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Designing Color Filters That Make Cameras More
Colorimetric

Graham D. Finlayson, Member, IEEE, and Yuteng Zhu

Abstract— When we place a colored filter in front of a camera
the effective camera response functions are equal to the given
camera spectral sensitivities multiplied by the filter spectral
transmittance. In this article, we solve for the filter which returns
the modified sensitivities as close to being a linear transformation
from the color matching functions of the human visual system
as possible. When this linearity condition - sometimes called
the Luther condition - is approximately met, the ‘camera+filter’
system can be used for accurate color measurement. Then,
we reformulate our filter design optimisation for making the
sensor responses as close to the CIEXYZ tristimulus values as
possible given the knowledge of real measured surfaces and
illuminants spectra data. This data-driven method in turn is
extended to incorporate constraints on the filter (smoothness
and bounded transmission). Also, because how the optimisation
is initialised is shown to impact on the performance of the
solved-for filters, a multi-initialisation optimisation is developed.
Experiments demonstrate that, by taking pictures through our
optimised color filters, we can make cameras significantly more
colorimetric.

Index Terms— Color filter, camera sensitivity functions, color
measurement.

I. INTRODUCTION

D IGITAL cameras are designed in analogy to the trichro-
matic human visual system which has three cone sensors.

If a camera is to capture colors like a human observer,
arguably the camera sensors should equal the cone funda-
mentals [1]. Practically, however, engineering cameras having
spectral sensitivities similar to the cone fundamentals is only
required if we wished to construct a biologically plausible
model of how we see [2]. For most practical applications -
e.g. photography and video - it is more important that we
can transform the recorded device RGBs to drive a display so
that the image captured by a camera either looks the same to a
human observer or records triplets of numbers - e.g. CIE XYZ
coordinates - that are referenced to the human visual system
[3]. We say that a digital camera is colorimetric if it meets the
so-called Luther condition [4], [5], i.e. its spectral sensitivity
functions are linearly related to the CIE XYZ color matching
functions (CMFs).
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The Luther condition places a very strong constraint on
the shape of camera spectral sensitivities. A strong constraint
is required because the Luther condition effectively assumes
that any and all spectral stimuli are possible. However, many
studies have shown that the actual spectra (measured in the
real world) are far from being arbitrary. Indeed, reflectance
spectra tend to be quite smooth [6]–[8] and as a consequence
can be fit with low dimensional linear basis [9], [10]. Indeed,
spectral basis with dimensions from six to eight, for different
applications, are often proposed as adequate models of spectral
reflectance. Illuminants by contrast are much less describable
by small parameter models. Indeed, for artificial lights such
as fluorescent and LED lights, the light spectrum can be very
spiky and the number and position of the spikes can vary
considerably. And yet, illuminants are also far from being
arbitrary. They are designed to have colors near the Planckian
locus [3], a requirement to score highly on color rendering
indices [11].

Possibly, a more practically useful variant of the Luther
condition would be one that is data-driven. That is, where
camera RGBs can be mapped to XYZs for the spectral data
that are likely to be encountered in the real world. Equally,
in principle, we might consider whether a non-linear mapping
could or indeed, should be used.

It is a classical result [12] that if reflectances were exactly
modelled by a 3-dimensional linear model then for a given
light spectrum there would be a specific 3×3 transform matrix
taking camera RGBs to XYZs. While reflectance spectra are
not adequately described by a 3-dimensional model, RGBs
can be approximately mapped to corresponding XYZs using
a 3 × 3 matrix. Indeed, this regression approach is adopted
in almost all cameras with good results (we are mostly happy
with the colors a camera records). But, as we shall see later
the ‘fit’ is not sufficient from a color measurement point of
view.

Of course, rather than using a linear matrix to map RGBs to
XYZs, we could use a non-linear transform instead. Possible
non-linear methods include Polynomial and Root-polynomial
regressions and Look-up-tables [13]–[15]. However, the linear
transform method of using a 3 × 3 matrix - even though it
is not optimal in terms of fitting error - has two advantages
compared to most non-linear methods. First, the transform
scales linearly with exposure. If the scene is made twice
as bright (e.g. by doubling the quantity of incoming light),
the same matrix correctly maps the camera measurements to
XYZs (because the magnitude of camera RGBs and XYZs
both double). Typically, non-linear methods do not have this
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Fig. 1. (a) Taking an image of a scene (camera and human eye), (b) the CIE1931 XYZ color matching functions (CMFs) and (c) the spectral sensitivities
of a Canon 40D camera. In (d) we show the least-squares fit of the camera curves to XYZ CMFs. With a specially designed color filter shown in (e),
the least-squares fit - of the camera spectral sensitivity curves multiplied by the filter - in (f) is much closer to the XYZ CMFs.

exposure-invariant property (except root-polynomial [14] and
hue-plane preserving [16]).

The second advantage is that a linear transform is, well,
linear. The human eye measures color stimuli linearly: at
the cone quantal catch level, the response to the sum of
two spectral stimuli is equal to the sum of the responses
to the two stimuli viewed individually [2]. This can be an
important physical consideration. As an example, when we
view a surface that has highlights, the recorded color is a
convex sum of the so-called body color (the color name we
would assign to the object) and the color of the highlight [17],
sometimes called the interface color. If, we are viewing a red
shiny plastic surface the body color is red and if the viewing
light is white then the interface color is also white (i.e. the
same as the color of the light). As we move from pure body
to pure highlight color, the measured XYZs lie on a 2D plane
in the color space. Equally, the camera, which at the sensor

level has a linear response, will also make measurements
that lie on a 2D plane. But, a non-linear correction will
distort the plane and the result will be an image that is not
physically accurate or even physically plausible. This problem
is discussed in detail in [16], [18].

Practically, the closer the spectral sensitivities of a camera
are to being linearly related to the XYZ color matching
functions, the better it will perform as a tool for color measure-
ment, i.e. the more colorimetric it will become. Interestingly,
when we linearly regress RGBs to XYZ tristimuli, we can
interpret this as linearly transforming the sensors themselves.
That is, a new camera whose sensitivities are modified by
the linear regression transform approximately measures the
desired XYZs. It follows that one strategy to improving the
color measurement capability of a camera would be to change
the camera sensitivities (to ones that are more linearly related
to the XYZ color matching functions). However, there are
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constraints on sensitivities achievable in physically realisable
cameras which means we can never get 100% colorimetric
accuracy.

In this article, we make an easy modification to the camera
spectral sensitivities. We propose simply to place a specially
designed filter in front of a camera with the goal of making the
filtered RGB measurements it records are as linearly related
to the target XYZs as possible.

How we design the best filter to make a camera colorimetric
is the central concern of this article. We develop optimisation
methods to solve for the optimal filter that either makes the
camera best satisfy the Luther condition or - in a data-driven
approach - can best predict the measured XYZs for a range
of real reflectances and lights. In the rest of this article,
we respectively discuss Luther-condition and Data-driven
filters.

