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Abstract— Currently, video text spotting tasks usually fall into
the four-staged pipeline: detecting text regions in individual
images, recognizing localized text regions frame-wisely, tracking
text streams and post-processing to generate final results. How-
ever, they may suffer from the huge computational cost as well
as sub-optimal results due to the interferences of low-quality
text and the none-trainable pipeline strategy. In this article,
we propose a fast and robust end-to-end video text spotting
framework named FREE by only recognizing the localized text
stream one-time instead of frame-wise recognition. Specifically,
FREE first employs a well-designed spatial-temporal detector
that learns text locations among video frames. Then a novel
text recommender is developed to select the highest-quality text
from text streams for recognizing. Here, the recommender is
implemented by assembling text tracking, quality scoring and
recognition into a trainable module. It not only avoids the
interferences from the low-quality text but also dramatically
speeds up the video text spotting. FREE unites the detector and
recommender into a whole framework, and helps achieve global
optimization. Besides, we collect a large scale video text dataset
for promoting the video text spotting community, containing
100 videos from 21 real-life scenarios. Extensive experiments on
public benchmarks show our method greatly speeds up the text
spotting process, and also achieves the remarkable state-of-the-
art.

Index Terms— Video text spotting, end-to-end, detection, track-
ing, quality scoring.
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I. INTRODUCTION

V IDEO text spotting is still an important research topic due
to its large amount of applications such as port container

number identification in industrial monitoring, license plate
recognition in the intelligent transportation system, and road
sign recognition in advanced driver assistance system.

Previous methods [1]–[3] are usually fourfold: detecting text
regions in individual images, recognizing localized text regions
one-by-one, tracking text regions as streams, and applying
post-processing techniques for generating the final results.
However, these methods suffer from two major problems: 1)
Massive computational overhead because of the one-by-one
text recognition strategy, which may be impracticable espe-
cially when working on front-end devices such as surveil-
lance cameras or even in-vehicle cameras. 2) Sub-optimal
results due to the overwhelming of low-quality (e.g. blurring,
perspective distortion, rotation and poor illumination, etc.)
text and none-trainable pipeline strategies. In practice, it is
unnecessary to recognize each text region in text streams,
which will result in huge computational costs and also bring
various interferences of low-quality text. Learned from some
end-to-end text spotting methods [4]–[7] in single images,
the non-trainable pipeline strategies will also decrease video
text spotting performance. Besides, some motion interferences
(e.g. object/camera moving or shaking) will lead to text regions
missing in video text detection, and then the detectors will
suffer from the low recall problem, as shown in previous
methods [8]–[13].

To circumvent the above problems, the main idea is to select
the highest-quality (e.g. clear and horizontal) text region from
each text stream, and then only the selected text region needs
to be recognized. Thus the selection-and-recognition strategy
is much more efficient than those one-by-one strategies. Cor-
respondingly, it needs us to design a robust quality scorer
to assign a quality score to each detected text. To further
speed up the process of video text spotting, we also attempt to
simplify and assemble the text tracking, text quality scoring
and recognition into a unified trainable module named text
recommender (See ‘text recommender’ in Figure 1). In this
way, text recommender will benefit from the complementarity
among tracking, scoring and recognition. It not only largely
decreases the interferences of low-quality text, and also greatly
decreases the computational cost compared to the one-by-one
recognition strategy. For the low recall problem in detection,
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Fig. 1. Illustration of the proposed FREE, which consists of two sub-
modules: the video text detector for generating candidate text regions and
the text recommender for recognizing the highest-quality text regions in their
tracked text streams. Dashed lines denote back-propagation.

spatial-temporal information (e.g. text location and context)
between consecutive video frames can be exploited to recall
text regions as many as possible, which is important to
generate complete text streams. Finally, we can integrate the
spatial-temporal video text detector and the text recommender
into a framework, and train the framework end-to-end for
global optimization.

In this article, we propose a Fast and Robust End-to-End
video text spotting approach named as FREE by integrating
a well-designed spatial-temporal video text detector and a
text recommender into an end-to-end trainable framework,
as shown in Figure 1. Concretely, the spatial-temporal video
text detector is designed to recall more text by referring to
the temporal relationship between consecutive video frames.
Text recommender assembles text tracking, text quality scoring
and text recognition into a unified trainable network. Here,
the tracking module is responsible for generating text streams,
and the quality scoring module is designed to assess the
quality of each text region. Then the detector and the text
recommender are combined as a network, which can be
trained in an end-to-end manner (detailed in Methodology
Section). Note that, the proposed framework is theoretical
much faster than existing multi-stage methods [1]–[3], [14].
This is because FREE just needs to recognize the one and only
one text region with the highest quality score in a tracked text
stream, contrasting to previous methods recognizing every text
region from the tracked text stream. As a result, it can largely
speed up the process of the recognition process, progressively
improve the efficiency of the video text spotting.

Last but not least, we also note that the scenario scales
of existing video text benchmarks are limited. For example,
the largest video scene text dataset ‘Text in Videos’ [15]
only has 49 videos from 7 different scenarios, which may
limit researches on video text understanding. In this article,
we collect a large-scale video text dataset (abbr. LSVTD)
containing 100 videos from 21 natural scenarios, and hope to
help the research of video text understanding.

Contributions of this article are summarized as follows:
(1) We design a novel text recommender for selecting the
highest-quality text from text streams and then only recog-
nizing the selected text regions once. It significantly speeds
up the recognition process, and also improves the video
text spotting performance. (2) We integrate a well-designed
spatial-temporal text detector and a text recommender into an
end-to-end trainable framework named as FREE for fast and
robust spotting video text. The spatial-temporal detector can
help mine more text regions between consecutive frames. (3)
To promote the progress of video text spotting, we collect
and annotate a larger scale video text dataset, which contains

100 videos from 21 different real-life situations. (4) Extensive
experiments demonstrate that our method is fast and robust
and achieves impressive performance in video scene text
spotting.

