater than 0.05 (5 % significance level),
then the given results are statistically insignificant. It can be
observed that the p-values of all the algorithms in Table III are
smaller than 0.05, suggesting that the improvement given by
the proposed JRHR algorithm as compared with the baseline
methods is statistically significant.

TABLE III
ANOVA BASED STATISTICAL SIGNIFICANCE EVALUATION OF THE PSNR

AND SSIM FOR THE DCP, AOD, FFA, CNN, PIX2PIX, AGAN AND
PROPOSED JRHR ALGORITHMS.

JRHR (SSIM: 0.9131, PSNR: 28.31 dB)
Algorithm SSIM PSNR

mean F-value p-value mean (dB) F-value p-value

DCP 0.7342 46.22 1.4508e-11 19.71 54.26 2.7089e-13
AOD 0.7840 47.52 7.6227e-12 21.79 42.1 1.1281e-10
FFA 0.8042 25.26 5.5181e-07 23.88 26.43 3.0434e-07
CNN 0.8114 14.37 0.0002 22.45 14.82 0.0001
P2P 0.7458 97.93 1.7067e-22 18.24 84.87 8.9739e-20

AGAN 0.8640 12.57 0.0004 25.32 11.24 0.0008

In Fig. 7, the learned features with the raindrop region
detection by the proposed JRHR algorithm are visualized in
the testing stage. As observed, the learned features is mostly
correlated to the raindrop regions and relevant structures,
which demonstrates the necessity of employing raindrop re-
gion detection in the JRHR algorithm.

The proposed JRHR algorithm is compared with the haze
removal algorithms (DCP, AOD and FFA) and the raindrop
removal algorithms (CNN, Pix2Pix and AGAN) as shown in
Fig. 8 and Fig. 9, respectively. It is observed that the proposed
JRHR algorithm outperforms DCP, AOD, FFA, CNN, Pix2Pix
and AGAN algorithms in removing the effects of the haze and
the raindrops respectively.

In Table IV and V, the statistical significance evaluation of
the performance achieved by the haze and raindrop removal
algorithms, respectively. The average results of SSIM and
PSNR of the haze removal algorithms are given in Table IV,
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Fig. 6. The restoration results of different algorithms on synthesized images (a) Ground-truth images (b) Input images corrupted by raindrops and haze (c)
DCP (d) AOD (e) FFA (f) CNN (g) Pix2Pix (h) AGAN (i) Proposed JRHR.

Fig. 7. The learned features with the raindrop region detection with respect to the density of the raindrops and haze. Top: Input images corrupted by raindrops
and haze. Bottom: Detected raindrop regions.

Fig. 8. The restoration results of different haze removal algorithms on synthesized images (a) Ground-truth images (b) Input images corrupted by haze (c)
DCP (d) AOD (e) FFA (f) Proposed JRHR.

and the average results of SSIM and PSNR of the raindrop
removal algorithms are given in Table V. All the p-values
of the haze removal algorithms (DCP, AOD and FFA) and
the raindrop removal algorithms (CNN, Pix2Pix and AGAN)
are smaller than 0.05. This indicates that the proposed JRHR
algorithm outperforms these compared algorithms in removing
the effects of the raindrops and the haze, respectively.

B. JRHR for the real-world images
In the second set of simulations, we evaluate the restoration

performance of the proposed JRHR algorithm for the real-
world images without ground truth.

Fig. 10 demonstrates the restoration results of the JRHR
algorithm on the real-world images corrupted by raindrops and

TABLE IV
ANOVA BASED HAZE REMOVAL STATISTICAL SIGNIFICANCE EVALUATION

OF THE PSNR AND SSIM FOR THE DCP, AOD, FFA AND PROPOSED
JRHR ALGORITHMS.

JRHR (SSIM: 0.9300, PSNR: 30.70 dB)
Algorithm SSIM PSNR

mean F-value p-value mean (dB) F-value p-value

DCP 0.9041 15.99 6.6483e-05 26.79 23.85 1.1381e-06
AOD 0.9252 4.27 0.0388 29.99 4.85 0.0277
FFA 0.9283 3.95 0.047 30.03 4.32 0.0379

haze, which shows the effectiveness of the JRHR algorithm in
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Fig. 9. The restoration results of different raindrop removal algorithms on synthesized images (a) Ground-truth images (b) Input images corrupted by
raindrops (c) CNN (d) Pix2Pix (e) AGAN (f) Proposed JRHR.

TABLE V
ANOVA BASED RAINDROP REMOVAL STATISTICAL SIGNIFICANCE

EVALUATION OF THE PSNR AND SSIM FOR THE CNN, PIX2PIX, AGAN
AND PROPOSED JRHR ALGORITHMS.

