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Abstract— In this paper we combine video compression and
modern image processing methods. Iterative filter methods for
prediction signals based on classic inpainting methods are intro-
duced and extensive parameter tests are described. In order to
construct an alternative prediction filter for video coding, tech-
niques originally employed for inpainting are applied. Thereby,
the structures of the underlying prediction were incorporated into
the filter construction making it signal adaptive. The resulting
optimization problem is solved using the so-called Alternating
Direction Method of Multipliers (ADMM). The undertaken novel
parameter tests are described and it is shown that they improve
the coding efficiency of the tool. The suggested filter is embedded
into a software based on HEVC with additional QTBT (Quadtree
plus Binary Tree) and MTT (Multi-Type-Tree) block structure.
Overall, the proposed filter method obtains average bitrate
savings of 1.35% at an average encoder runtime increase of
28% and decoder runtime increase of 38%. UHD test sequences
achieve bitrate savings of up to 3.66% for Random Access.

Index Terms— High efficiency video coding (HEVC), intra
prediction, inter prediction, PDEs, adaptive filtering, edge detec-
tion, linear filtering, nonlinear filtering, video compression, total
variation, Alternating Direction Method of Multipliers (ADMM).

I. INTRODUCTION

THE increasing demand for high resolution videos,
together with limited transmission and memory capacity

is still driving the research on video compression. As a
core technique in state-of-the-art video codecs such as High
Efficiency Video Coding (HEVC, [1]) a hybrid approach
with block based architecture is used. The term “hybrid”
refers to a combination of prediction from previous decoded
frames (inter) or adjacent decoded blocks from the frame
itself (intra prediction) together with transform coding of the
resulting residual. Thus, the quality of the prediction signal
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has a large influence on the efficiency of video codecs. In this
paper, a method first introduced in [2] based on state-of-
the-art mathematical denoising techniques is elaborated in
more detail. The central idea of this method is to construct a
signal adaptive prediction filter that incorporates the structures
of the underlying prediction signal: to realize this, a variational
approach is used.

In the field of video coding attempts have been made to
use such total variational methods coming from inpainting
to replace intra prediction modes ( [3], [4]). Due to their
diffusion properties these methods have the disadvantage that
they cannot prolong edges well and are therefore not suitable
to replace angular prediction modes. This is the reason why
in this paper instead of replacing the prediction, the prediction
provided by the video codec is chosen as initial condition.

Fig. 1 shows a block diagram of a classic hybrid video
encoder with enclosed decoder depicting the newly introduced
additional prediction filter step that is applied on top of
the selected prediction signal. So far, little work has been
published on tools increasing the efficiency of the codec that
operate at this particular location. Classically ( [5]), linear
filtering techniques have been applied to the reference samples
before predicting to improve intra prediction. Furthermore
after predicting, modern video codecs employ linear smooth-
ing techniques for certain intra prediction modes, which are
only applied on the block boundaries (boundary smoothing,
see [5], [6]).

Recently [7], intra prediction modes have been proposed for
video coding which are based on neural networks. The method
uses the reconstructed samples to generate an affine linear
combination of predefined image patterns as the prediction
signal.

In case of inter, most methods to improve prediction oper-
ate directly at the generation of the prediction block ([8]):
Weighted prediction approaches that superimpose different
reference blocks can be applied to increase the accuracy of
the current prediction, for example. Another classical method
are so-called interpolation filters, that use fixed sets of filter
coefficients to interpolate in between the samples of the ref-
erence block(s) to generate fractional samples for an accurate
inter prediction. In [9], adaptive interpolation filter coefficients
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Fig. 1. Block Diagram of a hybrid video encoder with newly introduced prediction filter and enclosed decoder.

have been proposed which are fitted and signaled frame by
frame.

Only fairly recent, post-prediction methods have been
suggested for the new video compression standard using
affine linear models to compensate local illumination
changes [10], [11]. As the methods established in [12] and
used here, this tool operates on the prediction signal.

The methods used here as the ones described in [12] are
signal adaptive in the sense that they are signaled block-wise.
Thereby, they fit into the framework of classic video coding
tools. But on the other hand, in opposition to other tools used
in video coding, they are unique in the sense that they are
based on nonlinear mathematical models and are therefore
highly (i.e. partly sample-wise) signal adaptive.

In order to overcome the disadvantage of uniform inpainting
attenuating edges, these models base on the idea of using
some kind of a priori knowledge about the structures in the
image. Rudin, Osher and Fatemi [13] developed a method
to smooth images preserving sharp edges using constraints
that involve the statistics of noise. Based on this, Chan and
Shen [14] applied total variation methods to fill in missing
parts of damaged images recovering edges based on the
information from surrounding areas. This approach has been
further developed by [15]. In [16] the authors develop a
method to reconstruct images. In [17] such a method using
structural a priori knowledge is applied to increase the spatial
resolution of an image. All these ideas are based on similar
mathematical methods.