Declaration of major extensions compared to the conference
version [8]: (1) We achieve the video text spotting in an
end-to-end trainable manner instead of the two-staged form
in its conference version. To achieve this, we replace EAST
[16] with an end-to-end trainable text spotting framework Text
Perceptron [17] (abbr. TP), in which the original recognition
module in TP is replaced with our text recommender sub-
module. (2) We further enhance the text recommender mod-
ule by redesigning the template estimation mechanism in a
learnable manner rather than roughly synthesizing templates
by K-Means. This is because K-Means is inherently sensi-
tive to outlier samples and not robust to complex scenarios.
(3) Correspondingly, we explore the effects of FREE with
more extensive experimental evaluations, which demonstrates
the advantages of the extended version. Besides, we refine
LSVTD by removing some consecutive background frames,
and provide more detailed characteristics.

II. RELATED WORK

With the rapid development of artificial intelligence tech-
niques [18]–[21], great progress has been made in many
isolated applications such as causal inference [22], named
entities identification [23], question answering [24], scene text
spotting [5], [6], [17] and video understanding [25], [26].
However, it is very important to build multiple knowledge
representation [27] for understanding the real and complex
world. Real-time text spotting [2], [3], [8] is such a complex
task helping to understand the complex world, which actually
needs heterogeneous technique fusion including object detec-
tion, tracking as well as scene text recognition techniques.
Here, we roughly brief the text spotting techniques into two
categories as follows.

A. Text Reading in Single Images

Traditionally, the scene text reading system contains a text
detector for localizing each text region and a text recognizer
for generating corresponding character sequences. For text
detection, numerous methods are proposed to localize regular
and irregular (oriented and curved etc.) text regions, which
can be categorized as anchor-based [28]–[33] and direct-
regression-based [16], [34], [35]. For text recognition, the task
is now treated as a sequence recognition problem, in which
CTC [36]-based [37]–[39] and attention-based [40]–[44] meth-
ods are designed and have achieved promising results.

Recently, in order to sufficiently exploit the complementar-
ity between detection and recognition, many methods [4]–[7],
[17], [37], [45]–[50] are proposed to spot text in an end-to-end
manner, which utilize the recognition information to optimize
the localization task.

In fact, lots of text reading applications actually work in
video scenarios, in which scene text spotting from multiple
frames may be more meaningful.
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B. Text Reading in Videos
In recent years, only a few attention has been drawn to spot-

ting video scene text in contrast to text reading in still images.
For more details of text detection, tracking and recognition in
video, the readers can refer to a comprehensive survey [51].
In general, reading text from scene videos can be roughly
categorized into three major modules: 1) text detection, 2) text
tracking, and 3) text recognition.

1) Text Detection in Videos: In the early years (before
2012), most methods focus on detecting text in each frame
with connected component analysis [9] or sliding window [52]
strategy. However, the performance of them is limited due
to the low representation of handcrafted features. Though the
recent detection techniques (mentioned in Section. 2.1) in still
images can help improve feature representation, detecting text
in scene videos is still challenging because of its complicated
temporal characteristics (e.g. motion). Therefore, text
tracking strategies are introduced for enhancing the detection
performance, which are further divided into two categories
[51]: spatial-temporal information based methods [53]–[56]
for reducing noise and fusion based methods [57]–[60] for
improving detection accuracy. Recently, Yang et al. [61]
proposed a tracking based multi-orientation scene text
detection method using multiple frames within a unified
framework via dynamic programming. Khare et al. [62]
introduced the automatic windows to extract moments
for tackling multi-font and multi-sized text in the video.
Shivakumara et al. [63] introduced fractals for enhancing text
detection in videos, especially in the low-resolution mobile
video. Wang et al. [10] employed an optical flow-based
method to refine text locations in the subsequent frames.
Wang et al. [64] proposed a video text detection network,
which combines complementary text features from multiple
related frames to enhance the overall detection performance.
Wang et al. [65] proposed a fully convolutional network model
for detecting text in videos based on a defined refine block
structure.

2) Text Tracking in Videos: The traditional methods such
as template matching [54], [55], [66], [67] and particle fil-
tering were popular. But these methods failed to solve the
re-initialization problem, especially in scene videos. Then
the tracking-by-detection based methods [2], [68], [69] were
developed to estimate the tracking trajectories and solve this
problem.

Recently, Zuo et al. [59] and Tian et al. [70] attempted
to fuse multi-tracking strategies (e.g. spatial-temporal context
learning [71], tracking-by-detection, etc.) for text tracking,
in which the Hungarian [72] algorithm was applied for
generating the final text streams. Wu et al. [73] proposed
a technique for detecting and tracking video text of any
orientation by using spatial and temporal information,
respectively. Yang et al. [74] also proposed a motion-based
tracking approach in which detected results are directly
propagated to the neighboring frames for recovering missing
text regions. Wang et al. [75] presented a scene text detection
and tracking method for videos, in which the enhanced EAST
model by de-convolution layers and the correlation filter based
tracking algorithm were developed to improve the detection

and tracking results. Wang et al. [76] proposed a new video
text tracking approach based on hybrid deep text detection and
layout constraint. Yu et al. [77] proposed an end-to-end video
text detection model with online tracking to address video
text detection and tracking challenges. In fact, the robust
feature extractor is the most important component of a text
tracker.

3) Text Recognition in Videos: With the tracked text
streams, there are two strategies for better scene text recogni-
tion: selection strategy by selecting the best text regions from
streams (popular before 2010), and results fusion strategy by
combining corresponding recognized character results. Corre-
spondingly, methods [54]–[56] selected the region with the
longest horizontal length as the most appropriate region. Then
Goto and Tanaka [53] further enhanced the selection algorithm
by taking six different features (e.g. Fisher’s discriminant ratio,
text region area, etc.) into account. While recent methods
[69], [78] directly fused recognized results in text streams for
final text predictions by majority voting, CRF or frame-wise
comparison, and these approaches assumed that recognition
results in most frames are trust-worthy, which may not be
true in unconstrained scenarios. In addition, frame-wise text
recognition also results in a high computation cost.

4) End-to-End Text Recognition in Videos: There are several
works proposed to solve the end-to-end video text spotting
problem. Nguyen et al. [2] first proposed an end-to-end
video text reading solution by extending Wangs’s method
[14], in which the frame-wise detection and the tracking with
multiple features (e.g. the temporal distance, edit distance,
etc.) are applied. Merino-Gracia and Mirmehdi [1] proposed
an end-to-end video scene text reading system by introducing
the unscented Kalman filter [79], but mainly focused on large
text found in outdoor environments. Recently, Wang et al. [3]
firstly utilized an end-to-end deep neural network to detect and
recognize text in each frame, and then employed the tracking-
by-detection strategy to associate text regions, and recovered
missed detections with the tracked results, finally obtained the
recognition results by voting the most frequently appeared text
strings.