The methods we develop are not closed-form but adopt the
alternating least-squares paradigm [19]–[21]. For the Luther-
condition filter optimisation problem, we aim to find a filter
so that the filtered camera response functions are a linear
transform from the XYZ CMFs [22]. In the first step, we find
the filter that best maps the spectral sensitivities of the camera
to the XYZ CMFs directly. Then we find the best linear com-
bination of the filtered camera sensitivities that approximate
the XYZ sensitivities. Holding this mapping fixed, we can
solve for a new best filter. Then we hold the new filter fixed
to solve for the best linear transform. We iterate in this way
until the procedure converges [23]. Each individual step in the
optimisation can be solved, in closed-form, using simple linear
least-squares. In the Data-driven approach we analogously find
the filter based on actual measured RGBs and XYZs following
the alternating least-squares technique [24]. For the Luther-
and Data-driven techniques, the constraint that the recovered
filters must be positive is considered.

Clearly, the filter shown in Fig. 1e is not desirable. In the
short wavelengths, there is a sharp change in transmittance
and as a whole the filter is not smooth. For most of the
wavelength range, the filter transmits little light (<20%).
Thus, we extend our optimisation framework to incorporate
minimum and maximum bounds on transmittance and also
that the filters are smooth [25].

Experiments demonstrate that we can find Luther-condition
and Data-driven filters that can dramatically increase the col-
orimetric accuracy across a large set of commercial cameras.

The rest of the paper is structured as follows. In Section II
we review the color matching and color image formation, both
ideas underpin our filter design method. The mathematical
optimisations for the optimal color filter for a given camera are
presented in Section III. The experimental results are reported
in Section IV. The paper concludes in Section V.

II. BACKGROUND

A. Color Matching Functions

Color matching functions provide a quantitative link
between the physical light stimuli and the colors perceived by
the human vision system. Figure 2 shows a typical setup for
the color matching experiment. The observer views a bipartite

field where one side is lit by a test light while the other side is
lit by the light mixtures of three primaries (i.e. monochromatic
red, green, blue lights). The intensities of three primary lights
are adjusted by the observer to make a visual match, i.e. the
two stimuli on each side the bipartite field match if they
look visually indistinguishable to the observer. Sometimes,
no match is possible. In this case one of the primary lights
should be added to the test light field. Mathematically, we can
model this as if we were subtracting some of the primary light.
See [26] for more discussion.

By successively setting the test light to be a unit power
monochromatic light at sample points across the visible spec-
trum, we can measure the Color Matching Functions [27].
That is we find the RGB mixture that affords a match on
a per wavelength basis. Because color matching is linear
(the sum of two test spectral lights is matched by the sum
of their individual matches) then given the color matching
functions we can compute the match for any arbitrary test
light [28]. We simply integrate any test light spectrum with
the Color Matching Functions. It can also be shown that the
color matching functions are necessarily linearly related to the
cone sensitivities [29], [30].

Assuming monochromatic primary lights at 650nm, 530nm
and 460nm, the resulting CIE RGB CMFs are shown to the
right of Fig. 2. The XYZ CMFs are a linear combination of
the RGB CMFs, see in Fig. 1b. That XYZ CMFs are used (as
opposed to RGB CMFs), in part, because they have, by design,
no negative sensitivities. Standardised in 1931, the lack of
negatives made pencil and paper calculations with matching
curves easy.

The X, Y and Z scalar values we compute when we integrate
a test light spectrum with the XYZ CMFs are called XYZ
tristimuli. In this article we are interested in using a camera
to measure XYZ tristimuli.

The color matching experiment is of direct practical impor-
tance. Indeed, suppose a display device can output three colors
equal to the R, G and B stimuli used in the color matching
experiment. It follows that a camera that had sensitivities
equal to RGB Color Matching Functions would see the correct
RGBs to drive the display that would result in a perceptual
match to the test light. Equally, it would suffice that camera’s
sensitivities were linearly related to the CMFs since we could
linearly transform the camera measurements to the correct
RGB to drive the display. Of course, we note that - unlike
the RGB color matching functions - we can only drive the
putative display with positive numbers. Consequently, there
are real world colors that cannot be reproduced on displays.

B. Continuous Color Image Formation

The color of a pixel recorded by a digital camera depends
on three physical factors: the spectral power distribution of
the illuminant, the spectral reflectance of the object, and the
sensor’s spectral sensitivities. The color formation at a pixel,
under the Lambertian surface model, can be modeled as

ρk =
∫

ω
E(λ)S(λ)Qk (λ) dλ, k ∈ {R, G, B} (1)
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Fig. 2. A typical setup that can be used for the color matching experiment (left). Right shows the CIE 1931 RGB color matching functions obtained from
the color matching experiments using real R, G, and B primary stimuli.

where the subscript k indicates the color channel, λ denotes
wavelength variable defined on the visible spectrum ω
(approximately, 400nm to 700nm). The functions E(λ) and
S(λ) respectively denote the spectral power distribution of the
illuminant and the spectral reflectance. The function Qk(λ) is
the spectral sensitivity of the kth camera color channel.

Let us define the color signal C(λ):

C(λ) = E(λ)S(λ). (2)

Substituting Equation (2) into Equation (1):

ρk =
∫

ω
C(λ)Qk(λ) dλ, k ∈ {R, G, B}. (3)

C. Discrete Color Image Formation

In the optimisations that will be presented in Section III,
it is useful to recast the continuous integrated responses
using discrete representations where spectra are represented
as sampled vectors of measurements. Typically and justifiably
from a color accuracy point of view [31], a spectrum can be
represented by 31 measurements made between 400 nm and
700 nm by 10 nm sampling interval. Note, the methods we
set forth - since they are designed for the discrete domain -
are agnostic about the sampling interval. If the data is given
at a 5 nm sampling distance then each spectrum would be
represented as a 61-component vector. Henceforth, we will
talk about spectra being 31-vectors (and this corresponds to
the format of most available measured spectral data).

Equation (3) is now, equivalently, written as:

ρk = C · Q
k
, k ∈ {R, G, B}. (4)

Respectively C and Q
k

denote the sampled version of the
color signal spectrum and the kth spectral sensitivity function.
We assume the sampling distance is incorporated in the
spectral sensitivity vectors. Here ‘·’ denotes the dot product
of two vectors.

One advantage of transcribing image formation into vector
notation is that we can usefully deploy the tools of linear

algebra. Let the matrices C and Q denote 31 × n and 31 × 3
matrices whose columns respectively contain n color signal
spectra and the 3 device spectral sensitivities. The n ×3 set of
RGB responses can be written as a single concise expression:

P = CT Q, (5)

where T denotes the matrix transpose.
Denoting, X as a 31 × 3 matrix whose columns contain the

discrete XYZ color matching functions, the XYZ tristimulus
responses can be written as:

X = CT X. (6)

D. The Luther Condition for Camera Spectral Sensitivities

Let us denote individual camera and XYZ responses as ρ
and x . We can use a camera to exactly measure colors if and
only if there exists a function such that g(ρ) = x for all
spectra. It follows that if a pair of spectra integrates to the
same RGB then this pair must also integrate to the same XYZ:

CT
1 Q = CT

2 Q ⇒ CT
1 X = CT

2 X (7)

This implies CT
1 − CT

2 is simultaneously in the null space
of Q and X. Since any spectrum in the null-space of Q is
a physically plausible spectral difference this implies that the
null-spaces of Q and X are the same and this in turn implies
the Luther condition

X = QM (8)

where M is a 3 × 3 matrix. See [32] for the original proof of
the Luther condition (which we precis above).