Now, in this paper, as in [2], they are used to develop
a filtering process preserving sharp edges for the prediction
signal in video coding. The resulting optimization problem
can be solved using the Alternating Direction Method of
Multipliers (ADMM) [18, p. 13] which is why this filter is
referred to as ADMM filter in the following.

The diffusion filter method described in [7], [12], [19], [20]
is based on similar ideas as the one employed here. In fact,

in can be shown [21], that in a continuous setting for a certain
choice of parameters, the problems are equivalent. However,
the ADMM filter which is employed here uses an optimization
formulation with a penalty approach which is solved using the
ADMM method. Numerically, this leads to a different solution.
For a more detailed comparison, see [21]. In contrast to the
diffusion filter method, the ADMM filter does not require
testing (and signaling) of variable configurations.

This paper is organized as follows. In section II an
overview of the current state-of-the-art in video coding is
given. section III explains how the prediction filter for video
coding is constructed based on an optimization approach
as in [2]. In section III-A and III-B it is explained how
structural a priori knowledge can be incorporated into the
problem formulation. Additional to [2], section III-C motivates
the selected solving method Alternating Direction Method of
Multipliers (ADMM). In section IV the finite discretization
and the ADMM solving method are described in more detail
than in [2]. In contrast to [2] which was implemented into
HEVC, here, the chosen filter approach is implemented into
a software based on HEVC which uses a QTBT with MTT
block structure. The main addition to [2] in this paper are
the extensive parameter tests in order to improve the filter
efficiency in section V. Eventually, in section VI, the bitrate
savings for the ADMM filter are reported. In this paper the
bitrate savings -also referred to as rate-distortion (RD) gains-
are generally measured in terms of Bjøntegaard delta (BD)
bitrate [22].

II. STATE OF THE ART VIDEO CODING

The standardization of video coding technology plays a
major role in the broad adoption and growing popularity
of video technology. The main purpose of a video coding
standard is to define the interface between encoder and decoder
to ensure interoperability among a wide range of devices.
Video coding standards are designed to provide a maximal
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degree of freedom for the manufacturers to adapt the encoder
to specific applications. More details can be found in [23].

All modern video codecs use the concept of hybrid coding.
The term ’hybrid’ goes as far back as to the 1980s [24]
and describes a combination of two fundamental concepts of
video coding, predictive coding and transform coding. The
basic architecture of a hybrid video encoder together with an
enclosed decoder is shown in Fig. 1, additionally depicting
the new prediction filter step proposed here. The flow of the
encoder is depicted using continuous lines.

For the sake of simplicity, here, we will describe the encoder
only. Note that the standard does not imply a specific encoding
approach. The following is to be read as an example of a
particular encoder such as can be found in [25].

The video signal is divided into pictures and the pictures
are split into blocks. Typically, the picture is divided into
macroblocks of a fixed size consisting of a luma and two
corresponding chroma components. In HEVC [1], the picture
is divided into coding tree units (CTUs) of a size selected using
a configuration parameter in the encoder. A CTU consists of a
luma coding tree block (CTB) and two corresponding chroma
CTBs. A CTB may contain only one coding unit (CU) or may
be split into several CUs using a quadtree decomposition.

Assuming there are already reconstructed blocks in the
picture storage, a prediction for the current block is formed
using preceding blocks. If those blocks are spatially adjacent,
the resulting prediction is called intra prediction. If they are
taken from already reconstructed pictures, i.e., are tempo-
rally preceding, one speaks of inter prediction. The deci-
sion if intra or inter prediction is used is taken on CU
level. To optimize the usage of already reconstructed pictures
in the inter case a motion estimation is performed. The
residual between the prediction and the original block is
calculated, transformed and quantized using a certain quanti-
zation parameter (QP). The resulting coefficients are fed into
the entropy coder. The entropy coder typically uses either
variable-length coding (VLC) (e.g., Huffman codes [26]) or
arithmetic coding (e.g., context-based adaptive binary arith-
metic coding - CABAC [27]). To obtain the reconstructed
samples, the quantized transform coefficients are rescaled
and retransformed. Note that due to the quantization process,
a loss of information takes place. Therefore, the reconstruction
differs from the original. The reconstructed blocks are loop
filtered and stored in the picture buffer where they are used to
predict the following blocks.