In fact, it is a very challenging task to optimize video
text spotter end-to-end when taking multiple functional
modules (text detection, text tracking and text recognition)
into consideration, especially compared to the traditional
four-staged pipeline strategy. Therefore, in this article
we develop an end-to-end trainable video text spotter
with only two trainable modules: the video text detector
and the text recommender, similar to the end-to-end
text spotting methods [6], [17], [45], [47]–[49] in single
images.

III. METHODOLOGY

The proposed method consists of two parts,
the spatial-temporal video text detector and the text
recommender, as shown in Figure 2. In the following
sections, we first describe the two parts in Section III-A
and III-B respectively. Then, we describe the training and
inference strategy in Section III-C.
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Fig. 2. The architecture of FREE, which consists of two parts: (a) The spatial-temporal text detector for generating text regions; (b) The text recommender
assembling the tracking, quality scoring and recognition into a unified trainable network. Specifically, the tracking, quality scoring and recognition branches
are simultaneously learned with the metric learning, the quality label learning and the sequence decoding, respectively. Fr:(.) means the frame ID.

A. Spatial-Temporal Video Text Detector

1) Text Detection in Single Frame: Since TP [17] is a more
robust text spotter than EAST [16] especially on irregular text
detection, and also can be trained end-to-end. We redesign and
implement the video text detector inspired by the TP archi-
tecture (including a text detection module, a shape transform
module and a recognition module), as shown in Figure 2. Here,
the detection backbone and text shape transform operation are
the same as the detection part and shape transform module in
TP, respectively.

2) Text Detection in Consecutive Frames: Considering the
spatial-temporal characteristic in the video, we learn relations
between consecutive frames with a spatial-temporal aggre-
gation strategy for improving video text detection, which is
divided into three steps: 1) enhancing temporal coherence
between frames with a feature warping mechanism [80],
2) spatial matching between frames with a comparing and
matching strategy inspired by [81], [82], and 3) temporal
aggregation.

Formally, let It be the t-th frame in a video, the detection
results in It can be refined with the detections of its consec-
utive frames (It−n, . . . , It+n) where the size of the refining
window is 2n+1.

Enhancing Temporal Coherence: We obtain the correspond-
ing sequence of feature maps F = (Ft−n, . . . , Ft+n) by propa-
gating frames through the detection backbone. Given a pair of
frame features Ft+i and Ft (the reference frame), we enhance
their temporal coherence by referring to the estimated flow
f low(t+i,t) between It+i and It with a flow-guided warping
mechanism

Fw
t+i = War p(Ft+i , f low(t+i,t)), (1)

where f low(t+i,t) is pre-computed with TV-L1 algorithm,
War p(.) is the bilinear warping function applied on each
element in the feature maps, and Fw

t+i denotes the feature
maps warped from frame It+i to frame It . Thus F is further
transferred as the warped Fw = (Fw

t−n, . . . , Fw
t+n). Then we

generate an enhanced sequence of confidence maps C =
(Ct−n, . . . , Ct+n) by propagating Fw into a classification sub-
network, in which each value in Ct+i represents the possibility
of being a text region.

Comparing and Matching: We evaluate the spatial matching
degrees of two frames with matching weights. The weights
are firstly computed with a transform module to produce the
feature-aware filter which is represented as

Ftrans
t+i = ReLU(B N(W Fw

t+i + b)), (2)

where W and b are learnable parameters, BN and ReLU rep-
resent Batch Normalization and rectified linear unit function,
respectively. Given the transformed feature maps, we compute
the similarity energy Simt+i,t = Ftrans

t+i · Ftrans
t of It+i and It

as the matching weights, where ‘·’ means the dot product.
Temporal Aggregation: We compute the aggregation weights

by

at+i = ex p(Simt+i,t � Ct+i )∑n
i ′=−n ex p(Simt+i ′,t � Ct+i ′ )

, (3)

where ‘�’ represents the element-wise product. Here, we mul-
tiply Simt+i,t by Ct+i to reinforce the aggregation weights of
positive detections. Then the temporal aggregation across the
consecutive frames is computed by

Ct,agg =
n∑

i=−n

at+i � Ct+i . (4)

To handle few mis-aggregated situations, we further refine
Ct,agg as Ct,re f = Ct,agg�Mt by applying a normalized binary
mask Mt to Ct,agg, where Mt is calculated by normalizing Fw

t
as a binary mask with a pre-set threshold (default by 0.5).

To better declare the spatial-temporal aggregation mech-
anism, we describe it in Algorithm 1. Here, the refining
window-size is set to 5.

Note that, we conduct aggregation operation on C instead of
Fw because the feature maps are later fed into the regression
branch to determine the geometry shapes of text regions. Since
the geometry shapes of the same text usually vary in different
frames, the values in Fw to regress text positions are also very
different. Therefore, if we directly aggregate Fw, the feature
values to regress different geometry shapes will be mistakenly
merged and impact the final regression result of It . On the
contrary, confidence maps have no such problem because they
only indicate the possibility of text existence.

With the aggregated results, the optimization is with three
tasks [17], i.e., the binary Dices Coefficient Loss [83] (denoted
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Algorithm 1 The Spatial-Temporal Aggregation Process

by Lcls ) to learn text boundaries and its central regions,
the Corner Regression loss (denoted by Lcorner ) to regress
the offsets to their corner points, and the Boundary Offset
Regression loss (denoted by Lboundary) to regress the vertical
and horizontal offsets to their nearest boundaries. The loss
function is as follow:

LD = Lcls + λbLcorner + λcLboundary, (5)

where λb and λc are auto-tunable parameters.

B. Text Recommender

The text recommender contains three trainable subparts:
quality scoring, tracking and recognition.