E. The Data-Driven Luther Condition

The Luther condition for Spectral Sensitivities presupposes
that any and all physical spectra are plausible. However,
we know that reflectance spectra are smooth [8]. Lights while
more arbitrary are designed to integrate to fall near or close
to the Planckian locus [3] and to score well on measures such
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as the Color Rendering Index [11]. Pragmatically, a camera is
colorimetric if its responses are a linear transformation from
the XYZ tristimulus values

CT X = CT QM (9)

where M is a 3 × 3 matrix.

F. Filter Design

There are many papers in the literature where the spectral
sensitivities that a camera should have had are designed [33]–
[38]. For example, we can solve for the camera spectral sensi-
tivities with respect to which the RGBs mapped with respect
to many illuminant spectra can be mapped to corresponding
XYZs for a single target illuminant. The procedure where
we measure colors under a changing light - e.g. in the real
world - but then reference (that is, map) these colors back to a
fixed illuminant viewing condition is a standard methodology
in color science. Curiously, the best sensors that solve this
problem are not linearly related to the XYZ CMFs [38].

Perhaps, the closest work to our study is [39]. Here two
images are captured. The first with the native spectral sensi-
tivities and the second through a colored filter. The emphasis
of that work was to increase the spectral dimensionality of
the capture device. Since we make two captures we have
6 measurements per pixel. Effectively we have a 6-dimensional
sensor set. We match target XYZs by applying a 6 × 3
correction matrix. In [39], the best filter was chosen from a
set of commercially available filters.

There are many other works which propose recovering
spectral information by capturing multiple exposures of the
same scene through multiple filters, e.g. [40]–[44]. A dis-
advantage of all these methods is that the capture process
is longer and more laborious. Filters need to be changed
between exposures. The multi-exposure process then need to
be registered. Image registration remains a far from solved
problem. Moreover, scene elements between exposures may
move (making registration impossible).

The method we propose here is much simpler. We simply
place a specially designed filter in front of a camera and then
take conventional single exposure images.

III. DESIGNING A FILTER TO MAKE A CAMERA MORE

COLORIMETRIC

A. Luther-Condition Filters

The Luther condition states that a camera system is col-
orimetric if its sensitivities are a linear transform from the
XYZ color matching functions. We propose a modified Luther
condition where a camera is said to be colorimetric if there
exists a physically realisable filter which, when placed in front
of the camera, generates effective sensitivities which are a
linear transform from the XYZ CMFs.

Physically, the role of a filter, which absorbs light on a per
wavelength basis, is multiplicative. If f (λ) is a transmittance
filter and Q(λ) denotes the camera sensitivities then f (λ)Q(λ)
is a physically accurate model of the effect of placing a filter
in front of the camera sensor.

Algorithm 1 ALS Algorithm for Luther-Condition Optimisa-
tion

In Equation (10) we write an optimisation statement for the
Filter-based Luther condition:

min
f ,M

� diag( f )QM − X �2
F s.t. f > 0 (10)

Here Q and X are 31 × 3 matrices encoding respectively
the spectral sensitivities of a digital camera and the CIE
standard XYZ color matching curves. The 31-vector f is the
sampled equivalent of the continuous filter function f (λ). The
diag() operation converts a vector into a diagonal matrix (the
vector components appear along the diagonal). The meaning
of diag( f )Q is the same as f (λ)Q(λ), i.e. the diagonal
matrix allows us to express component-wise (per wavelength)
multiplication into matrix multiplication. M denotes a 3 × 3
matrix. We minimise the square of Frobenius norm � �2

F (we
minimise the sum of squares error). Notice the constraint that
the filter value is larger than 0 (physically, we cannot have a
filter that has negative transmittance).

We do not have to constrain the maximum transmittance
because we can only solve for f and M up to an unknown
scaling factor. Indeed, suppose the filter f is returned where
the max transmittance is larger than 1. The fitting error in
Equation (10) is unchanged if we divide f by its maximum
value (resulting in a max transmittance of 100%) so long as we
multiply the corresponding correction matrix M by the same
value.

We minimise Equation (10) using an alternating least-
squares (ALS) procedure given in the following algorithm.
where

∏
denotes component-wise matrix multiplication. Steps

4 and 5 - where we find the filter and then the linear transform -
are solved using simple, closed-form least-squares estimation.
For completeness we provide details of how these calculations
are made in the Appendix.

At each iteration, the filter and linear transform - f i and
Mi - are calculated relative to the previous i − 1 filters and
matrices. It follows in step 8 that the final solution is the
multiplication of all the per-iteration solutions: f Luther =∏i

s=1 f s (component-wise vector multiplication) and M j =∏i
s=1 Ms (component-wise matrix multiplication).
Notice nowhere in the above procedure do we constrain

the filter transmittance to be larger than 0 (even although
this constraint is in the optimisation statement). Empirically,
we found that the optimised filter is always positive for all
the cameras we tested (see experimental section). Moreover,
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Theorem 3.1, presented below, proves that when there exists
a filter which makes the camera sensors perfectly colorimetric
that the filter has to be everywhere positive.

The theorem is presented for continuous spectral sensitivity
functions. As such, we write the XYZ CMFs and camera
sensitivities as vector functions: X(λ) and Q(λ). In this repre-
sentation, we, effectively, have taken transposes of the matrices
Q and X. So, here, we write MT for the 3×3 matrix. Of course,
matrix M in the proof and in the algorithm presented above
signifies the same linear transform.

Theorem 1: Assuming there exists an exact solution that
f (λ) > 0 for MT Q(λ) f (λ) = X(λ), the variable λ is defined
over the domain where X(λ) > 0 are continuous and full
rank (no one spectral sensitivity can be written as a linear
combination of the other two) and Q(λ) are also continuous
then f (λ) > 0.

Proof: First we remark on the continuity of the camera
and XYZ functions. Both are the result of physical processes
which are continuous in nature. To our knowledge it is
not possible to make a physical sensor system that captures
light which has discontinuous sensitivities. And, in terms of
physiological systems, biological sensor response functions are
always continuous.

Next, if f (λ) < 0 across all wavelengths and
MT Q(λ) f (λ) = X(λ), then −MT Q(λ) ∗ (− f (λ)) = X(λ).
In this case − f (λ) must be all positive and so an all-positive
filter can be found. The interesting case to consider is when
the filter has both negative and positive values.

Clearly the 3 × 3 matrix MT must be full rank otherwise
the mapped camera sensitivities would be rank deficient and
therefore could not model the CMFs. Equally, multiplying by
a filter does not change the rank of the sensor set. Because,
by assumption Q(λ) are continuous it follows that f (λ) must
also be a continuous function since otherwise MT Q(λ) f (λ)
would be discontinuous (multiplying a continuous and dis-
continuous functions together, save for the case where one
of the functions is everywhere 0, results in a discontinuous
function).

As f (λ) is continuous if the function has both negative
and positive values there must be at least one wavelength
λv where f (λv ) = 0 and so MT Q(λv) f (λv ) = 0. But, this
cannot be the case since the XYZ color matching functions
are not all zero at any given wavelength within the defined
domain.