III. ADAPTIVE FILTERING USING THE ALTERNATING

DIRECTION METHOD OF MULTIPLIERS:
A VARIATIONAL OPTIMIZATION APPROACH

In this section, it is shown how optimization methods
coming from inpainting using variational approaches can be
used to establish a novel filter method for prediction signals
in video coding.

Let f be the initial prediction provided by the underlying
video codec and extended by the reconstructed samples on the
upper and left side and u its filtered version. In a continuous
setting, extended prediction f can be seen as a function

f : R ⊂ R
2 → R where R := � ∪ � is a set consisting of a

rectangular domain � ⊂ R
2 and the left and upper boundary �

of �. Additionally, we introduce the notion of S, an operator
that restricts the spatial domain of function u : R ⊂ R

2 ×R →
R to the reconstructed area such that

Su = u|�.

In a continuous setting this notion is defined using the Trace
Theorem ([28]). In order to make sure our filtered solution
is close to the reconstructed samples on the sides, we want
‖Su − f|�‖2 to be small. Using a penalty approach, we intro-
duce a penalty term (also referred to as prior) J that is to be
constructed in such a way that it results in a large value for
undesirable solutions u. Now, the optimization problem reads
as follows: The filtered image u shall solve

argmin
u

{1

2
‖Su − f|�‖2 + αJ (u)} (1)

for scalar-valued function J (u) and parameter α ∈ R, α > 0
with boundary condition

∂

∂ν
u(p, t) = 0 ∀p ∈ ∂ R,∀t ∈ R (2)

where ν denotes the normalized vector perpendicular to the
boundary pointing outwards (outer normal) and ∂ R the bound-
ary of set R. The boundary condition specifies the values
that the solution needs to take along the boundary of the
domain. The gradient here is to be understood in a weak
sense and ‖ · ‖ denotes the L2 norm. The time parameter t
relates to the strength of the filtering. Starting for t = 0
with u(·, 0) = f (·), for t > 0 solution u is getting filtered.
For notational convenience, parameter t is neglected in the
following.

A. Overall Smoothing

A common way of smoothing images is to penalize large
gradients. To do so, one chooses

J (u) =
∫

�
|∇u(x)| dx, (3)

where | · | denotes the euclidean norm |x | = √
x T x . This

choice of prior J is called total variation. However, since
this formulation does not incorporate any a priori knowledge
about the image structure, this choice leads to a strong overall
smoothing. For predictions containing strong edges this might
not be desirable. Furthermore, it is known that total variation
can lead to a piecewise constant solution which is also called
”staircasing effect“ [29]. These disadvantages can be avoided
using the following choice of prior.

B. Prior Information on Direction of Edges

It is reasonable to assume that the filtered solution u shares
not only the location but also the direction of edges with the
initial image f . Smoothing along edges should be preferred
over smoothing in perpendicular direction. In order to realize
this, J can be chosen as

J (u) =
∫

�
|D∇u(x)| dx . (4)
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Fig. 2. Illustration of a QTBT structure, taken from [33], c©2017 IEEE.

Here, for fixed, given f , we set ξ = ∇ f
‖∇ f ‖η

, where ‖ · ‖2
η

= ‖·‖2 +η2 and define operator D : L2(�, R
2) → L2(�, R

2)
as

Dν = ν − 〈ξ, ν〉ξ for ν, ξ, ∇ f ∈ L2(�, R
2).

The edge parameter η is related to the size of an edge and
has to be chosen accordingly (for details, see section V). The
operator D is called anisotropic diffusion tensor. Now, eq. (4)
can be reformulated as

J (u) =
∫

�
|∇u(x) − 〈ξ, ∇u〉ξ(x) | dx, (5)

where 〈·, ·〉 denotes a scalar product. This choice of prior J is
called directional total variation. Note that due to the linearity
of D, function J as chosen above is convex. Here, J (u)
penalizes smoothing into directions not parallel to ∇ f (x),
especially those perpendicular to ∇ f (x). In the following,
the argument x is omitted. The expression ∇u − 〈ξ, ∇u〉ξ
reduces to (1 − |ξ |2)∇u in regions where ∇u is collinear to ξ
(i.e., ∃ζ > 0 s.t. ξ = ζ∇u) and to ∇u where ∇u is orthogonal
to ξ . Thus, gradients that are collinear to ξ are favored (since
J (u) becomes smaller) as long as |ξ | �= 0. The strength of
the penalization depends on the norm |∇u|.

C. Theoretical Foundations

For the choice of total and directional variation, in the
continuous case the existence of a minimizer can be shown
for eq. (1) -using standard theorems found for example
in [30]–[32]. However, the uniqueness of the minimizer is not
given in general since the functional in eq. (1) is not strictly
convex. As is explained in [18], the ADMM method was
developed to yield convergence without strong assumptions
like strict convexity. Therefore, the ADMM solving method
is a feasible choice and it is shown in the latter that the
chosen approach achieves impressive results in the suggested
application to video coding here.