1) Text Quality Scoring: It is almost impossible to manually
annotate continuous quality scores (e.g. ranging from 0.0 to
1.0) for text regions because the judgment of imaging quality

Fig. 3. The illustration of template generation network.

is subjective for different annotators. It means that annotators
cannot definitely and quantitatively rank the quality of text
regions with different interferences such as shape deformation,
blur and even occlusion, etc. Besides, the annotating cost is
also very tremendous. We empirically find features of different
quality images are actually localized at different positions
in feature space, which implies the quality correlations are
contained in feature distributions intrinsically. Here we pro-
pose the concept of the standard template that is assumed as
the feature representation of an ideal text image without any
interference, i.e., representing the highest quality. Naturally,
the represented template always can be recognized correctly,
and also should be close to those high-quality images while
being far from the low-quality ones. This is based on the
common phenomena that higher-quality images usually have
a better chance for accurate recognitions, the images that
are close to their template are the ones leading to correct
recognitions, vice versa. In this way, we can define the feature
distance between the template and a candidate text region as
the corresponding quality score.

The template generation is the key to generate quality
scores. We here design the template generation strategy in
a weakly-supervised fashion, as shown in Figure 3. Then we
obtain quality labels by computing the similarities between
images and their templates. Thus the quality scoring branch
can be optimized with the generated quality labels. The above
process is detailed as follows.

Learning Template: Since we assume that each text image
is corresponding to a standard template image in the fea-
ture space, and the standard template should be closer to
CORRECTLY recognized images. Hence, we can attempt to
build the feature mapping from correctly recognized images
to the standard template with neural networks such as a
three-layer Linear module. The template learning process can
be implemented with two constraints: 1) Naturally, the stan-
dard template should be beneficial for recognition as it rep-
resents the highest quality. 2) Text images from the same
text stream should correspond to the same quality standard,
thus the generated templates from the same stream should
remain consistent. Specifically, the second constraint ensures
that templates from the same stream are almost identical,
thus we could conduct average pooling on them to obtain
the final feature representation of the only one standard
template. Note that, average pooling is a widely used method
for joint representation learning, as used in most existing
methods [81], [84], [85].

Given a text stream with L images that are correctly
recognized (by the pre-trained recognition model, detailed



CHENG et al.: FREE: A FAST AND ROBUST END-TO-END VIDEO TEXT SPOTTER 827

in Implementation Details), we extract their features as
F = [F1, F2, . . . , FL ] with the pre-trained recognition model.
We generate the templates from a text stream as T =
[T1, T2, . . . , TL] with a three-layer Linear module. Then we
integrate the generated templates into the final template rep-
resentation T̄ with average pooling.

To learn the representative template, we can use the text
recognition loss (denoted by Lrecog) to optimize the synthe-
sized template’s feature so that it is beneficial for recogni-
tion. Since the quality scores of images in each text stream
should be computed with respect to the same quality standard,
a template consistency loss (denoted by Lconsis ) is designed to
constrain the template’s feature of each image being consistent.
The loss function is formalized as:

LQ = Lrecog + λdLconsis (6)

where λd is a tunable parameter and the consistency loss is
formalized as:

Lconsis = 1

L

L∑

i=1

mse(Ti , T̄ ) (7)

in which mse is the average mean square error. Ti means the
learned template of image Fi .

Generating Quality Labels: For each image, we can gen-
erate its quality label simply by computing the similarity
between its feature Fi and its template:

si = T̄ · Fi

||T̄ || · ||Fi ||
. (8)

Optimizing Quality Scoring Branch: Following ‘Text Rec-
ommender Backbone’ in Figure 2, the quality scoring branch
consists of an attention decoder (shared with recognition
branch, detailed in Implementation Details) for extracting
features, followed by two Linear layers and a Sigmoid acti-
vation layer for regressing the quality scores. Supervised by
the generated quality labels, the quality scoring branch can
directly regress the quality score for each text region, as shown
in Figure 2. Then the loss function for the quality scoring
branch is as follows:

LS = 1

N

N∑

i=0

||si -s′
i || (9)

where s′ is the predicted quality score.
2) Text Tracking: The tracking task aims to group corre-

sponding text regions into text streams. Intuitively, the tracker
should have the ability to ensure that the feature of a text
region in one stream must remain closer distance to those in
the same stream than others, which implies: 1) the features
must be discriminative enough to tolerate various interferences
in unconstrained scenes, and 2) the module may be better if
trained with a good distance measure.

Robust Feature Extraction: Thanks to the studies in deep
neural network and metric learning, we extract robust features
for the tracker by applying the metric learning technique. Con-
cretely, we firstly select three regions from localized candidate
regions as an image triplet (Ra, R p, Rn), in which Ra and
R p are corresponding to the same text instance while Rn is

randomly selected from other text instances. We separately
name Ra , R p and Rn as the anchor, positive and negative
samples. Secondly, an image triplet is fed into a deep CNN
for generating its L2 Normalized high-level representation
(qa, q p, qn). The tracker is then trained with two metric
learning loss: triplet loss [86] Ltriplet = max(d(qa, q p) −
d(qa, qn) + margin, 0) and contrastive loss [87] Lcontra =
||qa − q p||, i.e.,

LT = Lcontra + λtLtriplet , (10)

where d represents Euclidean distance, and λt and margin are
tunable parameters shown in Implementation Details. Here,
triplet loss is responsible for distinguishing positive and neg-
ative samples, which only constrains that inter-class distance
should be larger intra-class distance. While the contrastive loss
is used for reducing the intra-class distance to better match text
regions in a text stream. The two losses are complementary
to each other for optimizing the tracking branch to make the
network converge steadily.

Text Stream Generation: With the trained tracking model,
for a pair of candidate text regions (R1, R2), we calculate its
matching cost by

MC(R1, R2) = 1

q1 � q2 + ε
. (11)

To avoid division by zero error, ε is set as 10−7. Then those
pairs with MC larger than a threshold are considered as
invalid matching pairs and filtered out. Finally, we employ
the Hungarian algorithm [72] to generate the text streams.

3) Text Recognition: The text recognition module is not
our focus, and we select the attention-based method as our
decoder (shared with the quality scoring branch) just like
in [41], [43], [44].

Since the above three submodules are complementary for
extracting discriminative features, we jointly train all the three
subtasks with same text recommender backbone in a unified
trainable network, which is supervised by:

LT R = λ1LT + λ2LS + λ3LR, (12)

where LR is the recognition part loss and λi (i = 1, 2, 3)
denotes the loss weight for different tasks.