Of course the theorem is written in the continuous domain.
How does this theorem work given discrete data? (e.g. 10 nm
samples across the visible spectrum). Pragmatically, we have
found that the recovered filters are always all positive, for
the discrete case. And, of course – by linear interpolation,
for example, we can turn non-continuous data into contin-
uous functions. Then, by the theorem if there is an exact
filter correction then this filter must be all positive. And,
the filter must also work at the original sample points (be
all positive here too). Remember, the theorem does not
teach how to find the all-positive filter only that if exact
color correction is possible the filter must be all positive.
For linearly interpolated discrete data the filter must be all
positive.

Algorithm 2 ALS Algorithm for the Data-Driven Optimisation

B. Data-Driven Filters

Simple Case: in the simple Data-driven approach, we look
for a color filter and the 3 × 3 color correction matrix that,
in a least-squares sense, best maps camera measurements for
a training color signal data set to the corresponding ground-
truth XYZ tristimulus values. Denoting a collection of n color
signals in the n × 31 color signal matrix C , the Data-driven
optimisation is written as:

min
f ,M

� CT diag( f )QM − CT X �2
F s.t. f > 0 (11)

Solving Equation (11) depends on the structure of the
color signal matrix. If we choose C = I31 (the 31 × 31
identity matrix) then we can solve this optimisation using
Algorithm 1 (in this case, Equations (11) and (10) are the
same). This assumption is related to the Maximum Ignorance
assumption [45] where all possible spectra are considered
equally likely.

General Case: Let us develop a more general optimisation
statement. One, where we have cnt color signal matrices
- denoted C j ( j ∈ {1, 2, · · · , cnt}) and the corresponding
cnt color correction matrices M j . Each color signal matrix
typically corresponds to a training set of surface reflectances
illuminated by a single spectrum of light E j , thus the color
signal matrix is C j = diag(E j )S, where S is a 31 × n matrix
of reflectances, one reflectance spectrum per column. But,
the different light assumption is not a necessary assumption.
As an example, we might mix color signals for the Maximum
Ignorance assumption with measured data (i.e. two color signal
matrices) where both measurement sets contain multiple lights.

The general Data-driven filter optimisation problem is writ-
ten as:

min
f ,M j

cnt∑
j=1

� CT
j diag( f )QM j − CT

k X �2
F s.t. f > 0 (12)

and is solved using Algorithm 2.
Finally, k could denote some other privileged standard

reference viewing condition (where the reference viewing
illuminant is not in the set of training lights). For example,
in color measurement we are often interested in the XYZ
tristimuli for a daylight illuminant D65 which has a prescribed
but not easily physically replicable spectrum.

We are going to solve Equation (12) for the filter f using
an alternating least-squares procedure. Notice that the input
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to the optimisation is an initial filter guess denoted by f seed .
Let us consider 3 candidate minimisations corresponding to
3 common scenarios for color measurement each of which
can be solved using Algorithm 2.

1) Multiple Lights: Here we assume that j indexes over
cnt illuminants and k = j (per illuminant we make the target
XYZs using the same color signals). We find a single filter
which given per-illuminant optimal least-square 3 × 3 correc-
tion matrices will best fit camera data to the corresponding
multi-illuminant XYZs.

2) Multiple measurement lights, single target light: Again
j indexes over cnt illuminants. But, the target is a single
illuminant, for example CIE D65 [3].

3) Single Light. This case is, in effect, the simple restriction
of the general case, cnt = 1. We have one measurement light
and one target light. Like the Luther-condition optimisation,
we solve for a single correction matrix.

In Algorithm 2, it is straightforward to solve for the j th
color correction matrix at iteration step i , Mi

j , in step 4 using
the Moore-Penrose inverse. As the correction matrix might
have an impact on noise amplification after the transform [46],
it is desirable to have a well-conditioned correction matrix.
That is, we could bound the condition number of the solved-
for correction matrix e.g. by using regularisation. However,
in our experiments all the matrices we calculated were found
to be tolerably well-conditioned. Step 5, where we find the
filter, can also be solved directly using simple least-squares,
although the basic equations need to be rearranged. Details of
the least-squares computation are given in the Appendix. Here,
to ensure that the filter is all positive we can also solve for
the filter by solving the optimisation subject to the positivity
constraints, we solve a quadratic programming problem [47]
(unlike the Luther-condition case there is no a prior physical
reason why the best filter should be all positive).

Quadratic programming allows linear least-squares problem
subject to linear constraints to be solved rapidly and, crucially,
a global optimum is found.

C. Adding Filter Constraints

By default the filter found using Algorithm 2 can be arbi-
trarily non-smooth and might also be very non-transmissive.
Non-smoothness limits manufacturability (at least with dye
based filters) and a filter that absorbs most of the incoming
light would, perforce, have limited practical utility. Both these
problems can be solved by placing constraints on the filter
optimisation.

Let us now constrain the target filter f according to:

f = Bc, s.t. fmin ≤ f ≤ fmax (13)

here B denotes a 31 × m basis matrix with each column
representing a basis and the vector c denotes an m-component
coefficient vector. The scalars fmin and fmax denote lower
and upper thresholds on the desired transmittance of the filter;
specifically, fmax is set to 1 by default as fully transmissive
and fmin is a positive value between 0 and 1. Equation (13)
forces the optimised filter to be in the span of the column
vectors of B and to meet the min and max transmittance

constraints. By judicious choice of the basis we can effectively
bound the smoothness of the filter. For example, we could
choose the first m terms of the discrete cosine transform basis
expansion [48].

With respect to the new filter representation, we rewrite the
new overall filter design optimisation in Equation (12) as

min
c,M j

cnt∑
j=1

� CT
j diag(Bc)QM j − CT

k X �2
F ,

fmin ≤ Bc ≤ fmax (14)

The current minimisation can be solved using the same alter-
nating least-squares paradigm of Algorithm 2. But, in step 5,
we need to substitute the constraint f i > 0 with

fmin ≤ diag(

i−1∏
s=0

f s) f i = Bci ≤ fmax (15)

That is, the filter we find at the i th iteration when multiplied
by all the filters from the previous iterations is constrained to
be in the basis B .

Looking at Equation (15) we see that

f i = [diag(

i−1∏
s=0

f s)]−1 Bci (16)

That is, effectively the basis for the ith filter changes at each
iteration. Again we can solve step 5 subject to the constraints
of Equation (16) using Quadratic Programming.

Finally, we note that we could, of course, rewrite Algo-
rithm 2 so that at each iteration we solve for a filter defined
by a coefficient weight directly (we could solve for an m-
term coefficient vector rather than a 31-component filter). The
two formalisms are equivalent. Here, we chose to solve for
the per iteration filter for notational convenience: we can use
the general Data-driven algorithm and simply change how we
calculate the per iteration filter optimisation.

D. Initialising the Data-Driven Optimisation

Alternating least-squares is guaranteed to converge but it
will not necessarily return the global optimal result. But, it is
deterministic. So, given the state of the correction matrices and
filter at the i th iteration we will ultimately arrive at the same
solution. Equally, if we change the initialisation condition,
f seed , in Algorithm 2, we may end up solving for a different
filter. Empirically, we observed that the filter returned by the
algorithm depends strongly on the initial filter that seeds the
optimisation.