IV. FINITE DISCRETIZATION AND IMPLEMENTATION

Let R := � ∪ � be a rectangular set in R
2 of dimension

(N + 
) × (W + 
) where N × W coincides with the size of

the current block and 
 denotes the width of the extension on
the left and upper side. Here, � denotes the rectangular set
of dimension N × W and its extended area shall be denoted
by �. Let the initial image f consist of the given prediction
block of dimension N ×W extended using the 
 reconstructed
samples on the left and upper side. For simplicity, it can be
assumed that 
 = 1. Assume that S is a mask that restricts
the domain of function u to the reconstructed area such that
Su = u|�. Now, solve

argmin
u

{1

2
‖Su − f|�‖2 + αJ (u)} (6)

with

J (u) =
∑

n

|Dn∇u(pn)|. (7)

using boundary condition

∂

∂ν
u(p) = 0 ∀p ∈ ∂ R.

Here, set

Dn = I − ξnξT
n and ξn = ∇ f (pn)

|∇ f (pn)|η ,

where pn ranges over the number of image points in � and
∇ f (pn) ∈ R

2, | · |2η = | · |2 + η2 and I ∈ R
2×2 denotes

the identity. Eq. (6) is solved using the ADMM method (as
described in section IV-C) and then the initial prediction f in
the codec is replaced by its filtered descendant u. This filter
method is referred to as ADMM filter in this paper.

A. Implementation

The ADMM filter is embedded into a software based on
HEVC [34] that includes an additional QTBT block struc-
ture and MTT partitioning: That means that the quadtree
structure of HEVC is replaced by a Quadtree plus Binary
Tree (QTBT, [35]) block structure. An example for a QTBT
partitioning is shown in Fig. 2. The CTUs are firstly divided in
a quadtree manner and then further partitioned using a binary
tree structure. QTBT allows more flexibility in the shape of the
CU structure which can be rectangularly shaped now instead of
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Fig. 3. Multi-Type-Tree structure, (a) quad-tree partitioning (b) vertical binary-tree partitioning (c) horizontal binary-tree partitioning (d) vertical center-side
triple-tree partitioning (e) horizontal center-side triple-tree partitioning.

Fig. 4. Left: Original intra prediction. Right: Intra prediction after ADMM
filtering.

only squared. In order to better capture objects in the center of
blocks, instead of the binary partitioning the so-called Multi-
Type-Tree (MTT) partitioning ([36]) is used here. In addition to
quad-tree splitting and binary vertical and horizontal splitting,
MTT introduces horizontal and vertical center-side triple-tree
partitionings as depicted in Fig. 3. All other non-HEVC tools
in [34] are turned off.

The filter is tested at coding unit (CU) level where the
shape of the block depends on the outcome of the MTT
block partitioning. It is applied on the luminance signal
and uses the provided intra or inter prediction as described
above. Parameter 
 denoting the required width of the outer
reconstructed signal is set to one. For more details on how the
the MTT partitioning can influence gains and complexity of
a filter method we refer to [20]. The choice of the required
parameters for the ADMM filter is described in section V.
In contrast to the diffusion filter, the ADMM filter tests only
one filter configuration on the CU block which is to be en- or
disabled. The information whether the ADMM filter is applied
or not is sent at CU level. The filtering is restricted to larger
blocks, i.e., it is not applied for blocks with an area ≤ 32.

B. Example

Fig. 4 demonstrates the impact of the suggested ADMM
filter for an angular intra prediction block. On the left hand
side, the original intra prediction is depicted. On the right,
the result of applying the ADMM filter is shown. The ADMM
filter smooths and denoises the upper area and the bottom
left corner of the prediction block while the edges of the
underlying prediction remain sharp.

C. Alternating Direction Method of Multipliers

There exist several optimization algorithms for convex prob-
lems in discrete spaces. The Alternating Direction Method

of Multipliers is a fusion of dual ascent, the augmented
Lagrangian method and the method of multipliers which
combines their advantages: It is intended to blend the decom-
posability of the dual ascent with the convergence properties
of the method of multipliers. More details on this can be
found in [18].

In general, ADMM can be used to solve problems of the
following form

min F(u) + G(z)

subject to Au + Bz = c, (8)

where u ∈ R
o, z ∈ R

m , A ∈ R
w×o , B ∈ R

w×m and
c ∈ R

w. It is assumed here that F and G are convex. It can be
seen that a splitting of variables took place, i.e., the objective
function was separated across variables u and z. The associated
augmented Lagrangian reads as

L(u, z, v) = F(u) + G(z) + 〈v, Au + Bz + c〉
+ρ

2
|Au + Bz − c|2.