C. Training and Inferences

1) Loss Function: The loss of the whole framework con-
tains two parts: the video text detection and the text recom-
mender, that is,

L = LD + λLT R, (13)

where λ is an auto-tunable parameter used in [17].
2) Optimization: It is challenging to train FREE end-to-end

from scratch. In a more achievable way, we first pre-train TP
on static images with the same training strategy to that in [17].
Second, we equip the pre-trained TP with the spatial-temporal
aggregation module and text recommender (including tracking
and scoring and recognition) as FREE, and train the video
detector and recommender separately, then fine-tune the whole
framework in an end-to-end trainable way. Note that, it is
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Fig. 4. The illustration of inferences.

TABLE I

COMPARISON WITH EXISTING VIDEO TEXT DATASETS. ‘Quality’ MEANS
IF EACH TEXT REGION IS LABELED WITH

QUALITY-LEVEL INDICATION

easy to train the text recommender because the three branches
(tracking, quality scoring and recognition) are complementary
to each other. Thus FREE can be end-to-end trained by jointly
optimizing the video text detector and recommender, just like
the end-to-end text spotting by optimizing the text detector and
recognizer in single images. Besides, the ‘Text Recommender
Backbone’ and ‘Recognition Branch’ are the same as those in
the pre-trained TP.

3) Inference Process: The inference process is divided into
three steps, as shown in Figure 4: localizing texts from mul-
tiple frames, tracking candidate text regions into text streams,
each of which is accompanied by the quality score, and
recognizing the highest-quality text as a character sequence.

IV. THE LARGE-SCALE VIDEO TEXT DATASET

In recent years, research in video scene text spotting still
remains unpopular in contrast to its promising application
prospects. The limited video text dataset may be a major
reason that restrains researches in this area. For example,
existing video scene text datasets such as IC13 [88] or IC15
[15] (See Table I1) are limited on the scale of video items
and scenarios. Though the recently released RoadText-1K
(abbr. RT-1K) provides 1000 videos, it focuses on the road
scenario. Thereby, we collect and annotate a large-scale video
text dataset (denoted by LSVTD). LSVTD has 100 scene
videos consisting of 65615 frames and 563444 text instances,
which is collected from 21 typical real-life scenarios (train
watch, city road, inside train, harbor surveillance, highway,
inside shops, office building, outdoor shopping mall, book-
store, indoor shopping mall, bus/railway station, fingerpost,
restaurant, pedestrian, hotel, shopping bags, digital screen,
supermarket, street view, metro station and books opening),
illustrated in Figure 5. In the future, we will progressively
increase the scale of this dataset.

1The download link of YVT is broken now. We obtain this dataset from
Yu et al. [77].

Fig. 5. Illustration of 21 different scenarios.

A. Dataset Characteristics

LSVTD is detailed in Table I, and mainly characterized by
1) Much larger scale, which is more than twice the scale of
IC15. 2) More diversified scenarios. LSVTD covers a wide
range of 13 indoor (e.g. bookstore, shopping mall) and 8
outdoor (e.g. highway, city road) scenarios. The variety of
scenarios challenges text spotting algorithms to achieve robust
performance. 3) Multilingual text instances. LSVTD contains
text with multiple languages (English and Chinese etc.) which
are divided into 2 major categories: Latin and Non-Latin.

More concretely, we also list multiple characteristic
attribute distributions on different scenarios, including the
number of videos, the number of frames, the number of
text streams, the average number of text regions per frame,
and the quality distribution (‘high’,‘moderate’ and ‘low’),
as shown in Figure 6. We find that LSVTD is very diverse.
For example, the outdoor shopping mall is usually with a
large amount of text while the high way is with less text
(demonstrated in Figure 6.(d)), and books opening and street
view are usually with more high-quality text than that in city
road (demonstrated in Figure 6.(e)).

B. Annotation Details

Following the annotation strategy in IC15, we annotate
the following items for each text: 1) Polygon coordinate
represents text location; 2) ID means the unique identification
for each text among consecutive frames; That is, the same
text in consecutive frames shares the same ID; 3) Language
is categorized as Latin and Non-Latin as mentioned above;
4) Quality coarsely indicates the quality level of each text
region, which can be qualitatively labeled as three quality
levels: ‘high’ (recognizable, clear and without interferences),
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Fig. 6. Characteristic attribute distributions on different scenarios.

‘moderate’ (recognizable but polluted with one or several inter-
ferences) or ‘low’ (one or more characters are unrecognizable).
5) Transcripts mean text string for each text region. Note that,
though it is hard to annotate continuous quality scores, we still

attempt to annotate the coarse quality-level indication of each
text region for some algorithms’ evaluation.

We parsed videos (ranging from 5 seconds to 1 minute) to
frames and then instructed 6 experienced annotation workers
to label them, and conducted cross-checking on each text
region. It took more than 3500 man-hours for annotating these
frames. We randomly select two-thirds of videos as the training
videos (except for hotel), while the rest are treated as testing
videos. Thereby, the training and testing datasets separately
contain 66 and 34 videos. Here, we hope that availability2 of
LSVTD may spur more interest in corresponding areas.

C. Differences of the Conference Version and the Refined
Version

We refine LSVTD as follows: 1) removing the traffic sur-
veillance scenario due to some privacy policies, 2) removing
some segments of background frames without text content,
and 3) adding 2, 1 and 2 videos for city road, street view and
bookstore scenarios, respectively.

V. EVALUATION PROTOCOLS

The classic evaluation protocols for text detection, tracking
and recognition in videos have been declared in [51]. Since
we only spot the highest-quality text instead of frame-wise
recognition, we revisit and extend previous mainstream metrics
necessarily for evaluating the effects of video text spotting.

A. Detection Metrics

In video text spotting, a few methods explicitly evaluate
the frame-wise detection performance without respecting to
tracking or recognition results. Here, we also provide detection
metrics solely for evaluating detection performance. Following
detection methods [16], [29], [91] evaluated on single images,
precision (abbr. PRE), recall (abbr. REC) and F-measure are
used as the frame-wise detection metrics.

B. Tracking Metrics

Tracking metrics should maximize the sum of the overlap
between the tracking results and ground truth. In general,
evaluation metrics [51], [92] like multiple object tracking
precision (abbr. M OT P), multiple object tracking accuracy
(abbr. M OT A), and the average tracking accuracy (abbr.
AT A) are used to evaluate the performance of tracking. Notice
that AT A is the most important metric because AT A measures
the tracking performance over all the text, as addressed in [74].