JRHR (SSIM: 0.9289, PSNR: 30.31 dB)
Algorithm SSIM PSNR

mean F-value p-value mean (dB) F-value p-value

CNN 0.9263 10.56 0.0012 27.22 10.04 0.0016
P2P 0.9039 173.35 8.6310e-38 25.70 104.83 6.3504e-24

AGAN 0.9246 4.67 0.0299 30.27 5.09 0.0242

Fig. 10. The restoration results of the JRHR algorithm: (a) Input images
corrupted by raindrops and haze (b) De-hazed images (c) Detected raindrop
regions (d) Restored background images.

recovering background images.
Considering no ground-truth images, we use BIQI and

BRISQUE to evaluate the restoration performance on the
basis of the blind image quality assessment [37]. Table VI
shows that the BIQIs and BRISQUEs of the proposed JRHR
algorithm are smaller than those of DCP, AOD, FFA, CNN,
Pix2Pix and AGAN algorithms. As observed, the proposed
JRHR algorithm outperforms these algorithms in terms of both
BIQI and BRISQUE.

Table VII illustrates the statistical significance evaluation
of the performance by performing one-way ANOVA based F-
test [36] for the BIQI and BRISQUE of the DCP, AOD, FFA,
CNN, Pix2Pix, AGAN and the proposed JRHR algorithms.
All the F-tests in this work have been carried out at 5 %

TABLE VI
PERFORMANCE COMPARISON OF THE DCP, AOD, FFA, CNN, PIX2PIX

AND AGAN ALGORITHMS FOR THE REAL-WORLD IMAGES.

Algorithm
Image Metric DCP AOD FFA CNN P2P AGAN JRHR

Pavilion BIQI (dB) 39.71 32.73 29.02 26.04 35.99 33.84 25.94
BRISQUE (dB) 28.37 26.92 27.98 23.06 22.01 34.94 21.84

Car BIQI (dB) 30.44 27.21 23.93 24.10 29.12 27.08 21.52
BRISQUE (dB) 30.68 26.88 28.54 34.32 26.00 30.79 25.99

Skyscraper BIQI (dB) 38.07 31.27 27.08 27.11 45.11 31.55 21.71
BRISQUE (dB) 34.68 25.61 26.88 24.04 42.67 33.46 17.72

Building BIQI (dB) 58.24 50.56 43.79 52.76 56.57 43.73 41.63
BRISQUE (dB) 27.61 21.26 22.89 21.59 22.95 12.47 12.07

TABLE VII
ANOVA BASED STATISTICAL SIGNIFICANCE EVALUATION OF THE BIQI

AND BRISQUE FOR THE REAL-WORLD IMAGES.

JRHR (BIQI: 27.17 dB, BRISQUE: 18.38 dB)
Algorithm BIQI BRISQUE

mean (dB) F-value p-value mean (dB) F-value p-value

DCP 42.37 27.01 0.0001 32.79 24.38 0.0002
AOD 39.25 26.75 0.0001 28.43 25.64 0.0002
FFA 36.30 14.66 0.0018 25.67 12.93 0.0029
CNN 35.40 7.81 0.0143 24.47 11.33 0.0046
P2P 48.32 29.33 9.1005e-05 35.06 27.59 0.0001

AGAN 31.57 5.79 0.0305 20.19 6.19 0.026

significance level and all the p-values in Table VII are smaller
than 0.05, suggesting that the improvement by the proposed
JRHR algorithm over the baseline algorithms is statistically
significant for the real-world images.

VI. CONCLUSION

The model and the algorithm for the problem of joint
raindrop and haze removal (JRHR) have been investigated in
this paper. Our contributions to this challenging problem are
as follows:

Model: We form a new model of the JRHR problem to
recover an image corrupted by raindrops and haze by detecting
and removing the effects of the raindrops and the haze.

Algorithm: Based on the JRHR model, an integrated algo-
rithm which combines an improved estimate of the atmospher-
ic light, a modified transmission map, a GAN network and an
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optimized visual attention network is presented as a solution
to the JRHR problem.

Numerical experiments show that the proposed JRHR al-
gorithm performs well in restoring the images corrupted by
raindrops and haze. In the future, it is interesting to investigate
how to incorporate an end to end optimization method into the
JRHR algorithm. In the future, it is interesting to investigate
how to incorporate an end to end optimization method into the
JRHR algorithm. It is also tempting to consider blind source
separation idea for restoring the images corrupted by raindrops
and haze.
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