Then, ADMM consists of the following iteration steps

uk+1 := argmin
u

Lρ(u, zk, vk) (9)

zk+1 := argmin
z

Lρ(uk+1, z, vk) (10)

vk+1 := vk + ρ(Auk+1 + Bzk+1 − c), (11)

where ρ > 0. Clearly, ADMM features the main steps of
dual ascent and the method of multipliers: it consists of
an u-minimizing step (9), a z-minimizing step (10) of the
Lagrangian and an update step of the Lagrange multiplier (11).
Similarly as in the method of multipliers, the step size in
eq. (11) is chosen as penalty parameter ρ. The name “alternat-
ing direction“ stems from the fact that the variables u and z
are updated in an alternating fashion.

To make use of the Alternating Direction Method of Multi-
pliers (ADMM), one recasts the optimization problem eq. (6)
onto

argmin
u

{1

2
|Sz − f|� |2 + αJ (u)}

subject to u = z. (12)

The associated augmented Lagrangian (in scaled form,
see [18]) reads as follows

Lρ(u, z) = 1

2
|Sz − f|�|2 + αJ (u) + ρ

2
{|u − z + v|2 − |v|2},
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where penalty parameter ρ ∈ R, ρ > 0 and v is the Lagrange
multiplier corresponding to constraint u = z. To solve
eq. (12)„ one aims to find argmin

u,z
Lρ(u, z). To do so, a split-

ting of the variables u, z is performed and the minimization
problem is separated into

min
u

{αJ (u) + ρ

2
|u − z + v|2}, (13)

and

min
z

{1

2
|Sz − f|� |2 + ρ

2
|u − z + v|2}. (14)

To solve eq. (14)„ calculate the derivative with respect to z
and set it to zero

0
!= S∗(Sz − f|�) − ρ(u − z + v),

which leads toz
!= (S∗S + ρ I )−1[S∗ f|� + ρ(u + v)].

Here, S∗ denotes the adjoint of the subsampling matrix S and
I denotes the identity matrix. Because of the special structure
of S, the matrix (S∗S + ρ I ) is invertible (more details see
subsection IV-E). This is used in algorithm 1 to calculate zk .
The extended prediction block f is used as initialization for
z0. In algorithm 1, the Lagrange multiplier v is updated into
the direction of steepest ascent u − z, and ρ serves as step
size.

Algorithm 1 Alternating Direction Method of Multipliers

D. Gradient Projection Method

To numerically solve eq. (13) as was done in [16], the prob-
lem is reformulated as

proxJβ (y) := argmin
u

{1

2
|u − y|2 + βJ (u)}, (15)

where parameter β ∈ R, β > 0. The operator defined in
eq. (15) is called proximal operator [18].

In algorithm 1, it is required to solve eq. (15) for uk . Eq. (4)
can be dualized such that

J (u) =
∑

n

|Dn∇u(pn)| = sup
∈U

〈−divD∗, u〉, (16)

where U := { ∈ (R2)nr P | n ∈ R
2, |n | ≤ 1} denotes the

unit ball with nr P = (N + 
) · (W + 
) denoting the number
of points in a block. This can be easily understood in the
1D case, where |υ| = υ ·  for  = sign(υ) is equivalent to
|υ| = sup

∈[−1,1]
 · υ for some υ ∈ R. In eq. (16), the adjoint

of D = (Dn)n denoted by D∗ = (D∗
n )n and div is to

be understood pointwise. Substituting eq. (16) into eq. (15),
the latter can be rewritten as

min
u

sup
∈U

{1

2
|u − y|2 + β〈−divD∗, u〉} (17)

As the function is convex in u and concave in ,
the order of the minimum and supremum can be exchanged
([37, Corollary 37.3.2]). Therefore, it holds

sup
∈U

min
u

{1

2
|u − y|2 + β〈−divD∗, u〉}. (18)

To solve the inner minimization, eq. (18) is to be derived with
respect to u and set to zero. This leads to

u∗ = y + βdivD∗,

which solves the inner minimization of eq. (18). To find the
suprema, the gradient of

sup
∈U

{1

2
|u∗ − y|2 + β〈−divD∗, u∗〉}

with respect to  is computed. This leads to the derivation
term β D∇(u∗) which denotes the steepest ascent of ρ. Thus,
 is updated in every iteration step by

k = PU(k−1 + sβ D∇(u∗)),

where s > 0 serves as step size and PU denotes the orthogonal
projection onto the unit ball. Eventually, eq. (15) is solved by
iteratively computing the dual variable

k = PU(k−1 + sβ D∇(y + βdivD∗k−1))

inserting the iterative version of u∗. Then, after K prox itera-
tions u is approximated by

uK prox = y + βdivD∗K prox .