C. Quality Scoring Metrics

In general, the better quality frames are selected, the higher
accuracy we will get. To evaluate the performance of the
quality scoring mechanism, we define the quality selection
hitting rate(abbr. QSH R) to evaluate the selection accuracy

QSH R =
N∑

i=0

q̄i

N
, (14)

2Available at https://davar-lab.github.io/opensource/dataset/lsvtd
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where N denotes the number of text streams, and q̄i ∈ {0, 1}.
In the i -th text stream, q̄i = 1 means the region annotated
with “high” is hit, 0 otherwise.

Based on the selection mechanism, we further define the
rate of correctly recognizing selected text regions (abbr.
RC R) to evaluate sequence-level recognition accuracy

RC R =
N∑

i=0

āi

N
, (15)

where āi ∈ {0, 1}. In the i -th text stream, āi = 1 means the
selected text region is correctly recognized, 0 otherwise.

D. End-to-End Metrics

In previous methods, M OT P , M OT A and AT A are
generally used in the end-to-end evaluation, which evaluates
performance in word-level recognition. That is, a predicted
word is considered as a true positive if its IoU over ground
truth is larger than 0.5 and the word recognition is correct.
However, these metrics are not suited to our task because we
only need to recognize the highest-quality text region in its
scored text stream.

According to the selection-and-recognition strategy,
we redefine new end-to-end metrics by considering two
constraints: 1) The recognized results of selected regions
should match the corresponding text transcriptions. 2) The
temporal locations (frame ID) of selected regions should fall
into the interval between the annotated starting and ending
frame. In addition, the selected candidate should have a
spatial overlap ratio (default by over 0.5) with its annotated
bounding box. Thus we separately define the sequence-level
recall RECs and precision (P REs )

RECs = Nr

Ng
, P REs = Nr

Nd
, (16)

for constraint 1 and constraint 2, in which Nr , Ng and
Nd separately denote the number of valid recalled streams,
the number of total ground truth streams and the number
of detected text streams. Correspondingly, the sequence-level
F-score (F-Score) is denoted as

F-Score = 2P REs RECs

P REs + RECs
(17)

by simultaneously considering P REs and RECs .

VI. EXPERIMENTS

A. Implementation Details

All of our work is built on the CAFFE framework with
32GB-Tesla-V100 GPUs. With the pre-trained TP [17] model
on static images, we first train the spatial-temporal detector
and text recommender separately, then both branches are
jointly fine-tuned to obtain the end-to-end model.

Spatial-Temporal Detector: The architecture of the detection
backbone is the same as TP [17], which is pre-trained on the
‘Incidental Scene Text’ dataset [15] and ‘COCO-Text’ dataset
[93] by following [17], and then the model is fine-tuned on
corresponding video training set such as IC13 or IC15. In the
training stage, data augmentation used in [17] is employed,

and batch-size is set to 4. We train the network by adopting
‘SGD’ with learning rate=2 ∗ 10−3, momentum=0.9 and
weight decay=5 ∗ 10−4. Besides, text regions with a short
side less than 10 pixels are ignored during training. While
in the testing stage, we resize input images with the longer
side 2000 and only conduct single-scale testing.

Text Recommender: The ‘ResNet Backbone’+‘Conv
Blocks’ backbone used in text recommender is adopted
from the image encoder used in [41], and the shared
‘BLSTM’+‘ATT’ module in quality scoring and recognition
branch is an attention decoder used in [41], [43]. The
network is pre-trained on the 8-million synthetic data [94]
using ‘Adadelta’ by following [43], and further fine-tuned on
corresponding datasets using SGD with the fixed learning
rate of 10−4. The loss weight λt in Equa. (10) and λ1, λ2, λ3
in Equa. (12) are all empirically set to 1. In the text tracking
part, the margin in triplet loss is set to 1.2, and MC is set
to 1.08.

In the template generation network, the pre-trained recogni-
tion model follows the same architecture and training proce-
dure as the recognition branch in text recommender. λd is set
to 1 and batch-size is set to 9600. ‘Adam’ is used with learning
rate = 0.0005 and decay rate = 0.94 for every 200 epochs.

Joint Training: Finally, we jointly fine-tune the whole net-
work using the soft loss weight strategy mentioned in [17] for
the other 40 epochs. ‘SGD’ optimization is adopted with initial
learning rate=10−3, stepsize=10 epochs and gamma=0.1.

B. Ablation Study

In this section, we separately evaluate the effects of
spatial-temporal aggregation, text recommender and the whole
framework. For a fair comparison, we here declare some base-
lines in our framework, i.e., (1) For detector, we treat the video
text detection without the spatial-temporal strategy as our
detection baseline (denoted by D-BASE), the spatial-temporal
detection model as D-ST, and the end-to-end trained D-ST
as D-ST (FREE). (2) For text recommender (abbr. TR),
the experimental setting by training tracking, recognition and
scoring branch separately is regarded as its baseline (denoted
by TR-BASE), and we denote the end-to-end trained TR with
three branches as TR (FREE).

1) Effects of Spatial-Temporal Aggregation: We evalu-
ate the proposed spatial-temporal module with three differ-
ent detection backbones including EAST [16], Mask-RCNN
[95] and TP [17]. As expected, the spatial-temporal
mechanism can recall missing text regions caused by
motion interferences, as shown in Table II. Compared
to D-BASE, the spatial-temporal detection module D-ST
can effectively improve REC by 4.02%/1.52%/4.27% and
F-measure by 1.34%/0.64%/0.91%, but with PRE down by
4.31%/0.49%/3.72% on EAST, Mask-RCNN and TP, respec-
tively. Actually, boosting recall performance is more important
when facing very low recall results, which generally leads
to precision decreasing. In addition, we find that the D-ST
(FREE) can boost the F-measure.

We also verify the inference speed of three detection mod-
ules. To be fair, EAST (used in YORO), Mask-RCNN and TP
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TABLE II

EFFECTS OF SPATIAL-TEMPORAL AGGREGATION ON IC13 WITH DIFFER-
ENT BACKBONES. FPS MEANS FRAMES PER SECOND

TABLE III

EFFECTS OF TEXT RECOMMENDER ON IC13 AND IC15 COMPARED WITH

OTHER FRAME SELECTION METHODS. TEMPLATE MEANS THE STAN-
DARD TEMPLATE GENERATION STRATEGY. (.) REFERS TO THE

LOSS APPLIED IN TR

share the same feature extraction backbone (ResNet50), and
all images are resized to the longer side=2000. In Table II,
EAST achieves the best detection speed, while TP has a mod-
erate detection speed but with the best F-measure. However,
the speed bottleneck of video text spotting usually lies in the
following recognition module, as shown in the next Section.