Let us consider 3 different ways to seed the Data-driven
optimisation:

1) Default: f seed = 1. This uniform unit vector denotes a
fully transmissive filter over the spectrum.

2) Luther filter: f seed = f Luther . That is we seed the Data-
driven optimisation with the optimal Luther-condition filter
found using Algorithm 1.

3) By sampling: Here we find a set of sample filters F
(which meet our smoothness and transmittance boundedness
constraints) and for each filter sample, f ∈ F seed , we will run
Algorithm 2.
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Algorithm 3 Algorithm for Generating an Initial Filter Set

Algorithm 3 generates # f ilters (number of initial filters)—
subject to bounded smoothness constraints—by uniformly
and randomly sampling the filter coefficient space. Before
sampling, the algorithm first finds the min and max values
of the coefficients (which are calculated in each of the m
dimensions individually). Explicitly, for the i th component in
vector c, we denote its minimum and maximum values as cmin

i
and cmax

i .
In Algorithm 3, for the minimum value of the i th coefficient,

we write: cmin
i = min ci , s.t. fmin ≤ Bc ≤ fmax , i =

1, 2, . . . , m. That is, over all possible vectors c, which satisfy
the transmittance constraints, we take note of the minimum
value of the i th component. That is we find the minimum
value that ci can be over the set of all possible solutions. The
maximum of the i th coefficient term is written similarly (see
step 3, Algorithm 3). The minimum and maximum values of
ci can be solved using linear programming [47].

All m min and max components, taken together, make the
two vectors cmin and cmax . These vectors together define the
extremal values in each dimension of an m-dimensional hyper-
cube. A vector that lies outside the hypercube is guaranteed
not to satisfy the boundedness and transmittance constraints
we have placed on our filters. This hypercube usefully delimits
our search space (of the sample set of solutions).

To generate a set of filters for initialising the optimisation
(solved in Algorithm 2) we will sample uniformly and ran-
domly this hypercube. We use the notation ci ∼ U

(
cmin

i , cmax
i

)
to denote sampling a number in the interval [cmin

i , cmax
i ]

uniformly and randomly. A filter constructed from the cor-
responding vector c = [c1 c2 · · · cm]T ( f = Bc), will be
added into the initial filter set F only if it lies within the
transmittance bounds and it is sufficiently far from those filters
already in the set, see step 7. In algorithm 3 sufficiently far
means at least θ degrees from the other set members. The
function cardinali ty() returns the number of members in a
set.

IV. RESULTS

A. Experiments for Luther-Condition Optimised Filters

Let us return to the example shown in Fig. 1. The optimal
Luther-condition filter solved using Algorithm 1 is shown
in Fig. 1e. We multiply the camera sensors by this filter and

then find the linear least-squares transform mapping the new
effective sensitivities to the XYZ matching functions. The
fitted filtered camera sensitivities (to the XYZ color matching
functions) are shown Fig. 1f. In contrast, Fig. 1d, shows
the native camera spectral sensitivities fitted to the XYZs.
Visually, the addition of our derived filter makes the camera
much more colorimetric.

The reader will notice that the filter, Fig. 1e, absorbs more
than 80% of the light except at the shortest wavelengths where
it is maximally transmissive. This need not be a problem for
color measurement as we can increase exposure time, for
example. Though, it does mean that the camera with and
without the filter would, for the same recording conditions,
capture significantly less light. And, this could result in an
increase in the noise in the final image output by a camera
reproduction pipeline. Indeed, if we deploy this filter - and
keep the capture conditions the same - we would need to
‘scale up’ the recorded values and this operation also scales
up the noise. Effectively, we capture an image at a higher ISO
number.

B. Vora-Values

To quantitatively measure the spectral match between the
filtered and linear transformed camera sensors and the XYZ
color matching functions, we calculate the Vora-Value [49].
The Vora-Value measures the closeness between the spaces
spanned by a set of filter sensitivities set Q and that by the
color matching functions X. It is defined as

ν(X, Q) = Trace(QQ+XX+)

3
(17)

where T race() returns the sum of the diagonal of a matrix
and + is the Moore-Penrose inverse (see Appendix). The Vora-
Value is a number between 0 and 1 where 1 indicates the two
sensitivity sets span the same space, i.e. the Luther condition
is fully satisfied. While there is not a guide on what different
Vora-Values mean, empirically we have found when the Vora-
Value is respectively larger than 0.95 and 0.99 then we have
acceptable and very good color measurement performance.
An explanation of why the Vora-Value is useful for quantifying
the color measurement potential of a set of color filters
together with its derivation can be found in [49].

The Vora-Value performance for a set of 28 camera spectral
sensitivities [50] - with and without their optimised filters
solved using Algorithm 1 - are shown in Fig. 3. The Vora-
Value for the unfiltered, NATive sensitivities are shown in
blue and for the LUTHer-condition optimised sensitivities in
red. On average, the native Vora-Value is 0.918 but when the
optimised filter is added it increases to 0.961. This digital
cameras data set [50] comprises of diverse camera types,
including professional DSLRs, point-and-shoot, industrial and
mobile cameras.

Note, we make a distinction between using a camera for
color measurement and for making attractive looking images.
Here, we are interested in using a camera to measure XYZ
tristimuli (or measures like CIE Lab values that are derived
from tristimuli [3]). From a measurement perspective, we need
higher tolerances and a higher Vora-Value. Clearly, from the
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Fig. 3. Spectral match to Luther-condition by (a) unfiltered NATive
sensitivities and (b) filtered LUTHer-condition optimised sensitivities for a
group of 28 cameras in terms of Vora-Values. The overall average Vora-Values
of the camera group by both conditions are shown in the green box.

point of view of making attractive images cameras that have
Vora-Values less than 0.95 can work very well. Indeed, many
of the 28 cameras with Vora-Values less than 0.95 can still take
images that look appealing from a photographic perspective.
But, commercial cameras are not suitable vehicles for accurate
color measurement. Quantitative color measurement results are
presented in the next section.

C. Color Measurement Experiments

Now let us evaluate the derived Luther-condition filters
(solved using Algorithm 1) and Data-driven filters (solved
using Algorithm 2) in terms of a perceptually relevant color
measurement/image reproduction metric. The error metric
�E∗

ab [3] - the Euclidean distance calculated between two
color vectors in the CIELAB color space - is a single number
that roughly correlates with the perceived perceptual distance
between two colors. One �E∗

ab corresponds approximately to
a ‘Just Noticeable Difference’ to a human observer [27]. When
�E∗

ab is less than 1 we say that the difference is imperceptible
to the visual system.

1) Single Light Case: Let us use the Canon 40D camera
spectral sensitivities as a putative measurement device and
quantify how well it can measure colors - with and without
a filter. In this experiment the measurement light is either
a CIE D65 (bluish) or a CIE A (yellowish) illuminant. For
reflectances we use the SFU set of 1995 spectra [51] (itself
a composite of many widely used sets). The 1995 XYZs for
these reflectances and lights are the ground-truth with respect
to which we measure color measurement error.