This is realized in algorithm 2.

E. Finite Discretization

In a discrete setting, as mentioned in the beginning,
the directional total variation eq. (4) coincides with

J (u) =
∑

n

|Dn∇u(pn)|,

where

Dn = I − ξnξT
n and ξn = ∇ f (pn)

|∇ f (pn)|η ,
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Algorithm 2 Gradient Projection Method

where pn ranges over the number of image points and
∇ f (pn) ∈ R

2, | · |2η = | · |2 + η2 and I ∈ R
2×2 denotes the

identity. Now, recall the definition for forward and backward
differences,

D+
xi

u(pn, t) := u(pn + hei , t) − u(pn, t) (forward difference)

and

D−
xi

u(pn, t) :=u(pn, t)−u(pn − hei , t) (backward difference)

for a sample pn = (x1, x2)
T ∈ R

2, t ∈ R, parameter h > 0
and unit vector ei ∈ R

2.
Discretize ∇ f ∇ f T with backward differences D−

x1
f and

D−
x2

f . On the top respectively left border where the recon-
structed samples end, a mirrored (Neumann) boundary con-
dition is used. Then, the gradient matrix ∇ f ∇ f T can be
calculated

∇ f ∇ f T =
(

(D−
x1

f )2 D−
x1

f D−
x2

f
D−

x1
f D−

x2
f (D−

x2
f )2

)
.

For every pn inside the extended prediction block, there is a
anisotropic diffusion tensor Dn such that

Dn = 1

(D−
x1 f )2 + (D−

x2 f )2 + η2

×
(

1 − (D−
x1

f )2 D−
x1

f D−
x2

f
D−

x1
f D−

x2
f 1 − (D−

x2
f )2

)

Since Dn is real and symmetric, it holds that Dn = D∗
n , i.e., Dn

is self adjoint. After applying D∗ to the current dual variable
k−1, its divergence has to be calculated. This is realized using
forward differences, i.e.,

div = D+
x1

+ D+
x2

,

using a mirrored boundary condition on the right respectively
lower boundary.

To solve eq. (14) discretely, one has to take a closer look at
the specific structure of mask S. By definition, S restricts the
domain of function u to the reconstructed area, i.e. it holds
that Su = u|� . Mask S is a sparse matrix of dimension
nr RecBdry × nr P where nr RecBdry = N + 
 + W + 
 − 1
that possesses unit rows corresponding to the reconstructed
boundary indices. The matrix is sparse and is zero everywhere
except on the diagonal. The matrix S∗ is of dimension nr P ×
nr RecBdry. The matrix S∗S is of dimension nr P × nr P .
It is a sparse matrix with unit rows at the indices correspond-
ing to the reconstructed boundary and zero rows otherwise.
Since S∗S is a diagonal matrix, the term (S∗S + ρ I ) is
invertible. Because of its special structure, multiplying by the
term (S∗S + ρ I )−1 leads to dividing the inner points of the
block by ρ and the top and left boundary by 1 + ρ. This
way, (S∗S + ρ I )−1 can be implemented efficiently. Applying
S∗ to f|� leads to an array of dimension nr P which is
zero everywhere except at the indices corresponding to the
reconstructed boundary.

V. PARAMETER TESTS

In the numerical implementation of the ADMM filter,
several parameters have to be chosen. It will be shown that
the right choice of parameter (sets) have a strong influence
on the RD gains of the filter. The parameters to be chosen
consist of the number of iterations of the gradient projection
method K prox in algorithm 2, the number of iterations of
the ADMM solving method K ADM M in algorithm 1, penalty
weight α > 0, parameter ρ > 0 in the Lagrangian and edge
parameter η ≥ 0 related to the weighting of the gradient
directions in penalty functional J . Since testing the complete
parameter space would result in a prohibitive amount of
computations, the iteration parameters K prox and K ADM M

were tested separately while the other parameters were set
fixed. Setting K prox = 2 and K ADM M = 5 lead to a
reasonable trade-off between RD gain and complexity [38].

Furthermore, the setting of penalty weight α in terms of
block sizes was investigated. Since the penalty weight α is
linked to the stepsize s = 1

8β2 = ρ2

8α2 in the computation of
the proximal operator, choosing it too large will result in a very
slow convergence, choosing it too small will make the method
instable. Fig. 5 shows the number of blocks where weight α
was chosen on the z-axis. The corresponding choice of the
weight α is depicted on the x-axis, distinguished by the size of
the quadratic blocks on the y-axis of height respectively width
{8, 16, 32}. To collect the data for this figure, an encode-only
test was set up where different weights α were tested and the
best choice was saved. The costs did not include a signaling
for the weight α. As can be observed in Fig. 5, the weight α
was mostly chosen as α = 0.01 for CU blocks of size 8 and
as α = 0.05 for larger block sizes in the setting of HEVC
partitioning. This choice serves as a base for the following
parameter tests.