2) Effects of Text Recommender: In IC13 and IC15, text
regions are annotated as 3 quality levels (‘low’, ‘moderate’ and
‘high’). Those streams containing at least two types of quality
annotations are treated as our testing dataset. To evaluate the
proposed text recommender, we compare our method with two
commonly used recognition-and-voting strategies: (1) Using
the predicted confidence (the average probability of generating
characters) of a word as the quality score (denoted by PCW).
(2) Selecting the text region with the highest frequency of
predicted results as the voted best one (denoted by HFP),
which is similar to the majority voting strategy used in [3].

Performance Evaluation: Table III shows the results. Com-
pared to HFP, TR (LT R) in FREE significantly improves the
QSHR performance by 7.73% on IC13 and 8.15% on IC15,
and improves the RCR performance by 2.73% on IC13 and
3.31% on IC15. To demonstrate the effects of three learning
branches in text recommender, we verify them as TR (LS),
TR (LS + LR) and TR (LS + LT ) in Table III. We find that
either the joint training of tracking or recognition branch with
scoring branch can boost the scoring results. The joint training
of recognition, scoring and tracking branches can further boost
the scoring performance.

In FREE, we design the new quality scoring branches
instead of K-Means (used in YORO [8]), because K-Means
is inherently sensitive to outlier samples and not robust to
the complex scenarios. As shown in Figure 7.(a), outlier
samples may cause the K-Means based template drifting away

Fig. 7. Illustration of K-means based templates and the learning based
templates.

TABLE IV

EFFICIENCY COMPARISON BETWEEN SELECTING-AND-RECOGNITION

(abbr. SaR) AND ONE-BY-ONE (abbr. ObO) STRATEGY ON IC13.
MASK REFERS TO MASK-RCCNN. FPS MEANS FRAMES

PER SECOND

from high-quality samples. While the proposed learning-based
strategy can alleviate the effect of outliers, keeping the learned
template closer to high-quality samples (See Figure 7.(b)).
Therefore, we design the learning-based template generation
strategy, which is verified in Table III. The higher QSHR
and RCR results compared to YORO [8] demonstrate the
effectiveness of the enhanced template generation strategy.

For simplified representation, we use TR as TR (LT R) in
the sequel.

Efficiency Evaluation: Moreover, the text recommender only
needs to recognize a text stream one-time, which can greatly
decrease the computational cost. As shown in Table III,
TR speeds up the recognition process averagely by 71 times
compared to the frame-wise manner. In the end-to-end
efficiency evaluation, the proposed selection-and-recognition
framework is also much more efficient than the traditional
one-by-one framework, as shown in Table IV. We find that
the speed bottleneck of video text spotting usually lies in the
recognition module, and the selection-and-recognition strategy
can speed up the recognition process by 22.6 times. Equipped
with different detection backbones (EAST, MASK-RCNN and
TP), the proposed text recommender approach can largely
speed up the end-to-end inference speed by 4.51, 2.96 and
3.58 times, respectively. Here we can see that text recom-
mender can significantly improve the inference speed no
matter what the detection backbone is. It is important to use
the proposed text recommender in the end-to-end video text
spotting, especially in the text-crowded cases (e.g. abundant
text regions in each frame).

Extreme Testing for Text Recommender: It is worth noticing
that TR can still select the best one when handling text streams
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TABLE V

EXTREME TESTING OF TR ON IC13 AND IC15 COMPARED WITH OTHER
FRAME SELECTION METHODS

TABLE VI

THE END-TO-END EVALUATION ON IC15

with a large proportion of low-quality text regions, while
the voting strategy becomes useless. It implies that TR is
more robust in complex and heavily distorted video scenar-
ios. Therefore, we conduct extreme testing on a constituted
low-quality text stream set by discarding all streams containing
more than 40% highest quality text regions on IC13 and IC15.
We calculate the QSHR and RCR on this set by checking
whether the highest quality of the text is hit and whether
the selected text is correctly recognized. Table V gives the
results and demonstrates that TR is more robust in complex
and low-quality video scenarios.

3) Evaluation of the Whole Framework: To analyze the con-
tributions of the above components, we verify the video text
spotting on the popular IC15 dataset, as shown in Table VI.
We find that

• Comparing to the detection baseline, the spatial-temporal
strategy can steadily improve the video text spotting
performance since it can recall more text under complex
occasions.

• Compared to TR-BASE, TR can greatly improve the
framework performance of P REs , RECs and F-score
respectively, thanks to the complementarity of three
branches for extracting discriminative features.

• The D-ST+TR pipeline achieves 4.85% F-score com-
pared to D-BASE+TR-BASE. Moreover, the end-to-end
optimization strategy can further enlarge the performance
gain (5.18%), because the end-to-end training enables
the utilization of recognition information for promoting
the localization task precision (the 1.04% P REs gain
compared with D-ST+TR).

These results demonstrate the effectiveness of text recom-
mender as well as global optimization.

C. Comparison With State-of-The-Arts

In this section, we evaluate our method and compare it
with previous methods on several benchmarks including IC13,
IC15, YVT and RT-1K.

1) Comparison on Detection:
a) Evaluation on IC13 and YVT: From Table VII, we find

that the D-BASE already outperforms the existing approaches

TABLE VII

DETECTION RESULTS ON IC13, IC15, YVT AND RT-1K, RESPECTIVELY

TABLE VIII

TRACKING PERFORMANCE EVALUATION ON IC13 AND IC15, YVT
AND RT-1K, RESPECTIVELY. THE SUFFIX ‘D’ MEANS TRACKING IS

APPLIED FOR DETECTION

by a large margin thanking to the robust TP, but also suffers
from low recall due to the complicated motion scenarios.
As demonstrated in the Ablation Section, D-ST(FREE)
can improve REC by 2.84%/3.45% and F-measure by
1.04%/1.25% on both IC13 and YVT. Compared to state-
of-the-art methods such as YORO [8] and Yu et al. [77] on
IC13 and YVT, FREE obtains 4.35% and 6.71% F-measure
gains significantly.