Using the Canon camera sensitivities, the reflectance spectra
and either the CIE D65 and A lights we numerically calculate
two sets of 1995 RGBs. Now, we linearly regress the RGBs
for each light to their corresponding ground-truths (we map
the native RGBs for CIE D65 and A to respectively the XYZs
under the same lights). We call these color corrected RGBs
the NATive camera predictions (and we adopt this notation in
the results shown in Table I). Rows 1 and 4 of Table I report
the mean, median, 90, 95 and 99 percentile and the maximum
CIELAB �E error for CIE D65 and CIE A lights.

Now let us place a filter in front of the camera. Again,
we calculate two sets of RGBs (one for each light) for the

camera spectral sensitivities multiplied by the filter found
using the Luther-condition optimisation (Algorithm 1). The
recorded filtered RGBs are mapped best to corresponding
XYZs using linear regression. The LUTHer �E∗

ab error
statistics are shown in rows 2 and 5. It is clear that placing
a Luther-condition filter substantially increases the ability of
the camera to measure colors accurately. Across all metrics the
�E∗

ab errors reported are about a third of those found when a
filter is not used.

We repeat the experiment for a Data-driven color filter
(found using Algorithm 2 where the seed filter for the optimi-
sation is the Luther-condition optimised filter). Again, the two
sets of filtered RGBs are linearly mapped to corresponding
XYZs to minimise a least-squares error. Results for the
corrected DATA-driven filtered RGBs for the two lights are
reported in rows 3 and 6 of Table I. Clearly, the camera plus
filter can measure colors more accurately compared to the case
where a filter is not used. Across all metrics the �E∗

ab errors
reported are about a quarter of those found when a filter is
not used.

Significantly, the best Data-driven filter also delivers
improved performance compared with the results reported for
the Luther-condition optimised filter. The errors are further
reduced by about a quarter. Incorporating knowledge of typical
lights and surfaces into the optimisation leads to improved
color measurement performance.

2) Multiple Lights Case: We now repeat the experiment for
a set of 102 measured lights [51]. The results of this second
experiment are shown in the last 3 rows of Table I. Here,
the reported error statistics are averages. For each illuminant
- as described in the single light case above - we calculate
the mean, median, 90 percentile, 95 percentile, 99 percentile
and maximum �E∗

ab. That is, we calculate 6 error measures
for 102 lights. We then take the mean of each error statistic
over all the lights. The aggregate illuminant set performance is
reported in rows 7, 8 and 9 of Table I for respectively unfiltered
RGBs and RGBs measured with respect to Luther-condition
and Data-driven optimised filters.

In terms of the reported errors of the raw RGBs compared
to the filtered RGBs for the Luther- and Data-driven filters we
see the same data trend for the multiple lights case as we saw
previously for single lights. A Luther-condition derived filter
reduces the measurement error by 2/3 and for the Data-driven
filter the measurement error is reduced by 3/4, on average.

3) Multiple Cameras: Now, we calculate the mean �E∗
ab

error (for the 102 lights and 1995 reflectances) for each
of 28 cameras [50]. For each camera we calculate the opti-
mal Luther-condition and Data-driven optimal filters (where
as before the Luther-condition filter seeds the Data-driven
optimisation). Per camera, Figure 4 summarises the per camera
mean and 95 percentile �E∗

ab performance.
Grey bars in Figs. 4a and 4b show respectively the mean and

95 percentile error performance of native (un-filtered) color
corrected RGBs for the 28 cameras. Respectively, the dashed
green and solid red lines record the performance of the best
Luther-condition and Data-driven filters.

It is evident that the optimised filters support improved
color measurement for all 28 cameras and on average the
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TABLE I

�E∗
ab STATISTICS OF THE COLOR CORRECTED NATIVE CAMERA,

THE COLOR CORRECTED CAMERA WITH THE LUTHER-CONDITION

OPTIMISED FILTER, AND THE COLOR CORRECTED CAMERA WITH

THE DATA-DRIVEN OPTIMISED FILTER FOR CANON 40D CAM-
ERA UNDER DIFFERENT LIGHTING CASES

Fig. 4. Mean (a) and 95-percentile (b) �E∗
ab errors for 28 cameras. The grey-

bars show the color errors for NATive color correction. The dashed green lines
with black circles show the results by using the LUTHer-condition optimised
filter. The results of the DATA-driven optimisation are plotted in solid red
lines.

performance increment is significant. For many cameras the
Data-driven optimised filter delivers significantly better color
measurement performance compared with using the Luther-
condition optimised filter.

Fig. 5. Spectral transmittance of Data-driven optimised filters for the Canon
5D Mark II camera. In (a), the filters are solved with no smoothness constraint,
(b) and (c) constrain the filters to be constructed by 6- and 8- Cosine basis
respectively. Dotted blue lines (‘DATA_1s’) show the filters obtained when
the optimisation is initialised with the 100% transmittance filter, dotted purple
lines (‘DATA_Luther’) initialised with the LUTHer-condition filter, solid red
lines (‘DATA_Sampling’) with a sample set. All filters are constrained by
minimum transmittance of 20%.

D. Smooth and Bounded Transmittance Filters

Both the Luther-condition and Data-driven filters absorb
much of the available light (low transmittance values) and are
far from being smooth, e.g. see the derived Luther-condition
filter in Fig. 1e. Here across much of the visible spectrum the
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filter transmits little (below 20%) of the available light. When
a strongly light-absorptive filter is placed in front of a camera
then we need to either increase the exposure time (or widen
the aperture) or apply a higher ISO (which can increase the
conspicuity of noise) to obtain an image with the same range
of brightness (as when a filter is not used). Plus the filter
in Fig. 1e is not smooth it may be difficult to manufacture.

In this subsection we will constrain our optimisation so that
the calculated filters are smooth and transmit, per wavelength,
a minimum amount of incident light (here, 20%). We enforce
smoothness indirectly by assuming that our filters lie within
the span of either a 6- or 8-dimensional Cosine basis.

Let us visualise the 20% bounded transmittance constraint
using the Canon 40D camera sensitivities and our Data-driven
optimisation. First, we initialise the optimisation (Algorithm 2)
using the uniform vector 1 (100% transmittance across the
spectrum) as the seed filter. The optimisation returns the
filter, denoted DATA_1s and is plotted in the blue-dotted
line in Fig. 5a. The Data-driven optimisation seeded with the
Luther-condition filter DATA_Luther is also shown in Fig. 5a
(dotted purple line).

We repeat this experiment where we both require the derived
filters to transmit at least 20% of the light and also that they
belong to the span the first 6- or first 8-terms in a Cosine basis
expansion. When the recovered filter is constrained to lie in the
span of a 6-dimensional Cosine basis, the recovered DATA_1s
and DATA_Luther - for the two initialisation conditions -
filters are shown in Fig. 5b (respectively blue and purple
dotted lines). See Fig. 5c for the filters calculated using an
8-dimensional Cosine basis.

The red lines shown in Figs. 5b and 5c are the filters
optimised by our sampling Algorithm (using Algorithm 3 to
find a set of filters to seed algorithm 2 and then choosing
the best one that has the best overall performance). The
experiment for deriving these filters are described in the next
subsection.

By examining Figs. 5a, 5b and 5c, it is evident that - when
no basis, a 6- or an 8-dimensional Cosine basis are used - that
changing the initialisation condition results in a different filter
being found.