Edge parameter η influences the effect of prior

J (u) =
∑

n

|Dn∇u(pn)| =
∑

n

|∇u(pn) − 〈ξn ,∇u(pn)〉ξn |,
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Fig. 5. Count of the chosen penalty weight α ∈ [0.0005, . . . , 10] on the
z-axis for quadratic blocks of size Blocksize, sequence ParkScene, QP22.

since

Dn = I − ξnξT
n and ξn = ∇ f (pn)

|∇ f (pn)|η ,

where | · |2η = | · |2 + η2, η ≥ 0 and I ∈ R
2×2 denotes the

identity. Recall that functional J serves as a penalty term,
i.e. if J (u) is large, u is unlikely to be chosen as a solution.

Since there is no straightforward way of how to choose
the parameter space (α, η, ρ), the parameters were empirically
tested [38] in a software based on HEVC with additional
QTBT block structure [34]. Penalty weight α was tested to
be α ∈ {0.005, 0.01, 0.05}, edge parameter η ∈ {0, 0.01, 1, 2}
and parameter ρ ∈ {0.1, 0.3, 0.5}. In the encoder all resulting
combinations (α, η, ρ) in the parameter space were simulated.
In the cases where the ADMM filter improved the original,
the RD cost of the original (without ADMM filter) and the
improved cost with ADMM filter were saved. Then, the cases
where the ADMM filter was chosen using a specific parameter
combination (number of occurence of the parameter combina-
tion) was saved together with the corresponding block size.
No additional costs for the parameters were simulated.

To evaluate this encode-only test, the chosen CU blocks
were separated into those that had at least one side equal
to 8 and those with larger sides. Note that the ADMM filter
(taken the diffusion filter as a model) was configured to be only
applied to CU blocks of area larger than 32, thus cases of width
and height equal to 4 were not considered. A finer separation
into block size types or QPs did not prove to be effective
in the sense of RD improvements. Furthermore, the cases
were separated into intra and inter blocks. For each class of
block type, the occurrence of a certain parameter combination
(αi , η j , ρk) for i, k ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4} was multiplied
by the corresponding percentage in cost improvement. Cost
improvement is referring here to the difference between the
cost of the unfiltered original and the ADMM filtered case.
The multiplication of the number of occurences of a specific
parameter combination and the cost improvement percentage
is referred to as ”improvement weight“ in the following.

TABLE I

BEST PARAMETER COMBINATIONS FOR INTRA BLOCKS
WITH BOTH SIDES LARGER THAN 8

TABLE II

BEST PARAMETER COMBINATIONS FOR INTRA BLOCKS

WITH AT LEAST ONE SIDE EQUAL TO 8

TABLE III

ALL INTRA COMPARISON OF (α, η, ρ) = (0.01, 1, 0.3) FOR ALL BLOCK

TYPES (Y LEFT HAND SIDE) AND AS IN EQ. 19 (Yimpr RIGHT HAND
SIDE), 1 FRAME, Q P ∈ {22, 27, 32, 37}, MEASURED IN BD RATE

The idea is here that the larger the weight, the larger its
presumable improvement impact is on the test set.

Table I shows the best five parameter combinations
(i.e., the one with the largest improvement weights) for intra
blocks with both sides larger than 8 sorted by improve-
ment weight. Here, the four best parameter combinations
seem to be quite similar with respect to their improvement
weights. Empirical tests lead to the choice of combination
(0.005, 1, 0.1) which is highlighted in gray. Table II shows
the best three parameter combinations for intra blocks of
at least one side equal to 8 sorted by improvement weight.
Here, the results indicate that the best case here by far is the
parameter combination (0.005, 1, 0.5) (highlighted in gray).
As empirical tests confirmed this, the parameters for intra
blocks were set as

(α, η, ρ)intra =
{

(0.005, 1, 0.5) if one block size = 8

(0.005, 1, 0.1) else.