b) Evaluation on IC15 and RT-1K: For IC15, there are no
results reported. We only list the testing results. For the recent
released RT-1K, we compare our results with the best-reported
performance in the RT-1K paper [90], which demonstrates the
effectiveness of our method.
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TABLE IX

THE TRADITIONAL END-TO-END EVALUATION ON IC15, YVT AND RT-
1K, RESPECTIVELY. THE SUFFIX ‘R’ MEANS TRACKING IS APPLIED

FOR MEASURING RECOGNITION

2) Comparison on Tracking: Table VIII shows the compar-
ing results on IC13 and IC15.

a) Evaluation on IC13: T-BASE (D-BASE+TR (LT ))
outperforms the reported results by a large margin 0.44 on
AT AD , 0.09 on M OT PD and 0.41 on M OT AD . TR(FREE)
(D-ST+TR) can further separately improve the performance
by 0.08 and 0.03 on AT AD and M OT AD, and maintain
the M OT PD performance, attributed to the spatial-temporal
detector and the text recommender.

b) Evaluation on IC15: T-BASE also achieves com-
parable results with previous methods. Comparing to the
best-reported result [74], TR(FREE) significantly improves
the AT AD and M OT AD by 0.07 and 0.06, but falls behind
on M OT PD . However, [74] points out that AT AD is the
most important metric because AT AD measures the tracking
performance over all the text.

c) Evaluation on YVT and RT-1K: There are few reported
tracking results on YVT and RT-1K. We also list the predicting
results of our method, which demonstrates its robustness.

3) Comparison on Classic End-to-End Evaluation: Conven-
tionally, we first place the frame-wise recognition results on
IC15 by referring to the previous works. To be fair, we use the
recognition output of the selected text region as the predicting
result of each text region in a text stream. It means that each
text region in a text stream shares the same predicting result.
In this way, we can calculate the frame-wise performance of
FREE and compare it with previous methods. Table IX shows
that our method also achieves the remarkable state-of-the-art
under this experimental setting. There are no reported end-
to-end evaluation results on YVT and RT-1K. Here, we also
list the corresponding results on YVT and RT-1K.

D. Challenges on IC13, IC15, YVT, RT-1K and LSVTD

We here list all testing results on IC13, IC15, YVT, RT-1K
and LSVTD, as shown in Table X.

1) Overall Comparisons: Compared to the state-of-the-art
[2], [8], [10], [73], [74], [77], [90], [97] on all datasets,
the new framework FREE achieves better performance on
detection, tracking and end-to-end evaluation. Besides, results
on LSVTD and RD-1K are largely lower than those on IC13,
IC15 and YVT, which reflects that LSVTD and RD-1K are
more challenging.

2) Challenges on 21 Scenes of LSVTD: We further detail
the performance of individual scenarios from LSVTD, and
the challenge of spotting video text is ranked based on the

Fig. 8. Illustration of F-score performance on 21 scenarios. Indoor/Outdoor
scenarios are highlighted in red/green.

F-score performance, as shown in Figure 8. We can see that
the difficulty of spotting video text is very different with
F-score ranging from 4.3% to 72.1%. For example, compared
to indoor cases (books opening, office building), spotting video
text outdoor such as city road and harbor surveillance is more
challenging largely due to extremely complex background and
fierce motion.

3) Evaluating LSVTD With More Popular Models: We here
evaluate more popular methods on LSVTD. All evaluations are
conducted with the selecting-and-recognition strategy. Con-
cretely, we select EAST, Mask-RCNN and TP as the detection
module, in which ResNet50 is used for feature extraction. For
text recommender module, the feature backbone is the same
as that used in [41]. Then we select two popular sequence
decoding structures for the quality scoring branch and recog-
nition branch: the attention-based decoder (‘BLSTM’+‘ATT’)
[41], [43] and the CTC-based decoder (‘BLSTM’+‘CTC’)
[38]. Thus, there are six kinds of module combinations for
evaluating the released LSVTD, as shown in Table X. Note
that, ‘F-measure’, ‘AT AD’ and ‘F-score’ are comprehensive
evaluation metrics for evaluating the detection, tracking and
end-to-end performance.

We see that EAST obtains the worst results on detection
stage, while the TP model performs better than Mask-RCNN
and EAST. Integrated with three detectors, the attention-based
recognition model always outperforms CRNN on both
tracking and end-to-end evaluation. Because attention-based
decoder can handle more complicated text regions. There-
fore, ‘TP+ATT’ is the best combination among the pipeline
frameworks. Furthermore, compared to ‘TP+ATT’, FREE can
further boost the performance of spotting video text.

E. Challenges on ICDAR ‘Text in Video’ Competition

We also evaluate our method on the ‘Text Localization’
and ‘End-to-End’ benchmarks of ’Text in Videos’ on ICDAR
official website,3 the evaluation metrics include MOTA, MOTP
and IDF1 (details can be referred on the website). We achieve
the remarkable state-of-the-art on both benchmarks, surpassing
previous methods to a large extent. For example in the ‘End-to-
End’ evaluation, we achieve over 23% MOTA gain compared
with the 2-nd approach.

3http://rrc.cvc.uab.es/?ch=3&com=evaluation&task=1
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TABLE X

THE OVERALL PERFORMANCE OF FREE ON IC13, IC15, YVT, RT-1K AND LSVTD. MASK, ATT AND CRNN SEPARATELY MEAN THE MASK-RCNN,
ATTENTION-BASED SEQUENCE DECODER AND CTC-BASED DECODER. YORO FRAMEWORK IS EQUIVALENT TO THE EAST+ATT FRAMEWORK,

AND THE SUPERSCRIPT * MEANS THE METHOD IS EVALUATED ON THE REFINED LSVTD

VII. CONCLUSION

In this article, we propose a fast and robust video text spot-
ting framework named as FREE by integrating a well-designed
spatial-temporal video text detector and a novel text recom-
mender in an end-to-end trainable manner. The video text
detector is responsible for recalling more text by referring to
the relation between different frames. The text recommender
is designed for selecting the highest-quality text from tracked
text streams and then only recognizing the selected text region
once, which not only ignores the inferences of low-quality
text, and also significantly speeds up the recognition process.
Besides, the end-to-end trainable mechanism further improves
the video text spotting performance. Finally, we release a
larger-scale video scene text dataset for better evaluating video
text spotting algorithms. In the future, we’ll further improve
the efficiency of video text detector.
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