E. Sampled Optimisation

Using Algorithm 3, let us run a sampled optimisation.
That is for a given Cosine basis we calculate a set of
candidate solutions, the sample set F . Here we populate F
with 20,000 uniformly and randomly generated filters where
the angular threshold between any two filters in the set is
1 degree, θ = 1◦, see step 7 in Algorithm 3. Each filter in
F transmits at least 20% of the light (and F is populated by
filters described as linear combination of a 6- or 8-dimensional
Cosine basis).

Each filter in F is used to initialise the Data-driven algo-
rithm. That is we find 20,000 optimised filters. The color
measurement performance of each filter in this solution set can
be calculated. Then we simply choose the filter that delivers
the best overall measurement performance. In Figs. 5b and 5c
we show the best sample-optimised filters (red lines) which

TABLE II

�E∗
ab STATISTICS OF THE COLOR CORRECTED NATIVE CAMERA,

THE COLOR CORRECTED CAMERA WITH THE DATA-DRIVEN OPTI-
MISED FILTER SOLUTIONS OBTAINED WHEN INITIALISED WITH

UNIFORM VECTOR OF 1s, Luther-CONDITION FILTER AND

Sampling FILTER SET RESPECTIVELY UNDER DIFFERENT
CONSTRAINTS FOR CANON 40D CAMERA

respectively lie in the span of a 6- and 8-dimensional Cosine
basis (and transmit at least 20% of the light). Here ’best’ is
defined to be the filter that results in the smallest mean �E∗

ab
performance.

Table II reports the �E∗
ab color error performance

1995 reflectances and 102 lights [51] for the Canon 40D sen-
sitivities. The row NAT reports the baseline color correction
results when a per illuminant based linear correction matrix is
applied while no filter is used (note that row 7 in Table I and
row 1 in Table II are the same).

In Table II we report the correction performances in 3
tranches. Rows 2 and 3 correspond to the two filters without
using Cosine basis as shown in Fig. 5a. Here we find the
best filters with only the 20% minimum transmittance bound.
Rows, 4,5 and 6 report the performance when the 3 filters
shown in Fig. 5b are used, where the filter is additionally
constrained to be in the span of the 6-dimensional Cosine
basis. Finally, when the filter is constrained to belong to an
8-dimensional Cosine basis, the 3 derived filters lead to the
error statistics shown in rows 7 through 9.

Table I reported the color measurement performance of the
filters found using an unconstrained optimisation. Table II
reports the color measurement results that are found when
filters are constrained to have a bounded transmittance (here
at least 20% of the light) and be smooth. Let us consider
the bounded transmittance first. Comparing row 9 of Table I
to row 3 of Table II we see that adding a lower transmittance
bound returns a filter that delivers poorer measurement perfor-
mance (but still much better compared with the native camera
response). Additionally, requiring that our filters smooth on
top of the minimum also yields relatively poorer performance
compared to the unconstrained filter optimisation.

However, with either the 6- and 8-dimensional Cosine
basis constraint we can find the best filter by seeding Algo-
rithm 2 with many possible filter initialisations (and then
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TABLE III

�E∗
ab STATISTICS AND RELATIVE EXPOSURE SETTINGS OF THE COLOR

CORRECTED CAMERA WITH THE OPTIMISED Sampling FILTER SET

WITH VARYING CONSTRAINTS OF THE MINIMUM TRANSMITTANCE

CONSTRUCTED BY 8-COSINE BASIS FOR CANON 40D CAMERA

choosing the best filter overall). Here, we find that comparable
performance is possible. Compare rows 6 and 9 of Table II to
row 9 of Table I. It is remarkable how well a constrained filter
can work: the performance is ever so slightly worse than the
unconstrained optimisation. But, the filter is much smoother
and more likely to be able to be manufactured.

The best filters with varying minimum transmittance of
respectively 100% (i.e. no filter is applied), 80%, 60%, 40%
and 20% (all linearly composed by 8-Cosine basis using
sampled optimisation) are also calculated. For each filter,
we perform the color correction experiment where we use
the same data sets as in Table II (1995 reflectance spectra
and 102 illuminant spectra). The color correction results are
given in Table III. We also report the exposure adjustment
required so that the filtered camera captures the same amount
of light as an unfiltered camera (see the last column). The
exposure numbers are calculated as the reciprocal of the
averaged transmittance over the spectrum (when an equi-
energy spectrum light is assumed).

A filter having a minimum transmittance value of 20%
needs a doubling exposure to match the same light level
as the unfiltered condition. The best filter with a minimum
transmittance of 40% still makes the camera much more
colorimetric but only a 60% increase in exposure is required.
Exposure might be changed by opening the aperture a fraction,
capturing over a slightly longer exposure time or by applying a
scaling factor. When exposure is altered by applying a scaling
factor (e.g. increasing the ISO number) then for low-light
scenes there may be an increase in the conspicuity of noise.

F. Sampling vs Optimisation

It is worth reflecting on our sample-based optimisation.
Clearly, that sampling makes such a difference to the per-
formance that our optimisation can deliver (for filtered color
measurement) teaches us that the minimisation at hand has
many local minima. By sampling we are effectively allowing
our minimiser (Algorithm 2) to find many solutions and then
we have the latitude to choose the (closer to) global minimum.
Given we seed our optimisation with 20,000 filters we might
wonder whether we need to actually carry out the Data-driven
optimisation.

TABLE IV

�E∗
ab STATISTICS OF THE COLOR CORRECTED CAMERA WITH THE OPTI-

MISED FILTER BY SAMPLING COMPARED TO HIGHER-ORDER COLOR

CORRECTION METHODS FOR CANON 40D CAMERA

In answering this question, first we remark that it is well
known that as the dimension of a space increases it is
more sparse. On the Cartesian plane if we have more than
360 vectors (anchored at the origin) then the closest angular
distance to at least one vector’s nearest neighbours must be
less than 1 degree. In 3-dimensions we can have thousands
of vectors where every vector is more than 1 degree from its
nearest neighbour.

For our 20,000 member sample set F we calculated the
average angular distance for each element to its nearest
neighbour in the set. When F is calculated subject to the
6-dimensional Cosine basis constraint, the average nearest-
neighbour distance was 2.6 degrees (with a maximum of 7)
and for the 8-dimensional case it was 4.6 degrees (with a
maximum of 10). Running the optimisation, Algorithm 2, with
each element in F , we effectively refine the initial guess. And,
the refinement (difference between the starting and endpoint
filter) is on the same order as the average nearest-neighbour
distance.

Significantly, running the optimisation - carrying out the
refinement - results in a significant performance increment
compared to using the only sample filters. That is we cannot
use the sampling strategy alone to find the best optimised filter.
The importance of the refinement step will increase as a greater
number of basis functions are used in the optimisation.

G. Color Filtering vs Higher-Order Correction Methods

We compared our color filtering method (Data-driven filters
smoothed by 8-Cosine basis and transmittance constraints
under sampled optimisation using Algorithm 3) to the hue-
plane preserving color correction (NHPPCC) method pre-
sented in [18] (which is a data-driven modification of [52]).
This method effectively decomposes 3-dimensional color
spaces into a number of cones: defined to be regions of color
spaces that are convex combination of 3 bounding vectors (all
of which are anchored at the origin (0,0,0)). All cones share
the achromatic axis (1,1,1) and neighbouring cones have two
bounding vectors in common. Each cone has its own 3 × 3
color correction transform. If an RGB lies within a given cone
then this RGB is color corrected by the correction transform
for that cone. Significantly, because neighbouring cones share
two bounding vectors the overall color correction transform is
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continuous in the sense that the colors on the plane between
neighbouring cones are mapped to the same colors using either
of the color correction matrices for each cone. See [18] for
more details.