(19)

In Table III, a comparison of tests with two different para-
meter combinations are shown in case of an AI configuration
for one frame. The corresponding configuration files are taken
from [39]. The results in the left columns were obtained choos-
ing (α, η, ρ) = (0.01, 1, 0.3) for all block types. The results
in the right columns were obtained choosing the parameter
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TABLE IV

BEST PARAMETER COMBINATIONS FOR INTER BLOCKS
WITH BOTH SIDES LARGER THAN 8

TABLE V

BEST PARAMETER COMBINATIONS FOR INTER BLOCKS

WITH AT LEAST ONE SIDE EQUAL TO 8

TABLE VI

RANDOM ACCESS COMPARISON OF (α, η, ρ) = (0.01, 1, 0.3) FOR ALL

BLOCK TYPES (Y LEFT HAND SIDE) AND AS IN EQ. 20 (Yimpr RIGHT

HAND SIDE), 17 FRAMES, Q P ∈ {22, 27, 32, 37},
MEASURED IN BD RATE

combinations as in eq. 19 resulting from the parameter tests
described above. It can be seen that the results are improved
by overall 0.11%.

In tables IV and V, the best parameter combinations in
terms of improvement weight for RA and inter blocks are
depicted. Here, both cases seem to indicate that the parameter
combination (α, η, ρ) = (0.005, 1, 0.5) obtains the best results
and is therefore highlighted in gray.

In Table VI, the results for choosing (α, η, ρ) =
(0.01, 1, 0.3) for all block types is compared to choosing
eq. 19 for intra blocks and (0.005, 1, 0.5) for all inter
blocks, i.e.,

(α, η, ρ) =

⎧⎪⎨
⎪⎩

(0.005, 1, 0.5) inter block,

(0.005, 1, 0.5) intra block, if one block size =8

(0.005, 1, 0.1) intra block, else.

(20)

As can be seen here, the choice of the right parameter set
improves the results by overall by 0.3%.

VI. RESULTS

In Table VII, Table VIII, Table IX and Table X the bitrate
savings for the ADMM filter in All Intra and Random Access
configuration are depicted for full sequences for Q P ∈
{22, 27, 32, 37} and for Q P ∈ {27, 32, 37, 42}. The tool has

TABLE VII

ALL INTRA, FULL SEQUENCES, Q P ∈ {22, 27, 32, 37},
MEASURED IN BD RATE WITH ADMM FILTER

TABLE VIII

ALL INTRA, FULL SEQUENCES, Q P ∈ {27, 32, 37, 42},
MEASURED IN BD RATE WITH ADMM FILTER

TABLE IX

RANDOM ACCESS, FULL SEQUENCES, Q P ∈ {22, 27, 32, 37}, MEASURED

IN BD RATE WITH ADMM FILTER

been implemented into a software based on HEVC [34] and
configured using configuation files found in [39]. In particular,
QTBT with MTT block structure is turned on and large
CTUs of size 128 are used. In case of Intra, there exists
an implicit split such that the largest CUs are of size 64.
The minimal CU size is 8 × 8 and the minimal TU size
is 4 × 4.

It can be observed in tables VII, VIII, IX and X that the
ADMM filter works best for sequences of high resolution such
as UHD sequences. For AI, the RD gains are almost the same
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TABLE X

RANDOM ACCESS, FULL SEQUENCES, Q P ∈ {27, 32, 37, 42}, MEASURED
IN BD RATE WITH ADMM FILTER

Fig. 6. RD Plot for test sequence Rollercoaster.

for Q P ∈ {22, 27, 32, 37} and for Q P ∈ {27, 32, 37, 42}.
In case of RA, the results for Q P ∈ {22, 27, 32, 37} are
slightly better.

In Fig. 6 the rate-distortion plots for test sequence Roller-
coaster for five QPs 22, 27, 32, 37 and 42 are depicted. There
is a visible distance for all five QPs which corresponds to the
considerable RD gain that was achieved.

VII. CONCLUSION

In order to construct a prediction filter mathematical tech-
niques originally used for inpainting were applied using a
variational approach. Thereby, the structures of the initial
prediction provided by the video codec could be incorpo-
rated into the filter construction which resulted in a sig-
nal adaptive tool. The established optimization problem was
solved using the so-called Alternating Direction Method of
Multipliers (ADMM). A motivation for the selected solving
method was given and its discretization was described in
detail. Using a sequence of sophisticated parameter tests
involving the magnitude of cost improvement, a suitable
parameter set for the ADMM filter was determined which
improved the bitrate savings substantially. The ADMM filter
was embedded into a software based on HEVC with additional

QTBT with MTT block structure and selected in a block-wise
manner.

Overall, the ADMM filter method obtained bitrate savings
of 1.54% for AI for 87% encoding and 84% decoding com-
plexity increase. In case of RA, bitrate savings of 1.35%
were accomplished at a encoding complexity increase of 28%
and decoding complexity increase of 38%. For certain UHD
sequences, it achieved bitrate savings of up to 3.01% for AI
and 3.66% for RA.
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