We chose the NHPPCC method as it maintains the linear
property invariant to exposure (the same NHPPCC transform
is applied when exposure changes), it is still relatively simple
to implement, and it is one of the leading color correction
algorithms available. For our experiments color space is split
into 6 cones.

Finally, we also compared the performance to the poly-
nomial and root-polynomial color correction regressions (up
to degree of three). PCC,2 denotes a regression of a 2nd
order polynomial regression and PCC,3 denotes the 3rd order
polynomial expansion. Polynomial regression is not exposure
invariant but a root-polynomial regression is invariant to
exposure. The 2nd and 3rd order root-polynomial regressions
are denoted RPCC,2 and RPCC,3. Color correction results -
using the same data sets as Table III - are reported in Table IV.

From the table, we can see that by adopting reasonably
transmissive filter with minimum transmittances of 20% and
40% and using simple linear correction we outperform the
higher order conventional color correction methods by a large
margin (these two results denoted Filtering are the same as
the last two rows in Table III). A filter with minimum trans-
mittance of 60% (the fourth row in Table III) has comparable
performance to the best performed 3rd-order root-polynomial
results (the fifth row in Table IV).

V. CONCLUSION

In this article, we developed two algorithms that design
transmittance filters which, when placed in front of a camera,
make the camera more colorimetric. Our first algorithm is
driven by the camera sensitivities themselves. It is well known
that a camera that has sensitivities that are a linear transform
from the XYZ color matching functions - the camera meets the
Luther condition - can be used to measure color without error.
Our first algorithm finds the filter that best satisfies the Luther
condition. A second algorithm that tackles color correction
for a given set of measured lights and surfaces, which we call
Data-driven filter optimisation, is also developed. Both Luther-
and Data-driven filters provide a step change in how well a
camera can measure color.

Our default optimisation - though compellingly simple to
formulate - deliver filters which are not smooth (difficult
to make) and may also transmit very little light. Our opti-
misations are reformulated to incorporate both smoothness
and a lower bound on how much light must be transmitted.
Initially, when these constraints are adopted, the solved-for
filters work less well. However, experiments demonstrated that
our optimisations were highly dependent on the initialisation
parameters, specifically the seed filter (initial guess) that drives
the filter evolution. A simple sampling strategy - i.e. severally
running the optimisation for a set of judiciously chosen seed
filters - allows us to mitigate this problem. Significantly a
smooth filter that transmits more than 20% of the light across
the visible spectrum delivers almost as good performance as

a very non-transmittive and non-smooth filter (found via the
unconstrained optimisations).

APPENDIX

IMPLEMENTATION

For both Algorithms 1 and 2 presented in Section III the
filter and the color correction matrices can be found using
simple least-squares regression. To remind the reader, given
A and B - m × n matrices of rank n where m ≥ n, then
the least-squares regression M - an n × n matrix, mapping
A to B (AM ≈ B) can be found in closed-form using the
Moore-Penrose inverse [23]:

M = [AT A]−1 AT B = A+B

A. Algorithm 1: ALS for the Luther-Condition Optimisation

In step 4 of the algorithm, the optimal filter is found by find-
ing scalars that maps each row of Qi−1 to the corresponding
row of X. The best scalar α mapping the vector v = [Qi−1

j ]T to
w = [X j ]T (for the j th row of the data matrices) can be written

in closed form using the Moore-Penrose inverse: α = vT w

vT v
.

Similarly, in step 5, the Moore-Penrose inverse can be used
for finding M . Denoting Q = diag( f i )Qi−1 then Mi =
Q+X = [QTQ]−1QT X.

B. Algorithm 2: ALS for the Data-Driven Optimisation

In step 4, each Mi
j can be solved directly using the

Moore-Penrose inverse. Denoting Q = CT
j Qi−1

j then Mi
j =

Q+CT
k X = [QTQ]−1QT CT

k X.
In step 5 of the Data-driven optimisation, the filter f is

embedded in the equation and so we cannot solve for it directly
as we could for the Luther-condition case.

To solve for the filter it is useful to vectorise the minimisa-
tion. We recapitulate the minimisation statement of step 5:

min
f

cnt∑
j=1

� (CT
j diag( f )Q j M j − CT

k X) �2
F (18)

The meaning of � �2
F is the Frobenius norm squared, i.e. the

sum of all the argument terms squared. This Frobenius norm
is generally applied to matrices (as here) but can equally
be applied to vectors (where the vec() operator stacks the
columns of a matrix on top of each other):

min
f

cnt∑
j=1

� vec(CT
j diag( f )Q j M j ) − vec(CT

k X) �2
F (19)

Now let us rewrite the diagonal filter matrix as a summation
of each value in the diagonal, fi , multiplied with a single
entry matrix Di as diag( f ) = ∑31

i=1 fi Di . Here, Di is a 31×
31 matrix with a single non-zero entry at D(i, i) = 1. By
substituting this new filter representation into the first term of
the minimisation in Equation (19), we obtain

vec(CT
j diag( f )Q j M j ) =

31∑
i=1

fi vec(CT
j Di Q j M j ) (20)
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Now let us denote a matrix Vj = [v1, j v2, j · · · v31, j ] where
its column represents v i, j = vec(CT

j Di Q j M j ), Equation (20)
can be expressed more compactly as

vec(CT
j diag( f )Q j M j ) = Vj f (21)

where f = [ f1 f2 . . . f31]T . Note that if C j is a 31 × n
matrix then CT

j Di Q j M j is an n × 3 matrix (where 3 denotes
the number of color channels) and thus v i, j is 3n × 1 which
makes matrix Vj have size of 3n × 31.

Now we stack all Vj , j = 1, 2, .., cnt matrices (under cnt
different lighting conditions) on top of each other making an
(3n ∗cnt)×31 matrix, V . Similarly we stack all cnt targeting
XYZs on top of each other denoted as w = vec(CT

k X) which
has the size of (3n∗cnt)×1. We remind the reader that k might
equal j . Or, k might denote a single privileged illuminant such
as CIE D65.

Now the minimisation in Equation (19) can be equivalently
rewritten as:

min
f

� V f − w �2
F (22)

The best f can be found in closed form using the Moore-
Penrose inverse:

f = (V )+w = [V T V ]−1V T w. (23)

C. Filter Constraints

Equation (23) solves for the 31-component f in one step.
Suppose we write f = Bc. We constrain the filter to be
describable by a linear basis (B is 31×m where 1 ≤ m ≤ 31).
Additionally, the filter is restrained by a minimum fmin and
maximum fmax bounds on the transmittance. Then to solve
for the filter we find the coefficient vector c that minimises:

min
c

� V Bc − w �2
F s.t. fmin ≤ Bc ≤ fmax (24)

Equation (24) where there is a quadratic objective function
and linear inequality constraints can be solved using quadratic
programming [47].
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